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DIFFUSE FRACTION CORRELATIONS

D. T. REINDL, W. A. BECKMAN, and J. A. DUFFIE
Solar Energy Laboratory, University of Wisconsin-Madison, Madison, WI 53706, U S.A.

Abstract——The influence of climatic and geometric variables on the hourly diffuse fraction has been studied,
based on a data set with 22,000 hourly measurements from five European and North American locations,

The goal is to determine if other predictor variables

, in addition to the clearness index, will significantly

reduce the standard error of Liu- and Jordan-type correlations (I,/1 = f(k,)). Stepwise regression is used
to reduce a set of 28 potential predictor variables down to four significant predictors: the clearness index,
solar altitude, ambient temperature, and relative humidity. A piecewise correlation over three ranges of
clearness indices is developed to predict the diffuse fraction as a function of these four variables. A second
piecewise correlation is developed for predicting the diffuse fraction as a function of the clearness index and
solar altitude, for use when temperature and relative humidity are not available. A third piecewise correlation
of the Liu- and Jordan-type is developed from the same data set. Comparing this correlation with the new
correlations provides a direct measure of the value of added predictor variables. The full diffuse fraction
correlation reduced the residual sum squares by 14% when compared to the correlation that is a function

of the clearness index only. The correlation includin

g the clearness index and solar altitude diminished the

residual sum squares by 9%. The correlations exhibited some degree of location dependence. This is expected,
as the climates are quite different. The correlations also showed some seasonal dependence; the errors are

higher in the fall and winter than on an annual basis,

1. INTRODUCTION
A crucial input required in the transient simulation of
solar energy systems is hourly radiation incident on
the collecting surface. Actual measurements of hourly
solar radiation data would be desirable for input but
probably are not available for the site and collector

orientation under consideration. However, hourly

global radiation on a horizontal surface is one of the
most widely available measurements in addition to
other climatic variables (ambient temperature, dew
point, etc.). Extensive databases exist for a variety of
locations including SOLMET[1], McKay[2].

If only global horizontal radiation is measured, two
problemsexist: first, determining the fraction of the
global which is diffuse (or beam): second, estimating
the respective beam, diffuse, and ground reflected
components on a tilted surface of any orientation. The
first of these two problems will be addressed in this
paper. (Both are addressed in [3].)

Early work by Liu and Jordan[4] showed a rela-
tionship between daily diffuse and daily total radiation
on a horizontal surface. Although their original cor-
relation was developed for daily values, it has been
used for computing the hourly diffuse fraction as a
function of the hourly clearness index, k, (ratio of
hourly global horizontal to hourly extraterrestrial ra-
diation)[5]. Other authors have developed diffuse
fraction correlations specifically for hourly intervals.
Orgill and Hollands[6] and Erbs er al.[7] correlate
the diffuse fraction with the hourly clearness index.
Stauter and Klein[8] use a clearness index, k., where
a “clear sky” radiation, /., replaces extraterrestrial ra-
diation in the definition of k. Iqbal{9] built on the
work of Bugler[10] to develop a correlation which
predicts hourly diffuse radiation (in the form 1/1,) as
a function of k, and solar altitude. The models based

on k, (referred to as Liu- and Jordan-type models) are
convenient because the only required input is hoprly
global horizontal radiation, 7.

A drawback with using the Liu- and Jordan-type
models is the high standard error associated with es-
timating the hourly diffuse fraction. The scatter plot
of data from Cape Canaveral, FL in Fig. 1 graphically
illustrates the problem of estimating the hourly diffuse
fraction as a function of k, only. For example, at k,
= 0.5, the measured diffuse fraction ranges from 0.2
to nearly 1.0. It is clear that the hourly diffuse fraction
is not a function of k, only. Models such as Orgill and
Hollands[6] and Erbs[ 7] provide a single deterministic

_value of the hourly diffuse fraction for a given k,. In

an effort to mimic the variation of the diffuse fraction
at a particular value of k,, Hollands and Chra[l1] de-
veloped a probability density function which allows
the diffuse fraction to vary about its mean value at a
given value of k,. Other authors suggest that the vari-

+ ation of the diffuse fraction for a particular value of k,

is due to other unidentified variables[6,9,10,12,131.

Garrison[12] uses post-1976 SOLMET data from
33 U.S. sites to graphically illustrate the dependence
of diffuse fraction on surface albedo, atmospheric pre-
cipitable moisture, atmospheric turbidity, solar ele-
vation, and global horizontal radiation. Without further
statistical analysis, the relative significance of the vari-
ables suggested by Garrison remains unknown. Skart-
veit and Olseth[13] and Igbal[9] suggest that the sec-
ond most important variable after &, is the solar alti-
tude.

This paper focuses on assessing the influence of
commonly measured climatic variables on the diffuse -
fraction and correlating the significant variables to re-
duce the standard error of Liu- and Jordan-type mod-
els. First, the data used in this study are introduced.
Second, the influence of commonly measured climatic
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Fig. 1. Measured diffuse fraction vs. clearness index for Cape Canaveral, FL.

variables on the diffuse fraction are investigated. Third,
a new hourly diffuse fraction correlation is presented.
Fourth, the relative improvement of the new correla-
tion over current Liu- and Jordan-type models is
quantified.

2. DATA BASE

Data from five locations (with a minimum of one
year of data from each location) is used to investigate
the influence of climatic and geometric predictors on
the diffuse fraction. An additional year of data from
an independent location is used to test the derived cor-
relations. Table | lists a summary of the sites included
in the data base. i

The data from Albany, NY were taken under the
Solar Energy Meteorological Research and Training
Sites (SERMTS)[14] program at the State University

of New York, Albany. Data from Cape Canaveral, FL

were provided by the Florida Solar Energy Center
(FSEC). (This data set will be referred to as the “Cape”
data.) Three sites with one year of data from each lo-
cation comprise the European data sets. All sites pro-
vide measured values of global horizontal, diffuse (or
direct normal), ambient temperature, and wet bulb
temperature (or dew point). The U.S, sites use Eppley

pyranometers and pyrheliometers to monitor radiation.
While the European sites use Kipp solarimeters (shade
rings were uscd to monitor diffuse radiation). An ad-
ditional year of data from Oslo, Norway was provided
by SINTEF and maintained as independent for com-
paring the performance of derived correlations.

The integrity and validity of any empirically derived
correlation relies on the quantity and quality of data
used in the model development. It is assumed that a
sufficient quantity of data exists but the quality of the
data need to be examined.

Three types of data-checks were performed to iden-
tify data missing, data which clearly violate physical
limits, and extreme data. When the data were known
to be “bad” or “missing,” the data fields were filled
with a key sequence of numbers ( by the reporting lo-
cation) to clearly indicate the erroneous observation.
Any hour with data flagged as bad or missing was
omitted. Second, any hour with an observation that
violated a physical limit or conservation principle was
eliminated from the data set including: reported hours
with negative values of radiation, diffuse fraction
greater than 1, beam radiation exceeding the extrater-

restrial beam radiation, and dew point temperature
greater than dry bulb temperature. In other circum-
stances, reported data did not exceed physical limits

Table 1. Data base site summary

United States . European
Site Location Albany Cape Canaveral | Copenhagen | Hamburg |- Valentia Qslo
| Latitude 42.7°north 28.4°north 55.7°north | 53.5°north | 51.95%north | 59.56° north
Longitude 73.8° west 80.6° west 12.6%ast 10.0%cast | 10.22°west | 10.41° cast
Standard Meridian 75.0° west 75.0°west 15.0%east 15.0°cast 0.0° 15.0° east
Data Period (From) 117719 1/1/80 1/ 1/ 11/ 1/1/19
Dala Period (To) 12/31/82 12/31/80 12/31/% 12/31/* 12731 12731779

* Year of dataset unknown.
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but were categorized as “extreme™ and had to be edited
manually. There are various combinations of the dif-
fuse fraction and clearness index values which would
produce questionable data points. The limits below
were used to identify such particular cases. (Similar
limits were used by Erbs[7].) Under cloudy overcast
sky conditions (low values of %,), it is reasonable to
expect that a large portion of the incoming radiation
will be scattered by the clouds in the atmosphere re-
sulting in a large diffuse fraction. Case | places a limit
on the diffuse fraction under the cloudy overcast sky
conditions. If an hour had a measured diffuse fraction
that was less than 0.90 for a clearness index less than
0.20, it was eliminated from the data set. Similarly,
case 2 places a limit on the diffuse fraction under clear
sky conditions.

Case I: I;/1<090 and k <0.20

Case 2: [1,//>080 and ¥k > 0.60.

The quality tests discussed will help eliminate spu-
rious data and minimize any impact that suspect data
would have on a derived correlation. The final data
set constructed from the measured data that passed all
of the quality control checks discussed above produced
approximately 22,000 hours of data for this study. The
Oslo dataset provided approximately 3000 hours of
data for independently comparing derived correlations.

3. DEVELOPMENT OF NEW HOURLY DIFFUSE }
FRACTION CORRELATIONS

The motivation behind investigating hourly diffuse
fraction correlations is to determine if incorporating
additional predictor variables will significantly reduce
the standard error of the current Liu- and Jordan-type
models. The goal is to find an hourly diffuse fraction
model which is more accurate than current Liu and
Jordan type models but remains computationally sim-
ple for use in hourly simulation programs such as
TRNSYS([5]. Also, the inputs to the correlation should
be limited to commonly observed climatic variables

or quantities that can be calculated from commonly
observed climatic variables, e.g.. ambient temperature.
wet bulb temperature, dew point temperature. relatjve
humidity, etc.

Several steps are necessary to develop an empirical
model which improves the prediction capabilities of
the current Liu- and Jordan-type models. The approach
used in this study included the following four basic
steps: (i) assemble a set of predictor variables: (ii)
identify a potential model form; (iii) adopt a predictor
selection procedure; and (iv) fit the model.

Predictor variables are independent variables that
may affect the response. It is clear that the response,
the diffuse fraction, is influenced by k,. The set of pre-
dictors used in this study was limited to &, and other
commonly measured climatic data. Factors such as
atmospheric turbidity and ground reflectance were not
included because they are not commonly measured at
radiation monitoring sites. The full set of predictor
variables used in this investigation is given in Table 2.

Monthly average hourly quantities and ratios of the
hourly to monthly average hourly values of the climatic
predictors and k, were included in an attempt to ac-
count for possible predictor location dependence. For
example, the range of ambient temperature over a year
at Albany will be much larger than the range of ambient
temperature for Cape Canaveral, but each location ex-
periences a similar range of measured diffuse fractions
over the year. However, the ratio of hourly ambient
temperature to monthly average hourly ambient for
both locations may be approximately the same mag-
nitude. This method of scaling the predictors may im-
prove the correlations. Exponential terms are included
to represent atmospheric extinction. Geometric terms
such as solar altitude and optical air mass are included
based on the findings of other authors.

With the set of predictors identified, a model form
must be established, e.g., linear, nonlinear, first order,
second order, etc. The Liu- and Jordan-type models
are all linear models. Liu and Jordan[5], Orgill and
Hollands[6], and Erbs{7] use piecewise fitted models
with varying degree order polynomials. For this study,
a piecewise (in k,) first order linear model of the fol-
lowing form will be used to fit the data:

Table 2. Diffuse fraction predictor variables

T,(hr)
T(hr)
T,(hr )T, (hr)
T, (hr)

T (hr)

T, (hr )T (hr)
w(hr)
w(hr)
w(hr)w(hr)
sin(o)

m =11/cos(8,)
khr)-m
exp [sin(a)]
exp [kr -m]

T,,(hr)
T.o(hr)

T. o (hr )T (hr)
k(hr)
k(hr)

k,Chr )k, (hr)
o(hr)
§(hr)

O(hr)e(hr)

T (hr) - o(hr)
O(hr) /[T, +273]
d)(hr)/@(hr) -T,(hr)
exp [§(hr (T (hr))]
exp [O(hr)(@hr) - T, (hr))]




y=0+ Bix + Baxat o+ te (1)

where v is the true response, §; is the j*" model param-
eter, x; is the /™ predictor, and ¢ represents the model
error.

In an effort to gain understanding of the diffuse
fraction’s association with each predictor variable,
analysis was performed on the center interval of &,
(initially assuming the same interval as Orgill and
Hollands, 0.35 < k£, <0.75). Stepwise regressions were
performed on a monthly basis for each location to de-
termine if location or seasonal bias existed in the se-
lection of the best set of predictors. (For information
regarding stepwise regression, see Draper and
Smith[15].) The complete set of predictor variables
listed in Table 2 was used in the stepwise procedure,
On a monthly basis, there was not a great deal of con-
sistency in the variable selection due to the relatively
short time interval; therefore, stepwise regression was
performed on a yearly basis for each location. The four
best predictor variables to explain the deviations in the
diffuse fraction are k,, sin(a), T, ¢/¢.

Unfortunately, monthly average hourly data are not
included in commonly used data sets{1,2]. A corre-
lation with monthly average hourly variables would
force users fo derive the necessary quantities from ex-
isting data sets. At this point, a decision was made to
eliminate the use of monthly average hourly predictors
and pursue a correlation based only on hourly values
of the predictors. The impact of this decision will be
investigated when the new set of predictor variables
are selected.

The stepwise selection procedure was applied to the
center interval of k, using the set of predictors with the

monthly average hourly predictors removed. On an -

hourly basis, the top four predictors were selected; the
best predictors to explain the deviations in the diffuse
fraction are k,, sin{a), T,, .

This set of predictors provides the foundation for
the remaining development and analysis of a new dif-
fuse fraction correlation.* As will be shown, substi-

tuting T, for T, and ¢ for ¢/ does not significantly

effect the results.
The next step in the diffuse fraction correlation de-
_velopment is to determine the best &, intervals for
piecewise fitting. The appropriate k, interval will min-

* The reviewers suggested that precipitable water may be
an important predictor variable and should have been included
in Table 2. Precipitable water is not a commonly measured
variable but several correlations of precipitable water vapor
in terms of dew point temperature[16,17] are available. The
Bolsenga{16] and Smith[17] correlations for precipitable water
vapor were included in a subset of predictor variables (the
subset included k,, sin{ a), T, ¢, and precipitable water vapor)
and the stepwise selection procedure was repeated. Precipitable
water vapor was not selected as one of the top four predictors
in the interval 0 < &, < 0.78. In the interval k, > 0.78, where
only 3% of the data lie, precipitable water vapor was the second
most important predictor variable. A correlation that explicitly
includes k,, precipitable water, and ambient temperature was
derived but the standard error was slightly greater than the
correlation derived based on the above four variables.
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imize the standard error of the final correlation. A
manual search technique was employed to find the
clearness index interval which minimized the standard
error of the correlation. The center interval which
minimized the standard error is 0.3 < k, < 0.78,

The standard error for the correlation in the center
interval is 0.129. The standard error for the correlation
which included the monthly average predictors is also
0.129 (based on the interval 0.35 < &, < 0.75). Thus,
it appears that there is not a significant loss (from an
error standpoint) by not including the monthly average
hourly predictor variables in the correlation.

The clearness index is the most important variable
in the low and middle intervals but at the high interval,
the significance of the clearness index decreases dra-
matically. The solar altitude effects are not as strong
under cloudy skies (low values of k) but under clear
skies (high values of k), the solar altitude becomes
the dominant predictor variable. For clear sky condi-
tions, the diffuse fraction increases for decreasing solar
altitude angles due to the longer path length required
for radiation to travel. These results are consistent with
those found by Skartveit and Olseth[13].

The final version of the full correlation is given
below.

Interval: 0 < k,ks 0.3; Constraint: I,/ < 1.0.
I/ T = 1.000 — 0.232k, + 0.0239 sin(a)
—~ 0.000682T, + 0.0195¢ (2a)
Interval: 0.3 <k, <0.78;
Constraint: [;/I =097 and I;/I=0.1.
I/ I = 1.329 — 1.716k, + 0.267 sin(a)
—0.00357T, + 0.106¢ (2b)
Interval: 0.78 < k,; Constraint: [4// ‘2 0.1,
I/ 1 = 0.426k, — 0.256 sin(«)
+ 0.003497, + 0.0734¢. (2c)

Because the above piecewise correlation includes
multiple predictor variables, it is possible that some
combinations of predictors may produce unreasonable
values of the diffuse fraction, e.g., greater than {; there-
fore, subsequent constraints are placed on the corre-
lation in each interval to assure reasonable predicted
values. The constraint values on the middle and high
interval of k, are based on the observations from the
data sets.

At this point, a simple piecewise correlation exists
which gives the hourly diffuse fraction as a function
of hourly clearness index, solar altitude, ambient tem-
perature, and relative humidity. It would be desirable
to provide a reduced form of the current correlation
for use when hourly ambient temperature and/or rel-
ative humidity data are not available. The result is a
piecewise model which provides estimates of the hourly
diffuse fraction as a function of the clearness index and
solar altitude angle.
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Interval: 0 <k, = 0.3: Constraint: [;// < 1.0.
I 1 = 1.020 — 0234k, + 0.0123 sin(«) (3a)
Interval: 0.3 < k, < 0.78:
Constraint: [;/[ =097 and [,/I=z 0.1
[4/T = 1400 — 1.749%, + 0.177 sin(a)  (3b)
Interval: 0.78 < k;; Constraint: [,/I = 0.1.
I./1 = 0.486k, — 0.182 sin(a). (3c)
A final correlation which is a function of &, only
was also developed. This correlatign (identified as
“ktcorr™) will allow direct comparison of the new cor-

relations to the Liu- and Jordan-type correlations. The
correlation, ktcorr, is given below.

Interval: 0 =<k <0.3; Constraint: [,/1 < 1.0.

Li/1 = 1.020 — 0.248k (4a)
Interval: 0:3 <k, < 0.78
L1 = 145 — 1.67k, (4b)

Interval: 0.78 < k,
- Iy/I = 147, (4c)

The derivéd correlation based on k, is similar to Orgill
and Hollands[6] and Erbs[ 7] as shown in Fig. 2. (Each
of these three correlations was based on an entirely
independent data set.)

4. MODEL PERFORMANCE

A simple composite residual sum squares (CRSS)
comparison is used to quantify the improvement of
the new hourly diffuse fraction correlation over current
Liu- and Jordan-type models. In an effort to provide
a fair comparison between the new hourly diffuse frac-

I/l

0.0 A H 2

“ooeeeo Liu and Jord

tion correlation {eqns 2) and the current Liu- and Jor-
dan-type models, the correlation based on &, (eqns 4)
derived from the existing data set will be included in
all model comparisons. By comparing the ktcorr model
with the new diffuse fraction correlation. the relative
merit of added climatic and geometric terms in the
new model will be directly assessed. The reduced cor-
relation based on the clearness index and solar altitude
(eqns 3) will also be included in the correlation com-
parison. The only other existing model that will be
included in the model comparisons will be the Erbs[7]
model. The Orgill and Hollands model is similar to
the Erbs models so that conclusions about the Erbs
model also apply to the Orgill and Hollands model.
Location and seasonal effects are noted. The CRSS is
calculated by the following relationship:

CRSS = Z[(I4/ D prea — Tal Dmess]*. (5)

Applying eqn (5) to the complete data set yielded
the results-listed in Table 3. On an overall basis, the
new hourly diffuse fraction correlation reduces the re-
sidual sum squares of the correlation based on k, only
(derived from the same data set) by 14.4%. The reduced
hourly diffuse fraction correlation shows a 9% im-
provement over ktcorr. Included in Table 3 are results
for one year of independent data from Oslo, Norway.
The correlations given by egns (2) and (3) showed
17% and 13.5% reduction in residual sum squares when
compared with ktcorr. An improvement of 26% and
23% is gained when compared with the Erbs’ corre-
lation at the same location.

The derived correlations exhibit slight location and
seasonal dependencies. Location differences are noted
in Fig. 3 by plotting the residual mean squares (RSS/
(n — p)) for each location. The variation in the residual
mean squares for each location suggests that the cor-
relations are not entirely location independent. Co-
penhagen exhibits the largest residual mean square.

an
¢-0~0-0—0 Orgill and Hollands
l. aracteao Hrbg

aeo-ea ktcorr

0.0 0.2 0.4
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Fig. 2. Diffuse fraction correlations including ktcorr.
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Table 3. Composite residual sum squares resuits

Location n Eqn. 2 Egn. 3 Eqn. 4 Erbs
Albany, '79 2178 33.04 35.67 38.16 37.0t
Albany, '80 . 2214 3542 36.05 39.64 37173
Albany, '81 2126 27137 29.72 32.96 30.99
Albany, '82 1994 23.38 2507 28.80 29.54
Cape 3596 45.85 50.63 55.29 5797
Valentia 3386 37.95 41.04 46.37 47.24
Hamburg 3279 3475 34,51 35.59 37.30
Copenhagen 3150 55.49 58.52 65.78 77,64
Total 21923 293.25 311.21 342,59 35542

[Osto: | 2927 [ 3521 | 3676 | 4252 | aim

Oslo dataset was not used in deriving the correlations given by eqns (2)-(4).

However, the overall variation in residual mean square  the fall and winter months than on an annual basis.
from location to location is of the same order as the  No attempt is made to account for location or seasonal
yearly variation in residual mean square for Albany, effects. The authors feel that the current correlation is

19791982, Also, residual mean squares are higher in  acceptable.
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Fig. 3. Location residual mean squares.
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5. CONCLUSIONS

The goal of this research was to reduce the standard
error of the current Liu- and Jordan-type correlations
by including additional predictor variables in the
model. Stepwise regression is used to reduce a large set
of potential predictor variables down to four significant
predictors. The significant predictors include hourly
values of clearness index, solar altitude, ambient tem-
perature, and relative humidity. The final version of
the piecewise correlation is given by eqns (2). In the
event that hourly ambient temperature and/or hourly
relative humidity data are not available. a reduced form
of the correlation was derived to predict the diffuse
fraction as a function of clearness index and solar al-
titude (egns (3)).

The new correlation reduced the composite residual
sum of squares by 14.4% when compared to a k, cor-
relation derived from the same data set. The reduced
form of the correlation reduces the composite residual
sum squares by 9.2%. When an independent data set
is used, the new correlation reduced the residual sum
of squares by 26% compared to the Erbs’ correlation.
Some location and seasonal dependencies were sug-
gested but their effects are considered to be negligible
to the correlation’s overall performance.
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at State University of New York, Albany; Safvat Kalaghchy
at the Florida Solar Energy Center; and Atle Nordgaard from
SINTEF Trondheim, Norway for providing data.

NOMENCLATURE

CRSS Composite residual sum squares for all locations
RSS Composite residual sum squares for one location
solar constant (a value of 1353 W/m? was used)
hr hourly
I hourly total radiation on a horizontal surface, kJ /m?
Iy ho;Jrly beam radiation on a horizontal surface, kJ/
m
Iy ,hoyrly diffuse radiation on a horizontal surface, kJ/
m?
I, hourly extraterrestrial radiation on a horizontal sur-
face, kJ/m?
k. hourly clearness index, I/1,
m optical air mass
n
p

&

number of observations
number of parameters in the model
RSS Composite residual sum squares for one location
SS Sum of squares
T, ambient temperature, °C
T4 dew point temperature, °C
Tws wet bulb temperature, °C
X monthly average hourly value of x

e solar altitude angle
B; true model parameter
¢ model error, residual

& relative humidity ( fraction )
w humidity ratio

Subscripts

{ datum

meas measured data
pred model predicted

I
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