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ABSTRACT

A simple yet effective general regression neural nerwork
(GRNN) paradigm is suggested for heating, ventilating, and
air-conditioning (HVAC) control applications. Unlike the
popular backpropagation paradigm, the proposed GRNN is
simple to implement, requires only one parameter, and works
well with sparse and random data. A simple local HVAC
control example for a heating coil is chosen to test the GRNN
effecriveness. The GRNN is used to capture the static charac-
teristics for bothvalves/dampers and coils. Bothsimulared and
experimental characteristics are used as identification as well
test dara for the GRNN. The GRNN captures the characteris-
tics remarkably well and, due to its simplicity, it exhibits prom-
ise for implememtation in real controllers. A combined
Jeedforward and feedback control algorithm is explored that
can utilize the GRNN method to identify static characteristics
and can then subsequently be used in a feedforward controller
to generate control signals based on the identified character-
istics.

INTRODUCTION

Inrecent years, neural networks have been used fora wide
range of HVAC applications, inciuding predictions of build-
ing energy use (Anstett and Kreider 1993), adaptive control of
heating coils (Curtiss et al. 1993), predicting return time from
night setback (Miller and Seem 1991), and capturing complex
predictions of mean vote (PMV) psychrometric relationships
(Mistry and Nair 1993). All of these applications used a feed-
forward neural network trained using a backpropagation
method (Rumelhart and McClelland 1986). In spite of the
reported success, there are certain limitations that restrict the
practical implementation of the backpropagation method.
These limitations include computationally long learning times
and appropriate selection of the number of layers, the number
of neurons, the learning coefficients, and the initial values of
weighting coefficients.
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A memory-based network is described here that captures
the input-output regression (linear or nonlinear) characteris-
tics of the system. The neural network requires only a single
parameter and, unlike backpropagation, does not involve any
iterative training process. This general regression neural
network (GRNN) has a theoretical basis using the Parzen
window estimator (Parzen 1962) and was first applied as a
neural network by Specht (1991). Compared to the conven-
tional regression, the GRNN does not require a priori specifi-
cation of the regression equation. In addition, compared to the
nonlinear regression, the bounds of the independent variables,
initial values, and convergence criteria do not have to be
selected. This makes on-line implementation of the GRNN
straightforward. The major limitations of the GRNN or any
other memory-based neural network are long computation
times when dealing with a large data set, which also requires
more memory. In such cases, clustering techniques are
suggested to reduce the number of data sets to increase the
computation time and reduce the memory requirement.

A simple control topology combining feedforward and
feedback algorithms (Kraft and Campagna 1989; Psaltis et al.
1987) is chosen here to demonstrate the principle of GRNN
and to discuss the role of GRNN in identifying and controlling
HVAC control processes. The control topology is shown in
Figure 1.

The feedforward controller has identification and control
blocks. The identification block captures and updates the
process characteristics based on the process input control
signals and the measured variables. The identification block
passes the updated characteristics periodically to the control
block for control action. The feedforward control block acts
upon receiving a setpoint signal and provides a control signal
based on the identified characteristics of the process. The
feedback controller uses the error between the setpoint and the
measured variable as input. The outputs from the feedforward
and feedback blocks are used to control the HVAC system.
The combination of feedback and feedforward controls has
been successfully applied in industrial applications (Lorenz

Osman Ahmed is a senior principal engineer at Landis & Gyr Powers, Buffalo Grove, 111, and a Ph.D. candidate and John W. Mitchell and
Sanford A. Klein are professors in the Solar Energy Laboratory at the University of Wisconsin, Madison.

THIS PREPRINT IS FOR DISCUSSION PURPOSES ONLY, FOR INCLUSION IN ASHRAE TRANSACTIONS 1896, V. 102. Pt. 1. Not to be reprinted in whole or in
part without written permission of the American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.. 1791 Tullie Circle. NE, Atlanta, GA 30329.
Opinions, findings, conclusions, or recommendations expressed in this paper are those of the author(s) and do not necessarity reflect the views of ASHRAE. Written
questions and comments regarding this paper should be received at ASHRAE no later than March 6, 1396




!0
. a Feoadack comroser ~ m” HVAC Systams "

Mhsastired Yariahle

Figure 1 Combined feedforward and feedback control
topology.

and Lawson 1987; Lorenz and Novotny 1988). The aim of the
feedforward-feedback combination topology is to generate
the majority of the control signal from the feedforward block
such that the feedback block only deals with a small steady-
state error and thus requires considerably less tuning than a
feedback-only controller. Unlike feedback, the feedforward
loop acts only upon the setpoint value and does not require the
measured value of the variable. As a result, the feedforward
signal can enhance control speed in tracking the setpoint
change. The most common method of employing feedback is
the traditional approach of the proportional-integral-deriva-
tive (PID) algorithm. The complete control topology is further
discussed in the example of a heating coil control process.

The specific control topology shown in Figure 1 is partic-
ularly suitable for identifying and controlling room- or zone-
level processes that are often referred to as a local HVAC
controller. This local controller uses valves and dampers to
modulate the flow of water and air, respectively, with heating
coils used to provide local heating. Both valve and damper are
flow-restricting devices and. by capturing the characteristics
of the valve or damper and of the heating coil, a feedforward
block can be suitably developed for local HVAC control
process. The local controllers are found in large numbers in
mid-size to large buildings and must have limited memory and
processing capability to remain inexpensive. Hence, a scheme
is needed that will be simple, easy to impiement, cost effec-
tive, and that provides substantial enhancement in perfor-
mance by coupling feedforward and feedback algorithms.
Instead of reacting to a control affected by the dynamic

response of the coil and valve signal, signal-static character- -

istics of these devices are stored and updated in the feedfor-
ward block. The GRNN method provides an effective means
of capturing static characteristics of the coil and valve.

It is hoped that the paper will contribute by identifying a
specific neural network paradigm and then illustrating the
implementation in an HVAC control application. This will
demonstrate the benefits and !imitations of the method.

[ %3

IDENTIFICATION AND CONTROL
OF A HEATING PROCESS

This section presents an overview of the identification
process for the characteristics of a heating system and its
control similar to the control topology shown in Figure 1.
Following discussions on GRNN and modeling of a coil and
valve/damper in the next sections, simulated and experimental
results are presented to illustrate the identification process of
a heating coil.

A simple system of heating air by water flow is chosen to
demonstrate the application of the GRNN. The physical
process is shown in Figure 2 and involves two components: a
valve/actuator assembly and the heating coil. The valve/actu-
ator characteristics are similar to those of a damper/actuator
used to modulate the airflow rate in an HVAC air distribution
system.

Therefore, the GRNN method described here for captur-
ing the valve characteristics is equally applicable to damper/
actuator characteristics. The water flow rate through the valve
will depend on the valve open area and the authority, a. The
authority is defined as the ratio of the pressure loss across the
valve to the circuit pressure loss when the valve is fully open
or, for each valve,

APvalw
“= 2P M
cireuttl,atve is Jully open

Expressing the valve characteristics in terms of authority, per-
cent valve open, and percent maximum flow rate is typical
(ASHRAE 1992).

For a single-circuit system, in practice, the circuit pres-
sure drop will be small compared to the valve, which will
make a close to 1.0. However, for a system with multiple
circuits, as shown in Figure 3, the pressure loss becomes
significant in the main segment compared to the branch
segment as the distance between the pump and the coil
increases. As a result, the authority varies depending on the
ratio of pressure loss, as indicated in Equation 1. The authority
of any circuit is time dependent, as the flow in each circuit
varies with the time. The valve authority can be calculated
using basic relations between design pressure drop and flow
rate or by measuring static pressures at the pump outlet and
valve inlet at the design flow conditions.

As shown in Figure 1, a control signal, C,, is generated
based on the heating demand and is sent to the valve/actuator.
In the case of a damper, the signal will be generated in
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Figure 2 Physical process of water-to-air heating coil.
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Figure 3 Water distribution system for HVAC appli-
cations.

response to the demand for airflow rate. The heating coil has
inputs of water and airflow rates and inlet air and water
temperatures. The coil outputs are water and air outlet temper-
atures. Since water outlet temperature is not directly linked to
the supply air thermal capacitance, it is not considered in the
identification. R is used as a nondimensional variable combin-
ing water inlet temperature (77;) and air inlet and outlet
temperatures (T, ; and 7, ,, respectively). R is defined as

T -T .
R= a, o a.l.
Ti-T, @

Both T; and T, ; are usually known constants for a given
system as user input parameters. The dimensionless variable,
R, also can be viewed as coil effectiveness. Normally, the
denominator of R is about 145°F (62.78°C) for a T; of 200°F
(93.34°C) and T, ; of 55°F (12.78°C). Hence, choosing arange
of R from .02 to .45 will yield values of T, , from 58°F
(14.45°C) to 120°F (48.89°C). Such a range of R will cover
coil applications for a wide range of HVAC systems.

The identification process described above provides the
outputs as a function of inputs. The idemtification needs to be
inverted when used in a controller to produce the desired
control signals to the valve. The control scheme can be
explained using Figure 4. The entire control scheme is divided
into feedforward and feedback blocks. The feedforward block
is activated upon receiving a signal of the coil outlet air
temperature setpoint, 7,, ., The feedback loop is driven by an
error between T, , 5, and the actual measured coil outlet
temperature, T, .

The order of the physical heating process as shown in Figure
2 is reversed in the feedforward block. The coil characteristic is
utilized first in the control process to yield the desired water flow
rate, vy, for the desired coil outlet air temperature setpoint,
T4 0isp» @nd for the supply airflow rate setpoint, Talsp Knowing
the water flow requirements and the measured or estimated
authority, a, the identified valve characteristic then generates a
control signal combined with the feedback control signal before
it is sent to the coil valve.
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Figure 4 GRNN implementation of identification and
control of heating coil.

The observed variables from the system along with the
control signal, C,, may be periodically collected and used to
update the steady-state coil and valve characteristics by a sepa-
rate GRNN identification scheme indicated as an on-line adap-
tive GRNN in Figure 4. The observed variables include 7, ,, 7, ;,
v, ,and v,. Instead of expensive means of measuring water flow
rate, the coil outlet water temperature, 7;,, can be measured and
can be calculated using the following energy balance:
v (Ta. 0o~ Ta. i)

v, = k-t
) (Tf',-—Tf'a)

where k is a constant and equals

©)

Equation 3 is proposed to calculate the water flow rate
through the local heating coil considering the aspects of cost
and practicality. The HVAC control system usually trends the
airflow rate through the coil as well as the discharge air
temperature for control purposes. The values are updated
every second or more. The values for coil air and water inlet
temperatures are also available from the central air-handling
unit and chiller plant. Thus, by adding a water temperature
sensor, the coil water flow rate can be calculated using Equa-
tion 3. This is a cost-effective proposition since the flow
sensor costs more compared to the temperature sensor and
such a cost difference becomes significant considering the
large number of local heating coils present in a building. Also,
in a retrofit job a strap on the temperature sensor can be
installed outside the pipe, avoiding costly job interruptions.
On the other hand, a flow sensor needs to be inserted inside the
existing pipe, which interrupts the system operation.

A few additional factors favor the use of the temperature
sensor. First, Equation 3 will only be used for identification
purposes. Hence, dynamic data are not needed to solve for the
water flow rate from Equation 3. Instead, only periodic steady-




state data are needed. The steady-state data should not be diffi-
cultto obtain given the sample rates of one or more per second.

Second, the governing relationships between the water
flow rate and the airflow rate and air- and water-side differ-
ential temperatures across the coil are important to estimate
the coil water flow rate. Hence, the absolute accuracy of each
measurement is not that critical.

Finally, the purpose of the feedback controller in a
combined feedforward and feedback block is to compensate
for inaccuracies with the identification process, which
includes measurement error. Hence, accurate measurement
for identification is not required.

GENERAL REGRESSION NEURAL
NETWORK (GRNN)

The GRNN is chosen to identify the coil and valve char-
acteristics due to its simplicity, robustness, and excellent capa-
bilities in system identification. Unlike a conventional neural
network, it requires minimal computational time to effectively
capture the system characteristics. Specht (1991) discusses the
theory of GRNN in detail. The following is only a brief
account of GRNN to illustrate its implementation in identifi-
cation of the components discussed in this paper.

The input to a GRNN is a series of data that can have
multiple dimensions. For sample values of X; and ¥; of input
vector X and the scalar output ¥, an estimate for the desired
mean value of Y at any given value of X is found using all of
the sample values in the following relations:

- g
) = ————2 (4)

where the scalar function, D,~2 . representing the Euclidean dis-

tance from the given value, is given by

D} = (x-X)"(x-x) (5)

and ¢ is the single smoothing parameter of the GRNN.

Equations 3 and 4 are the essence of the GRNN method. The
estimate P(X) is essentially a weighted average of all the
observed samples, ¥, where each sample is weighted exponen-
tially according to its Euclidean distance from each X; denoted
by D;. In that sense, D; resembles the weighting coefficients of
a backpropagation scheme. For a small value of the smoothing
parameter. G, the estimated density assumes non-Gaussian
shapes but with the chance that the estimate may vary widely
between the known irregular points. When o is large. a smooth
regression surface is achieved. In case an input is outside the
range of observed samples, the GRNN will be able to predict an
output based on the nearest samples in the observed data.
However, the performance of GRNN can be enhanced by
including that specific sample in the database.

3

When using measured data. it is necessary to find the opti-
mum value of 6, as the parent distribution between X and Y is
usually not known. As a preprocessing step. all input variables are
normalized to obtain the same scale using the ranges of observed
samples. The value of ¢ can then be calculated by a simple yet
effective scherne known as the “holdout” method; holdout is one
of several methods that are available to find an optimum value of
the smoothing parameter. 6. In the holdout method, one sample
at a time is removed from the set and the network is constructed
using the remaining samples. The network is then used to esti-
mate Y for the removed sample; each estimate ¥ is compared
with the actual ¥ and the mean-squared error between the esti-
mate and the actual value is computed and stored. The process is
repeated for each sample. The value of ¢ is chosen so-as to mini-
mize the mean-squared error. The holdout method to compute a
single parameter, G, can be formulated as a single-parameter
minimization problem while the training process in backpropa-
gation adjusts multidimensional weighting coefficients, which is
computationally intense and inherently slow.

A GRNN is shown in Figure 5. in which Equation 3 is repre-
sented in a neural network architecture. For a given X, the connec-
tions between the input and the first layers computes the scalar D;
based on observed samples (Xi)_'and the smoothing parameter (¢)
and then takes theexponentof D; . A node inthe second layer sums
up the exponential values for all samples, while the other nodes
calculate the product of the exponent value and the corresponding
observed output Y; for each sample observation. The node in the
third layer adds up all the product values; this is then supplied to
the output node. where the ratio of the sum of the exponent and the
product values is calculated. Compared to the backpropagation
method, the weighting coefficients between the layers depend
upon the observed samples of X;, ¥;, and the smoothing parameter,
0. As aresult. instead of training the weighting coefficients, only
a suitable single value of & is needed to predict the output. The
GRNN s thus able torepresent the characteristics in amuchshorter
time than with a backpropagation method.

Observed
X _enD)

Figure 5 General regression neural nenvork architecrure.
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The implementation of GRNN to the characteristics of a
heating coil or valve/damper also offers advantages over the
conventional methods of identification. In a traditional regression
method for identification, the operator has to input a priori knowl-
edge of the equation type or has to search for the best-fit equation
exhaustively. The code requirement for a nonlinear regression is
intensive and may be prohibitive for effective on-line use. In
contrast, the GRNN does not require any user input for the func-
tional form of the characteristics and uses a strikingly simple
code. Moreover, the GRNN algorithm can be imbedded into a
neural hardware processor, thereby eliminating the software
development process to a large extent since software coding
during field installation is not necessary. The choice of sample
size and specific sample values are important in designing a
GRNN in general. However, such issues are not so critical for
HVAC applications. Only a small data set is needed to cover the
normal operating range of HVAC equipment. The data provided
then allow a satisfactory identification of characteristics.

MODELING OF COIL

A simple model for the coil is used to generate simulated
data to test the application of the GRNN. A simple effective-
ness heating coil model is selected to achieve the desired
objective. The steady-state coil heat transfer in terms of
airflow rate and temperature is

= C AT, o~ T, - )

The coil effectiveness, €, is defined as the ratio between the

actual and maximum heat transfer rates or
g = L Q)

max

The maximum rate of heat transfer occurs when the fluid with
the minimum product of flow rate and specific heat changes
temperature from its inlet to the entering temperature of the other
fluid. Hence, the actual coil heat transferrate, g ,canbe rewrittenas

g = €Cpin(Ty i~ Ta - ®)

Combining Equations 6,7, and 8§ yields
C
Too = To+{2E)(T = Tu ©)
To calculate heating coil effectiveness, the following

equation for a crossflow heat exchanger such as a heating coil
is used (Holman 1989):
1 [l - e(-C,(l -

E=-C-:;

~NTU

))] (10)

where

G = G/,
NTU = UAq/Chins
Crin = min(Cg Cp),
and

Crx = max(CpC,).
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For identification and test purposes. values are generated
using Equations 5 through 9 with a value of € = 0.70 and
UA, iy = 60 Bu/min-°F.

MODELING OF VALVE/DAMPER

A damper or a valve is essentially a variable fluid resis-
tance device. Both exhibit similar fluid characteristics and
their performance is expressed in terms of identical variables
and hence can be represented by the same models. The models
represented here are used in the HVACSIM+ simulation
program (Clark and May 1985) and are capable of represent-
ing both linear or nonlinear behavior in terms of inherent char-
acteristics. For clarity, only the term “valve” will be used,
although the model is also valid for dampers. The model
consists of a valve, a branch pipe (or duct) section upstream,
and a pipe (or duct) downstream of the valve. For fixed
upstream and downstream pressures, the models compute the
flow rate by knowing the valve position. The valve position is
linked to the actuator position, which is commanded by the
controller. The model assumes that both inlet and outlet pres-
sures are known and fixed, that the hear transfer is negligible,
that the frictional coefficient in the flow range under consid-
eration remains constant, and that the flow is fully developed.

The relationship between pressure and flow can be
described by the following empirical equations:

P,-P, = KM( . an

Py=P, = Ky (v’ (12)
and

P.-Py = K (v)° (13)

where P, is the valve inlet pressure, P,, is the valve outlet pres-
sure, P, is the pressure at the junction between the branch and
the return circuit, and P is the circuit pressure before another
branch joins the circuit. The locations for different pressures
are shown in Figure 3.

Equations 12 through 14 also will be valid for dampers
except that the volumetric water flow rate through the valve, v
must be replaced by the airflow rate, v _, through the damper. Igbc
and K are assumed based on design conditions and standard
HVAC design procedures (ASHRAE 1994). K, is expressed as
(Clark and May 1985):

W,
K, = -———-é—-———+(1- WA AP ™D,

[ —A.)r+A]

(14)

In Equation 13 the parameter W, determines the nonlin-
earity of the valve/damper. A value of #,= 0 indicates a truly
exponential valve whereas 1.0 means a linear valve, The term
A is a leakage constant that prevents infinite flow resistance
when the valve is fully closed. The valve flow resistance coef-
ficient at the fully open position is denoted by X, whereas r
represents the normalized (0 - 1) commanded position by the



controller. By using system authority as a simulation variable,
it is possible to duplicate the installed performance of a valve.
Fixing the value of a allows the coefficient K, to be a vari-
able. Solving Equations 11 through 14 simultaneously will
determine the value of X, based on the fixed authority and
flow rate. The values of K, for various a are listed in Table 1
along with other parameters considered when simulating
valve characteristics. In Table 1, negative values of X, for
authorities of 1.0 and 0.70 have no physical significance
because they are obtained by assuming arbitrarily selected
values for K, K. P, and P

SIMULATION AND IDENTIFICATION OF
COIL AND VALVE CHARACTERISTICS

Coil and valve characteristics were generated using the
.models described above and subsequently used in the GRNN
to identify the characteristics. The physical variables are first
normalized. Besides R and authority, a, whose range is O to 1,
other normalized variables used are

nC = —E—’—,
C:maz
ny, = i, (15)
fmax
v
=l
The values of ¢y, v, _,and v are 1.0, 2,500 cfm

(1,180 L/s), and 1.0 gpm ( 0631 L/s),:r’:'sspecnvely Using the
value of R required to meet the load and a given value of nv ,
a value of nv, can be determined which can be subsequently
used in a valve model along with the given authority to gener-
ate a control signal, nC, as indicated in Figure 6. The coil and
valve characteristics data are generated using normalized vari-
ables and the models described above.

TABLE 1

A =.00001; F r= 1; Keq= .08641(64.89); Ko=.042 (31.54);

Valve Simulation Parameters

Authority B of H0 (__k_{a__J Maximum v, gom (Lfs)
(em)? \(L/s)?

1.00 -086  (-64.58) 3.00 (0.1893)
70 -034  (-25.53) 2.50 (0.1577)
50 037 (21.78) 212 0.1337)
20 407 {305.63) 134 (0.0845)
.10 102 (765.97) 0.95 (0.0599)
05 225 (1689.64) 0.67 (:0423)

o1 1213 (9109.02) 030 (0189)

6

The GRNN method can be best explained by using an
example of regressing valve data for a constant authority. For
example, choosing a to be 0.1, a nonlinear relation, shown in
Figure 6, is established between the normalized control signal
and normalized flow. For a constant authority, there is only
one input and the vector X in Equation 2 becomes a scalar
series of normalized flow rate, av,. In Equation 2, the scalar
function D can be computed where X; is the ith sample inthe
nv_ Series. Equanon 1 can then be solved using D and corre-
sponding Y; as the ith sample of nC, in the 1dennﬁcat10n data.
The simulation of coil and valve characteristics as well as
GRNN is performed using the Engineering Equation Solver
(Klein and Alvarado 1994), The simulated data in Figure 6 are
shown by the solid line, while the points are generated by
using GRNN Equation 1 for various smoothing parameter
values. The simulated data contain 14 samples obtained by
varying nC; from 0.0 to 1.0 in increments of 0.1 and nC; of
0.05, 0.15, and 0.25.

The holdout method is used to calculate the optimum
value for o and is found to be .01. The effect of choosing a
higher value of o is apparent in Figure 6. With the larger value
of &, a smooth, nearly linear trend is found while with smaller
values, the GRNN attempts to approximate all samples. For ¢
= (.01, the average error between the predicted and simulated
signals is found to be 2.62%, while the maximum error of
14% is observed for the lowest value of control signal that is
not included in the identification data (nC; of .35). A slight
error is also observed at the higher value of nv, because the
control signals become highly sensitive to the normalized
flow rate. However, the relative error at the higher end of the
valve curve is much smaller compared to the lower end due to
the higher absolute value of the control signal at this end. The
sample size and the choice of samples, therefore, are impor-
tant variables along with the smoothing parameter, . In fact,
by including the sample of nC; = 0.35 in the identification
data, the error between the simulated and the predicted control
signal for that specific sample can be decreased from 14% to

1.20

1.00F - Simulated data for identification
- o SIGMA=.10

0.80+ A Sigma=.025
I m Sigma=.50

0.60}

% Sigma=.01 (Holdout mcthod). 2 L
0.40}+

0.20F

Normalized control signal (0-1)

0.00 - -
0.00 0.20 0.40 0.60 0.80 1.00 1.20

Normalized flow rate (0-1)

Figure 6  Simulated valve data (a = 0.1) for identifi-
cation and to predict use of GRNN.
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less than 1% while the average error can be dropped from
2.62% to 1.31%. To identify damper/valve characteristics,
only 200 samples at most will be required to cover the entire
range of operation. This is based on the assumption that the
authorities can be varied between 0.001, 0.01, 0.05, and 0.1 to
1 in increments of 0.10 while the control signal can be varied
berween 0.03, 0.075, 0.01, 0.15, 0.20, 0.25, 0.30, 0.35, and
0.40 to 1.0 in increments of 0.1. Any state-of-the-art local
controller will be able to process the 200 sample values with
ease and speed. In reality, however, the total number of points
to cover the actual operating range will be much less, i.e.,
within 100.

Next, a range of valve authority between 0.5 and 0.1 is
chosen to test the method of GRNN. Again, the holdout
method is used to determine the optimum smoothing param-
eter, o, which is now 0.05, and which produces a sum-of-
squares error of 0.189 over an identification data size of 30
samples. The identification data set includes values of
authority 0f 0.10, 0.30, and 0.50 and nC, between 0.10 to 1.0
equally spaced. The test data set varies nC, from 0.05 t0 0.95
in increments of 0.10 and also includes intermediate author-
ities of 0.20 and 0.40. The average error of about 3.0% is low
compared to the range of the data set. Some errors higher
than the average are found for higher values of the control
signal where the curve becomes very steep with the normal-

ized flow rate, nv,.

The operating range for the valve or damper is typical of
these control applications. Hence, the method of GRNN in
identifying characteristics using a small data set is promising
and implementable in a real controller on an on-line basis. In a
real application, operating characteristics over the entire oper-
ating range can be developed during commissioning by vary-
ing the damper open area. Once captured, the operating
characteristic will be stored in the feedforward controller and
the control signal will be generated based on the stored data
using GRNN. The time and effort required to tune the feed-
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Figure 7 Simulated valve data (1 > a > 0.01) for identi-
fication and to predict using GRNN.
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back loop will decrease, as the error for the feedback loop will
always have a low value. Reduction of commissioning cost
and time and enhancement of system performance are the two
major factors in favoring a combined feedforward and feed-
back controller for building HVAC distribution system.

The measured data obtained during the commissioning
process will be used only to initialize the identification
process. As the system operzates and more operating data are
collected, the identification will be updated accordingly. The
essence of combined feedforward and feedback control is to
generate a rough estimate of the control signal with the feed-
forward block while the refinement is made with the feed-
back block. In fact, the feedforward block also has a feedback
mechanism that updates the identification. The identification
process, however, is kept separate from the control process
for ease of implementation and cost effectiveness.

Another method for implementing GRNN in a real
controiler will be to generate the characteristics using the
simulated data. The characteristics can be stored and updated
as the real data become available and replace the simulated
data. Figure 7 shows both the identification and the test data
covering the entire operating range of a valve. The control
signals varied between 0.1 and 1.0 for each authority in the
identification set while the authorities vary from 0.01 to 1.0.
Also, additional samples are duplicated from the test set to
the identification set at low values of authority and control
signal. In total, 160 samples are used in the identification set
while 150 samples are included in the test set. The holdout
method using a smaller data set with authorities 0f 0.01, 0.10,
0.25, 0.50, and 1.0 is used to optimize the value of 5. A
smaller data set having sparse values still yields a good
choice of o of 0.01 for the data set shown in Figure 7. The
plot comparing simulated and predicted control signals is
shown in Figure 8.

Again, higher than averzge errors occur for large control
signals as well as for low authorities. The large error for a
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Figure 9 Simulated coil data for identification and to
predict using GRNN.

specific sample can be vastly decreased by including that
sample in the identification set. This can be easily achieved in
a real controller by comparing the control signal sent to the
valve and the damper and the conrrol signal generated by the
feedforward control signal (Figure 5). If the difference
between the feedforward and the total control signals increases
more than a prefixed threshold value, the control signal and
corresponding normalized flow rate, v and authority can be
put back into the identification set.

Finally, the GRNN is used to identify the characteristics
of a heating coil. Referring to Figure 4, the GRNN predicts the
required water flow rate through the coil for a given R and
airflow rate. For randomly selected values of normalized
supply airflow rate, nv_, and R, the normalized flow rates,
nv,, are calculated using Equations 7 through 11. A portion of
the simulated data is used for identification purposes while the
rest is set aside to test the GRNN algorithm. The test samples
are purposely chosen to cover the entire operating range.
Figure 9 shows both the identification and the test data.

An average error of 2.6% between the predicted and simu-
lated normalized flow rates is found. Unlike the valve, in which
a definite pattern is evident, the coil plot in Figure 9 appears
random. Even with such sparse and random distribution, the
GRNN is able to predict the coil flow rates with good accuracy.

IDENTIFICATION OF DAMPER
CHARACTERISTICS USING MEASURED DATA

In addition to the simulated data, measured damper char-
acteristics are also used to test GRNN, Two sources were used
to obtain the measured values: (1) test data taken to calibrate
damper performance and (2) active damper performance at a
job site using a building automation system (BAS). In the first
case, damper curves are experimentally generated for three
damper authorities, as noted in Figure 10.
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Figure 10 Damper test data for identification and pre-
diction by GRNN.

The test sensors are similar to those used in commercial
building control systems. For a given control signal, the flow
rate through the damper is noted and normalized using Equa-
tion 14. The GRNN is identified using the measured values of
the control signals, flow rate, and authorities while intermedi-
ate points on the authority curves are used to test the GRNN as
shown in Figure 10.

Compared to the simulated data, the measured curves in
Figure 10 exhibit more randomness, as expected. At low flow
rates, the three authority curves converge into a single one,
indicating the measurement difficuity of flow rate when the
damper is barely open. At high flow rates and low values of
authority, increasing the control signal will not increase the
flow. The accuracy of the GRNN in predicting the measured
test data is shown in Figure 11. The GRNN predicts the
measured values with an average accuracy of 4.30%, which is
encouraging considering the error associated with the
measurement and data collection system. The holdout method
is used to determine the optimum smoothing parameter, o, of
0.066. The error increases with the higher flow rate as the
authority curves become highly sensitive, as can be seen in
Figure 10. The range of the test data for GRNN was chosen in
the normal operating range of the damper—between 10% and
100%.

In the second case, the authority of the damper remain
unchanged at 7% during the collection of data. Figure 11
shows the characteristics of an active damper at a job site. The
plot indicates more randomness than for the test damper, as
expected. For the same flow rate, the damper control signal
varied over a wide range at both high and low flow rates. The
GRNN output is tested for each sample observation that has
been used in the identification data. Preprocessing of the raw
measured values is not used before the data are fed to the
GRXNN for identification. A preprocessing filter could be used
on measured values to reduce the uncertainty with the
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Figure 11

measured values. The purpose here is to test the GRNN most
conservatively, considering all sample values. Figure 12 shows
the accuracy of GRNN in predicting control signals within 6%.
A linear regression of valve characteristics was also used for
the data shown in Figure 11, and yielded an average error of
7%. However, the essence of GRNN is the capability to predict
both non-linear as well as linear characteristics with no user
input for fixed smoothing parameters. In case of a regression
tool, significant user input is required, which often limits the
actual on-line implementation of regression analysis for identi-
fication. Therefore, the results demonstrating that the perfor-
mance of GRNN exceeds that of linear regression are
encouraging.

CONCLUSIONS

The method of a general regression neural network
(GRNN) holds promise to effectively identify characteristics
of HVAC components for subsequent use in controls. The
strength of the GRNN is apparent, as it has demonstrated its
ability to adapt to both linear and nonlinear relations using
both simulated and measured sample observations. Unlike a
traditional regression equation, however, a priori knowledge
of the equation type is not necessary to implement GRNN.
The nature of the GRNN algorithm allows the method to be
imbedded in a neural network architecture, which makes
hardware implementation possible. The smoothing parameter
is the only variable that needs to be selected and it can be
determined using the holdout method or another method.
Since a small data set is needed for local HVAC control
components, i.e., valves, dampers, and heating coil character-
istics, the GRNN provides a promising means of characteriz-
ing static performance of HVAC components for use in a
feedforward block coupled with the feedback controller.

Based on the results using measured data, a conserva-
tive estimate of 6% error with the GRNN method of identi-
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fying coil and valve characteristics is reasonable. Hence, a
control signal can be generated with an average accuracy of
8.8% ( /(6.02 +6.0%) = 8.8) using the GRNN in a feedfor-
ward controller. The average error of §.80%, based on a
simple quadrature formula and individual valve and coil
errors, is quite encouraging. The feedback controller will be
adequate to generate a control signal in order to eliminate a
residual error of less than 10%. However, the feedback
controller will require minimum tuning since the error range
is anticipated to be in a fixed low range. The use of a
combined feedforward and feedback controller therefore
enhances performance while reducing commissioning cost.
For a large data set, performance of GRNN will be degraded
because for each sample the estimating algorithm will use a
large number of stored identification data. Moreover, for
such applications, a clustering technique (Specht 1991) is
suggested to reduce the size of the identification data set.
Although the output, Y, is treated in this paper as a scalar,
multiple outputs also can be handled by GRNN (Specht
1991). As a part of the ongoing research, the combined
control topology as shown in Figure 1 will be compared with
the feedback controller for laboratory HVAC applications.

NOMENCLATURE
A,y = areaof the coil (ft° [m?])

c, = specific heat of air (Btw/1Ib-°F [kJ/kg'K])

¢ = specific heat of water (Btw/Ib-°F [kJ/kg'K])

C, = capacitance rate of air through coil (Btw/min'°F
[kJ/min-°C])

Cf = capacitance rate of water through coil (Btw'min'°F
[kJ/min-°C])

K = frictional coefficient (in. w.c./[Ib/s]* or kPa [kg/s]?)

P = pressure (in. w.c. [kPa])

q = rate of thermal energy across coil (Btw/min [kJ/min])



Pa = density of air (Ib/ft° [kg/m’])
density of water (Ib/fc° [kg/m>])

Pr =

Ty = entering coil air temperatre (°F [°C])

T,, = leaving coil air temperature (°F [°C])

T = entering coil water temperature (°F [°C])

Tro = leaving coil water temperature (°F [°C])

U = overall coil heat transfer coefficient (Bny'min'°F-fr:
[W/min-K])

v, = airflow rate through coil (cfim {L/s])

v = water flow rate through coil (gpm [L/s])
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