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Previous investigators have shown that an internally reversible Carnot cycle, op-

erating with heat transfer limitations between the heat source and heat sink at

- J. W. Mitchel

temperatures Ty and Ty, achieves maximum power at an efficiency equal to
1—~TL/Tn independent of the heat exchanger transfer coefficients. In this paper,

optimization of the power output of an internally irreversible heat engine is con-
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sidered for finite capacitance rates of the external fluid streams. The method of
Lagrange multipliers is used to solve for working fluid temperatures which yield
maximum power. Analytical expressions for the maximum power and the cycle”

efficiency at maximum power are obtained. The effects of irreversibility and eco-
nomics on the performance of a heat engine are in vestigated. A relationship between
the maximum power point and economically optimum design is identified. It is

demonstrated that, with certain reasonable economic assumptions, the maximum
power point of a heat engine corresponds 10 a point of minimum life-cycle costs.

Introduction

The maximum thermal efficiency of a thermodynamically
reversible heat engine is commonly "used in thermodynamic
texts to define the upper limit of performance of heat engines.
This efficiency is determined solely by the temperatures of the
heat source and heat sink. To achieve this maximum ef ficiency,
however, heat transfer between the cycle and the external ther-
mal energy source or sink would have to occur reversibly, i.e.,
isothermally. For finite heat exchange surface areas, the re-
quirement of isothermal heat transfer necessarily results in zero
heat transfer rates. Both the rates of heat transfer to and from
the cycle, and thus their difference {(which is the power), must
be zero. Any totally reversible power cycle achieves the highest
possible efficiency, but produces zero power. Thus, the max-
imum efficiency of an ideal engine provides an upper limit on

the efficiency of power production, but it does not prov ide a
" realistic design goal. ‘

[n order to produce power with finite-sized equipment, tem-
perature differences must exist between the thermal ~ource/
sink and the cycle. El-Wakil (1962) and Curzon and Alborn
(1975) considered an internally reversible Carnot cyele in which
the heat transfers to and from the cycle were assumed (o be 2
linear function of these temperature differences. They round
that the cycle exhibited maximum power at an efficiency eyual
to | —=/T./ Ty, independent of the heat exchanger character-
istics, where Ty and T, are temperatures of the isathermal
heat source and sink, respectively. This same maximum power
efficiency relation also applies to the air standard Bravion and
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Otto cycles, and (approximately) to the Diesel cycle (Leff, 1987;
Klein, 1991). ,

The cycle considered by El-Wakil (1962) and Curzon and
Alborn (1985) operated between an isothermal heat source and
sink. Practical heat engines do not'operate between constant
temperature thermal reservoirs, but rather they transfer energy
to and from flowing streamis which have finite capacitance
rates (i.e., mass flow rate-specific heat products). Internally
reversible heat engines operating with finite capacitance rate
streams were investigated numerically by Ondrechen. et al.
(1983) and Wu (1988). In this paper, an analytical solution is
obtained for this situation, which is then generalized for the
case of internal cycle irreversibilities.

Some economic aspects of the maximum power problem
have been discussed by Curzon and Ahlborn (1975) and Bejan
(1988). They have noted that the efficiencies of actual power
plants are reasonably close to the maximum power efficiency
of internally reversible Carnot-like heat engines operating over
the same temnperature extremes. This agreement seems to be a
mathematical coincidence since power plant designs are dic-
tated by economics in addition to thermodynamics and heat
transfer. The major contribution of this paper is to analytically
demonstrate that there are circumstances for which the max-
imum power operating point of a heat engine corresponds to
operation at minimum life-cycle costs. '

Power Optimization

The heat engine considered in this study is modeled as a
closed system in which the working fluid passes through a
continuous set of thermodynamic states and returns to its orig-
inal state. The first law of thermodynamics for this situation
can be expressed:
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Fig. 1
pled to heat source and heat sink with finite capacitance rates

W=0u-Qs (1

where QH is the rate at which heat is supplied for a heat engine

cycle, @, is the rate at which heat is rejected, and W is the
power output.

For cyclic operation, the second law of thermodynamics
requires that

<§ §Q/T=<0. @

Consider a heat engine represented in Fig. ! which operates
between two constant temperatures, T, and T, as in the Carnot
cycle. The energy source for the heat engine is a hot fluid
streamn having a finite capacitance rate Cy and inlet temper-
ature at Ty The hot fluid stream leaving the cycle is dis-
charged to the surroundings at an outlet temperature of Ty ou-
The energy sink is a cold fluid stream having a capacitance
rate of C, and an inlet temperature of T,ia Because of finite
heat-transfer coefficients, the cycle operates between
T ( < Topin) and Ty(> Trin) 1O provide temperature differences
between the cycle and the source and sink streams. An entropy
balance on the cycle operating at steady-state requires that

~Q—L’—~Q£$0. )

T, T,
Equation (3) is the well-known Clausius inequality. The left-

hand side of Eg. (3) will be less: than zero wherever there is
any thermodynamic internal irrsversibility such as friction,
pressure drops, internal heat transfer, etc., associated with the
power production between temperatures T, and T;. An.irrev-
ersibility factor (¢) is defined so that the Clausius inequality

can be written as an equality:

Heat engine with irreversibie axpansion and compression cou-

Wi - ; ‘,’ [0, TN -
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Fig.2 Powaerlefficiency trade-offs for a heat engine showing the etfacts
of internal irreversibility

The cycle efficiency is defined as
' W

n=-— (5)
On
and can be written in terms of the irreversibility factor as
T L
=] —-— ©
K o Ty

o is equal to one when the cycle is internally reversible and
less than one when the cycle is internally irreversible. Recog-
nizing that the cycle efficiency must be greater than zero re-
quires that =T/ T2 T,/ Ty, which sets a lower limit for ¢.

The rate at which heat is supplied and rejected can be ex*
pressed as: ’

On=Cren (Trin—Th) M
Qr=Crer (Ti—Trin) ®
where e and ¢, are the hot-side and cold-side heat exchanger
effectiveness factors, respectively (Kays and London, 1964).

Since the working fluid is assgmed to undergo isothermal heat
transfer as in phase change processes, the effectiveness rela-

- tionships simplify to

en=1-exp(~NTUg) ©)
e, =1-exp(—NTU,). - (10)

NTUg and NTU, are the number of transfer units of the hot
and cold-side heat exchanger, respectively.

NTUy=UAu/Cu (1n
NTU, =UA./C, (12)
where UAy and UA, are the hot and cold-side heat exchanger

On_ " Q. 0 @ conductances (total heat-transfer coefficient-area product), re-
Ta T L spectively. . ‘ ‘
Nomenclature -
C = capacitance rate (mass low Q = rate of heat transfer, kW
rate-specific heat prodwzr), . P, = factor relating life-cycle oper- N = Lagrange multiplier .
kW/K ' ating cost to first year operat- r = capacitance rate ratio, C./Chy
¢ = unit cost of capacitancz rate, ing cost ’ ¢ = factor relating the entropy
; dollars/(kW/K) . P, =-factor relating life-cycle ex- change during heat rejection
¢’ = unit cost of heat exchz=zge penditures incurred by addi- and heat addition
' conductance, dollars, 1 xW/K) tional capital investment to L .
Ce = engine investment costs which the initial cost ' Subscripts
are independent of he=: ex- s = entropy, kJ/kg K ‘ H = heating fluid, heat source,
changer area, in dollars T = temperature, K “hot-side heat exchanger
E = initial equipment invesTment, U4 = heat exchanger conductance A = high, heater
in dollars (total heat transfer coeffi- L = cooling fluid, heat sink, cold-
F = first year operating <<z, in . cient-area product), kW/K side heat éxchanger
dollars W = power, kW [ = low
LCC = lifé-cycle cost in dollzrs ¢ = heat exchanger effectiveness out = outlet
NTU = number of transfer u=:ts, n = cycle efficiency in = inlet
NTU=UA/C 1" = max = maximum
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Figure 2 shows the relationship between the power and ef-
ficiency for a heat engine with fixed heat exchanger sizes and
external stream conditions. These curves were obtained by
solving Egs. (1), (4), (6), (7), and (8) simultaneously to
determine W, Qn, QLs T4, and T; for known values of ¢, 7,
Thins Triins Ci» Ci» €mr and ¢;. Different curves correspond
to different values of ¢. As shown in Fig. 2, internal irrev-
ersibilities decrease both the maximum power and the effi-
ciency at the maximum power.

The purpose of the following analysis is to determine an
analytical expression for maximum power and the efficiency
corresponding to maximum power. Using Egs. (7) and (8), the
‘energy and entropy balances can be rewritten as

W=Cren(Tuin—Ta) = Crer( TI"’TL.in)
Crer{Trhin—Th) _d)CL e (T~ Trin) _
T T

where g is an entropy constraint function which is used in the
following optimization analysis.

The values of T, and 7}, which result in maximum power,
are most easily found using the method of Lagrange multi-
pliers. A Lagrange multiplier, A, is defined such that

AW /3T, =\0g/aT, (15)

dW/3T,=\dg/dT. (16)

Evaluating the partial derivatives allows Eqs. (15) and (16) to
be written as

1=\ T/ T} n

1=X\¢ Tpin/T7. (18)

Solving Egs. (17) and (18) leads to the following relation for
the unknown cycle temperatures:

(13)

g(Tw T)) = 0 (14

T [oTLin
— ._...._'_.. 19
T, T {9
The efficiency at the maximum power point, 3", is then
7'=1- ’-Zl'—lﬁ (20)
DTH,n

The maximum power for the simple heat engine coupled to
source and sink streams with finite capacitance rates is

Weax =""".-(?""L‘ﬂ:"—CHGHI‘V Taim—~NTrn/ol%. 2D
Q5CL6L+CHEH

Equation (20) shows that the efficiency of the simplified cycle
at maximum power depends only on the inlet temperatures of
the source and sink streams, and the irreversibility factor &.
If ¢ is 1, the efficiency reduces to the relationship of El-Wakil
(1962) and Curzon and Ahlborn (1975).

Economic Optimization

The goal of the economic optimization is to find values of
the system design variables (temperatures, equipment sizes,
etc.) which minimize the life-cycle cost of providing a specified

WP, (cy+ el + WPieuNTUgy+ e, NTU,]

life-cycle cost is conveniently represented by the P,-P, life cycle
cost method of Duffie and Beckman (1991) for which

LCC=PF+P:E, (22)

where LCC is the life-cycle cost, F is the first year operating
energy cost, £ is the initial equipment investment, P, is a factor
relating life-cycle operating cost to first year cost, and P is a
factor relating life-cycle expenditures incurred by additional
capital investment to the initial investment. :

P, incorporates all factors which affect the first year op-
erating cost. P, incorporates all costs which are proportional
to the initial investment. These factors allow for variations of
annual expenses with time (e.g., inflation). £, is a function of
the number of vears of the economic analysis, fuel price in-
flation rate, interest rate, and income tax rate. P; is a function
of the down payment, payment on principal, tax deductions,
property tax, maintenance, depreciation, salvage value, and
tax credit. Specific relations for P, and P, in terms of these
economic factors are provided in Duffie and Beckman (1980).
In general, P, is on the order of the number of years of the
analysis and P, is on the order of unity.

The total operating cost can be approximated as the sum of
the operating costs to supply energy to and reject energy from
the cycle. In the following analysis, the external source and
sink streams inlet temperatures are assumed to be fixed. The
operating cost related to enérgy supply (including resource
utilization and pumping cost) is assumed to be directly pro- |
portional to the capacitance rate of the hot stream, Cy. The
operating cost of heat rejection (e.g., pumping costs) is as-
sumed to be directly proportional to Cj.

The equipment investment cost for a specified design power
can be divided into costs associated with the heat exchangers
and costs associated with equipment which is independent of
heat exchanger area (e.g., pumps, turbines, etc.). The heat
exchanger cost is assumed to be a linear function of the heat
exchanger conductances and independent of the cycle tem-
peratures T, and T;. The cost per unit heat exchanger con-
ductance for the heat-temperature heat exchanger (boiler) may
differ from that for the low-temperature heat exchanger (con-
denser). With these assumptions, Eq. (22) can be written as

LCC=Pyfcy Cu+cL Cul+Pilcy UAp+c, UAL+ Cl - (23)
where

cy = unitcost of the heat source capacitance rate, dollars/
(kW/K)

¢, = unit cost of the heat sink capacitance rate, dollars/
(kW/X)

¢y = unit cost of hot-side heat exchange conductance,
dollars/(kW/K) :

¢, = unit cost of cold-side heat exchange conductance,
dollars/(kW/K) "

C: = engine investment, costs which are independent of

heat exchanger area (pumps, turbines.., etc.), dol-
lars. '

The energy balance, Eq. (13), and the life cycle cost, Eq. (23),
can be combined into the following equation:

LCC=

+P,Ce (24)

[ —-expt = NTU (T in— Tn) — 7l1 —exp(~ NTUN T~ Ty in)

power output. The life-cycle cost includes the total cost of
building and operating the plant over its expected lifetime,
accounting for inflation and other economic factors. Mini-
mizing the life-cycle cost necessarily involves a trade-off be-
tween the operating and capital cost.

FEconomic Analysis. The life-cycle cost of a power plant
can be expressed as the sum of two contributions: one asso-
ciated with operating cost and the other with capital cost. The
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. g(THt T‘/y 7 NIUH, NTU[):

where re= C'L / CH-

The entropy balance constraint function, Eq. (14), can be

rewritten as
{1 —exp(=NTUD (T pjn = T)
T,
{1 —exp(—~NTU N Ti= Tpin) -
T .

-0 0. (25
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The purpose of the following analysis is to determine the min-
imum life-cycle costs associated with providing power at a fixed
specified rate. Cg is assumed to be a function of Tj. P, and
P. are fixed for a given economic environment. The source
and sink inlet temperatures, Ty, and T, ;, are assumed to be
constant. The internal irreversibility factor, ¢, is assumed to

be constant. The economic optimization is then determined by

minimizing LCC with respect to T, T}, 7, NTUy, and NTU,
subject to the entropy balance constraint function given by
Eq. (25). The method of Lagrange undetermined multipliers
will again be used which involves the following partial deriv-
atives: .

dLCC/aT, =N\ (0g/3T) (26)
3LCC/aT,=\(3g/3T)) @7
dLCC/ar=N\(3g/3r) (28)
ALCC/aNTUgy=AN(dg/dNTUp) (29)
dLCC/aNTU, =Ndg/aNTU,). (30)
Using Eqs. (24) and (25), the partial derivatives in Egs. (26)
through (30) can be written as
J Y - T, i
?[H Pz(acg/ar,,)] == ;’%“ (31
J T, ‘
7= "M (32)
e (Ty=Tpin)S~ YK _ 45L(Tl"‘TL.in)
= Y = (33)
exp(~ NTUg) (Tyin = Tu)J = ¥ WPy
YZ
N exp(— NTU (Tain~ Th) (34)
T,
exp(= NTU) (1= Tpin)/ = Y WPy,
YZ .
~N ~T, .
= agZRENTUNT = Tiin) - 55,
T
where
J=WP\[cy+reL] + WPyca NTUgy+7c, NTU,]  (36)
Y=eyg(Thin—Ty) =76 (T}—Tpjn) 37N
K= W(P1CL+P:C[:). (38)

Solving Egs. (6), (31), and {32), the foilowing result is obtained:

A+ T
(RN P =
where
£= Y2Py(3C:/3Ty) P-u‘/(acg/ar,,) 40)
J C:ALCC-Cp)

Equation (39) provides the efﬁcxen*v of a power plam sup-
plying a specified power W in a maz=ner which minimizes the
LCC. For the case where £ =0 (e.g.. the derivative of C;: with

. respect to Ty is small or Cg is independent of temperature),
the efficiency at the minimum life-cvcle cost reduces (o

41

With the economic assumptions list=d above, the efficiency at
which the LCC is minimized is exacti the same as the efficiency
obtained in Eq. (20) for a heat en;::s operating at maximum
power. A rarionalization of this resi:it is provided in the tol-
lowing section.

"Rationalization of the Relation Berween the Minimum LCC
and the Maximum Power. In this section a simplified eco-
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Fig. 5 A number of cycles with dmerent efficiencies producing the
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nomic analysis-is considered to help understand the relation
between the minimum life-cycle cost and the maximum power.
In this simplified economic optimization, the only operating
cost is the energy supply which again is assumed to be dir-
ectly proportional to Cy. The inlet temperature of the energy
supply stream is assumed to be T} ;,. The only capital costs
are those associated with heat exchangers.

The case where the heat exchanger conductances are kept
constant will be considered first. In this case, the capital cost
is fixed. The goal thus is to minimize the operating cost of
producing a specified power, W; the operating cost is directly
proportional to the heat source capacitance rate.

Figure 3 shows the relationship between the power and ef-
ficiency for a heat engine with fixed heat exchanger sizes and
external streams conditions. Different curves correspond to
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Fig. 6 Power versus hot-side heat exchanger conductance

different values of Cy. For example, points C, ¢’, and ¢’
correspond to a power plant with the same heat source ca-
pacitance rate and heat exchanger sizes. A number of cycles
which have different cycle efficiencies can produce the same
amount of power. For example, points B, ¢’, ¢”,d’, and d”
all produce the same power with different cycle efficiencies.
Points 4, B, C, and D are the maximum power points for
different energy supply flow rates. Since the heat exchanger
conductances, the sink capacitance rate, and the heat source/
sink inlet temperatures are specified, the only possible way to
increase the maximum power is by increasing the heat source
capacitance rate as shown in Fig. 3. At point d”, the capac-
itance rate Cy must be greater than that of point ¢” which is
greater than at point B,

Figure 4 is a plot of the maximum power versus the source
capacitance rate, Cy. Points above line ABCD exceed the max-
imum power of the cycle. However, it is possible to operate
on or under the maximum power line. Operating at conditions
¢, c", B, d,d", all satisfy the design power; however, op-
erating point B has the minimum source capacitance rate as
shown in Figs. 3 and 4. In Fig. 3, all points
to the left or to the right of the maximum power point,
B, correspond to curves with larger values of Cy and a result,
higher operating costs. Operating at B then minimizes the
operating'cost and is the optimum.

Consider the case where the heat source capacitance rates
are constant. The goal in this case is to minimize the cost of
the heat exchangers while supplying a specified power. The

_cost of heat exchangers is assumed to be proportional to the
heat exchanger conductances, UAy and UA;. As shown in
Figs. 5§ and 6, a number of cycles, which have different effi-
ciencies, can produce the same amount of power. Using the
same logic as just presented for Figs. 3 and 4, it is clear that
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point B satisfies the design power with minimum heat ex-
changer conductances, and thus with minimum investment
COSIS.

A heat engine operating at maximum power corresponds to
the minimum operating cost when the capital cost is held con-
stant, and also to the minimum capital cost when the operating
cost is held constant, assuming thag operating costs are linearly
related to Cy and the investment costs are linearly related to
heat exchanger UAs, respectively.

Discussion and Conclusions

This paper shows how heat transfer and economic con-
straints affect the design of a hear engine. A relationship be-
tween the maximum power point and economically optimum
design has been identified as determined by life-cycle economic
considerations. The economic assumptions for which heat en-
gine power optimization and economic optimization yield the
same optimum cycle efficiéncy are: (/) the cost of equipment
is independent of temperature, (if) operating costs are linearly
related to capacitance rates of the external streams (Cy and
C.), (iii) the irreversibility factor, ¢, is constant, and (iv) |
the heat exchanger costs are linearly related to heat exchanger
conductances (UAy and UA;).

These assumptions allow the system performance and the
economics equations to be solved analytically. The solution
clearly shows the relation between the maximum power pgint
and minimum life-cycle costs. If these assumptions were re-
laxed, a numerical solution could be used to determine the
conditions of minimum life-cycle costs. The sensitivity of the
relationship of maximum power and minimum life-cycle costs
to these assumptions need to be explored.
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