CH-89-6-5 (RP-539)

Methodologies for Optimal Control
of Chilled Water Systems Without Storage

J.E. Braun, Ph.D., P.E. S.A.Klein, Ph.D. W.A. Beckman, Ph.D., P.E.

ASHRAE Member

ABSTRACT

In this paper, two methodologies are presented for
determining the optimal control settings for chilled water
systems that do not have significant thermal storage. A
component-based nonlinear optimization algorithm was
developed as a simulation tool for investigating optimal
system performance. Results of this algorithm, imple-
mented in a computer program, led to the development of
a simpler system-based methodology for near-optimal
control that is simple enough for on-line implementation.

INTRODUCTION

A central cooling plant consists of one or more chillers,
cooling towers, pumps, and air handlers controiled so as
to satisfy the cooling requirements of one or more
buildings. At any given time, it is possible to meet the cool-
ing needs with any number of different modes of operation
and setpoints. Optimal supervisory control of the equip-
ment involves determination of the control that minimizes
the total operating cost. The optimal control depends upon
time, through changing cooling requirements and ambient
conditions. Currently, the operators of central cooling
plants determine control practices that yield “reasonable”
operating costs by experience gained through trial-and-
error operation over a long period of time. Little research
has been performed in developing general methodologies
that would be suitable for optimal control of large, cen-
tralized cooling systems. .

Figure 1 shows a simplified schematic of a typical
centralized chilled water system. Such a plant has many
operating variables that can be controlled in a manner to
minimize operational costs. The optimization is compli-
cated by the fact that there are both "discrete” and “con-
tinuous" control variables, Discrete control variables are
not continuously adjustable, but have discrete settings.
Discrete control variables inciude the number of chillers,
tower cells, and pumps operating at a given time. For
multiple-speed fans or pumps. the speed settings are also
considered as discrete controls. Continuous control
variables include chilled water and supply air setpoints, the
relative condenser and evaporator flow rates for multiple
chillers. and the relative operating speeds for variable-
speed fans or pumps. The control variables may interact
strongly and, with proper control, it is possible to signif-
icantly reduce operating costs.
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Most of the control studies related to cooling systems
have dealt with the local control of an individual component
or subsystem needed to maintain a prescribed setpoint
rather than the global determination of optimum setpoints
that minimize operating costs. Global optimum piant con-
trol has been studied by Marcev (1980), Arnold (1984), Sud
(1984), Lau (1985), Hackner (1984. 1985), Johnson (1989),
and Nugent (1988). These studies primarily demonstrated
the potential savings associated with the use of optimal
control. They did not, however, produce general algorithms
suitable for on-line optimal plant control. Optimal control
setpoints were identified in Hackner’s study for a specific
plant through the use of performance maps. These maps
were generated by many simulations of the plant over the
range of expected operating conditions. The use of
established performance maps for on-line plant control is
advocated by Johnson. However, this procedure lacks
generality and is not easily implemented. ..

in this paper, two methodologies are presented for
determining optimal values of the independent control
variables that minimize the instantaneous cost of operating
chilled water systems in response to the uncontrolled (eg.,
weather) variables. First, a modular component-based
optimization algorithm is presented. Each hardware com-
ponent is represented with a mathematical model in the
simulation of a system. Information concerning the cost of
operation of individual components and the manner in
which the components are interconnected are used to
perform the optimization in an efficient manner. Each
component may also have constraints associated with
its operation.

In addition, a “simple” system-based methodology is
presented for near-optimal control. An overall empirical
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Figure 1 Schematic of a typical chilled water system
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cost function for the total power consumption of the cool-
ing plantis inferred from the cost functions associated with
the components utilized in chilled water systems. This cost
function lends itself to rapid determination of optimal con-
:rol vaniables and may be fit to measurements using linear
regression techniques. Results of the system-based and
component-basea algorithms are compared.

There are three intended uses for the component-
based optimization algonthm developed in this study:

1. Analysis of control and design options: The method-
clogy may be used as a simulation tool for comparing
conventional and optimal control strategies. Conven-
tional control strategies, such as fixed temperature
setpoints. are implemented through the imposition of
constraint equations. Design comparisons, such as
variable vs. fixed-speed equipment, may be performed
for systems that are optimally controlled.

. On-line control optimization: The algorithm may be used
‘or on-line opumization of the simulation of an operating
system using “simple” component models. The simula-
tion could proceed in parallel with the actual system
operation with the possibility of updating parameters of
the component models using on-line measurements.

. Near-optimal control algorithms: Results of the detailed

optimization procedure can be useful for developing
“simple"" near-optimal control algorithms.

nNo

Braun (1988) applied the component-based algorithm
to typical systems to study both design and control issues.
Existing optimization packages proved to be extremely
inefficient for these systems and had difficulties handling
the nonlinear equality constraints that arose. The mathe-
matical description of the component-based algorithm is
intended as documentation for a method that works well
‘or chiiled water systems and may be skipped without ioss
of clanty. On the other hand. the system-based
methodology for near-optimal control presented in this
paper is a practical result that is useful to plant engineers.

OPTIMAL SUPERVISORY CONTROL

The optimal control problem associated with a central
chilled water system may be thought of as having a two-
level hierarchical structure. The first level involves locat loop
control in response to prescribed setpoints. An example of
a first-ievel control variable would be the compressor
speed for a variable-speed chiller that varies in order to
maintain a fixed chilled water supply temperature. The
second-level controls are independent variables that may
be adiusted to minimize the operating costs while still satis-
fying the load requirements. In the previous example, the
chilled water supply temperature is a second-level variable.

The dynamics of the first-level (local loop) controls
must be considered in order to maintain prescribed set-
points in an efficient manner. However. for systems without
significant thermai storage. the system dynamics may be
neglected (Lau 1985) in the determination of the optimal
second-levei control setpoints. In this study, local loop con-
trolis not considered and the first-level (local loop) control
‘s considered to be entirely dependent upon the second-
‘evel setpoints.
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Figure 2 Schematic of the modular optimization problem

Optimal control of a system involves minimizing the
total power consumption of the chillers. cooling tower fans,
condenser water pumps. chilled water pumps, and the air-
handling fans at each instant of time with respect to the
independent continuous and discrete control variables.
The optimization problem, at any time. is to minimize

J = function (f, u, M) (1

with respect to u and M, where J is the cost of operation,
fis a vector of uncontrolled variables. u is a vector of con-
tinuous controls, and M is a vector of discrete controls. The
uncontrolled variables are measurable quantities that may
not be controlled but that affect the component outputs
and/or costs. such as load and ambient dry-bulb and wet-
bulb temperature. The optimization of chilled water systems
is also subject to equality and inequality constraints. One
example of an equality constraint that arises when two or
more chillers are in operation is that the sum of their relative
loadings must be unity. The simpiest inequality constraints
to handle are bounds on control variables. For example,
lower and upper limits are necessary for the chilled water
settemperature, in order to avoid freezing in the evaporator
and to provide adequate dehumidification for the zones.

A COMPONENT-BASED OPTIMIZATION ALGORITHM

Figure 2 depicts the general nature of the modular
optimization problem. The performance of each compo-
nent in a system is represented with a separate set of
mathematical relationships organized into a model. Its out-
put variables and operating cost are functions of param-
eter, input, output, uncontrolled, and controlled variables.
The structure of the complete set of equations to be solved
for the entire system is dictated by the manner in which the
components are interconnected. The optimization pro-
blemis formally stated as the minimization of the sum of the
operating costs of each component. J., with respect to all
discrete and continuous controls or minimize

n
JEM W= J(xy. .M u) (2
i=1



subject to equality constraints of the form
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-wnere, for any component /,

x. = vector of input stream vanables
Y vector of output stream vanables
f vector of uncontrolled variables

mono

M. vector of discrete control variables

u. = vector of continuous control vanables
J = cost of operation

g, = vector of equality constraints

h. = vector of inequality constraints

Typical input and output stream variables for chilled
water systems are temperature and mass flow rate. Any
equality constraint may be rewritten in the form of Equation
3 such that when it is satisfied, the constraint equation is
equal to zero. Similarly, inequality constraints may be
expressed as Equation 4, so that the constraint equation
is greater than or equal to zero to avoid violation.

The mathematics associated with the optimization
algorithm utilized in this study are well known. However,
special advantage is taken of the characteristic that the
operating costs associated with each component in a
chilled water system may be modeled with quadratic func-
tions. A background for the development that follows is
presented by Gill (1981). In the next section, an algorithm
is presented for determining optimal values of the con-
tinuous control variables for the special case where all
component costs are quadratic functions and outputs are
linear functions of these variables. This algorithm is the
basis for the more general nonlinear method that follows.
The procedure for handling constraints is also given and
the complete algorithm including the determination of the
optimal discrete controls and implementation in a com-
puter program is summarized.

Quadratic Costs and Linear Qutputs

A simple function for which an optimum exists and
may be determined analytically is a quadratic function.
Braun (1987) has shown that the power consumption of a
chiller may be adequately represented as a quadratic func-
tion of the load and the temperature difference between
leaving condenser and evaporator water temperatures.
The other energy-consuming components in a chilled
water system are pumps and fans. The power requirement
of a continuously adjustable pump or fan {(either variable-
speed or variable-pitch) may be accurately represented
-vith a quadratic function of its control variable through a
second-order Taylor series approximation or a single
quadratic correlating function (Braun 1988). Asaresult, the
cost of operating any of these components (chillers or
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auxiliary equipment) may be expressed in a general form
as a quadratic function of its continuous control and/or
output stream variables or

J,o=uTAu; + y By, +y’Cu +piu +qy + 1, ()

where

A, B, and C, are coefficient matrices; p, and q; are coef-
ficient vectors; and r; is a scalar constant. The coefficients
of this cost function may depend upon the component
operating modes (discrete controis) and uncontrotied
variables.

The optimization problem is simpiified if the output
variables for each component are linear functions of the in-
put and continuous control variables or

yi=0U; + ox; +

(6)

where 6, and ¢, are coefficient matrices and £, is a coeffi-
cient vector. The inputs to component / are outputs from
other components, so that the solution for all output
variables is of the form

y=~6u+¢ 7
where the coefficient matrix § and vector £ depend upon
the coefficients for the individual components and the
interconnections between components.

The total cost of operation at any time is the sum of the
individual component operating costs. With individual

component costs and outputs represented by Equations
5 and 7, the total cost may be reduced to

J=uTAu+ bu+c (8)
where

A=A+ 6B+ C]

b=p+0T[2B"E+q]+CTE

c=r+[fB+q§

A, B, c,
A=l A B=| B c=| &
i A, B, c,
[ Py o )
p=| P q=| % r=Y
==l
[ Gn

The first-order condition for a minimizing or maximiz-
ing point requires that the Jacobian of the cost function be
equal to zero. The Jacobian is a vector containing the
partial derivatives of the cost function with respectto each
of the control variables. For the cost function of Equation 8

[0J/3uly =u"(A+AT)+ b =0 ©)
where u* represents the optimal control vector. Salving for
u* gives

u*=-[A+A'b (10)

In general, the cost functions that arise with chilled
water systems are giobally convex (i.e., A + AT is a
positive-definite matrix), so that a single global minimum
exists.



Noniinear Optimization

Some component outputs depend nonlinearly upon
controls or input variables and some component cosis are
only quadratic locally, so that an iterative technique is
required to determine the optimal control values. At each
iteration. an overall guadratic for the system cost expressed
as Equation 8 is formed from individual quadrauc relation-
ships for each component cost (Equation 5) and a
lineanization of the output variables (Equation 7). All output
variables are linearized with respect to the continuous con-
trols using a first-order Taylor series expansion about the
last iteration point. The Jacobian of the outputs with respect
10 control variables is determined numerically using for-
ward differences.

An estimate of the minimum point may be determin-
ed from Equation 10. However, for points that are “far away”
from the minimum, this may give a point that has a greater
costthan the last iteration. A common procedure is to per-
‘crm a one-dimensional search between the previous itera-
-on ana the point aefined by Equation 10. At the 1th itera-
=on. a new estimate of the optimal control point is

w=u"t+s —-ut)

(1)

where u’ is from Equation 10 and the step length, s, is
determined by minimizing J(u'~' + s{u’ — w'-')) with
respecttos. ,

The optimal step length is approximated with
polynomial interpolation. The costs at step lengths of zero,
one-half, and one are used to construct a quadratic func-
tion for the cost as a function of the step length. The optimal
value of s is estimated as the minimum of this quadratic
function, constrained between zero and one. In some
cases. the polynomial may be a poor approximation of the
real function and the estimated optimal step length may
result in a cost greater than that associated with a step
length of zero. Under this circumstance, the interpolation
is repeated with the last computed optimal step length
becoming the new step length of unity.

It is necessary to iteratively solve for the outputs of
gach component at each iteration of the optimization pro-
cedure with the most recent controls. A simple method that
is employed in the TRNSYS (1984) program is successive
substitution. Outputs are successively fed as inputs to con-
necting components until the values do not change
significantly. However, this method can be extremely inef-
ficient for solving systems of algebraic equations, even if
they are linear. Solution efficiency is important because the
equations must be solved at each iteration of the optimiza-
tion procedure and a high degree of accuracy is required
for determining numerical derivatives.

A better approach is to utilize the Newton-Raphson
method applied to a set of equations that measure the
residual error for the independent variables. These residual
equations could be defined as differences between input
values and output values that feed those inputs for one
component in each recyclic loop of components. At each
iteration of the Newton-Raphson procedure. new estimates
of the independent variables are determined by assuming
that the residual equations are globally linear using coef-
ficients determined with alocal linearization. As a result, this
method converges in one iteration for linear equations.

)

However, it is necessary at each iteration to solve a linear
system of equations invoiving a Jacobian matrix. The Jaco-
bian contains the partial derivatives of each of the residual
equations with respect to the independent variables and
must be determined numerically.

in the program developed in this study, an alternative
method is employed that is a compromise between the
methods of successive substitution and Newton-Raphson.
As with Newton-Raphson, a set of residual equations is
defined such that, at the soiution, they are identically zero.
However. these equations are solved using a series of cne-
dimensional applications of the secant method. The
advantage of this method is that it is not necessary to com-
pute a Jacobian. so that the computation associated with
updating the independent variables is much less than that
for Newton-Raphson. However, since the residual equa-
tions are not coupled, convergence is siower than for
Newton-Raphson. For the chilled water systems con-
sidered in this study, the coupling between recyclic loops
is relatively small and the solution algorithm works well.

Constraints

Linear Equality Constraints. For constraints that
are linear with respect to the control variables, the con-
straint equations may be written in the form

gu=a+pu=0 (12)

where g is a vector of constraint equations, 8 is a coefficient
matrix, and a is & vector.

A common method for solving optimization problems
with linear constraints is the method of Lagrange
muitipliers. This method involves redefining the cost func-
tion so that at the minimum, the constraint function is
automnatically satisfied. The modified cost function, termed
the Lagrangian, is given as

JWN =J W)+ Ng (13)

where N is a vector of Lagrange multipliers. The modified
optimization problem involves minimizing the Lagrangian
with respect to both u and A. The first-order conditions for
a minimum applied to the quadratic cost function and
linear constraints of Equations 8 and 12 yield

u* =[A + AT]"' [BT\ - B] (14)

A= [BA + A1) [BA + AT)"'B - qf (15)

Noniinear Equality Constraints. Nonlinear con-
straints are handled through linearization and the use of
l.agrange muitipliers. The Jacobian of the constraints with
respect to control variables is determined numerically us-
ing forward differences coincidently with the computation
of the Jacobian of the output stream variables with respect
to controls.

With linearization applied to nonlinear constraints, the
first-order condition applied to the Lagrangian cost func-
tion does not guarantee that the constraints will be satisfied
at any point except the solution. More importantly, dur-
ing the determination of the optimai step length, the
Lagrangian does not provide a good measure of the
degree to which the constraints are violated. To alleviate
this problem. the optimal step length is computed using a



cost function that is the sum of the original cost function
and a quadratic penaity function.

J) = J(w) + gw)g) (16)

At the i iteration, a new estimate of the optimal con-
trol point is found with Equation 11. with u’ determined from
Equations 14 and 15 and the step length, s. determined by
minimizing J(u-* + s(u’ — ') with respect to s.

Inequality Constraints. The only ineguality con-
straints considered in this study are simple bounds on the
control variables. These become linear equality constraints
when violated and are hanaled with Lagrange mulitipliers.
In order o determine the opumal control points subject to
inequality constraints. the optimal control values are first
determined at each iteranon assuming that no inequality
constraints are violated. If some control bounds are ex-
ceeded, then linear equality constraints representing these
limits are added and the optimal controls are recomputed.
Additional constraints are added if vioiated and the pro-
cess Is repeatea until the number of constraints is not
changing or equals the number of control variables. The
constrained control values represent the next iterates in the
overall nonlinear optimization. It is not possible to solve a
problem in which the number of constraints exceeds the
number of control variables. In this situation, some of the
constraints are not satisfied.

Algorithm Summary and Program Implementation

The steps associated with the constrained optimiza-
tion of the continuous controls are summarized below.

1. Solve for component outputs with current controls.

2. Linearize outputs and equality constraints with respect
to controls to get Equations 7 and 12.

Determine the coefficients of the quadratic Equation 8
from the component quadratic Equation 5 and the
linearized output Equation 7.

. Determine the control point associated with a step
length of unity with Equations 14 and 15.

. Estimate optimal step length yith polynomial interpola-
tion applied to minimizing J(u'=' + s(u’ — u-') with
respect to s, where the augmented cost function is
defined by Equation 16.

. Determine next estimate of control point. u', with
E uationAﬂ.

IfJ(u) > Jw), thensetu’ = wand gotostep 5.

. If no controls exceed their bounds or the number of
constraints equals the number of controls, then go to
step 11.

. Add equality constraints for any controls that exceed

bounds uniess the number of constraints equals the

number of controls.

Determine a constrained optimum with Equations 14

and 15 and go to step 8.

If the change in cost from the last iteration is greater

than a specified tolerance, then go to step 1.

3

10.

11.

The complete optimization algorithm is implemented
in a computer program that simulates the optimal opera-
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tion of a system through time. The system is described
through input data that specify the components. their
parameters. and their interconnections in a manner similar
to that of the TRNSYS (1984) simulation program. Ateach
simulation time step, data for the uncontrolied vanabies
(eg., weather, schedules) are read and the constrained
nonlinear optimization of the continuous control variables
is performed for each feasible combination of discrete con-
trols with the combination giving the minimum being the
optimal control. Not all possible combinations of discrete
controls are feasible. For instance, the operation of more
than one condenser or chilled water pump might be non-
optimal under all conditions when only one chiller is on. so
these combinations would not be worth considering. Inthe
implementation of the optimization algorithm for this study.
the feasible combinations of discrete modes are specified
as input data. In the event that the optimization algorithm
were implemented for on-line optimal control, a better
approach for determining the optimal discrete control
modes at each time interval would be to order the feasible
combinations of modes and only allow a single change (up
or down) between combinations within the list.

The complete mathematical description of a specific
optimization problem depends upon the choice of the
independent controls and the constraints imposed upon
the system. Generally the supply air temperature for each
air handler is considered to be an independent (adjust-
able) control variable. In this case, the local loop controller
varies the air and water flow through the cooling coil in
order to maintain that setpoint, along with the desired
termperature in the zone. However, in terms of the optimiza-
tion algorithm, it is more straightforward to consider the
relative air and water flow rates to the cooling coil as con-
trol variables, with an equality constraint that forces the
zone temperature to be maintained. One advantage of this
formulation is that the power consumption of the air
handler may be represented as a quadratic function of the
speed in a simple manner. It is also easier to handle
bounds on the fan speed as compared with the supply air
setpoint. since the fan speed has a natural upper and lower
bound, while physical constraints on the setpoint vary
according to the coil entering air and water conditions and
design.

A SYSTEM-BASED ALGORITHM FOR
NEAR-OPTIMAL CONTROL

The methodology for determining optimal values of
control variables described in the previous section could
be used for on-line optimal control of chilled water systems.
However, in order to calibrate the models for a specific
plant, measurements would be required for inputs, out-
puts, and power consumptions for each componentinthe
system. Also. depending upon the number of control
variables. the computational requirements may be restric-
tive. An alternative approach for near-optimal control
described in this section invoives correlating the overall
system power consumption with a single function that
allows for rapid determination of optimal control variables
and requires measurements of only total power over a
range of conditions.



System Cost Function

The concept of utilizing quadratic functions for the
cower consumptions of individual components can be
axtended to the system as a whole. In the vicinity of any
optimai control point, system power consumpuon may be
approximated with a quadratic function of the continuous
contro! variables according to Equation 8. However. the
quadratic relationship changes with changes in the
operating modes and uncontrolled variables (e.g., load
and ambient conditions). It has been found that a quadratic
function also correlates power consumption in terms of the
uncontrolled variables over a wide range of conditions. so
hat the following cost function may be appiiea for deter-
mining optimal controf peints.

HEM u) = wAu + by + F7Cf + d'f + FEu g (17
where A. €. and E are coefficient matrices: bandd are
coefficient vectors: and g is a scalar constant. The em-
~mical coefficients of the above cost function cepend upon
ine operating modes so that it is necessary o determine
-hese constants for feasible combinations of discrete con-
irol modes. Once again, many mode combinations may be
unfeasible or clearly non-optimal under all conditions and
therefore need not be considered. Some advantage may
also be taken of the symmetry in the quadratic terms of

Equation 17. Both Aand € may be expressed as sym-
metric matrices, so that only the upper (or lower) trianguiar
coefficients need be determined.

Near-Optimal Control Algorithm

One advantage of the cost function of Equation 17 is
that a solution for the optimal control vector that minimizes
the cost may be determined analytically by applying the
_ frst-order condition for a minimum. Equating the Jacobian
of Equation 17 with respect to the control vector to zero and

solving for the optimal control (with symmetric A) gives
u'=k+Kf (18)
where
= -%A'b
K = - 1»A-'E
The cost associated with the unconstrained control defined
by Equation 18 is
J=fet+af+r
~vhere
0 =KAK +EK +C
a=2K/\lk+Kl‘) +ék+3
"Ak + bk + g
The control defined by Equation 18 results in a

minimum (rather than maximum) power consumption only
if the Hessian of the cost function is a positive-definite

matrix, or, in the case of Equation 17, if Aisa positive-
definite matrix. If this condition holds and if the system
power consumption correlates with Equation 17, then
Eauauon 18 dictates that the optimal continuous control

(19)
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variables vary as a near-linear funcuon of the uncontrolled
variables. However, a different linear relationship applies
for each feasible combination of discrete control modes.
Inthe implementation of the algorithm. the minimum cost
associated with each mode combination is computed from
Egquation 18. The costs for each combination are com-
pared in order to identify the minimum. Simple counds on
the continuous control variables may be hzandled as
previously outlined.

Parameter Estimatioh

The total number of empiricai coefficients in Equation
17 that need to be determinea for each feasible set of
modes is

Neges = N2 =N (N, = 1)/2 +

N, + N? + NN, = 1)1 2 + No + NN, + 1 (20)
where N _ is the number of continuous control variables
and N. i1s the number of uncontrolled vanables.

One approach for determining these constants would
be to apply regression techniques directly to measured
total power consumption. Since the cost function is linear
with respect to the empirical coefficients. linear regression
techniques may be utilized. A set of experiments could be
performed on the system over the expected range of
operating conditions. In some cases, the quadratic cost
function may only be an accurate index near the optimal
control points. so that it would be necessary to repeat the
experiments in the vicinity of the control defined by Equa-
tion 18. Possibly, the regression could be performed on-line
using least-squares recursive parameter updating (Ljung
1983).

Another approach for estimating coefficients of the
empirical system model would involve regression to results
of a simulation of the system. By using mechanistic models
for the individual components. data over a limited range of
conditions would be sufficient to calibrate the coefficients
of the models. The use of the component-based optimiza-
tion algorithm as a simulation tool would ensure a good fit
near the optimal control points.

Rather than fitting empirical coefficients of the system
cost function of Equation 17, the coefficients of the optimal
control Equation 18 and the minimum cost function of
Equation 19 could be determined directly with regression
applied to optimal control resuits. At a given set of condi-
tions. optimal values of the continuous controi variables
could be estimated through trial-and-error variations in the
system or with the component-based optimization
algorithm, Only (N, + 1) independent conditions would be
necessary to determine coefficients of the linear control law
given by Equation 18. The coefficients of minimum cost
function could then be determined from system
measurements with the linear controt law in effect. The total
number of coefficients to determine with this approach is
less than that for direct regression to power measurements.

Neger = No(Ni + 1) + NF = NN = 1)/ 2 + Ny + 1 @1
The disadvantage of this approacn is that there is no direct
way to handle constraints on the controls.



Application to Chilled-Water Systems

in order to apply this technique. itis necessary w iden-
ify both the control variables for which the optimization is
10 be performed and the uncontrolled vanables that affect
the system performance through time. Using the
component-based optimization algorithm descnibed in this
paper. Braun (1988) has shown that the )mporant uncon-
trolled variables are the total chifled water ioad and ambient
wet-bulb temperature. Additional secondary uncontrolled
variables that could be important if varied over a wide
range would be the individual zone latent to sensible load
ratios and the ratios of individual sensible zone loads to the
-otal sensible loads for all zones.

Braun (1988) has aiso idenufied control simpiifications
-hat requce the number of independent control variables
and simolfy the optimization. These simpiifications and
their implications are summarized as follows.

+ vanaple-Speed Tower Fans: Operate all tower cells at
~enrcal fan speeds. The only tower contro! variable is
:an speed. which is equivalent to air ftow refative to the
maximum possible flow.

2. Multi-Speed Tower Fans: Increment lowest tower fans first
when adding tower capacity. Reverse for removing
capacity. With this sequencing, a single independent
tower controt variable is the relative tower air flow.

. Variable-Speed Pumps: The sequencing of variable-
speed pumps should be directly coupled to the
sequencing of chillers to give peak pump efficiencies for
each possible combination of operating chillers. Multi-
ple variable-speed pumps should be controlled to
operate at equal fractions of their maximum speed. With
this sequencing arrangement. a single independent
control variable for the condenser pump is the flow
relative to the maximum possible flow.

1, Chiilers: Multiple chillers should have identical chilled
water set temperatures and the evaporator and con-
denser water flows for muitiple chillers shouid be divid-
ed according to the chillers’ relative cooling capacities.
The independent chiller control variables are a single
chilled water temperature and the number of chillers
operating.

5. Air Handlers: All parallel air handlers should have iden-
tical supply air setpoint temperatures. As a resuit, only
a singie setpoint control variable applies to all air
hanalers.

Using these general results. a reduced set of independent
control variables is: 1) supply air set temperature. 2} chilled
water set temperature. 3) relative tower air flow. 4) relative
condenser water flow. and 5) the number of operating
chiilers.

The supply air and chilled water setpoints are con-
snuousty adjustable control variables. However. since the
znillea water flow requirements are dependentupon these
controis. there may be discrete cnanges in power con-
sumption associated with varying these controls, if there
are aiscrete control changes in the pump operation. For
the same total flow rate. the overall oumping efficiency
changes with the number of operating pumos. However.
-nis nas a retatively smaii effect upon the overall power con-
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sumpuon. so that the aisconunuity may be neglected in
fitting the overall cost IWNCUON 10 changes in the control
variables.

For variable-speea ccoling tower fans and condenser
water pumps, the relatve tower air and congenser water
flows are continuous control vanables, Analogous to the
chilled water flow. the overall ccndenser pumping effi-
ciency changes with the numoer of operating pumps, so
that there may be a discontinuity in the power consump-
tion associated with continuous changes in the overall
relative condenser water flow. This discontinuity may be
neglected in fitting the overall cost function to changes in
this control variable.

With variable-sceed pumos and fans. the only signifi-
cant discrete control vanable is the number of chillers
operatng. A chiller mode defines which of the available
chillers are to be on-line. The opumization problem invoives
determining optimal values of only four continuous control
variables for each of the feasibie chiller modes. The chiller
mode giving the minimum overall power consumption
represents the opumum. In oraer for a cniller mode to be
‘sasible. it must be possible to operate the specified chillers
safely within their capacity and surge limits. In practice,
abrupt changes in the chiller modes shouid also be
avoided. Large chillers shouid not be cycled on or off,
except when the savings associated with the change are
significant.

For fixed-speed cooling tower fans and condenser
water pumps, there are only discrete possibilities for the
relative flows. One method of handling these variables is
to consider each of the discrete combinations as separate
modes. However, for multiple cooling tower cells with multi-
ple fan speeds. the number of possible combinations may
be large. A simpler approach that works well in this case
is to treat the relative flows as continuous control variables
and to select the discrete relative flow that is closest to that
determined with the conunuous optimization. At least three
relative flows (discrete flow modes) are necessary for each
chiller mode in order to fit the quadratic cost function. The
number of possible sequencing modes for fixed-speed
pumps is generally much more limited than that for cool-
ing tower fans, with at most two or three possibilities for
each chiller mode. In fact. with many current designs, in-
dividual pumps are physically coupled with chillers and it
is impossible to operate greater or fewer pumps than the
numter of chillers operanng. Thus. itis generally best to
treat the control of fixed-speea condenser water pumps
with a set of discrete control possibilities. rather than using
a continuous control approximation.

The methodology for near-opumal control of a chilted
water system may be summarized as follows:

1. Change the chiller operating mode if at the limits of chiller
operation (surge or capaciy).

2. For 'ne current set of conaimons (load and wet-bulb).
esumale the feasible moaes of operation that wouid
avoid limits on cniller ana Conaenser pump operation.

3. For the current operating mode. determine optmal
values of the conunuous controls with Equation 18.

4, Determine constrainea optmum if controls exceed their
bounas.
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5. Repeat steps 3 and 4 for each feasible operating moae.

8. Change the operating mode if the optimal cost (Equa-
tion 19) associated with the new mode is significantly
less than that associated with the current mode.

7. Change the values of the continuous control variables.
When treating muitiple-speed fan control with a con-
tinuous variable, use the discrete.control closest to the
optimal continuous value.

If the linear optimai control Equation 18 is directly fitto
optimal control results. then there 1s no direct way of han-
dling the constraints. A simple solution is to constrain the
individual control variables as necessary and neglect the
effects of the constraints on the optimal values of the other
controls and the minimum cost function. The variables of
primary concern with regard to constraints are the chiiled

equipment. On the other hand. the cocling tower fans and
condenser water pumps should be sized so the system
performs efficiently at design loads and constraints on con-
trol of this equipment shouid only occur uncer extreme
conditions.

There s a strong coupling between optimai values of
the chilled water and supply air temperatL -=. so that
decoupiing these variables in evaiuatng corstraints is
generally not justified. However, when either control is
operating at a bound, optimization resuits indicate that the
optimal value of the other “free” control is approximately
bounded at a value that depends only upon the ambient
~et-bulb temperature. As a result. the opumai value of this
“free” control (either cnilled water or supply air setpoint) is
estimated at the load at which the other control reachesits
limit. The coupiing between cpumal vaiues of the chilled
water and condenser water loop controls is not as strong,
so that interactions between constraints on these variables
may be neglected.

' COMPARISONS

water and supply air set temperatures. These controls must

be bounded for proper comfort and safe operation of the
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Braun (1987) correiated the power consumption of the
Dallas/Fort Worth (D/FW) airport chiller, condenser pumps,
and cooling tower fans with the quadratic cost function
given by Equation 17 and showed good agreement. Since
the chilled water loop control was not considered, the chill-
ed water setpoint was treated as a known uncontrolled
variable. Control of the four tower cells with two-speed fans
and the three condenser pumps was treated with con-
tinuous control variables. The optimai control determined
by the near-optimal Equation 18 also agreed well with that

determined using a nonlinear optimization applied to a

detailed simulation of the system.

In order to evaluate results of the system-based
methodology for a complete system that includes the air
handlers. the component-based optimization was applied
to an example system. described by Braun (1988). Coeffi-
cients of the optimal control and minimum system cost
function were fit to results of the component-based opti-
mization over a range of conditions. Figures 3 through 6
show some comparisons between the controls as deter-
mined with the component-based and system-based
methods for a range of loads. for a relatively low and high
ambient wet-bulb temperature (60°F and 80°F).

In Figures 3 and 4. optimal values of the chilled water
and supply air temperatures are comparea. The near-
optimai control equation provides a good fit to the optimiza-
tion resuits for all conditions considered. The chilled water
temperature was constrained between 38°F and 55°F,
while the supply air setpoint was allowed to float freely.
Figures 3 and 4 show that for the conditions where the
chilled water temperature is constramned. the optimal
supply air temperature is also nearly bounded at a value
that depends upon the ambient wet-bulb.

Optimal relative cooling tower air and condenser
water flow rates are compared in Figures 5 and 6. Althougn
the optimal controls are not exactly linear functions of the
load. the linear control equation provides an adequate fit.
The differences in these controls result in insignificant dif-
ferences in overall system power consumption, since, as
Braun (1988) has shown. the optimum is extremely flat with
respect to these variables. The nontinearity of the con-
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denser loop controls is partly due to the constraints im-

posed upon the chilled water set temperature. However, .

this effect is not very significant. Figures 5 and 6 also sug-
gest that the optimal condenser loop control is not very
sensitive to the ambient wet-bulb temperature.

In order to determine the optimal discrete mode of
operation, it is necessary to have a reasonably accurate
model of the minimum cost of operation for each mode.
Figure 7 shows a comparison between the optimal system
coefficient of performance (COP) determined with the
component-based optimization algorithm and the near-
optimal quadratic cost function of Equation 19. The dif-
ferences between the results are very small over a wide
range of chilled water loads and ambient wet-bulbs. This
model works well. even though it does not explicitly con-
sider the constraints on the chilled water temperature that
are exhibited at low and high loads in Figure 3.
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CONCLUSIONS :

Two methodologies have been presented for deter-
mining optimal control points of chilled water systems. A
component-based nonlinear optimization algorithm was
developed as a simulation tool for investigating optimal
system performance. Results of this algorithm, imple-
mented in a computer program, led to the development of
a simpler system-based methodology for near-optimal
control.

The advantage of the component-based algorithm
over the system-based approach isthat it provides a “true”
solution to the optimization probiem, including any
nontinear constraints. Each of the components in the sys-
tem is represented as a separate subroutine with its own
parameters, controls. inputs. and outputs. Models of com-
ponents may be either mechanistic or empirical in nature,
so that the methodology is useful for evaluating both
system design or control characteristics. Braun (1988)
applied this methodology to typical chilled water systems
to study both design and control issues.

The component-based algorithm takes advantage of
the quadratic cost behavior of the components found in
chilled water systems in order to solve the optimization
problem in an efficient manner. However. in order to utilize
this methodology as a tool for on-line optimization, it is
necessary to have detailed performance data for each of
the individual system components. Results of detailed
optimizations identified simplifications that reduced the
number of control variables to five and uncontrolied
variables to two. The system-based, near-optimal control
methodology presented in this paper utilizes an overall
systemn cost function in terms of these variables. This cost
function leads to a set of linear controf laws for the con-
tinuous control variables in terms of the total chilled water
ioad and ambient wet-buib temperature. Separate control
laws are required for each feasible combination of discrete
controls and the costs associated with each combination
are compared to identify the optimum. The overall pro-
cedure is simple enough so as to be implementable either



manually or on-line using microcomputers. For manual
controi applications. charts such as those tnat appear in
Figures 3 through 6 could be used to determine optimal
controi as a function of load and wet-bulb.

Additional work is necessary in order 10 apply either
of these methodologies to on-line optimai control. In par-
scutar, methods for determining parameters of the moagels
neeq 1o be investigated. The performance cnaractenistics
of the system may change over time. so that it could be
necessary to update the model parameters. ltis alsoimpor-
tant to identify an appropriate time interval for making con-
:rol decisions. There may be inefficiencies associated with
cnanging controls too frequently in response to small
changes in the uncontrolled variables. The next step s t0
-est these methodologies as part of an energy manage-
ment system for controlling an actual system.

NOMENCLATURE

L&ctor of uncontrolled varapies that affect ine ooeraung cost
.2.g.. i0ad and ambient conditions)

g = vector of equality constraints (e.g., satisfy the zone loads)

h = vector of inequality constraints (eg., simple bounds on con-
trol variables)

J = instantaneous system operating cost (power for all-electric
system)

M = vector of discrete control variables (e.g., numbper of chillers
and pumps operating)

u = vector of continuous control variables (e.g.. chiled water and
supply air temperatures)

x = vector of input stream variables to componenté ('e.g.,
temperature and mass flow rate)

y = vector of output stream varables from compohents (eg..
:emperature ana mass flow rate)
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DISCUSSION

Z. Cumali, Principal, CCB/Cumali Associates, San Francisco,
CA: Some of the conclusions oresented :n this paper do not agree
~ih the resuits we have observea in cur work.

The firstimpression we wisn to correct is the fact that solution
of optimal system operation proolems coes not require drastic
specification of models to be applied in real time.

The building in which the simpilified rules will result i in more
energy consumption is described in the reference paper. in sum-
mary the system has four cooling towers.- three chillers and cor-
responding pumps, and four major variable-volume systems. All
units have variable speed control except the chillers.

1. Setting all supply air temperatures the same does not lead
to even near-optimal results when the coil characteristics
and loads are quite different from unit to unit, when any of
the flows reach minimum or maximum on the air or water
side, or if the relative cost of pumping water is larger than
moving the air An exampie of minimum air condition in one
unit shows that power input ’

Load in Tons 17 42 75" 83 kW
Supply air temperature. °F
Optimal 2 59 52 52 216

Basea on rule 539 59 539 59 247

If all temperatures are reduced 10 52°F, then the second unit
will have less than mirimum required air or result in signifi-
cantovercooling. The 12.6% change is typically what one
expects to save from optmizaton.

2. Setting chilled water temperatures to be the same does not
produce near-optimal results again when the chiller
characeristics are different and minimum or maximum flow
conaitons are reached. Using tre same cases as above but
running two chillers. one iarge and old and one small and
new. we have the following resuits:

Chilled water temperatures Power input kKW

42 c4 343
42 42 363
49 34 375

In the last case we have reached the maximum flow condition
‘n the first chiller and therefore nave to limit the supply temperature
10 49°F

As these examples show. the corclusions stated in the two
papers auite often result In consicerapie INcreases in energy input.
Itis therefore very important inat the autnors emphasize the con-
attions ana the assumpuons wnich significantly limit the applicability
of their resuits, eg., the simitanty of performance characteristics of
equipment and effects of operanonal constraints, etc.

Unforunately, this level of simpiificaon appears © be counter-
proauctive ana possibly misieaaing in nat the casual reader s left
with the impression that the problem may be solved with a few sim-



ple rutes. Quite to the contrary, this field of study is complex and
will require much research and many more Ph.D. theses from peo-
ple of the caliber of Dr. Braun and his advisors, who are to be com-
mended and encouraged for continuing the work presented in
these papers.
Reference: “Global Optimization of HVAC System Operations
in Real Time.” Zulfikar Cumali, ASHRAE Transac-
tions. presented in Dallas, TX, 1988.

J.E. Braun: We agree that the "best” solution for determining the
optimal control for a given system isto have a detailed model of the
complete process that operates in paraliel with the actual system.
An optimization algorithm is then applied to this model in order to
determine the ooumal control. The component-based optimization
methodology presented in our paper addresses this goal.
However, this type of approach requires detalled measurements

ior eacn component within the system in order to update
parameters of the moaels so that they adequately match the real
periormance. Often these measurements are not available or are
inaccurate. In aadition, the description of the system to be model-
ed and opumized requires considerable expertise and the effort is
teyona the capaoiities of most instailers of energy management
cOontrot systems.

Our results indicate that this level of effort is not necessary in
order 1o accomplish near-optimai contral of these systems. Our
paper develops a set of heuristic rules for good control, along with
a system-based approach for determining near-optimal controf set
points. Mr. Cumnali brings up animportant point concerning the ef-
fects of operational constraints on the applicability of broad-based
*rules of thumb.' However, common sense heuristics for handling
these constraints shouid give near-optimal results under most cir-
cumstances. Mr. Cumali questions two of the rules that were
established and provides examples that he believes contradict our
results. However. he appears to have misinterpreted and misap-
plied these rules.

The first example presented by Mr. Cumali concerns the rule
of utilizing identical supply air set temperatures for all air handiers
with variable-air-volume (VAV) control. The resuits of his optimal con-
trol analysis show three out of four air handlers operating with iden-
ucal set temperatures with the fourth set at the minimum value
necessary to maintain the minimum flow requirement. He then
compares the power requirements for this case with setting all set
temperatures equal to the one for the air handler that is constrained
atits minimum fiow. This is not a correct comparison. The rule does
not state that the supply air temperatures shouid be setto the value
for the minimum flow air handler. This rule provides a simplification
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for determining a single optimal aischarge air temperature for air
handlers with VAV control, rather than having to treat all discharge
air temperatures as separate variables. When an air handler is at
minimum flow. then itis no longer utlizng VAV cortrol. The fiow rate
is constant and the discharge air iemperature snould be adjusted
to maintain the room condition. The discharge air temperatures of
the remaining VAV controlied air handlers may be considered iden-
tical in the optmization. It is interesting to note that the optimal
values of discharge air temperature for air hanalers under VAV con-
trol in Mr. Cumali's exampie are identical.

The system-based methodology should be applied assum-
ing that no constraints are violated. However, only those air handlers
that are not operating at minimum flow should have their setpoints
adjusted to the optimized value. Correct application of this pro-
cedure wiil give results that are much closer 1o the optimum than
that for Mr. Cumali's example.

In Mr. Cumali's second example. he compares the optimal
power consumption with that for idenucal chilled water set
temperatures when operating two chillers. However, the basis for
these comparisons is incorrect. Mr. Cumali compares his optimal
(42°F and 54°F) with 1) identical setpoints equal to his lower opti-
mized value of 42°F ana 2) idenucal setpoints equal to his upper
optimizea value of 54°F (aithough the first chiller was constrained
to operate at 49°F). The choice of identical setpoints for the com-
parisons isincorrect in that they are not optimized values. Each of
the three cases results in significantly different overall chilled water
supply temperatures. The advantage of utilizing identical set
ternperatures is that the optimization process is simplified. The
value of this single setpoint cannot be arbitrarily established but
must be estimated utilizing an optimization methodology (eg.. as
outlined in our paper). For Mr. Cumali's example, an optimal single
setpoint would fall somewhere between 42°F and 54°F. in order
to handie flow constraints. the system-based methodology should
be applied assuming that no constraints are violated. However, only
those chillers that are not operating at minimum (or maximum) flow
should have their setpoints adjusted to the optimized vaiue.

Mr. Cumali has pointed out that a detailed approach yields
reductions in power consumption over simplified procedures.
However. this reguires a considerable investment of time and
money. We disagree with Mr. Cumali's asserton that the level of
simplification of our methodotogy is counterproductive, This field
has not evoived to a point where on-line optimal controt of chilled
water systems using detailed system models is widely applied. Ap-
propriate application of the heuristics and simplified methodology
developed for near-optimal controkin this study provide significant
improvements over current practice.






