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Abstract—A general method is presented for estimating the loss-of-load probability (LLP) of stand-
alone photovoltaic systems. The method was developed by correlating simulation results. The simu-
lations were driven with synthetic radiation sequences having the same statistical significance as
available historical data. The method assumes a constant nighttime load and accounts for the distri-
bution and persistence in daily solar radiation data. It is shown that the 10-year average performance
of systems having loss-of-load probabilities less than about .01 can vary greatly from one 10-year
period to the next and thereby cannot be considered realistic performance estimates of a system during

its lifetime.

1. DAILY SOLAR RADIATION DISTRIBUTION AND
PERSISTENCE

The general concern of this work is the effect of
daily solar radiation distribution and persistence on
the loss-of-load probability of stand-alone photo-
voltaic systems.

~ The distribution of daily solar radiation refers to
the relative numbers of poor, average, and excellent
days of sunshine which together compose the long-
term average. Liu and Jordan[1] were first to note
that the distribution can be represented in a loca-
tion-independent manner by defining the clearness
index, K, to be the ratio of daily to extraterrestrial
radiation and relating the distribution of K values
to- K, the long-term monthly average clearness
index. Bendt et al.[2] and Hollands and Huget[3]
have developed analytic forms for the cumulative
distributions that are in excellent agreement with
each other and with the original Liu~Jordan distri-
butions. The distribution of solar radiation has been
shown to have a significant effect on the perform-
ance of many different types of thermal and pho-
tovoltaic solar energy systems[4--9].

The persistence of solar radiation refers to the
dependence of today’s solar radiation on the solar
radiation of preceding days. Persistence of daily
solar radiation has been studied by Klein[10],
Brinkworth[11], Bartoli et al.[12], and Graham[13].
All these authors concluded that the persistence in
daily solar radiation can be adequately described
by a first order autoregressive procéss. The single
parameter of this model is the correlation coeffi-
cient between the daily solar radiation on succes-
sive days defined by
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where H, and H,. ; are the daily solar radiation per
unit area on a surface for days ¢t and ¢+ + 1, and H

is the average daily radiation during a period of n
days. Agreement is observed in the annual average
values of ¢ for diverse locations and climates as
seen in Table 1. Most of the annual values of ¢
range between 0.2 and 0.3 with a few values as low
as 0.15 or as high as 0.4. This observation is also
true on a monthly basis as shown in Table 2. The
¢ values reported in Table 2 were calculated as the
average of individual monthly values for 23 (or 24)
years of SOLMET[14] data. This table shows that
& has some seasonal dependence (as noted by oth-
ers) and, furthermore, that it is highly variable from
one year to the next, as indicated by the large stan-
dard deviations of the monthly values.

The values of ¢ seen in Tables 1 and 2 are rela-
tively small and they exhibit large year-to-year vari-
ability, implying that today’s daily solar radiation
is only weakly related to yesterday’s. (The persis-
tence of daily average ambient temperatures is
much stronger with average correlation coefficients
of about 0.7.) Ordinarily, the weak persistence has
a small effect on the performance of solar energy
systems. However, the effects of both solar radia-
tion distribution and persistence become increas-
ingly important as the fraction of the load to be sup-
plied by the solar system reaches high values. This
increased sensitivity occurs because the storage
unit is more often full or nearly full and less able
to buffer the effects of varying conditions. Persis-
tence always has a negative effect on system per-
formance. A series of days with low radiation levels
causes the storage unit to become depleted,
whereas energy may have to be dumped during a
series of days with high radiation. Radiation dis-
tribution and persistence have a significant impact
on the design of a stand-alone photovoltaic system
designed to have a high level of reliability.

2. EXISTING METHODS FOR ESTIMATING LOSS-OF-LOAD
PROBABILITY

The loss-of-load probability (LLP) is defined
here as the long-term monthly average fraction of
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Table 1. Annual value of ¢ for various locations

Location Latitude Years ) Source
Bracknell, England 51.4 7 0.21 [11]
Alghero, Italy 40.6 3 0.19 [12]
Amendola, Italy 41.5 3 0.24 [12]
Ancona, Italy 43.6 3 0.24 [12]
Brindisi, Italy 40.6 3 0.20 [12]
Capo Mele, Italy 43.9 3 0.22 [12]
Capo Palinur, Italy 40.0 3 0.20 [12]
Crotone, Italy 39.1 3 0.24 [12]
Gela, Italy 37.1 3 0.17 [12]
Messina, Italy 38.2 3 0.25 [12]
Milano, Italy 45.4 3 0.31 [12]
Monte Cimone, Italy 44.2 3 0.38 [12]
Olbia, Italy 40.9 3 0.21 [12]
Pantelleria, Italy 36.8 3 0.24 [12]
Pescara, Italy 42.4 3 0.32 [12]
Pian Rosa, Italy 42.4 3 0.23 [12]
Pianosa, Italy 42.6 3 0.16 [12]
Pisa, Italy 43.7 3 0.31 [12]
Rome, Italy 41.8 3 0.30 [12]
Denver, Colorado 39.7 13 0.25 [25]
Toronto, Ontario, Canada 43.7 10 0.25 [137
Swift Current, SAS, Canada 50.3 10 0.27 [13]
Vancouver, BC, Canada 49.0 10 0.35 [13]
Madison, WI 43.1 23 0.22 [14]
Albuquerque, NM 35.0 23 0.29 [14]
Seattle, WA 47.5 23 0.24 [14]
New York, NY 40.8 23 0.16 [14]
Columbia, MO 39.0 23 0.22 [14]

the load that is not supplied by a stand-alone pho-
tovoltaic system. This index has also been referred
to as the probability of loss of power, 1—the long-
term availability (or reliability), the expected value
of the daily energy deficit, and the long-term av-
erage auxiliary fraction.

Methods for selecting array and battery sizes so
as to obtain a specified loss-of-load probability
have been developed by Bucciarelli[15, 16], Chap-
man[17], and Gordon[18]. Bucciarelli{15] presents
an analytical model for the loss-of-load probability
derived by approximating the probability density
function of the difference between the daily array
output and the load with two events and by assum-

ing the daily storage charge/discharge process can
be represented as a one-step Markov process. In
this model, the daily load is assumed to be constant
and presumably, uniformly distributed over 24
hours. The inputs to this model are the long-term
average and standard deviation of the array output.
Bucciarelli’s model neglects the effects of persis-
tence although he notes that ‘‘any appreciable cor-
relation in weather will significantly alter (the) re-
sults.” In a later paper, Bucciarelli[16] presented
an extended method that considered persistence
and requires ¢ as an additional input. Gordon[18]
shows that the problem of designing a photovoltaic
system to have a specified loss-of-load probability

Table 2. Average and monthly standard deviations of ¢ (based on 23.5 years of

SOLMET data)
. New

Madison Albuquerque  Seattle York Columbia
Month WI NM WA NY MO
Jan 0.209/.176 0.254/.197 0.205/.281 0.034/.184 0.219/.180
Feb 0.219/.183 0.305/.154 0.243/.228 0.120/.217 0.219/.208
Mar 0.258/.205 0.261/.162 0.229/.216 0.184/.159 0.220/.150
Apr 0.197/.160 0.272/.179 0.260/.167 0.142/.171 0.124/.185
May 0.233/.157 .. --0.219/.181 0.201/.154 0.128/.205 0.194/.180
Jun 0.174/.228 0.251/.199 0.198/.127 0.206/.162 0.235/.220
Jul 0:126/.134 0.230/.148 0.298/.192 0.157/.199 0.124/.173
Aug 0.167/.177 0.292/.170 0.236/.195 0.165/.226 0.205/.196
Sep 0.246/.191 . 0.339/.295 0.331/.167 0.267/.164 0.275/.173
Oct 0.420/.177 0.482/.209 0.263/.199 0.252/.192 0.357/.163
Nov 0.234/.212 0.302/.222 0.266/.173 0.125/.168 0.227/.220
Dec 0.260/.146 ~  0.206/.128 0.099/.213 0.252/.151

0.195/.169
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is analogous to problems in other disciplines (such
as water management), for which analytical solu-
tions have been developed. He describes a method
similar to that of Bucciarelli[16] using a three-event
representation of the array output minus load prob-
ability density function. Gordon also assumes a
constant daily load evenly distributed over 24 hours
but notes that his model can be used for nighttime
loads by adding one: load-day of storage to the ac-
tual storage capacity of the system.

The methods of Bucciarelli and Gordon have
several limitations. They both require the standard
deviation of the daily array output as an input, but
neither author indicates how this parameter is to be
obtained when years of historical data are not avail-
able. The random walk process on which the meth-
ods are based assumes that the daily array output
is a normally distributed variable. However, the
probability density function of daily solar radiation,
which strongly depends on K, can be quite skewed.
As the ratio of the average array output to the av-
erage daily load is increased, both methods reach
a point (within the range of practical design interest)
in which the analytic equations are no longer ap-
plicable and yield meaningless results. Neither au-
thor compares the results of his model with simu-
lation results. Finally, the methods do not provide
any information on the variability associated with
a specified LLP. It is shown here that 10-year av-
erages of the auxiliary fraction have a large vari-
ability for LLP values less than about .01 and pe-
riods of hundreds of years may be required to
realize their designed performance level.

Chapman[17] used a daily simulation model
driven by 24 years of SOLMET data from 18 sites
to calculate the availability (i.e., the annual fraction
of the load supplied by solar energy) of stand-alone
photovoltaic systems. The model is a daily energy
balance on the battery with a constant daily load
uniformly distributed over 24 hours. He shows that
for the same values of the ratios of array output and
battery capacity to the load, the availability of a
system varies significantly with location. The rea-
son for this variation is shown here to be primarily
a result of the differing radiation distributions'in
these locations. Chapman shows that the location
dependence of the results can be reduced by cor-
relating the collector array design insolation to the
typical worst month daily insolation. He further
presents distributions of the yearly availability that
show large year-to-year variability and a bimodal
shape with a sharp peak at 0.9999. Chapman’s avail-
abilities are presented on an annual basis, which
results in higher availabilities (and less variability)
for the same system characteristics than the
monthly average results of Bucciarelli and Gordon,
and the results presented here. Chapman’s long-
term average values of (1—availability) are only an
estimate of the loss-of-load probability values as
they are based on 24 years of data; an equally prob-

able—but different—24-year weather sequence can
result in significantly different availability values.

3. DESCRIPTION OF THE SIMULATION MODEL

Simulation models of stand-alone photovoltaic
systems were constructed with both hourly and
daily time steps for nighttime and uniform load dis-
tributions. All models assume the energy output of
the photovoltaic array to flow through the battery
and the system efficiency to be constant for
monthly periods, as assumed by Bucciarelli, Gor-
don, and Chapman. The validity of a constant sys-
tem efficiency is supported by the results of Am-
brosone et al.[19], who have found monthly solar
fractions calculated using daily timesteps and con-
stant system efficiency to be in good agreement
with detailed models with efficiency calculated on
an hourly basis, particularly for battery storage ca-
pacities greater than twice the average daily load.
The model used to generate the loss-of-load prob-

. ability figures in Section 5 is similar to that used by

Chapman, but differs in that a 24-hour period is bro-
ken into day-and-night periods and the load is as-
sumed to occur during the night.

An energy balance on the battery during the day-
time period is

B; = MIN(B, + SLR, Byax) 2)

where B, and B, are the ratios of the recoverable
energy in the battery divided by L, the effective
daily load (i.e., the daily load divided by the av-
erage inverter efficiency) at the end of the daytime
and nighttime periods, respectively. L is taken to
be a constant. B, is the ratio of the maximum
usable capacity of the battery to the effective load.
SLR, the solar-to-load ratio, is defined as

SLR = % 3)

where A is the array area, H is the monthly average
daily total solar radiation per unit area incident on
the plane of the array, and 7 is an overall system
efficiency. m is the product of efficiencies of the
array, the power conditioning equipment, and the
battery charge and discharge efficiencies.

~An energy balance on the battery during the
nighttime period results in

B, = B4 -1 @

Negative battery charges are not allowed. If B, is
calculated to be less than zero, a dimensionless en-
ergy deficit is incremented by —B,, and B,, is then
set to zero. The dimensionless energy deficit is the
auxiliary fraction, AUX. If the calculations are
done over a sufficiently long period to fully char-
acterize the statistical nature of the solar radiation,
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Table 3. Simulation results for January in Madison, WI

(@)
AUX fraction
Night load

(b) ©)
AUX fraction AUX fraction
24-hour load 24-hour load

SLR B qax Daytime step Daytime step Hour time step
0.8 1 2.629E-01 2.058E-01 2.237E-01
1.2 1 1.526E-01 4.862E-02 9.617E-02
1.6 1 9.764E-02 1.894E-02 5.394E-02
2.0 I 6.589E-02 8.113E-03 3.170E-02
0.8 2 2.056E-01 1.975E-01 2.005E-01
1.2 2 4.862E-02 1.839E-02 3.498E-02
1.6 2 1.894E-02 2.833E-03 1.108E-02
2.0 2 8.113E-03 3.412E-04 3.670E-03
0.8 3 1.973E-01 1.958E-01 1.960E-01
1.2 3 1.839E-02 8.769E-03 1.240E-02
1.4 3 7.550E-03 2.241E-03 4.969E-03
1.6 3 2.833E-03 0.0 1.383E-03
2.0 3 3.412E-04 0.0 0.0

the AUX is the loss-of-load probability, LLP. Since
the simulations are run for long time periods, the
initial state of the battery has no effect.
Simulation results for a range of values of SLR
and B ,.x based on 24 years of horizontal SOLMET
data for January in Madison, WI are shown in Table
3. Column (a) lists the results obtained using the
simulation model described above. Identical results
were obtained using the hour-by-hour model with
a nighttime load distribution. The results in column
(b) were obtained using a simulation model with
daily timesteps and a 24-hour uniform load distri-
bution, as assumed in the models of Bucciarelli,
Gordon, and Chapman. The results in column (c)
also assume a 24-hour load distribution but were
obtained from an hour-by-hour analysis.

As expected, the auxiliary fractions calculated

in column (c), assuming a uniform load distribution,
are lower than those obtained in column (a), as-
suming a nighttime load. The daily time step-uni-
form load model, column (b), unavoidably assumes
that the solar radiation is uniformly distributed over

-a 24-hour period and results in significantly lower
auxiliary fractions than observed for the hour-by-
hour results in column (c). As Gordon noted, the
simulation results in column (b) are exactly (to three
significant figures) equal to the results of column
() if B max is reduced by 1. Similar results were ob-
served for other months and locations.

4. STATISTICAL GENERATION OF DAILY SOLAR
RADIATION

The use of historical solar radiation data has sev-
eral disadvantages when used to drive simulations
designed to calculate the loss-of-load probability.
Most importantly, even 20 years of data are insuf-
ficient to obtain accurate estimates of LLP for LLP
values less than about .01, as seen in Section 5.
Second, the effects of radiation distribution and
persistence on LLP cannot be independently in-

vestigated. These problems are eliminated by using
synthetic solar radiation data.

Synthetic values of K, were generated using a
method developed by Graham[13]. Graham models
the persistence in a series of K values with an au-
toregressive model of order 1. However, rather
than work with the K values themselves, which are
bounded and have a skewed distribution, Graham
transforms the K values into a series with a Gaus-
sian distribution having a mean of 0 and a variance
of 1. The transformation uses the probability dis-
tribution of daily K values, thereby ensuring that
the synthetic data have the correct statistical dis-
tribution. The Hollands-Huget analytical form of
the probability distribution was used in our study,
although the relation of Bendt et al. could also have
been used. ’

Graham's method requires as input data, X,
K nax, and ¢. Hollands and Huget recommend that
K max be a constant equal to 0.864. Their probability
distribution assumes K, to be 0.0. A slight modi-
fication was made so that values of K calculated to
be less than 0.03 were set to 0.03 based on obser-
vations of K i, values for five U.S. locations. Table
4 compares 23-year (700-day) statistics of historical
daily solar radiation data for selected months and
locations with those of synthetic data. The syn-
thetic data were generated in two ways: (1) using
historical values of Kin and Knax and (2) setting
K min and K ax to constants equal to 0.03 and 0.864,
respectively. Both sets of synthetic data closely re-
produce the historical statistics in all respects. Dif-
ferences in the historical and synthesized values of
¢ in Table 4 can be observed, as, for example, May
in Madison. However, there is a relatively large
standard deviation associated with the 23-year av-
erage values (approximately equal to cr¢,/\/§) and
the differences are consistent with the expected
variation. Figure 1 shows that the historical (dotted
lines) and synthetic (with constant K i, and Ky,
solid lines) probability distributions for January in
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Table 4. Comparison of historical and synthetic daily radiation statistics

K oK Kmin  Kmox Ok ¢ T

Madison: January

Historical 0.441 0.047 0.029 0.838 0.199 0.209 0.177

Synthetic (1) 0.447 0.037 0.031 0.827 0.207 0.214 0.170

Synthetic (2) 0.447 0.039 0.032 0.852 0.215 0.214 0.172
Madison: March

Historical 0.500. 0.050 0.037 0.917 0.227 0.258 0.205

Synthetic (1) 0.507 0.050 0.039 0.908 0.224 0.267 0.155

Synthetic (2) 0.506 0.046 0.032 0.858 0.205 0.264 0.156
Madison: May

Historical 0.506 0.058 0.042 0.809 0.201 0.233 0.157

Synthetic (1) 0.509 0.024 0.044 0.801 0.179 0.144 0.179

Synthetic (2) 0.508 0.027 0.032 0.855 0.201 0.147 0.176
Albuquerque: August )

Historical 0.702 0.032 0.130 0.867 0.108 0.292 0.170

Synthetic (1) 0.699 0.027 0.165 0.862 0.112 0.210 0.179

Synthetic (2) 0.699 0.027 0.174 0.858 0.110 0.210 0.179
Seattle: January

Historical - 0.308 0.061 0.018 0.960 0.208 0.205 0.281

Synthetic (1) 0.304 0.034 0.021 0.920 0.227 0.173 0.153

Synthetic (2) 0.304 0.033 0.032 0.831 0.212 0.177 0.157
Seattle: December

Historical 0.300 0.036 0.012 0.772 0.206 0.206 0.128

Synthetic (1) 0.295 0.036 0.014 0.764 0.187 0.180 0.158

Synthetic (2) 0.295 0.039 0.032 0.851 0.201 0.171 0.162
New York: February

Historical 0.410 0.039 0.003 0.855 0.211 0.034 0.184

Synthetic (1) 0.410 0.046 0.005 0.818 0.214 0.045 0.179

Synthetic (2) 0.410 0.048 0.032 0.844 0.220 0.045 0.178
Columbia: July

Historical 0.596 0.043 0.078 0.806 0.147 0.124 0.173

Synthetic (1) 0.611 0.031 0.033 0.797 0.138 0.056 0.172

Synthetic (2) 0.615 0.038 0.032 0.852 0.169 0.060 0.174

[ ---- Historical Data

0.9F - gynthetic Data 7
0.8F August: Albuguerque, MN -
(R=0.70 _ =)
0.7r N = /!
06 = / " .
o i wi 7 ]
05+ March: Madison, ) 3
- (K=058).— ’ .
0.4 ‘/,— _
0.3 3
/ .
0.2 = January: Seattle, WA B

(K =0.30)

.

0 01 02 03 04 05 06 07 08 09 1
Fractional Time

Fig. 1. Comparison of synthetic (solid lines) and historical (dotted lines) cumulative probability dis-
tributions for January in Seattle, WA, March in Madison, WI, and August in Albuquerque, NM.,
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Seattle (K = 0.30), March in Madison (K = 0.50),
and August in Albuquerque (K = 0.70) agree to
within the standard deviations reported by Bendt

et al. Both the historical and synthetic distributions

based on 23 years of data exhibit some waviness
not present in the Holland—-Huget analytical distri-
bution. The constant values of K pin and K, were
used in all following work.

5. LOSS-OF-LOAD PROBABILITIES

Graham’s radiation model synthesizes se-
quences of daily values of K with the same statis-
tical properties as observed in the historical data.
The simulation model described in Section 3 can
use either SOLMET or synthetic radiation data.
The advantage of the synthetic data for the purpose
at hand is that the effects of radiation distribution
(through K and &) can be studied independently and
radiation sequences representative of a specified
month can contain any number of days.

The number of days of operation needed for a
system to realize its loss-of-load probability has not
been addressed in previous studies. The effect of
number of days can be seen in Fig. 2 where auxiliary
fractions for By = 4, K = 0.5, and ¢ = 0.30
simulated using 300, 1500, 3000, and 30,000 days
(i.e., 10, 50, 100, and 1000 years) of synthetic ra-
diation data have been plotted. Significant differ-
ences in the calculated auxiliary fractions at a par-
ticular value of SLR are observed for auxiliary
fractions less that about 0.01; these differences tend
to increase as the auxiliary fraction approaches
zero. Different, but equally probable, sets of syn-
thetic data can be generated by changing the seed
value used for the random number generator. Quite
different-looking curves are obtained for the 300-
and 1500-day results by choosing different random
number sequences: Presumably, simulation results
using different 20-year periods of historical data
would also produce different curves if such data

S. A. KLeIN and W. A. BECKMAN

were available, implying that the 24 years of SOL-
MET data are insufficient to allow accurate esti-
mates of low LLP values.

As expected, the simulation results converge to
a unique auxiliary fraction at each SLR value as the
number of days is increased; the number of days
needed to obtain convergence is, however, sur-
prisingly large. Differences are still observed be-
tween the results obtained using 3000 and 30,000
days of data for auxiliary fractions less than 0.01.
Using 30,000 days of data produces a smooth curve
that is not affected by the seed value used for the
random number generator. All following results
were obtained using 30,000 days of synthetic ra-
diation data. The auxiliary fractions calculated with
30,000 days of data are assumed to be identical to
the loss-of-load probabilities.

Figure 3 illustrates the effect of persistence on
the loss-of-load probability. The solid lines were
generated assuming that there is no persistence in
the daily solar radiation (i.e., & = 0). The dotted
lines correspond to ¢ = 0.45, the maximum per-
sistence observed in any location. For a given sys-
tem configuration, the LLP is lower when there is
no persistence, for reasons given in Section 1. How-
ever, persistence has no effect on the results for
Bpax = 1 for the nighttime load distribution con-
sidered. In this case, the battery is in a fully dis-

‘charged state at the beginning of every day and the

solar radiation occurring on previous days has no
effect.

The persistence in daily solar radiation can be
characterized, somewhat conservatively in most
cases, with ¢ = 0.3. Figures 4 through 10 present
loss-of-load probabilities for ¢ = 0.3 and K values
between 0.1 and 0.7. A comparison of these figures
shows a marked effect of radiation distribution on
the loss-of-load probability. For the same values of
SLR and Bmax, LLP is always larger when there is
more variability in the daily solar radiation. In-
creased variability results in a higher occurrence of

~log4 O(AUX)

0.5

075 1

1.‘25 1.60

1.75 2

225 250 275 3
SLR '

Fig. 2. Effect of number of days of data on the calculated auxiliary fraction for K = 0.5, Buax = 4,
) and ¢ = 0.3.
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Fig. 3. Loss-of-load probabilities vs SLR for Bmax of 1, 2, and 3 with K = 0.5 and & = 0 (solid lines)
and ¢ = 0.45 (dotted lines).

—logyo(LLP)

05 bttt bbbttt
0.75 1 125 150 175 2 . 225 250 275 3

SLR

Fig. 4. Loss-of-load probabilities vs SLR for ¢ = 0.30 and Boax between 1 and § for K = 0.1 {05/
H = 0.935).

~logy g(LLP}

0.5 . ; . . . . . :
0.756 1 1.26 150 1.75 2 225 250 275 3

SLR

Fig. 5. Loss-of-load probabilities vs SLR for ¢ = 0.30 and Bax between 1 and 5 for K = 0.2 (o x4/
H = 0.834).
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Fig. 6. Loss-of-load probabilities vs SLR for ¢ = 0.30 and Bmax between 1 and 5 for K =03 (o g/
H = 0.689).

05 : - ' - ' : : b
075 1 125 150 175~ 2 225 250 275 3

SLR

Fig. 7. Loss-of-load probabilities vs SLR for ¢ = 0.30 and Bmax between 1 and 5 for K = 0.4 (gl
H = 0.550).

~logqg(LLP)
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Fig. 8. Loss-of-load probabilities vs SLR for ¢ = 0.30 and Bnax between 1 and 5 for K =05 (oul
H = 0.418).
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Fig. 9. Loss-of-load probabilities vs SLR for ¢ = 0.30 and Buax between 1 and 5 for K = 0.6 (op/
H = 0.290).
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Fig. 10. Loss-of load probabilities vs SLR for ¢ = 0.30 and Bumax between 1 and 5 for K = 0.7 (os/
) H = 0.165).
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Fig. 11. Relationship between o5/H and K.
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Fig. 12. Comparison of loss-of-load probabilities calculated using Bucciarelli’s method[16] with results
from Fig. 8.

a sequence of below-average days of radiation that
deplete the battery. LLP values are lowest for high
values of X (e.g., 0.7) since in this case, there is
relatively little variability in the daily solar radiation
as nearly every day is sunny. Variability increases
as K decreases down to K of about 0.2. Very low
values of K (e.g., 0.1) again exhibit less variability
since, in order to have an average of 0.1, every day
tends to be overcast with rare sunny days.

The analytic models of Bucciarelli and Gordon
require as an input parameter, o,, the standard de-
viation of the daily array output. It is this parameter
that contains information concerning the distribu-
tion of the solar radiation. Assuming the load and
system efficiency to be constant, o, can be related
to o g, the standard deviation of the daily radiation
by

oo = <S_%—R>UH )

The ratio of o to H has been found to be a nearly
linear function of K, independent of ¢, as shown in
Fig. 11. The solid line was obtained using the syn-
thetic radiation data. The symbols represent
monthly-average values calculated from the 23 and
1/2 year SOLMET data base.

With Fig. 11, a direct comparison can be made
between the analytic models and the information in
Figs. 4 to 10. Shown in Fig. 12 is a comparison of
loss-of-load probabilities calculated using Buccia-
relli’s model (dotted lines) for K = 0.5 and b =03
with those from Fig. 8 (solid lines). (Bucciarelli’s
loss-of-load probability, I1g, must be multiplied by
his A to yield the loss-of-load probability as defined
in this study.) Comparisons are shown for Boax
(Bucciarelli’s C/L) equal to 1 through 4 and good
agreement is noted for B ., greater than 1 and for
SLR less than about 1.1. Since Bucciarelli’s method
apparently assumes a uniform 24-hour load distri-

bution, and our results are for a nighttime load,
however, his results for a given value of B,
should be compared with ours for B, + 1. Buc-
ciarelli does not mention that his analytic method
yields a maximum value of LLP for SLR of about
1.2; increasing SLR beyond this point results in
lower values of LLP, contrary to our results and to
intuition. Gordon’s method also displays this be-
havior.

6. EFFECTS OF ARRAY ORIENTATION

All of the results presented thus far have been
generated assuming the array to be horizontal. Tilt-
ing the array has two effects. First, depending on
the orientation and time of the year, the average
daily radiation on the array plane may be less or
greater than the horizontal value, which changes
the value of SLR. Long-term averages of the daily
solar radiation incident on surfaces with orienta-
tions other than horizontal are not generally avail-
able and they must thus be estimated from hori-
zontal data. The estimation process requires
information concerning the amount of diffuse ra-
diation and its. distribution over the sky dome,
which has been the subject of many studies (e.g.,
[20-22]). Klein and Theilacker[23] present an al-
gorithm for estimating R, the ratio of monthly av-
erage radiation on a tilted surface to that on a hor-
izontal surface, assuming diffuse radiation to be
isotropic. For surfaces facing directly toward the
equator, the isotropic assumption provides conser-
vative (i.e., R closer to unity) radiation estimates.
Herzog[24] presents a modification to this algo-
rithm to allow for an anisotropic radiation distri-
bution.

A second effect of array orientation is that it al-
ters the distribution of daily solar radiation. This is
illustrated in Fig. 13, which shows daily distribu-
tions of horizontal radiation for € = 0.3, 0.4, and
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Fig. 13. Comparison of cumulative frequency distributions of daily radiation on a 45° surface at 45°N
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Fig. 14. Relationship of LLP to ¢4/H for horizontal and tilted surfaces.

0.5 (solid lines) and of the radiation on a 45° south-
facing surface at 45°N latitude with K = 0.5 for
March (R = 1.25), July (R = 0.85), and December
(R = 2.09), calculated with a ground reflectance of
0.2 and the isotropic diffuse assumption. The dis-
tribution for the 45° surface in July closely resem-
bles that for a horizontal surface with K = 0.5,
whereas the distributions for March and December
show greater variability and more closely resemble
distributions for horizontal surfaces with X = 0.4
and 0.3, respectively. The general conclusion is that
any change (i.e., orientation, time of year, ground
reflectance, etc.) that increases R also increases the
variability of the daily solar radiation, and con-
versely.

In terms of its effect on LLP, the distribution of
daily solar radiation on horizontal or tilted surfaces
is described by a single parameter, o u/H, the ratio
of the daily standard deviation to the long-term av-
erage solar radiation on the array surface. This is

the parameter plotted against X in Fig. 11 for hor-
izontal surfaces. A method of estimating o x/H for
other orientations is discussed in the Appendix. The
effect of this parameter can be seen in Fig. 14 in
which LLP for SLR = 1.2 is plotted against o z/H
for B .x values between 1 and 3. The solid lines in
this figure correspond to simulation results for hor-
izontal surfaces taken from Figs. 4 through 10. The
symbols correspond to results obtained for tilted
surfaces for a range of (south facing) orientations,
months, and ground reflectances. For the same val-
ues of SLR and Bp.x (and with ¢ = 0.3), the loss-
of-load probability depends only on og/H. Thus
Figs. 4 to 10, generated with horizontal data, are
equally applicable to other orientations with the
same value of o5/H. When the array is not hori-
zontal, an appropriate value of K corresponding to
ox/H is found from Fig. 11 and LLP is read (or
interpolated) from Figs. 4 to 10 corresponding to
this value of K.
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7. DISCUSSION

Figures 4 to 10 provide an estimate of the aux-
iliary fraction expected from a system with a given
SLR and B..x over the long term. However, the
system may not necessarily achieve this auxiliary
fraction during its lifetime of, say 10 years, because
of the variability associated with the estimate. As
noted in Section 5, as many as 30,000 days (the
equivalent of 1000 years of data for a specified
month) may be needed to obtain results that no
longer depend on the random number seed value,
suggesting that there can be a great deal of vari-
ability associated with 10-year (300 day) average
auxiliary fractions. This indeed is the case for small
auxiliary fractions as seen in Fig. 15 where the dis-
tribution of 10-year averages of the auxiliary frac-
tion divided by the long-term average auxiliary frac-
tion (i.e., the LLP) are shown for LLP values of
.1, .01, and .001. If the auxiliary fraction for every
10-year period were equal to the LLP, the curves
in Fig. 15 would be horizontal lines at an ordinate
value of 1.0. This is nearly true for auxiliary frac-
tions greater than .1. As LLP decreases below .1,
however, increased variability in the 10 year av-
erage auxiliary fractions is observed. When LLP is
.001, there is a 50% probability that, during any 10-
year period, the system will always supply 100% its
load. On the other hand, there is a significant prob-
ability that the 10-year average auxiliary fraction
will be as much as an order of magnitude larger than
intended, as a result of the variability in the solar
radiation. For this reason, LLP values less than .01
cannot be considered realistic performance esti-
mates of a system during its lifetime.

7.1 Example

Estimate the photovoltaic array area needed to
obtain a loss-of-load probability of .05 in Madison,
WI (lat. 43°N) during January in supplying a con-
stant nighttime load of 1 kW hr/day. The array is

tilted at a 45° angle, facing due south. The overall
system efficiency is 0.08.

It is first necessary to estimate H and oz. The
monthly average daily radiation on horizontal sur-
face in January and associated clearness index are
5847 kJ/m* day and 0.45, respectively[26]. R, the
ratio of monthly average radiation on the 45° sur-
face to that on the horizontal surface, is estimated
using the method of Klein and Theilacker[23] to be
1.70, assuming a ground reflectance of 0.2 and a
diffuse fraction of 0.48 as obtained from the cor-
relation of Erbs et al.[20]. H is then 1.70 x 5847
= 9940 kJ/day. The ratio, o »/H is estimated as de-
scribed in the Appendix using the Hollands—
Huget[3] cumulative distribution curve. With 10,
20, 40, and 80 bins, the values of og/H are 0.646,
0.672, 0.685, and 0.692, respectively.

From Fig. 11 with o g/H = 0.69, the distribution
of radiation on the 45° surface in January is equiv-
alent to that on a horizontal surface for K = 0.3.
The relation between LLLLP, SLR, and B, is thus
read from Fig. 6. For LLP = .05 (—log 10(LLP)
= 1.30), the values of SLR are 1.82, 1.32, 1.15, and
1.07 for B .« equal to 2, 3, 4, and 5, respectively.
(A LLP of .05 can not be obtained with SLR < 3.0
when Bnax = 1.) From eqn (3), the corresponding
array areas are 8.2, 6.0, 5.2, and 4.8 m?.

NOMENCLATURE

A photovoltaic array area
AUX fraction of the load not supplied by the solar
energy system

B4 ratio of the useful energy in the battery to the

average daily load at the end of the daytime pe-
riod .

B, ratio of the useful energy in the battery to the
average daily load at the end of the nighttime
period
ratio of the maximum useful energy in the bat-
tery to average daily load
ratio of the daily diffuse to global radiation cor-
responding to a daily clearness index of K;

B max

DF;

0 01 02 03 04

05 06 07 08 08 1

Fractional Time

Fig. 15. Distribution of 10-year (300-day) averag

e auxiliary fractions for LLP values of .1, .01 and
001.
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f; fractional time that the daily clearness index is

less than K;
H daily radiation per unit area on the plane of the

array :
long-term monthly average daily radiation per
unit area on the plane of the array
K daily clearness index defined as the ratio of the
daily total radiation per unit area on a horizontal
surface to the daily extraterrestrial radiation
(commonly called K1)

K long-term monthly average value of K
Kmin minimum value of X

max Maximum value of K

L effective daily electrical load (i.e., the daily load
divided by the inverter efficiency, if used)
loss-of-load probability defined as the long-term
average value of AUX
ratio of monthly average radiation on an in-
clined surface to that on a horizontal surface
R; theratio of daily radiation on an inclined surface
to that on a horizontal surface for a clearness
index of K;
ratio of daily beam radiation on an inclined sur-
face to that on a horizontal surface
SLR solar to load ratio defined by eqn (3)

# tilt of array from horizontal

7 photovoltaic system efficiency including charge

and discharge efficiencies of the battery
¢ correlation coefficient between the daily solar
radiation on successive days
p ground reflectance
o, standard deviation of daily array output

=

LLP

>l

R,

oy standard deviation of daily radiation per unit
area :

ox standard deviation of daily clearness index val-
ues

o Standard deviation of monthly clearness index
values

oy standard deviation of monthly value of ¢
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APPENDIX

Estimation of ouylH .

Ideally, both H and og/H would be determined from
historical records of daily radiation for the location and
surface orientation of interest. Unfortunately, long-term
records of daily solar radiation are rarely available on tilted
surfaces and so these quantities will usually have to be
estimated based on long-term monthly average horizontal
radiation data. H can be estimated as described in [23]. A
simple means of estimating o /H follows.

Given the value of K, the fractional time that the daily
clearness index, K, is less than a specified value can be
obtained from the cumulative distributions of Liu and Jor-
dan[1], Bendt et al.[2], or Hollands and Huget[3]. To es-
timate o g/H, divide the K axis into a number (e.g., 20) of
equally sized bins. R;, the ratio of the radiation on the
tilted surface to that on a horizontal surface for bin j is
calculated as a function of Kj, the K value at the center
of the bin. Assuming isotropic diffuse and ground reflected
radiation, R; is approximately given by

- (1 — DF)R, +2DF_,‘(1 + cos [B) + p(1 —zcos B) (A1)

R;

where

R, s the ratio of daily beam radiation on the tilted
surface to that on the horizontal surface. An
equation for R, that assumes a constant atmos-
pheric transmittance is given by Duffie and
Beckman[26]. A somewhat more complicated
equation that considers the diurnal variation of
the atmospheric transmittance is given by Klein
and Theilacker{23].

is the slope of the surface from horizontal

is the ground reflectance

DF; istheratio of daily diffuse to global radiation that

v @

can be estimated from a correlation established
by Erbs et al.[20] in terms of K

DF, = {1:00 + 0.235K; — 2.258K? — 1.760K7
7= 0.165

for K; > 0.72

for K; >= 0.72 A2

After computing R; for all bins, the value of oz/H can be
calculated from

i \/2[(fj — fij-1) (K;R; — KR!
g =
7 2 — F-0RK]

(A.3)

where

f; is the fractional time corresponding to K; from
the cumulative distribution curves and fy is 0.

and
KR = J[(f; — fi-ORK;) (A.4)

The value of o5/ H obtained from eqn A.3 is only slightly
affected by choosing more than 10 bins in the calculation
(as seen in the Example) or by other factors such as the
ground reflectance and the consideration of diurnal varia-
tion of atmospheric transmittance. ox/H will probably
show little sensitivity to assumptions made regarding the
distribution of diffuse radiation (i.e., isotropic or aniso-
tropic) but this was not tested. On the other hand, more
than 50 bins are needed to obtain accurate estimates of R
with eqn A.4. For consistency, the product KR in eqn A.3
should be obtained with eqn A.4.



