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OPTIMAL CONTROL AND FAULT
DETECTION IN HEATING, VENTILATING,
AND AIR-CONDITIONING SYSTEMS

F.L.F. Pape
Member ASHRAE

ABSTRACT

A methodology is developed for fault detection in
heating, ventilating, and air-conditioning (HVAC) systems
based on optimal control. The optimal control strategy is
determined using information that could come from an
energy management and control system (EMCS). This
information is also used to detect faults in system operation.

Deviations from optimal performance are sensed by compar- -

ing the measured system power with the power predicted
with the optimal strategy. Various statistical approaches to
using the difference between actual and optimal power are
described. Both individual measurements and sequences of
data are employed to determine the existence and location
of faults. The trade-off between the level at which faults can
be detected and the speed of detecting faults is discussed.
The methodology is tested using simulations of an HVAC
system operated both with and without faults present.

INTRODUCTION

Improvements in the design, control, and maintenance
of HVAC systems can result in significant savings in
building energy use. Braun (1988) developed a methodology
for determining the optimal control strategy for an HVAC
system and showed that savings of 10% to 20% are possible
through optimal control. An important aspect in the use of
optimal control is the determination of equipment degrada-
tion and sensor failures that cause the performance to
decrease. -

Kao (1985) showed that sensor errors in the air-
handling unit of an HVAC system increase the annual
energy requirements up to 50%. Urso et al. (19853, b)
developed a fault detection technique based on a model of
the system without faults. The model is used to generate
estimates of system performance under current operating
conditions. Differences between expected and actual
performance are analyzed to see whether statistically
significant changes in parameters have occurred. A Kalman
filter technique is used to reduce the impact of noise and
uncertainty. It is feasible to detect bias errors in tempera-
ture sensors with this method. The approach requires a
detailed modeling of the system to determine the expected
operation under normal operating conditions.

Anderson et al. (1989) used a rule-based expert system
with a statistical analysis data processor to provide an
hourly diagnostic analysis of an industrial HVAC system.
Monitoring and diagnostic functions were performed on
data collected by the existing data acquisition system. The
statistical analysis preprocessor compared incoming data
with predictors and computed a normalized variance for
each channel of data. The data were searched for inconsis-
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tencies as a way to find sensor failure. The variances were
compared with set limits within the expert system as a
check on consistent system operation. The main limitations
of their study are that the predictors used in the system are
not physically based.

The approach in this study will be to first develop the
optimal control strategy for the system. Statistical methods
will then be used to determine the deviation from optimal
performance. The approach is described in detail by Pape
(1989).

Figure 1 shows a schematic of a typical variable-air-
volume (VAYV) air-conditioning system. It is a centralized
chilled-water facility, with chilled water distributed to a set
of air-handling units. The HVAC system meets the air-
conditioning requirements of the building zones through
control of the supply fan speed, temperature settings,
chilled-water and condenser water pump speed, and cooling
tower fan speed. This system will be used to illustrate the
tasks of optimal control and fault detection in HVAC
systems.

The setting of the control variables is performed by a
supervisory controller. Control variables may be both
continuous, such as the temperature settings, or discrete,
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Figure 1  Schematic of a conventional air-conditioning
system
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such as fan-speed mode. The levels of the control variables
change the power requirements for the components and thus
for the system as a whole. Different control variable
settings may produce equal building comfort but at differing
power requirements.

An optimal control strategy is one in which, for a given
building load and ambient condition, the total cost of
operation is minimized while maintaining comfort condi-
tions in the building. The total energy cost is the sum of the
power required to operate the chillers, cooling tower fans,
cooling tower water pumps, chilled-water pumps, and air-
handling unit fans.

Equipment, sensor, and control component failures
result in deviations from optimal control. Even though
comfort may be maintained, the cost of operation will be
higher than with optimal control. These failures can be
detected by the increase in energy requirements compared
with operation with optimal control. The methodology to
detect these increases 1s the subject of this paper.

OPTIMAL CONTROL STRATEGY

The determination of the optimal control strategy for an
HVAC system requires detailed knowledge of the perfor-
mance characteristics of each of the components. Braun et
al. (1989) have also developed a methodology for determin-
ing optimal control that utilizes component perfcrmance

"information obtained from measurements, manufacturer’s
data, or mechanistic models. This information is combined
into a representation of the performance of the entire
system. Determining the optimal strategy then involves
nonlinear optimization techniques. The method yields the
optimal set of control variables that minimizes power
consumption at any time.

Using detailed performance data for each component is
feasible, but the information requirements are large. Braun
et al. (1989) also developed a methodology for determining
a ‘‘near-optimal’’ control strategy based on the power
consumption of the system as a whole rather than that of
each component. The near-optimal strategy is simpler to
determine and yields a strategy very close to the true
optimal one.

' The basis for this near-optimal strategy is the use of
quadratic relations for power consumption. Braun (1988)
showed that the power consumption of a chiller may
adequately be represented as a quadratic function of the
load and the temperature difference between leaving
condenser and evaporator water temperatures. He also
demonstrated that the power of the continuously adjustable
pumps and fans may be accurately represented with a
quadratic function of the control variables and flow rates.

This concept was then extended to the system as a
whole. The power consumption of the entire HVAC system
is represented by a quadratic relation for the total power in
terms of the control variables, loads, and ambient condi-
tions. The approach is used as the basis for the fault-
detection methodology and is summarized below.

The total system power is represented by the following
equation:

P(f,M,u) = uTAu + bu [6))
+fTCf +df + fTEu + g

where

total system power

a vector of continuous control variables {e.g.,
temperature setpoints)

a vector of uncontrolled variables (e.g., loads,
ambient temperatures)

a vector of discrete control variables (e.g.,
fan-speed mode)

coefficient matrices

coefficient vectors

a scalar.
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The coefficients have to be determined empirically for
each of the operating modes, and a separate formula is then
developed for every feasible combination of discrete
variables. The equations are constrained in that criteria such
as temperature and humidity limits in the occupied space
are met.

The optimal control is determined by equating the first
derivative of the power with respect to each control variable
to zero. Solving for the optimal values of continuous
control variables yields linear relations between the control
variables and the forcing functions:

1 -1 1 -1
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If the system involves discrete variables (modes), the
optimal control for each feasible combination of discrete
variables has to be determined. The combination that yields
thedlowest system power is then the optimal operating
mode.

The system shown in Figure 1 has two control vari-
ables: the chilled-water set temperature and the supply air
temperature. The total power is the sum of that for the
chiller, cooling tower and air-handler fans, and the chilled-
water and condenser pumps. The significant uncontrolled
variables are the wet-bulb temperature, cooling load, and
sensible heat ratio. The ambient dry-bulb has essentially no
influence (Braun 1988). The system was modeled and

‘ simulated using the TRNSYS (Klein et al. 1988) program.

" An example of the total power as a function of the two
control variables is shown in Figure 2. The load and
ambient conditions are fixed, and each curve represents one
chilled-water set temperature. For this operating condition,
there exists a minimum power consumption for control
settings of about 44°F (7°C) for the chilled water and 51°F
(10°C) for the supply air temperature. These values will be
different for other loads and ambient conditions.

The system’s power consumption over a wide range of
operating conditions and control variables was determined.
These power values were then fit to the quadratic form of
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Figure 2 Total system power as a function of the set-

point temperatures
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Figure 3  Power from simulation and formula for a

medium cooling load

Equation 1 using linear least-squares regression techniques
to yield the values of the coefficients. In this example
system, only one set of discrete control variables (modes)
exists, and thus only one formula for system power was
developed. Equation 2 was solved for the optimal values of
the chilled-water temperature and the air outlet temperature.

The resulting equations for the two setpoint temperatures
are linear relations:

Tax.ur.opt = a, Tw + a Load + a, SHR
Tswseoe = 0y T, + by Load + by SHR (3)

where the coefficients a, and b; are determined from the
coefficients of the quadratic relation following Equation 2.

The quadratic relation quite accurately determines the
optimal control strategy. In Figure 3, the system’s power
consumption from the simulation and that from Equation 1
is presented for the same conditions as for Figure 2. For
each chilled-water set temperature, the optimum air temper-
ature as predicted by Equation 1 is in good agreement with
the detailed simulation results. However, as also shown in
Figure 3, the energy computed from the quadratic relation-
ship does not match the detailed simulation results exactly.
For some situations, the equation predicts lower power than
the simulation, and for other situations it predicts higher.
This difference between simulation and equation values will
be a factor in the use of the optimal control results to deter-
mine faults.

FAULT DETECTION

The term ‘‘fault’’ used in this study is a qualitative
expression used for changes that cause nonoptimal system
behavior. An error is the quantitative value of the fault. For
example, a fault could occur in the chilled-water tempera-
ture sensor. The fault could be quantitatively described by
sayirgg that the error in the chilled-water temperature is 5°F
(2.8°C).

The methodology for fault detection proposed in this
study is based on the use of a relation for the system power
consumption under the optimal control strategy. Operating
variables, such as loads and ambient conditions, change
over time, and equipment performance may degrade over
time. Historical records may not be a sufficient reference,
since they will not give a value of the power consumption
for every future operating condition. The power relation for
optimal control provides a method for estimating what the
power consumption should be under the current operating
conditions, whether it has previously been experienced or
not.

Taoc,set

Tchw,set Load, SHR

Controller

Tehw,setopt = f(L,TWB SHR)
Taoc,setopt = (L. TWB,SHR)

Taoc,set = Taoc,set,opt

Fault in Tchw,set:
Tchw,set = Tchw,set,opt - error]

Figure 4 Introduction of a fault in the simulation of the

system

. Figure 4 demonstrates by example how faults are
introduced into the simulation model. The supervisory
controller bases the settings of the control variables on
measures of the load, the ambient wet-bulb temperature,
and the sensible heat ratio. The optimal control setpoints for

. chilled-water temperature and supply air temperature are

then determined using the optimal strategy. An error is then
introduced so that the actual setting differs from the optimal
setting.

. To illustrate the fault detection methodology, an error
in the chilled-water set temperature is introduced. This
represents a situation in which the temperature sensor is not
operating properly, and the temperature indicated by a
sensor deviates from the actual temperature by the amount
of the error. This is modeled by introducing the error into
the set temperature output from the controller. The system
is then simulated with the nonoptimal value of the chilled-
water temperature and the optimal value of the supply air
temperature. With nonoptimal setpoints, more power will
be required to meet the same load at the same comfort
conditions.

The power evaluated from Equation 1 is used to predict
the power for the current set of forcing functions and
control variables and is called the predicted value. The
power that is output from the simulation is called the
measured value. The difference between the measured and
the predicted power is the basis for fault detection.

The quadratic formula (Equation 1) is the best fit to the
data. The predicted and measured power data are not
identical for the same set of forcing functions even with no
error present. In Figure 5, the residuals for 50 randomly
selected sets of forcing functions are presented. The
residuals have values near zero, but are rarely zero, and the
mean value is approximately zero.

The determination of faults is based on whether the
differences between the predicted and measured values are
statistically significant. In order to perform this test, the
standard deviation for the measurements without error about
the predicted relation is needed. This was done by deter-
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Figure 5  Residuals for 50 randomly selected points

mining the standard deviation of the differences in predicted
and measured power using all of the simulation points.

Several methods were then investigated for their ability
to detect faults. The first method considers the deviation of
a single measurement from the optimal value. The second
method uses a cumulative sum of differences. The third
method considers a sequence of measurements. The method
for locating faults uses measurements of the power from
individual components. These approaches are described in
the following sections.

SINGLE-MEASUREMENT APPROACH

In the first method, single measurements are used. For
a fault due to error in the sensor of the chilled-water
temperature to be detected, the measured power value must

be significantly higher than the predicted value, i.e., the -

residual must be located outside the confidence interval.
The confidence interval for a single measurement of the
system power can be calculated as follows:
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where

) Sy = power predicted from the formula

lon = tabulated t-value for degrees of freedom and a
tail area of a/2 (two-sided) (Box et al. 1979)

v = degrees of freedom for evaluating the standard
deviation = n,, -1

al2 = two-sided tail area

s = standard deviation for the predicted power
about the regression equation

n = number of observations for the predicted value

= 1.

There is only one formula for the predicted value and
only one prediction for an observation, and thus n is equal
to one. Many data were employed for developing the
regression formula, and thus the number of degrees of
freedom is essentially infinite.

The performance of the system for the same 50
conditions as shown in Figure 5 was determined with
constant bias errors in the chilled-water sensor of 1°F, 2°F,
3°F, and 4°F. The difference between predicted and mea-
sured power for these situations, along with the differences
for no error, are shown in Figure 6. The 95% and 99%
confidence intervals for the data are also shown.

E=2F E=3F E=4F

0 50 100 150 200 250
Data Point

Figure 6  95% and 99% confidence intervals for residu-
als with bias error
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Figure 7  Cumulative sum of power differences for 100

random data points without error

For errors of 1°F and 2°F, the increases in power lie
within the 95% confidence interval. Even though the mean
of the data has increased, it is not statistically certain that
this is due to the presence of an error. For an error of 3°F,
all of the residuals lie within the 95% confidence limits
even though the mean of the residuals is about 3% of the
total power. Thus a 3% greater power consumption than
optimal would not be indicated using only single measure-
ments.

It is only when the error is 4°F that many of the
residuals lie outside the 95% confidence interval, Thus,
using only a single measurement, a fault can be detected
only if a relatively large error in the chilled-water tempera-
ture occurs.

SEQUENCE OF MEASUREMENT APPROACHES

The second method is based on using a sequence of

. power measurements. During operation of the air-condition-

ing system, continuous measurements are made and stored
by the building energy management and control system
(EMCS). In practice, the EMCS could produce sums of the
differences between predicted and measured power.

One aspect of this second approach is to use a cumula-
tive sum of all power differences. The cumulative sum is
shown in Figure 7 for 100 randomly selected data points
without error as a function of the ith data point; in an actual
system, the sequence of data points would occur over time.
The cumulative sum starts out at zero but deviates thereaf-
ter. If the sum of the residuals for all of the data that were
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employed for creating the regression formula is taken, the
cumulative sum would be zero. Data sets that do not
include all data yield cumulative sums that are not zero. In
the case shown, the cumulative sum of residuals is approxi-
mately 50 W for 100 data points but reaches nearly 80 W
around data point 40.

The sequence of measurements gives a qualitative
indication that a system fault has occurred if the slope of
the line exceeds a certain value. The seriousness of the fault
in terms of increased energy use can be estimated. If the
slope increases for a short time period and then decreases
again, as in the first part of Figure 7, there is probably no
error or the error is small.

In Figure 8, cumulative power differences are present-
ed over a range of 250 time steps. Four different curves for
errors in chilled-water temperature of 0°F to 3°F are
shown. The 250 data points for each of the curves are
randomly chosen and are different for each of the curves.
A clear difference between the lines can be recognized.
Thus, over a long time period, it is possible to detect a
significant difference for small errors.

In the third method, an average of a sequence of
several data points is used to make statistically significant
comparisons. Two sets of data are needed, with the first
representing data from operation without error, which is
used as the reference. The reference set was 50 data points
selected randomly from the entire set. Residuals for data
taken during system operation when errors may be present
are compared with this reference set.

The t-test is used to make the comparisons. The term
Y, is average power difference (P, - P,.J in the first
sequence without error and is defined as

2,.: (Pacass = Poreas) ®)

ny

Y4

The term y 5 is the average power difference in the second
sequence with error and is defined as
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A significant difference between sequence A (sequence
without error) and sequence B (with error) is detected if
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s, = pooled variance as given by Equation 8
n, = number of data points with treatment A
ny = number of data points with treatment B
t,, = t-value for v degrees of freedom and an area of o
v = total number of degrees of freedom = n, + n, -
2
a = tail area probability
v, = degrees of freedom for4d = n, -1
vs = degrees of freedom for B = ny - 1
s, = standard deviation for treatment A

standard deviation for treatment B.

A pooled variance is calculated because it is assumed
that the system powers for both sequences have the same
population variance. Therefore, all available data are
utilized to estimate the variance.

The method is illustrated in Figure 9. The average
residual for the reference sequence A, y,, is zero because
the residuals from the regression are utilized. During the
first 50 data points, no error is present, while from data
point 51 to 100, a bias error of 2°F in the chilled-water
temperature is present. T-tests are performed as every new
data point is added to the sequence. Two of the tests are
indicated in the figure. One of the tests was performed at
point 55 for points 45 to 55 and the other at point 86 for
points 76 to 86.

In the first of the tests shown at data point 55, five
measurements without error and five measurements_with
error are included in the test. The average residual, y,, is
close to zero and the fault is not detected using the t-test. In
the second test, shown at time 86, the average of the 10 last
residuals, y,, is well above zero and the fault is detected
using the t-test.

The calculated t-value increases with the number of
data points, n, included in the test. Therefore, the choice
of ny is important. A higher value of n, increases the t-

time at which test is conducted
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value even if the average residual (y ) is small. Thus, even
small errors can be detected if many data points are
included in the test. On the other hand, a high average
residual (y,) is necessary to detect an error if ng is small.

The first time a residual representing a fault is part of
a t-test that includes many data points, it will not have a
large influence on the average residual even if the error is
relatively large. Only when the fault is present over several
data points does it have a large enough influence to be
detected. Hence, including less data in the test will increase
the speed at which a fault is detected.

A trade-off between speed of detection and sensitivity
of detection exists. In a test run, 50 sets of forcing func-
tions were input to a simulation, first without error (data
points 1 through 50) and then with an error of 2°F in the
chilled-water temperature (data points 51 through 100). The
total system power for the data was obtained.

During the first 50 data points, representing operation
without error, no fault was indicated for any of the tests. In
Figure 10, the first data point at which a fault was detected
is shown for different numbers of data included in the test.
An indication of a fault at one data point does not necessari-
ly mean that a fault was also indicated during all further
time steps.

As shown in Figure 10, no fault was detected at any of
the 50 time steps of operation with error when only one
data point was included in the test. By including five or
more data points in the test, a fault was detected at least
once during the 50 data points of operation with a fault, In
general, the time before a fault is detected generally
increases as the number of data points included in the test
increases.

If a fault was indicated once and after that no further
indication of a fault was given, it is possible that the fault
is not real. On the other hand, if a fault is indicated at
every time step, it is relatively certain that a fault occurred.
In Figure 11, the number of data points for which a fault is
indicated out of the 50 points with an error in T, is
shown for different numbers of data points included in the
t-test. For low numbers of data points, the fault is detected
only a few times. When 50 data points are included in the
test, the fault is detected for every data point after the first
detection.

Due to the trade-off between speed in the detection of
faults and the ability to detect small faults and the certainty
of having detected a fault, t-tests should be carried out with
different numbers of points included in the test. By doing
so, large and serious errors can be detected quickly and
small errors, representing only small energy losses, can be
recognized after a longer time period.

Time Steps 1 - 50: no error

Time Steps 51 - 100:
Errorin Tchw,setof 2F

Number of Data Points where
a Fault was Detected

1 5 10 30 50
Number of New Data Points Included in T-Test

Figure 11  Number of times a fault was detected in a 50-
hour time interval with an error in T, ., for
different numbers of data points included in
the test

LOCATION OF A FAULT IN THE SYSTEM

The single formula for total system power allows
determination of faults in the system as a whole. Individual
relations for each power-consuming component allow
determination of the location of faults. Through the combi-
nation of fault messages for the single component powers,
the fault can be located in the system.

The component powers are determined from the
simulation program similar to the measurements in an actual
system. After collecting data under near-optimal conditions
without error, formulas are determined for each compo-
nent’s power consumption. In this HVAC system, quadratic
formulas for the air-handling unit fan power, the chiller
power, and the main water loop pump power are deter-
mined using linear regression techniques. The power
necessary to operate the cooling tower fans and pump is
constant for all conditions.

When a fault is present, it may affect the power
consumption of each component. The residuals could
indicate a significantly higher power consumption, a
significantly lower power consumption, or no significant
difference between the measured and the predicted power,
depending on the location of the fault. To locate the fault,
the statistical tests are performed for the component power
residuals following the procedure for the entire system as
described earlier. :

In the algorithm that was developed, a flag was used to
signify the presence of a fault. If a significantly higher
power consumption was detected, a value of unity was
assigned to the fault indicator, while a value of -1 was
assigned if a significantly lower power consumption was
detected. A fault indicator value of zero indicated that no
significantly higher or lower power occurred for that
component. Fault messages from the single component
powers are then combined to locate the fault.

As an example of such a test, a fault representing a
positive error in the chilled-water temperature sensor was
investigated. In Figures 12, 13, and 14, the cumulative sum
of component power residuals is presented for the chiller,
pump, and fan, respectively. A positive error in the chilled-
water temperature, i.e., a lower chilled-water temperature,
reduces the efficiency of the chiller. Thus, the chiller
requires more power. Because the chilled-water temperature
is lower than for optimal conditions, the pump does not
have to provide as much flow to obtain the same supply air
temperature as for the optimal control. Hence, the pump
power requirement is lower than for optimal conditions.
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The supply air temperature remains at its optimal value,
and, therefore, no difference in the optimal behavior is
indicated for the air-handling unit fan power.

The lines for the cumulative sum of pump power
residuals in Figure 13 have a negative slope, while the lines
for the cumulative sum of chiller power residuals have a
positive slope. The t-tests applied to these residuals indicate
a statistically significant error for errors of 1°F to 3°F. The
lines for the air handler power have no regular pattern, and
no significant difference in the residuals can be found.

For this example, the fault is readily determined to be
in the chilled-water temperature. The lack of a change in

the fan power from optimal indicates that the supply air
temperature is correct and the fan is operating under
optimal conditions. The lower-than-expected pump power
indicates that the chilled-water temperature is lower than
expected under optimal conditions. Thus, the fault is
determined to be an error in the chilled-water sensor.

CONCLUSION

It is feasible to use an optimal control methodology in
fault detection. The optimal control strategy yields a
relation for predicting the system power under optimal
conditions as a function of the control variables, the loads,
and the ambient conditions. Increases in power consumption
above that for optimal control indicate the presence of faults
in the system. Statistical tests establish the confidence with
which faults may be detected.

The method may be extended to locate faults in a
system. The power under optimal control for each of the
components is determined in a manner similar to that for
the system as a whole. Statistically significant deviations in
power from the optimal values are detected for some
components when a fault is present. An examination of the
physical relations between the components establishes the
location of the faults.
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