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Abstract—This paper presents a new method for predicting the radiative transfer in an absorbing and
isotropically scattering, non-gray plane-parallel atmosphere. The technique is based upon the F (“F-hat™)
concept and was developed to determine the radiative transfer at short wavelengths for the transparent
insulation material, monolithic silica aerogel. The angular dependence of solar transmittance of diffuse and
ground reflected radiation is evaluated along with the “transmittance-absorptance product” of a collector.
The F technique is also used to determine the IR transmission of the cover from which the overall loss
coefficient for a flat-plate collector constructed with aerogel filled covers is determined. The performance of
a system using aerogel collectors is compared to systems using other types of high performing collectors. It
is shown that, at least for the system investigated, the decrease in solar transmittance of monolithic silica
aerogel is more than compensated by the decrease in thermal losses.

1. INTRODUCTION

It has been experimentally shown by Svendsen and
Jensen[20]and Svendsen[21]that flat-plate collector
efficiency can be significantly improved by filling the
air gap between absorber and cover with monolithic
silica aerogel (MSA ), and evacuating the system t0 0. 1
bar. The most recent collector design proposed by
Svendsen is illustrated in Fig. 1. The collector consists
of a plain, black painted absorber made from copper
tubes with copper foils on each side. The copper foils
are supported by means of blocks of suitable material.
Both sides and the edges of the absorber are covered
by 20 mm thick MSA tiles and 4 mm tempered low-
iron glass. A frame of stainless steel placed between
the glass is sealed with butyl to make the collector box
airtight. Although the construction is symmetric in or-
der to reduce thermal stress problems and both sides
could be illuminated, in this study only one surface is
illuminated. The objective of this paper is to model
MSA collectors and introduce the necessary quantities
that enables MSA collectors to be treated as ordinary
flat-plate collectors.

2. ATTENUATION OF SOLAR RADIATION IN MSA

When solar radiation enters the MSA slab as shown
in Fig. 2, a fraction of the incident energy is transmitted
through the material without being attenuated (direct—
direct transmittance), a part is removed by scattering
and another part is removed by absorption. A portion
of the scattered radiation is backscattered and a portion
is transmitted through the slab (direct-diffuse trans-
mittance). No correction for surface reflections will
be required in the analysis that follows because the
index of refraction of MSA is close to unity, between
1.01 and 1.05 depending on density (Henning and
Svensson[11]).

The monochromatic direct—direct transmittance is
defined by Bouguer’s law

_ (Kap + Ksp)) L
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The spectral direct-diffuse transmittance, 7girdgira,
occurs because of scattering within MSA. Analysis of
multiple scattering is mathematically complex and re-
quires a great deal of computational effort. However,
a new and fast method for isotropic multiple scattering
within an absorbing and scattering medium is presented
in a latter section.

3. OPTICAL TRANSMISSION STUDIES IN MSA

Figure 3 shows measured total (i.e., direct-direct
plus direct—diffuse ) spectral transmittance in the solar
spectrum of a 12 mm thick MSA sample from Tewari
et al[23]. A more transparent MSA has been reported
by Svendsen[21]who found the total solar transmit-
tance at normal incidence to be 0.9 for a 20 mm thick
sample, which is 4% higher than an equally thick sam-
ple of Tewari et al. However, spectral transmittance
values for the Svendsen sample have not yet been re-
ported, so the Tewari data shown in Fig. 3 will be used
in this study.

Figure 3 illustrates that the transmittance increases
rapidly with wavelength in the visible wavelengths and
generally decreases in the near infrared, exhibiting a
number of abserption bands. Silica absorbs only
slightly in the visible and near ultraviolet, so most of
the attenuation of the radiation results from scattering.
The absorption bands near 1.4 and 1.9 um are also
seen in water, and the 2.2 and 2.6 um bands have been
identified as combinations of O-H and Si~-O funda-
mentals (Rubin and Lampert{16]).

An isolated spherical particle exhibits Rayleigh
scattering if its diameter, D, is much less than A,/ n,
where A, is the vacuum wavelength of incident and
scattered light and # is the index of refraction of the
particle. The size of the individual silica particles easily
satisfies the criterion for Rayleigh scattering in the vis-
ible part of the spectrum (0.4-0.8 um). However, MSA
is too densely packed to behave as a collection of in-
dependent particles, and several authors (Rubin and
Lampert[16]and Tewari et al[23]) have attributed
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Fig. 1. Cross section of a MSA flat-plate solar collector. Adapted from Svendsen[21].

the primary cause of scattering in MSA to inhomo-
geneities in the average density such as should be de-
scribed by dependant scattering theories (e.g., Rayleigh-
Debye). Nevertheless, the same authors have assumed
independent Rayleigh scattering, and derived a char-
acteristic size for the scatters by fitting the measured
transmittance values. In the following the applicability
of independent Rayleigh, scattering will be tested.

For Rayleigh scattering, the scattered energy in any
direction is proportional to the inverse fourth power
of the wavelength of the incident radiation. The spectral
transmittance for Rayleigh scattering can therefore be
written as

C
TRA = exp(— F) ) (2)

where A is the wavelength of incident and scattered
radiation, and C is an unknown function of the re-
fractive index, the particle size, and volume fraction
of MSA.: The rising part-of the curve in Fig: 3 between
0.3 and 0.8 um was compared to the inverse fourth-
power law of Rayleigh scattering. In Fig. 4 the loga-
rithmic values of the measured transmittance (0.3-0.8
pm) has been plotted against (1/A*). The agreement
between the scattering in MSA and Rayleigh scattering
is seen to be very good, and a curve fit of the data to
eqn (2) gave a correlation coefficient of 0.999. Thus,
even though the particle size distribution is not well
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known, it can be assumed that the scattering is Ray-
leigh.

The optical properties may be found by solving the-
equation of transfer for Rayleigh scattering. The spec-
tral extinction coefficients are needed as input to this
calculation. According to Siegel and Howell[18]the
equation of transfer in scattering, absorbing, and emit-
ting media at location s and direction y can be written
as

.
DL o5, 1)+ Kol T(5),

K .
o [ (s, @i, (3)
v 4

= Ksain(s, u) +

The first and third terms on the right-hand side are
losses by absorption and scattering, and the second
term is the gain by emission. The last term is the gain
by scattering from other directions. By introducing the
optical thickness, kp) = (K, + K;,»)s and the albedo
for scattering, Q) = K;,/(K; + K,,) and neglecting
the emission term, eqn (3) can be written as
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Fig. 2. Distribution of direct, scattered, and adsorbed solar radiation in MSA.
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Fig. 3. Total transmission spectrum of 12 mm thick MSA, supercritically dried by CO, but not heated to
remove all adsorbed H,O. Data from Tewari et al[23].

The importance of anisotropy (®, # 1) has been
investigated by several authors (e.g., Evans et al[7])
who calculated the reflectance and transmittance of
slabs for different phase functions, albedos, and optical
thicknesses. Evans found that the results for isotropic
scattering (®, = 1) and Rayleigh scattering were nearly
identical except at optical thickness exceeding 7 or 8.
The MSA optical thickness in the solar spectrum (0.4
to 2.3 um includes 95% of the terrestrial solar spectrum)
is largest in the near ultraviolet region. For a 12 mm
thick MSA tile at 0.3 pm, where the albedo for scat-
tering is about 0.8, the optical thickness is ~1.7. Based
on Evans’ results, the scattering in MSA may be as-
sumed isotropic as long as the tile thickness is less than
50 mm, a thickness that exceeds the probable practical
range.

4. RADIATIVE TRANSFER IN AN
ABSORBING-SCATTERING MEDIUM

This section presents a new method for predicting
the radiative transfer in an absorbing and isotropically
scattering plane-parallel atmosphere. The technique is
based upon the F (“F-hat”) concept (Beckman[2]),
and it was developed in order to determine the radiative
heat transfer at short wavelengths for MSA.

Consider a one-dimensional plane parallel system
of optical thickness xp divided into n equal elements

each of optical thickness Ak, with n + 1 surfaces, as
shown in Fig. 5. Solar radiation is incident on surface
1 and short wavelength radiation, that is, /, is trans-
mitted through the medium while being attenuated by
isotropic scattering and absorption along the path. The
temperature within the medium is assumed to be low
enough to suppress short wavelength emission. Initially
the medium will be assumed to be gray.

A factor F,;;is defined as the fraction of the energy
isotropically leaving volume element { that directly
impinges on surface j without being scattered or ab-
sorbed along the way.! The factors F,;;; can be ex-
pressed in terms of the third exponential integral, E3(x)
(see Hottel and Sarofim[ 9] or Siegel and Howell[18]for
definition of the exponential integral).

Foig = 21[E3(k; = kis1) — E3(x; — ;)11 /40

for j#i+1,i (5)

Fug=[1 — 2E;(A)]/4Ak for j=i,i+1. (6)

A factor, F,;,; is defined as the fraction of energy
first scattered in element / that is attenuated in element
J. The F,,; factors are calculated by

 Surface j can be an “imaginary” surface defining one
side of a volume element.
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Fig. 4. Comparison of actual scattering in MSA with the 1/\* variation.
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Figure 5. Geometry of plane-parallel system.

Foiyi = I(Fvi.sj_ Fvi.s(j—l))[ for i#j (7)

Foinj=1— Fyisiir1y— Fug for i=j.  (8)

A related factor F’ui',j, is defined as the energy iso-
tropically leaving element / that strikes surface j by all
possible paths divided by the energy isotropically leav-
ing element [. The paths include the “direct” com-
ponent expressed by F,;; as well as all possible paths
by which the radiation first scattered in element i
reaches element k, is scattered in k and then strikes
surface j. A general expression for I:“,,,-,Sj for a system
divided into # elements is given by*

Fvi.sj = Fvi,sj + z Fvi.vk Qk ka,sj
k=t

j=landn+1, i=1ton (9)
An expression similar to eqn (9) can be written for
every combination of elements and surfaces. The total
set of equations for the F factors of # elements and
two surfaces results in 2n sets of 2z linear equations.
After evaluating the F factors, the directional reflec-
tance and transmittance of the slab can be calculated

by

n
p(ﬂ) = Z ka.s! lean,uk/lo (10)
k=1

7(0) = Taisaic + 2 ForsorrycSaon/ Loy (11)
kel -

where I . is the attenuated energy in element k and
is equal to the decrease in the primary-beam intensity
in element k

# Only exchange between V; and the two real surfaces s1
and s(n + 1) need to be evaluated.

Lwore = I — Tiary

= Iy« [ Tairdiesk = Tdir-dirstk+ny]>  (12)
and where 7gi_qir.s% 18 the direct transmittance given by
eqn (1), and is a function of the incident angle 8 of
the primary beam. The absorptance of the slab is found
froma=1—7~-p.

The number of elements needed to adequately rep-
resent the radiative transfer in the one-dimensional
plane-parallel slab has been investigated by comparing
the transmittance predicted by the F-method with those
of the discrete ordinate method, DOM (Siegel and
Howell[18]). Two elements are required to obtain a
maximum relative error of 1% with respect to the DOM
solution for «p less than 0.5. At «p equal to 1 and 2,
the required number of elements have increased to 4
and 10, respectively.

So far only gray media have been considered. How-
ever, the extension of the F-method to non-gray media
is easy. The monochromatic angular transmittance,
7:(#), and reflectance, p,(#), values can be calculated
in the usual way, with « replaced by «, and Q by Q,.
The total values are then obtained by integration over
the solar spectrum (0.3--3 um) for each incidence angle.

A major advantage of the F-method compared to
techniques such as the DOM or the Zone method
(Hottel and Sarofim[9]), is that the F's are independent
of the thermal boundary conditions (assuming that
the material properties are independent of changes in
the boundary conditions). The importance of this ad-
vantage is obvious for angular calculations, where the
Fs only need to be evaluated once, even though the
source function changes.

5. SPECTRAL DEPENDENCE OF TRANSMITTANCE

The measured transmittance values shown in Fig.
3 have been analyzed with the F-method and spectral
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Fig. 6. Spectral scattering and adsorption coefficients for MSA.

absorption and scattering coefficients have been eval-
uated. The following procedure was applied: Knowing
silica hardly absorbs between 0.5 and 0.7 um
(Fricke[8]), the F-method was used to predict the
scattering coefficients assuming no absorption occurred
in this wavelength interval. An effective size for the
scatterers was derived by fitting these scattering coef-
ficients to the following expression for independent

Rayleigh scattering
n* —1\?
(n2 + 2) - 13

Multiple scattering in optically thick samples will
alter the angular distribution of scattered light. How-
ever, if little scattered light re-enters the beam, eqn
(13) will still give the correct result for the scattering
coefficient. The validity of egn (13) for MSA was ver-
ified in a previous section where the scattering was
shown to obey the inverse fourth-power law of inde-
pendent Rayleigh scattering (see Fig. 4).

The effective particle size derived from curve fitting
based on the index of refraction of silica was 7.5 nm.
From their micrographs Tewari et al.[23]obtained a

4Dgﬂ'7l"4
)\4

Ks,kz(l —6)

mean particle diameter of 4 nm. This discrepancy may
be explained by groups of particles behaving as a single
scattering unit.

After predicting the effective particle diameter, eqn
(13) was used to calculate the spectral scattering coef-
ficients, and combined with the measured transmit-
tance values shown in Fig. 3, the F-method was used
to estimate the spectral absorption coefficients. The
resulting extinction coefficients are shown in Fig. 6.

Applying the F -method again along with the pre-
dicted spectral extinction coefficients, the monochro-
matic dependence on transmittance, reflectance, and
absorption can be studied for different thicknesses and
incidence angles. Spectral transmittance and reflec-
tance values for a 20 mm thick MSA tile is shown in
Fig. 7 for several incidence angles.

Total values were obtained by integrating the
monochromatic values over the entire solar spectrum
using the terrestrial distribution given by Wiebelt and
Henderson[25]. Calculated values of transmittance,
reflectance, and absorptance for a 20 mm thick MSA
tile are shown in Fig. 8. The effect of scattering on the
transmittance is clearly seen by the increase in total
transmittance over the direct-direct transmittance; the
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Fig. 7. Calculated spectral transmittance and reflectance at different incidence angles for a 20 mm thick
MSA tile.
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Fig. 8. Calculated transmittance (total and direct-direct), reflectance, and adsorption versus incidence angle
for a 20 mm thick MSA tile.

direct-diffuse transmittance is the difference between

the total and the direct-direct transmittance curves.

Figure 9 shows the effect of MSA thickness on
transmittance. MSA by itself, despite scattering losses
in the visible and O-H absorption in the infrared, has
a higher total transmittance than conventional glass
windows of equal thickness. The total transmittance
of a 20 mm-thick MSA tile equals that of single glass.
Increasing MSA thickness to 45 mm reduces 7. 10
about (.72, equal to double glass.

6. TRANSMITTANCE FOR DIFFUSE RADIATION

The preceding analysis only applied to the beam .

component of solar radiation. Radiation incident on
a collector also consist of scattered solar radiation from
the sky and reflected solar radiation from the ground.
The transmittance for diffuse radiation, 74, is calculated

f 76(8)+ I cos 6 dw
A

Td

= , (14)
f I cos 0 dw
A

where A is the range of solid angle of incident diffuse
radiation. Brandemuehl and Beckman|[3]performed
this integration for ordinary glazings by assuming the

incident diffuse radiation distribution to be isotropic.

The same assumption will be used in this study. Figure
10 shows the effective angle of incident beam radiation,
#., such that 74 = 1,(6.). The effective incidence angle
was found to be independent of thickness at all collector
slopes. As shown in the figure, the 6, for MSA is lower
than for ordinary glazings due to the scattering. The
results can be presented as polynomial curve fits as:

0.(ground reflected)
= 90.0 — 0.54608 + 0.0016313>

f.(diffuse sky)
= 55.0 — 0.19138 + 0.00198432

(15)

(16)

7. INFRARED HEAT TRANSFER IN MSA

The thermal conduction within MSA is composed
of two parts. One is a result of solid conduction
throughout the aerogel skeleton, and the other is due

i
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to gas conduction within the air pores. The solid con-
duction is dependent upon MSA density, and the cor-
responding solid conductivity was found to be about
0.004 W/m°C at a density of 105 kg/m? (Caps and
Fricke[4]). The gas conduction varies both with den-
sity, temperature, and internal pore pressure, p,. As
the typical pore size (100 nm) in MSA is smaller than
the mean free path of the gas particles, the thermal
conductivity of the gas is reduced. In order to eliminate
gas conduction the material must be evacuated to a
pressure below 20 mbar. The system thus has to be
degassed at elevated temperatures and air leakage has
to be prevented by use of glass-metal seals .(Jen-
sen[10]). For evacuated systems gas conductivity is
nearly zero, resulting in a constant conductivity ~
0.004 W/m°C. Only evacuated MSA tiles will be con-
sidered in this work.

MSA absorbs and emits radiation, but shows no
scattering in the infrared because the structural in-
homogeneities have dimensions on the order of 100
nm and below, which is much smaller than any infrared
wavelength. The spectral absorption coefficient is
shown in Fig. 11,

In order to evaluate the insulating properties of
MSA it is necessary to consider both infrared radiation

and conduction. Siegel and Howell[18 Jshows how to
integrate eqn (3), over all solid angles and wavelength
and equate the results to the net gain by conduction
to yield the following nonlinear integro-differential
equation for the temperature distribution in the me-
dium

KV2T — 4 f KaaEppdX
A=0

] 4
+ f f Koaif(w)dowdr =0,  (17)
A=0 Ju=0

8. COMBINED CONDUCTION AND RADIATION IN AN
ABSORBING-EMITTING AND SCATTERING MEDIUM
BY THE F-TECHNIQUE

_ Consider a conducting-radiating medium between
two infinite parallel plates spaced a distance L apart.
The plates are gray, isothermal, diffuse reflectors and
emitters. Plate 1 is at temperature T, and plate 2 is at
T',. The plate areas are A; and 4,. The homogeneous
material between the plates has a constant thermal
conductivity, has a refractive index of one, is in local
thermodynamic equilibrium and can absorb and emit,
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Fig. 11. Absorption coefficient for MSA. Data adapted from Fricke[8].
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as well as isotropically scatter radiation. Both gray and
non-gray media will be considered.’

The F-technique begins by subdividing the material
into n volume elements: AV,, AV,, ..., AV, as il-
lustrated by Fig. 12. The method is approximate in
the sense that the nonisothermal medium is replaced
by a number of finite isothermal subregions. In prin-
ciple the division can be made as fine as necessary to
yield any desired accuracy.

First consider the diffuse radiation leaving surface
1 which impinges on surface 2. Some of the radiation
leaving 1 will go directly to 2 and some will reach 2
after one or more reflections and/or scatterings. The
total exchange factor between surface 1 and 2, 13}1':2,
is defined as the energy isotropically leaving surface |
that strikes surface 2 by all possible paths divided by
the energy isotropically leaving surface 1. Now consider
the diffuse radiation leaving surface 1 which is atten-
uated in volume element j. Some of the radiation leav-
ing 1 will be directly attenuated in j, and some will be
attenuated in j after one or more reflections and/or
scatterings. The total exchange factor between surface
1 and volume j, I:”“,‘,j, is defined as the energy isotro-
pically leaving surface 1 that is attenuated in volume
element j by all possible paths divided by the energy
isotropically leaving surface 1. Similar remarks can be
made concerning surface 2.

Similarly, some of the radiation leaving volume
element i will go directly to surface 1, and some will
reach 1 after one or more reflections and/ or scatterings.
The total exchange factor between volume element |
and surface 1, F,;, is defined as the energy isotropically
leaving volume element / that strikes surface 1 by all
possible paths divided by the energy isotropically leav-
ing volume element ;. Finally, some of the diffuse ra-
diation leaving volume element [ which is attenuated
in volume element j will be directly attenuated in j,
and some will be attenuated in j after one or more
reflections and/ or scatterings. The total exchange factor
between volumes  and j, I:",,,;‘, j» is defined as the energy

¥ A subscript to separate monochromatic and gray values
will not be used. Whenever the meaning is not clear, X will
be introduced to denote monochromatic values.

A. NORDGAARD and W. A. BECKMAN

isotropically leaving volume element / that is atten-
uated in volume element j by all possible paths divided
by the energy isotropically leaving volume element i.

The total exchange factors can be expressed in terms
of the direct exchange factors, Fs, diffuse reflectances,
ps, albedos for scattering, s, and other F's in the fol-
lowing manner

. 2 n
Fsi,sj = F.ri,s} -+ z F si,skPszk,sj + 2 AF:i,kakFuk,:j
k=1 k=1
i=1,2 and j=1,2 (I8)

2 n

IEsi,uj = Fsi,uj + 2 Fsi.skpk?'sk,vj + Z F si,qukI‘:7 vk,vj
k=1 k=1

i=1,2 and j=1ton (19)

2 n
- Fuig = Fug+ 20 FoapiFos + 2 FoimQFug

k=1 k=1

i=1ton and j=1,2 (20)

2 n

IEui,uj = Fvi,vj + z Fui.skkask,uj + z Fvi,qukak,vj
k=1 . k=1

i=1lton and j=lton. (21)

The values of the direct exchange factors can be
expressed in terms of the third exponential integral as
given by eqns (5) and (6). It is also worth mentioning
that eqns (9) and (20) are identical except for the third
term in eqn (20) which accounts for reflections from
the boundary plates. This term is ignored in eqn (9)
due to the fact that the surface reflections in MSA can
be neglected and that no boundary plates are present
in the system modeled in Fig. 5.

Equations (18) to (21) must be solved simulta-
neously. Relationships between the F's can reduce the
computational effort. These properties are the sum-
mation rule and the reciprocity rule and are similar to
the summation and reciprocity rules for view factors.
The summation rule can be developed by recognizing
that the energy leaving a surface or a volume element
must ultimately be absorbed by the surface and the
volume elements in the system. The energy originating
from surface or volume i that is absorbed by surface j
is ¢;F;, where the absorptance «; has been replaced by
the emittance ¢; since the surfaces are gray (or the anal-
ysis is monochromatic). Similarly, (1 — Qj)ff,j denotes
the energy absorbed by volume element j from either
surface or volume J. Since all the energy must be ab-
sorbed, the sum over all surfaces and volume elements
must be equal to unity. i

2 n
z €D 5i sk + Z (1 - Qk)l:".s‘i,uk =] f= 1: 2 (22)
k=1 k=1

2 n

> aFusw+ 2 (1= Q)Fm =1
k=1 k=1
i=1ton.

for (23)
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It can be shown that the total exchange factors obey
the laws of reciprocity:

AF = AFgy for iandj=1,2 (24)

Aiﬁsi,uj = 4KT,jAI/ijj,xi
for i=1,2 and j=1ton (25)
AViFy, = AViF,, for iandj=1ton. (26)

By means of the total exchange factors, the inner
integral in the absorption term in eqn (17) can be re-
placed by summation terms and an energy balance
can be written for each volume element. For a non-
gray medium the energy balance for volume element
iisl

KV2T AV, — 4AV;6T4; j;—o Kain/ar dA

2 L]
+ 2 ékAkGT?kL OF(sk,ui),A(l = Qia)dA
k=1 =

n

+ Z 4AVk¢rT3k

(=<
f Kak,)\f)\TF( vk,vi),\
k=1 A=0

X1 —Q\)ydr=0, (27)
with
C
S = e .28
aT“)\S[exp(ﬁ,) - 1]

The first term in eqn (27) is the conduction con-
tribution to volume element i, the second term is the
energy emitted from volume element 7, and the third
and fourth terms represent the energy absorbed in vol-
ume element i, being originally emitted from the sur-

'The gray form of eqn (27) is obtained by replacing the

integrals by the average value of the integrands.

faces and volume elements in the enclosure, respec-
tively.

The temperature distribution within the medium
was found by expressing the conduction term in finite-
difference form, and solving the » nonlinear equations
by Newton-Raphson techniques. Once the temperature
distribution has been evaluated, the final step in the
solution procedure is to calculate the heat transfer
across the medium from plate 1 to plate 2. The total
heat flux, g, at surface x = 0 can be expressed by the
conduction term at surface | plus the difference be-
tween the radiation emitted by surface | and the ra-
diation absorbed by surface 1. For a non-gray medium

Gt = _(

L9
X f F(Sk‘_g]).)\d)\ e 46]
A=0

2
+edieTH — e 2 eAroTh

k=1

k—

dT)
x=0

dx

2 AVioTy
k=1

X [ KuohreFamsmadh. (29)

Comparison of results for the gray case is made
with the results of Viskanta[24]. Viskanta’s results can
be exactly reproduced by the F-method as long as the
grid spacing is made fine enough. The radiative flux
reached Viskanta’s solution within 1% in all cases with
a uniform subdivision of 30. However, the conductive
term required a subdivision of five times as fine to
obtain the same accuracy, and the computer time was
unacceptably high. The necessity for fine grid spacing
is due to the calculation of the temperature gradient
at x = 0. To overcome this obstacle and use computer
power more effectively, nonuniform grid spacing was
introduced near plate 1. A very fine subdivision was -
employed to the four volume elements closest to plate
I, and a more coarse and uniform division was used
for the rest of the geometry. In this way the number
of grids necessary to obtain an accurate solution was
reduced from 150 to 30 for a typical calculation.

As the absorption coefficient in MSA is strongly
wavelength dependent, eqn (28) with @ = 0 was em-
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ployed to calculate the temperature distribution within
the medium. The calculated heat flux for a 20 mm
thick and evacuated MSA tile is compared to experi-
mental data published by Scheuerpflug et al.[17 }in Fig.
13. The comparison was done in terms of the so called
apparent thermal conductivity, k,,,, as a function of
the medium average radiative temperature, Ty for two
values of the boundary surface emittances, 0.05 and
0.50. The predictions obtained with the F-method
agree very well with the measurements, and the agree-
ment is much better than the simplified procedure
proposed by Caps and Fricke[4].

9. TRANSMITTANCE-ABSORPTANCE PRODUCT
FOR MSA COLLECTORS

Since MSA requires protection against the elements,
glass must be used as the outside cover. For clear angle-
preserving covers such as glass panes or honeycombs,
(7a)-products have been evaluated by several authors
(e.g., Edwards[6]and Symons[22]), but the inclusion
of scattering layers or irregularly reflecting layers com-
plicates the calculation. In the following section an ap-
proximate method which allows the inclusion of scat-
tering layers is derived based on the embedding tech-
nique presented by Edwards[6].

To employ the embedding technique one imagines
a stack of # elements including an absorber plate and
n — 1 covers, and one formulates the effect of adding
one more element to the array. The assumptions are
restrictive, but allow the inclusion of scattering layers
with sufficient accuracy for most cases. The diffuse re-
flections from the absorber will be assumed to be iso-
tropic. Transmitted or reflected fluxes from a single
layer will be split up into components: A direct, angle-
preserving component for the incidence angle under
consideration, and a component deflected by scattering
or reflection, which will be treated as isotropic. Figure
14 shows the angular distribution of the backscattered
(reflected ) radiation from a slab with isotropic scat-
tering, and it is obvious that the distribution is not
isotropic,

In order to assess the errors introduced by assuming
an isotropic distribution, three different values of the

o

0.6

0.2

Angular reflection intensity

04

0.6

-~00°

Fig. 14. Angular distribution of diffuse reflections from a
plane-parallel atmosphere with isotropic scattering of finite
optical thickness and an albedo of 0.9.

integrated reflectance and transmittance were em-
ployed: (a) values based on the largest angular intensity;
(b) values based on the smallest angular intensity; and
(c) values based on the integrated intensities. In all
cases an isotropic distribution was assumed. The anal-
ysis showed that the difference in estimating the (ra)-
product for the MSA collector in Fig. 1 was less than
4% for the different approaches with approach (¢) being
between (a) and (b). The authors feel that the proposed
method which is based on (c) is acceptable. Calcula-
tions have shown that this approximation may be used
even for extremely anisotropic distributions if the ac-
tual is replaced by an effective isotropic distribution
(McKellar and Box[15]).

The transmittance of the ith cover is therefore di-
vided into a direct-direct (i.e., beam) component,
7%, and a direct-diffuse (i.e., scattered) component,
7§. Similarly, the reflectances of the ith cover are de-
noted by p'® and p’*, respectively, for the inside surface
and p? and p} for the outside surface of the element.
The transmittance of any element is the same from
either direction due to the reciprocity principle. The
absorbtances of element i for beam radiation from each
direction, «} and «; are given by

ai=1—pP —pf—rt—7  (30)

a=1—pf —pji—r} —1}. (31)

The transmittance and reflectances for diffuse fluxes
incident on the ith element are denoted by 7§, p¢,
and p}¢. The diffuse absorptances of element i can
then be expressed as

afd =

L= pif —rf (32)

al =1—pd — 7¢. (33)

Allowance is thus made for optical coatings such as
antireflection films and/or thin oxide IR-reflecting
films being different on each face of each coverglass
element.

The incident flux from outside the system, ¢, is
direct and normalized to unity. The leaving fluxes are
made up of a direct and a diffuse component, g7 and
g7, respectively, as illustrated in Fig. 15. Since g
is normalized to unity, the outgoing fluxes are given
by the following relationships

gt = Riu (34)

l]:ﬂ: = Ry, (35)

where RY., and RS, are the top-of-the-n -+ I-stack
reflectances due to the reflection of the direct incident
flux and scattering, respectively. The incoming fluxes
for the nth cover element are

g:° = 7o + Pk gi° (36)

gat = i T e @+ e @i (37)
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Fig. 15. Embedding a stack of n covers.

Similarly, the outgoing fluxes can be expressed by the
following expressions

+b .

qn R" Qn

+d_Rs
n

(38)

®+ Ry g%, (39)
where RS is the top-of-the-n-stack reflectance due to
reflections of diffuse fluxes. Combining eqns (36) and
(38) and eqns (37) and (39) yields

gi* ——T-b‘——b— (40)
(1 - pn-H Rn)
—d T‘lyﬂ-l ~b
= e o
T =R
X [ Rﬁ + p'nil : R5 (41)
(1 — prer * RY)

For convenience, top-of-the-stack transmittances are
defined. For the incident beam radiation

(42a)

b
tner = ~b dn s
n+i

for the incident beam radiation that is scattered

q"

qn-H

Lt = =4, (42b)

and for the incident diffuse radiation (used latter)

d
T nti

(1-pa "Ry (42¢)

d -
lne =

The outgoing fluxes above the new element are

(43)
(44)

+b .. b b +b
n+t = Pn+l + T qn

+d . 5 H “+b d +d
Gns1 = Put T Tt 0 @n b Ther Gn

Substituting eqns (34) and (38) into eqn (43), and
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eqns (35) and (39) into eqn (44), along with the def-
initions given by egns (42a) and (42b), yield the de-
sired relations for the overall reflectances of the stack
embedded by one more cover for incident beam ra-
diation

Rbyy = phar + 7541 RY - 15 (45)
Ry = pher + Thwr * Ry - 1o
+ 781 [Ry  they + RS- fa]. (46)

In a similar manner (with the definition of diffuse
transmittance given by eqn (42c¢)) the overall reflec-
tance of the stack embedded by one more cover for
incident diffuse radiation is

RSy = plar + 7001 * RY - Lha. (47)

A top-of-the-stack absorptance is introduced as

— ! +b —b
Auiy = Oy * Gn F Oty * Gt

+ an—H Q:d + a?ﬁ-l " CI;—Sh (48)

From eqns (38) to (47), eqn (48) can be rewritten as

— ! b b 1d
Ay = Qg * Ry s et + aper + apyg

X (ther * RS+ 501+ RY). (49)
For an N-element stack subjected to normalized solar
radiation, one can find the fraction Ay y of the radiation
absorbed by the outermost cover from the value ay.
For each successive element below the outer one the
downgoing flux is

gr® =18, - gif + e e gD+ 1k o g7, (50)
beginning with [ = N. The within-stack absorptance
A; v is then given by the following relation

= b. ., -b d
Ain = ai v gy + ai

X [ iy + the - 781, (51)
Conservation of energy can be used to check the
calculations;
RY+Ry+ Ayt Agn+ o +Auy=1. (52)
The procedure for calculating the (7a)-product
starts with calculating the single layer transmittances
and reflectances. The embedding calculation then starts

with the bare absorber

Rt =11 ~a(0>1-(1 ——‘;;“-f) (53)
Ri=[l -a(e)]-—’;f—“, (54)
a = anbs(e)- (55)
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Then the first cover, element 2, is added, and 13,
5, RS, R%, and a, are found from the above equations.
Then the second cover is added and so on until the
outermost Nth element is included.}

By repeated use of eqns (50) and (51) the solar
absorptance by each element within the collector can
be evaluated. Figure 16 shows the within-stack ab-
sorptions versus incidence angle for the MSA collector.
At normal incidence 72% of the solar radiation is ab-
sorbed by the absorber plate, 3.8% is absorbed by the
MSA tile, 4.2% is absorbed by the glass cover and 20%
is reflected away.

10. INCIDENCE ANGLE MODIFIER FOR MSA
COLLECTORS

The (ra)-product is dependent on the collector
configuration and varies with the angle of incidence as
well as with the relative values of diffuse and beam
radiation. To model this dependence an incidence an-
gle modifier can be introduced into the Hottel-Whillier
collector model. Souka and Safwat [19] suggested that
the incidence angle modifier can be written

ncidence angle for the MSA collector.

K= )
(rat)s

(56)
Standard test methods [ASHRAE [1]] include exper-
imental estimation of this effect by assuming the entire
radiation to be beam, and to use the following expres-
sion for the angular dependence of X,

Km=1+bo( —1), (57)

cos f

where by is the incidence angle modifier coefficient.
The calculated incidence angle modifier is shown in
Fig. 17 for the MSA collector as a function of [(1/cos
8) — 1]. It is seen that K., is linear all the way out to
values of the abscissa of 2, corresponding to an inci-
dence angle of 75°. The value of b, was determined
to —0.22.% '
Equation 57 presumes that all incident radiation
strikes the collector at the same incidence angle, which
is not true because of the presence of diffuse and
ground-reflected radiation. By assuming isotropic dif-

+

§ For an architectural application, the effective reflectance
of the room behind the window is used for R,.

* Equation (57) gives misleading results for ordinary glaz-
ings at incidence angles larger than 60°,
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8
=
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i¥)
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Fig. 17. Incidence angle modifier coeflicient as a function of (1/cos 8) — 1).
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fuse radiation, the absorbed solar radiation, S, can be
expressed as

1
S = (ra)n| [ RoKrop + Iy Lj“?iﬁ Koo
1 —
e e

The subscripts b, d, and g represent beam, diffuse, and
ground-reflected. For a given collector tilt, the same
procedure as described earlier was used to calculate
effective beam incidence angles for the (ra)-product
of diffuse sky and ground reflected radiation. The input
to this calculation was the incidence angle dependent
(ra)-product predicted by the modified embedding
technique. This analysis revealed that the effective in-
cidence angles evaluated for the transmittance in MSA
was also valid for the (7« )-product in MSA collectors.
Equation (58) can be written in terms of a total inci-
dence angle modifier as follows

§ = ItKo(ra)n, (59)

where the total incidence angle modifier is given by

Iy 1 Is {1 +cos @
K.o=—Ry1+b - —_— | ———
It b[ 0(cos 0 1)] * It ( 2 )

1 I[{l—-cosf

X1+ 1|+ p = {|——
el )] el

[zt )] @

11. COLLECTOR OVERALL HEAT LOSS COEFFICIENT

In order to use the Hottel-Whillier collector equa-
tion an overall heat loss coefficient, U1, must be eval-
uated for the MSA collector. A general energy analysis
includes solar radiation, long-wavelength radiation,
conduction and convection due to wind. Except for
the wind effects, all of these mechanisms have been
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discussed. The cover system was divided into appro-
priate nodes, and energy balance equations were writ-
ten for each. Based on these calculated temperatures
an apparent thermal conductivity was evaluated for
the MSA tile. The top loss coeflicient, U,, was evaluated
for different absorber plate temperatures, absorber plate
emittances, wind heat transfer coefficients, and ambient
and sky temperatures.

The use of a blackbody radiation sky temperature
not equal to the air temperature did not significantly
effect U,. Less than 1% increase in U, was observed
when the sky temperature was reduced from 10 to 0°C.
The same percentage change (decrease) was found at
an absorber plate temperature of 150°C when the ab-
sorber plate emittance was changed from 0.9 to 0.1.
The negligible loss reduction obtained by selective
coatings was expected due to the low apparent thermal
conductivity in MSA. An increase in U, on the order
of 1% was observed when the wind heat transfer coef-
ficient was increased from 5 to 20 W/m? K. This
change is much smaller than for ordinary collectors,
and is also explained by the insulation properties
of MSA.

When a similar analysis is performed for collectors
with ordinary glazings, it is assumed that the absorbed
solar radiation by covers will not affect the losses from
the collector. This effect is accounted for by introducing
an effective transmittance-absorptance product (Duffie
and Beckman[51). Even through the term concerning
absorbed solar radiation can be included in the analysis,
it will be ignored in the following calculations. By doing
this, and evaluating an effective transmittance-absorp-
tance product for the MSA collector, the simplicity of
the theory for ordinary flat-plate collectors is main-
tained.

The calculation of the top loss coefficient for the
MSA collector is a very tedious process. The simplify
the evaluation of collector performance, Fig. 18 has
been prepared. The figure shows the top loss coefficient
for the MSA collector in Fig. 1 for: ambient temper-
atures of 25, 10, and —10°C for a range of absorber
plate temperatures. The effect of MSA thickness is also
included in the figure. In this case the ambient tem-

25 T Y T T
e =T, = -10°C i { .
Z o, L=10mm ¢~ |
T N T, = 10°C .
E b
2 T =25°C . -
18 e = e
-t - -
g - /"—/
5 e rie
I N P o -- L=20mm | """~
g T L
w e - -
8 B cx - L
= 05 ______r_:'-_::;_—_.--—' _’_...——
I i e e -
" L=40mm
0 i

275 300 325 350

Average absorberplate temperature, Tp'm [K}

Fig. 18. Top loss coefficient versus average absorber plate temperatures at different ambient temperatures.
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perature was kept at 10°C. The calculations were
performed using a wind heat transfer coefficient of
10 W/m? °C.

The figure shows that U, is strongly dependent upon
the absorber plate temperature and the MSA thickness.
The ambient temperature is also seen to play an im-
portant role, while the other parameters have minor
influence on U;. To use Fig. 18, it is necessary to know
the mean absorber plate temperature, T, . Duffie and
Beckman [ 5 ]present a method for estimating T}, and
also present information on how to estimate the back
and edge losses that must be added to U,, to determine
UL. Once U, is known, Fy, the collector heat removal
factor, can be found by standard methods.

12. EFFECTIVE TRANSMITTANCE-ABSORPTANCE
PRODUCT

To maintain the simplicity of Hottel-Whillier col-
lector equation, and account for the reduced losses due
to absorption of solar radiation by the covers, Duffie
and Beckman introduced an effective transmittance-
absorption product, (ra).. The same approach was
followed for the MSA collector. Figure 19 illustrates
the difference between (7). and (7«) versus incidence
angle. The incident angle modifier, by, for (ra). is

. versus incidence angle.

found from Fig. 19 to be —0.18, somewhat less than
the —0.22 found for (7«).

13. MSA COLLECTOR PERFORMANCE

The Hottel-Whillier equation can be written in
terms of an “instantaneous” efficiency as

T,— T,
=2 = peK(ra), -y, T T
. Gr

= e . (61
Ni A.Gr (61)

The efficiency of the MSA collector shown in Fig. |
has been measured at the Thermal Insulation Labo-
ratory in Denmark (Svendsen[21]). The calculation
procedure developed in this paper has been compared
with the Danish measurements under similar condi-
tions. As shown in Fig. 20 there is good agreement
between the calculated and measured efficiency.

The model underpredicts the measured heat loss
coefficient by about 10%. This was expected due to the
deviations from the ideal preconditioning of MSA used
in the collector as stated by Svendsen[21]. The pre-
dicted optical efficiency is also lower than the mea-
surements. This is related to the spectral extinction
data used as input to the model. Due to lack of spectral
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measurements of the MSA used in the Danish collector,
these data had to be developed from another type of
MSA, which is about 4% less transparent.

14. COMPARISON OF MSA COLLECTORS WITH
OTHER COLLECTOR DESIGNS

Instantaneous collector efficiencies are shown in Fig.
21 for three different collector designs: (a) one cover
with selective absorber plate (¢, = 0.065); (b) low-
pressure flat-plate collector (from Kellner[14]); and
(c) MSA collector. The incident radiation on the col-
lectors was 800 W/m?.

It is clearly seen that considerable improvements
of the efficiency can be obtained by using MSA col-
lectors for high temperature applications. The efficiency
is even better than the low-pressure flat-plate collector
for temperature differences larger than about 65°C.

15. ANNUAL PERFORMANCE

A single glazed flat-plate collector with selective
coating characterized by Fr(ra) = 0.80 and FrU.
= 4.20 W /m?°C is used as a reference. Table 1 indicates
possible improvements to this reference collector. The
annual performances estimates were obtained with
TRNSYS for a process heating application in Madison,
WI, at a minimum operating temperature of 75°C.
The MSA collector clearly outperforms the other for
this application.

In Sweden large selective surface flat-plate collector
areas are used in district heating networks. These col-

lectors are required to operate at temperatures between
60 and 100°C. Collectors with a single teflon film plus
selective coatings have been proposed to replace the
existing collectors (Karlsson[12,13]). The corrugated
teflon film collector and the honeycomb collector can
be expected to increase the annual gain by 7 and 11%,
respectively, but will not be used because of the their
high cost. The MSA collector can increase the yearly
gain by as much as 41%. Today, MSA collectors are
not commercially available and are far too expensive.
However, when MSA is mass produced and the MSA
collector is fully developed it is expected that the col-
lector will be a significant breakthrough for solar heat-
ing systems at medium and high temperatures.

NOMENCLATURE

Ay area of surface k (m?)
C, Planck’s first radiation constant (3.7405 10~'* W m?)
C, Planck’s second radiation constant (0.0143879 W-K)
Jar weight function of Planck’s spectral distribution of em-
. issive power
Fu.. total exchange factor between volume element k and
. volume element /
Fuw total exchange factor between surface k and volume
element {
I solar radiation intensity
i directional monochromatic radiation intensity
monochromatic intensity of emitted energy of the par-
ticles
k thermal conductivity (W/m K)

ke apparent thermal conductivity, g L/(T), — T3)
(W/mK)

Ky absorption coefficient in volume k (1/m)

K, absorption coefficient (1/m)

Table 1. Simulated yearly heat production at a minimum operating temperature of 75°C

Collector type Fg (ra) FRU Q. [kWh/m? year]
Selective coating (sc) 0.80 4.20 265
1-teflon film + sc 0.77 3.33 306
2-teflon films + sc 0.74 3.05 305
Corrugated-teflon film + sc 0.78 3.20 327
Arel-honeycomb -+ sc 0.68 2.00 340
MSA 0.74 1.43 431
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