
Simulation Synergy: Interconnecting Simulation Programs

David Bradley and Nathan Blair
Solar Energy Laboratory

University of Wisconsin - Madison
Madison WI 53706

ABSTRACT

One of the drawbacks faced in increasing the use of
simulation programs for renewable energy system design is
that new models must be written in a specific programming
language. Often times models developed for one platform
must be translated to the language used by the simulation
program. As an example, researchers use Engineering
Equation Solver to develop steady state simulation models.
However, in order to use those models within a larger system
or in a transient mode with TRNSYS, the models must be
rewritten in FORTRAN, a time consuming process. If better
communication between programs existed, the problem
would be greatly diminished. This paper describes the
creation of a synergy between different simulation tools
using three methods of linking programs together: calling
other Windows programs, calling Dynamic Link Libraries,
and using Dynamic Data Exchange.

1. BACKGROUND

Many of the current energy simulation programs such as
DOE2, BLAST and TRNSYS saw their first versions
released as many as 25 years ago. At the time, individual
researchers crafted simulation tools to meet their own needs.
FORTRAN was used extensively in these tools as it was well
known and was independent of computer platform. A great
deal has changed in the computer world and in the
engineering industry over the intervening years and
developers of simulation tools are now working to find new
ways to adapt.

One of the most important features of the above mentioned
simulation tools is their modularity. In the case of TRNSYS,
individual component models (solar collectors, pumps, tanks,
etc.) are represented by separate FORTRAN subroutines.

New subroutines can be written (in FORTRAN) by users
and can be incorporated into simulations.

However, far fewer researchers study programming
currently and if they do, they rarely study FORTRAN. In
order for researchers to expand the capabilities of a
simulation tool, they must first learn FORTRAN.
Furthermore, since the researcher’s ultimate goal is not the
creation of a new FORTRAN subroutine, the routines tend
not to be rigorously tested and often contain bugs. These
bugs diminish the reusability of the models by future users.

Instead of forcing researchers to learn an outmoded
programming language, it would be preferable to either
allow them to program in any language, or to incorporate
familiar tools such as Engineering Equation Solver,
MatLAB, Mathematica and Excel into the simulation tool.

Another trend affecting the world of renewable energy
simulation is the overwhelming acceptance of the
Microsoft Windows operating systems on desktop
computers. The prevalence of Windows has made it
possible to add graphical tools to simulation programs,
including plotting tools, graphical user interfaces, and
CAD based tools. Furthermore, the convergence on a
single operating system has made development and use of
protocols for communication between programs much
more worthwhile.

2. SOLUTION METHODOLOGIES

By taking advantage of the MS Windows operating
system, various methods have been used to create a
synergy between different, commonly used simulation
tools. The methods used can be broken into several
categories: calling and being called by other Windows-

based programs, calling Dynamic Link Libraries, and using
Dynamic Data Exchange to send and receive messages.

2.1 Calling And Being Called By Other Programs

Perhaps the most basic mode of communication between two
programs is to allow one program to “call” another. In other
words, while one program is running, allow it to launch a
second program, wait for completion of a task and then
continue its calculations. A distinct advantage of this
solution is that the second program need not be modified.
However, the process of calling and waiting is slow,
especially in simulations where the second program must be
called at each timestep.

TRNSYS [1] currently contains a number of utility routines:
subroutines that perform common tasks such as the
calculation of thermodynamic properties of fluids. These
utility routines are called from within component models
such as a pump or a chiller. In order to allow calls to external
programs, a utility subroutine named “CALLPROGRAM”
has been created. CALLPROGRAM uses several Win32
Application Programming Interface (API) commands to start
the external program. API commands directly control the
Windows operating system. Depending on the mode
specified in the call statement, CALLPROGRAM will either
wait for the second program to finish its task before
proceeding or will merely start the second program or then
proceed with other TRNSYS calculations. The call statement
for CALLPROGRAM is:

CALL CALLPROGRAM(CMDLINE,bwait,prochand,
thrdhand)

Where:
CMDLINE is the command line text string containing the
path and name for the executable program
BWAIT is a logical variable that determines whether
TRNSYS will wait for the second program to finish running
or not.
PROCHAND and THRDHAND are Windows variables that
may be useful in some cases.

In order to make use of the information generated by the
second program, it was necessary to develop a method for
inserting data into the TRNSYS input file. Until now, the
TRNSYS input file has been one continuous text file
containing all the information that describes the system being
simulated. However, in certain situations it would be
advantageous to have part of the TRNSYS input file (for
example, equations passed from another program) in a
separate file and reference it with an INCLUDE statement
from the main file. In this way, it is possible to change items
or rewrite the include file without changing the main
TRNSYS file. The syntax would look like:

INCLUDE c:\trnwin\file.inc

TRNSYS treats all the statements in the include file as
though they were in the main file.

2.2 Calling Dynamic Link Libraries

Because of the slow speed, calling an external program and
waiting for it to finish is often an unacceptable solution.
However more and more often, Windows based programs
are comprised of both an executable, and a dynamic link
library (DLL). The executable contains all the program’s
peripheral tools as well as the interface and calls the DLL,
which is essentially the compiled source code. The DLL
can be accessed quickly because none of the program’s
overhead actions, such as screen refreshing, are required.
Another distinct advantage to interacting directly with
DLLs is that since a DLL is compiled and linked, its
original language is irrelevant. Simulation programs that
can access external DLLs can use component models
written in any language.

A component was added to TRNSYS that makes calls to
DLLs possible. Type 61, allows a user to write a
component in any language (as long as the language
supports DLLs) and then link that component into
TRNSYS. The code of Type 61 handles the standard
TRNSYS initialization routines and then calls the DLL
called “EXTDLL”. The calling command for the DLL,
within Type 61, is:

CALL EXTDLL(Spass,Sarraypass,simarray,xin,out,t,dtdt,
par,info,icntrl)

TRNSYS passes its standard arrays of information to the
DLL (parameters, info, inputs, etc.) but also passes several
other arrays. In this manner, EXTDLL has every
capability available to a normal TRNSYS component. The
three additional arrays contain information accessible to
other TRNSYS components through FORTRAN common
blocks. The SPASS array is a character string that can be
used for passing either error or text messages back to
TRNSYS from the external DLL. The SARRAYPASS
array is a 100-place array set aside for values that need to
be saved from one timestep to the next. This capability is
normally provided to standard TRNSYS components
through the S-array. The SIMARRAY array passes the
current timestep value, the simulation start time, stop time
and timestep values to the DLL.

As an alternative to using Type 61, it is possible to write a
DLL using the standard TRNSYS call statement, place the
DLL in the TRNSYS “userlib” directory and call it as
though it were a normal TRNSYS component. No matter
what language the component is written in, it can be

directly used within the TRNSYS simulation. Unlike the
EXTDLL call described above, the SPASS, SIMARRAY,
and SARRAYPASS arrays are not included. The advantage
of this method is that adding components becomes extremely
simple; it suffices to place them into the proper “userlib”
directory.

The capability of loading and using external DLL’s has been
successfully applied to REFPROP [2], a program designed to
calculate the thermodynamic properties of pure refrigerant
fluids as well as those of user defined mixtures. The
connection to REFPROP can replace the TRNSYS fluids
subroutine, which makes the same calculations for a limited
selection of refrigerants.

2.3 Using Dynamic Data Exchange

The third method used to interconnect simulation programs is
Dynamic Data Exchange (DDE); a method of sending
messages to between programs through the Microsoft
Windows operating system. DDE is a special set of
Windows API commands that allow two programs to
communicate. Many programs support DDE, including the
applications within Microsoft Office and Engineering
Equation Solver [3]. Engineering Equation Solver (EES) is a
non-linear equation solver that incorporates two distinct
advantages for energy simulation work. First, EES allows
equations to be entered in any order with unknown variables
placed anywhere in the equations. Second, EES provides
numerous built-in mathematical and thermophysical property
functions. For example, the steam tables are implemented
such that any thermodynamic property can be obtained from
a built-in function call in terms of any two other properties.
Unfortunately, researchers wishing to use EES models with
TRNSYS need to rewrite them in FORTRAN. Using DDE,
however, removes this necessity.

A TRNSYS component (Type66) performs all the necessary
DDE message handling between TRNSYS and EES as
shown in Figure 1.

Fig. 1: Type66 DDE Message Handling Between
TRNSYS and EES

Type 66 allows the user to call an EES file, pass it
inputs and receive outputs from EES using DDE and
text files to exchange the information and commands.
To begin, the user creates a model in EES, then
decides which variables should be inputs and which
should be outputs. The variables chosen to be inputs
are placed in an include file automatically. The EES
program is set up to look for the include file,
manipulate the inputs and then set the outputs as
shown in Figure 2.

$include E:\EES32\XYZ.INC
x^2 = Out[1]
x + y = Out[2]

Fig. 2: A sample EES file

The user then enters information into the TRNSYS input
file in the form of a standard type description. An example
is shown in Figure 3:

UNIT 66 TYPE 66 CALL EES XYZ
INPUTS 1
xvalue yvalue
x y
LABELS 3
*the command line to run ees
c:\EES32\EES.EXE c:\EES32\XYZ.EES
*the include file to write
c:\EES32\XYZ.INC
*the output file that ees writes
c:\EES32\XYZ.OUT

Fig. 3: TRNSYS input file call to EES

The above type description is similar to a standard
TRNSYS type description with the exception that there are
no parameters, only inputs. The first line of the inputs
specifies either the variable names or the TRNSYS
component outputs that contain the values of the inputs at
each time step. The second line of inputs contains the
variable names that are to be printed in the include file by
Type66. The assignment of variable names is necessary
because EES is expecting them to have specific names.
There are also three LABELS associated with this type.
The first label is the command line that runs the EES file.
This tells TRNSYS where to look for EES, where to find
the EES file to be run and to start EES if it is not already
running. The second LABEL is the name of the Include
file into which TRNSYS will place the input values and
their labels. The third LABEL is the name and location of
the output file from which TRNSYS will read the EES
solution.

In the course of a simulation timestep, new values for the
inputs (xvalue and yvalue in this case) are set by other
components in the simulation. These new values, along

with the labels (“x” and “y”) are written to the EES include
file. Then, Type 66 sends a DDE message to EES to open
and calculate the EES file (c:\EES32\XYZ.EES). EES does
this calculation and writes the results to an output file
(c:\EES32\xyz.out). Type 66 then opens the output file,
reads in the values for the OUT array (OUT[1] and OUT[2])
and passes these values to the TRNSYS solver to be used as
inputs for other components.

3. SPECIFIC EXAMPLES

Simulation programs often have specific requirements as to
the presentation of their data. The three basic methods
described above require slight modification for individual
cases.

3.1 Using TRNSYS Components in EES

EES has the ability to use external procedures and functions
contained in DLL’s. A method has been developed on the
TRNSYS side, which allow standard TRNSYS components
to be called from EES. The format for the call statement that
EES requires is:

SUBROUTINE MDASF(S,MODE,NINPUTS,INPUTS,
NOUTPUTS,OUTPUTS)

Whereas, the call statement for a TRNSYS component is:

SUBROUTINE TYPE144(TIME,XIN,OUT,T,DTDT,
PAR,INFO,ICNTRL,*)

Evidently, there is a mismatch between the two call
statements. A “wrapper” subroutine is written for each
TRNSYS type that is to be called by EES. The wrapper
subroutine rearranges the input variables coming from EES
and then calls the TRNSYS component with the proper call
statement. In this way, TRNSYS components can be used
without modification in EES programs.
3.2. Energy-10 – TRNSYS Interaction

Energy-10 [4] is a simulation program geared towards
smaller buildings and specifically designed to evaluate
energy-efficient building features (including solar thermal
and photovoltaics) in the very early stages of the design
process. Since there are already simulation programs
specifically designed to analyze renewable energy features, it
would require a great deal of redundant development to add
these capabilities to Energy-10 as well. Instead, Energy-10
will call TRNSYS to simulate the performance of the
renewable energy feature under consideration. Specifically,
Energy-10 will create a text file containing a few critical
design parameters such as PV array size and orientation, and
inverter efficiency and then call TRNSYS. TRNSYS will

then run a ready-made simulation and pick up the
information in the text file, inserting those parameters into
the input file at the proper location. Once its simulation is
complete, TRNSYS leaves behind an output file containing
the performance data, which is incorporated into the
Energy-10 simulation.

3.3 EnergyPlus – TRNSYS Interaction

Recent work has gone into developing a connection
between EnergyPlus [5] and TRNSYS. EnergyPlus is a
new simulation tool based on the marriage between DOE2
and BLAST. EnergyPlus will include its own capability to
simulate building energy use but will rely on TRNSYS to
simulate the impact of renewable energy systems. The first
generation of the EnergyPlus-TRNSYS connection will be
quite similar to the Energy-10-TRNSYS connection. One
disadvantage to this method, however, is that TRNSYS can
be called only once per simulation. Further developments
are planned to fully integrate the two programs so that
TRNSYS can be called at each time step.

4. CONCLUSIONS

Throughout most of their history, simulation programs
have been written in a programming language appropriate
to the situation, most often FORTRAN. Any subsequent
developments had to be made in the original language.
However, with the dominance of Microsoft Windows in
the computer market and the ever-decreasing number of
developers fluent in FORTRAN, an opportunity exists to
break free from dependence on FORTRAN. Recent
developments in one simulation program, TRNSYS, have
centered on the creation of new methods of communication
between applications. The use of predefined Windows
operating system tools has replaced the need for translating
existing models into FORTRAN. Major techniques
employed include automatically calling other programs,
calling Dynamic Link Libraries written in any
programming language, and using Windows operating
system commands. Combinations of these techniques have
been employed to allow TRNSYS to interact with EES
(Engineering Equation Solver), Energy-10 (architectural
energy tool), REPROP (thermodynamic fluid properties),
and EnergyPlus (building simulation tool in development).
The techniques employed are quite general and can be
applied to any FORTRAN based simulation tool. The use
of these interaction techniques should reduce the amount of
“re-coding” or re-inventing the wheel that is a current
disadvantage of concentrating use on any single simulation
tool.

5. REFERENCES

[1] Klein, S.A., et al. TRNSYS vers. 14.2. Energy Simulation
Software. Solar Energy Laboratory, University of Wisconsin-
Madison, 1996
[2] REFPROP. vers. 6.0. Software for the calculation of
thermodynamic and transport properties of refrigerants and
refrigerant mixtures. National Institute of Standards and
Technology, 1996
[3] Klein, S.A., Engineering Equation Solver. vers. 4.93.
Equation Solving Software. F-Chart Software, 1998
[4] Energy-10. Software for the design of low-energy
buildings, The Passive Solar Industries Council, 1997
[5] EnergyPlus. Building Energy Simulation Software. US
Department of Energy, 1998

