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Transient Natural Convection in
Enclosures With Application to
Solar Thermal Storage Tanks

Many previously studied natural convection enclosure problems in the literature
have the bounding walls of the enclosure responsible for driving the flow. A-number
of relevant applications contain sources within the enclosure which drive the fluid
flow and heat transfer. The motivation for this work is found in solar thermal
storage tanks with immersed coil heat exchangers. The heat exchangers provide a
means to charge and discharge the thermal energy in the tank. The enclosure is
cylindrical and well insulated. Initially the interior fluid is isothermal and quiescent.
At time zero, a step change in the source temperature begins to influence the flow.
The final condition is a quiescent isothermal fluid field at the source temperature.
The governing time-dependent Navier-Stokes and energy equations for this config-
uration are solved by a finite element method. Solutions are obtained for
10° < Rap< 10°. Scale analysis is used to obtain time duration estimates of three
distinct heut transfer regimes. The transient heat transfer during these regimes are

compared with limiting cases. Correlations are presented for the three regimes.

1 Introduction

A crucial element in an active thermal solar energy system
is storage. Since loads on a system typically do not directly
coincide with the resource availability, a means to store col-
lected energy for later use is essential. Many techniques and
configurations have been devised to store thermal energy but
detailed analyses of the techniques are limited. Two common
sensible storage techniques are direct contact and indirect con-
tact. In the direct contact case, a storage tank is charged and
discharged by hot and cold fluid streams flowing directly in
and out of the storage volume. Indirect contact storage strat-
egies utilize one or more heat exchangers immersed in the
storage volume to charge and discharge energy from the tank.

Several studies in the literature (Lavan and Thompson, 1977;
Young and Baughn, 1981; Chan, Smereka, and Giusti, 1983;
Guo, 1985; Lightstone, Raithby, and Hollands, 1989) have
focused on analyzing direct contact thermal storage tanks while
the studies for indirect contact storage tanks are scarce. Feier-
eisen et al. (1983) performed experiments using three different
types of immersed heat exchangers: horizontal smooth-tube
multipass, horizontal finned-tube spiraled, and a horizontal
smooth-tube single-pass. The experiments yielded heat transfer
relationships in the form of Nusselt number as a function of

- Rayleigh number for each heat exchanger configuration. The
Nusselt and Rayleigh numbers were defined based on a log-
mean temperature difference between the heat exchanger and
tank temperature. Since this definition is not possible in the
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current investigation, the present results can not be compared
with Feiereisen. From the experimental observations, Feiere-
isen et al. draw general conclusions regarding techniques to
maximize the effectiveness of the immersed heat exchanger.
Farrington built on the work of Feiereisen by performing ex-
periments to determine overall loss coefficients and heat trans-
fer performance from immersed coils in two commerical
thermal storage tanks (Farrington, 1986) as well as four other
heat exchanger configurations (Farrington and Bingham, 1986).
Again, general conclusions are drawn regarding observed per-
formance of the tanks and the immersed coil heat exchangers.
These studies do not permit detailed investigation of the tran-
sient fluid flow and heat transfer processes within the enclo-
sures.

The objective ofthis work is to gain insight into the fun-
damental physics of the fluid flow and heat transfer from an
immersed coil heat exchanger in an enclosure and identify
relevant parameters to correlate the transient heat transfer
results. To accomplish these objectives, the governing transient
Navier-Stokes and energy equations are solved by a finite ele-
ment method. Solutions are obtained over a range of Rayleigh
numbers (10° <Rap<10% for a fixed enclosure size and ex-
changer location. This range is selected to include behavior
from a conclusion dominated problem (Rap = 10%) to the higher
end of the laminar regime (Rap=10%).

2 Problem Definition

The problem configuration is an insulated cylindrical en-
closure with a single loop coiled tube source as shown in Fig.
1.

The fluid filled enclosure is initially quiescent at a uniform
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Fig. 1 Single coil tube in cylindrical enclosure configuration

temperature T,. At time zero, a step change occurs in the wall
temperature of the immersed heat exchanger to T,. The final
state is a quiescent flow field at a temperature equal to the
heat exchanger coil temperature. These boundary conditions
permit axisymmetric assumptions which greatly reduce the
computations necessary to solve the problem.

. The tank radius Ry is half the tank height H (a unit aspect
ratio enclosure). The tank height is six times larger than the
exchanger tube diameter D and is twice the coil diameter. The
heat exchanger is elevated to a position H, equal to 0.3 Hy
and has a radius R, equal to 0.25 Hy. Thus, the complete
geometric problem is scaled based on the magnitude of the
Rayleigh number. The primary quantity of interest is the av-
erage heat flux from the exchanger (average Nusselt number
based on the initial temperature difference). The working fluid
(water) has constant properties with Pr=5.42.

3 Mathematical Formulation and Solution Technique

Assuming that the immersed heat exchanger is isothermal,
the problem reduces from three-dimensional to two-dimen-
sional axisymmetric. (In reality, the flow is three-dimensional
because of azimuthal variation in temperature as the fluid
moves through the interior of the heat exchanger from inlet
to outlet.) The governing differential equations for this con-

Table 1 Cylindrical coordinate variabie nondimensionalization

r=riD 2 =z2/D
v, =vJU v, =v,JU
T"=(T-T){T,-T,) P =PipU?
" =tU/D U=gB(Ty—T.,D

figuration can be nondimensionalized using the variables shown
in Table 1.

After dropping the * superscrlpts, the govermng dimen-
sionless differential equations for this configuration are

Conservation of Mass:

14
;—(rvr)+ (r)=0. 189
Radial Momentum:
6u,+ av, av,w_QPj_
ot Bt Zaz or
Prjl1ad dv v, v,
_— a2 r —L 2
+'\/Rap [r ar< 6r> az* r{l @
Axial Momentum:
O, v B OP
TR PRI P
Pr [18 [ v\ &%,
Rap [r&r( a) |t O
Energy:
‘_3_7:_,_ 6T+ uaT_........__.ly . 13 9_7_1 +£7: '(4)
at " 29z Rapbr | ror \ or) az*|

Nomenclature
. . . Ry = cylindrical enclosure radius ‘
A = area of computational domain (m) AT = initial temperature difference
D = heat exchanger tube diameter r, = heat exchanger tube radius (m) (T.—T,) (°C)
(m) . . Ry = heat exchanger coil radius (m) . Ar. = duration of conduction domi-
g = acczelerat)on due to gravity ! = time (s) " nated regime (s)
(m_/ s) . . T, = initial temperature (°C) At,s = duration of quasi- steady re-
Hy = cylindrical enclosure height T. = temperature of heat exchanger gime (s)
(m) . - _ tube (°C) 8r = characteristic thermal bound-
H, = tube heat exchanger height (m) - 7 _ pyik temperature, {[TdA4)/4 ary layer thickness (m)
k = thermalo conductivity U = characteristic velocity, ¢ = penalty parameter, (1IE-8)
(W/m-°C) © NgB(T,~Te)D (m/s) = relative tube exchanger height
L = characteristic length (m) V = characteristic scale velocity, (H./H7)
_n = normal directed vector velocity vector x = relative exchanger radial loca-
Nu = average Nusselt number based v, = radial component of velocity tion (R,/Hy)
on D and (T“’; To) (m/s) v = kinematic vxscosny (mz/s)
P f press(ljlrle (N/gl ) / v, = axial component of velocity p = density (kg/m )
Pr = Prandtl num erz(" @) (m/s) ¢ = relative tube radius (r./H7)
q = heat flux (Wg/ m’) z = axial coordinate distance (m) 6 = angular coordinate around
Q = flow rate (m’/s) heat exchanger tube
r = radial coordinate distance (m)  Greek symbols . o
r. = tube heat exchanger radius (m) a = thermal diffusivity (mz/s) Superscripts
Rap = Rayleigh number based on B = volume expansion coefficient * = dimensionless quantity

tube diameter (g8D°AT/vc)
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Fig. 2 Mesh for cylindrical cavity, 2128 quadratic elements

Boundary Conditions:
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Fig. 3 Transient heat transfer response for Ra, = 10°

The elements are nine-node quadrilaterals with quadratic
hases for both the velocity and temperature components. Ele-
ment integrals are performed numerically by a third-order
Gaussian quadrature, The finite element approximation re-
duces the system of partial differential equations to a system

@ r=0 0<sz=<H/D =0, 09v,/8r=0_ 87/dn=0

@ r=Ry/D 0=z<Hy/D ve=v,=0 aT/dn=0

@ z=0 0<r=Ry/D ve=v,=0 aT/on=0

@ z=H/D 0<r=R;/D vp=p,=0 aT/an=0

@ cylinder surface _ v=p,=0 T=1.

Initial Conditions: of ordinary differential equations. Time integration of the
for all r for all z v=v;=0 T'=0. gystem ordinary differential equations is accomplished by an

A quantity of primary interest in this study is the average
Nusselt number (average dimensionless heat flux) Nu over the
tube. The average Nusselt number is the integral of the local
flux over the arc length of the heat exchanger boundary as
given by

2x '
Nu= S T (5)
b On

w

where 0 is the angular coordinate around the tube. Note that
the above definition of the average Nusselt number is based
on the initial temperature difference (7, — T;,) and not the more
traditional temperature difference (7, — T) where T is the bulk
temperature in the enclosure.

The governing partial differential equations given by Egs.
(1)~(4) are solved in a primitive variable form with FIDAP
(n.d.) using a Galerkin finite element approximation. A penalty
function approach is used to approximate pressure in the
primitive variable formulation. The penalty method relaxes
the strict continuity requirement by letting

1—vm+
=3

(Vz) = —eP ©
where ¢ is a penalty parameter (e~ 10~%-'10"9). Solving Eq.
(6) for pressure and substituting the result into Egs. (2) and
(3) eliminates pressure from the system of differential equa-
tions. The pressure can be obtained subsequently by post-
processing using P= — [8(rv,)/rdr+ dv,/0z]/¢. The most ob-
vious advantage of the penalty method is a reduction in the
degrees-of-freedom for the particular system being solved;
however, care must be exercised in selection of elements used
and the value of the penalty parameter. Based on previous
work (Marshall, Heinrich, Zienkiewicz, 1978; Reddy and Sa-
take, 1980), the penalty parameter for the present computa-
tions is fixed at e = 108, For a further discussion of the penalty
method, see Hughes, L1u and Brooks (1979) and Sani, Gresho,
Lee, and Griffins (1981).
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adaptive second-order implicit trapezoid rule.

As a preface to this work, the differentially heated square
cavity problem was solved with FIDAP. A graded mesh of
30 x 30 elements yielded excellent agreement with the de Vahl
Davis benchmark solution (de Vahl Davis and Jones, 1983)
(e.g., Nu results were within 0.33 percent of de Vah! Davis
over the range of Ra). Although the current geometry and
conditions differ considerably from the differentially heated
cavity, agreement with the de Vahl Davis benchmark lends
some confidence in the ability of the code to model strongly
coupled flows. ,

4 Results

This section presents results for the cylindrical enclosure
computations. A significant effort has been madé¢ to assure
the final solutions are independent of the spatial and temporal
computational meshes. The mesh refinement techniques used
here are identical to those given by Reindl et al. (1991) The
spat1a1 mesh employed in the present computations is shown
in Fig. 2.

All computations are carried out on a Cray Y-MP8/864
computer. Referring to the mesh in Fig. 2, the CPU time
required to obtain transient results depends on the magnitude
of the Raylelgh number. Typical run times ranged from three
hours (Ra= 10%) to 20 hours (Ra = 10%). Computations at higher
Rayleigh numbers were not attempted due to computational
resource limits.

A typical response for the heat transfer from the 1mmersed
coil is shown in Fig. 3.

Since very little fluid motion exists in the early transient,
the heat transfer from the coil is dominated by pure conduc-
tion. The conduction heat transfer establishes a thermal bound-
ary layer in the neighborhood of the heat exchanger which
grows with time. The heat flux reaches a local minimum and
subsequently begins to increase before reaching a nearly con-
stant value that is maintained during a quasi-steady period.
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Fig.5 Transient heat transter results including Morgan correlation for
the respective Rayleigh number 10°<Rap=<10°

The local minimum in heat flux corresponds to a local max-
imum in the thermal boundary layer thickness which quickly
decreases as significant fluid motion near the tube begins,
marking the end of the conduction dominated heat transfer
-regime. As the fluid motion develops, the heat flux increases
slightly to its quasi-steady value. During the quasi-steady pe-
riod, thermal and momentum boundary layers are fully es-
tablished and the heat exchanger behaves as if it were immersed
in an infinite medium. As the transient progresses, the heat
flux decreases due to the increase in enclosure bulk fluid tem-
perature. Thus, the transient heat transfer response in char-
acterized by three distinct regimes: pure conduction, quasi-
steady, and decay periods.” .

4.1 Limiting Cases. The mesh refinement techniques were
performed (as described in Reindl et al. (1991)) in an attempt
to determine spatial and temporal mesh densities which yield
accurate solutions. There are two additional comparisons that
can be made to lend confidence in the current solutions. The
heat transfer results can be compared with two limiting cases:
pure conduction and natural convection from a horizontal
cylinder in an infinite medium.

Figure 4 shows the pure conduction and actual computed
solutions for the complete range of Rayleigh numbers.

It is clear that the early transient is conduction dominated.
Also, at low Rayleigh numbers (Rap<10°), the heat transfer
i§ largely conduction dominated throughout the entire tran-
sient. . :

The nearest analogy to compare the heat transfer during the
quasi-steady regime is the long horizontal cylinder in an infinite
medium. Unfortunately, Morgan (1975) reveals a wide dis-
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Table2 Average Nusselt number results of current computations (Nu)
compared with corrections from Morgan (Nuwoy.,) and Churchill and
Chu (Nugac)

RaD I—V_; N—TMargm .N-uC&E
10° 296 3.11 3.02
10° 5.14 4.80 5.15
10° 9.08 8.54 9.31
10° 15.67 - 15.20 17.62

parity in the reported values of the average Nusselt number as
a function of Rayleigh number for the horizontal cylinder in
aninfinite medium. The computed results over the quasi-steady
regime are compared with a proposed correlation given by
Morgan (evaluated at the respective Rayleigh numbers) in Fig.
5. Another source for comparing the current results is based

‘on a correlation by Churchill and Chu (1975). The results from

Churchill and Chu, Morgan, and the computed average Nusselt
number over the quasi-steady period are summarized in Table
2 for each order of Rayleigh number.

The present computations compare well with Churchill and
Chu at Rayleigh numbers up to 10° and with Morgan at 10°.
Considering the variation in the previously published results
reported by Morgan, the current quasi-steady results compare
reasonably well with either Churchill and Chu or Morgan.

The limiting cases of pure conduction and infinite medium
provides an independent basis for comparing the behavior and
accuracy of the current results during the first two regimes.
The behavior of the fluid flow and heat transfer during the
decay period is rather complex as the bulk temperature in the
enclosure begins to rise and fluid velocities diminish. There
are no simple limiting cases to represent the heat transfer during
the decay period.

4.2 Scale Analysis. Temporal behavior of the pure con-
duction and quasi-steady regimes are well characterized by the
limiting cases shown in Figs. 4-5. It is useful to predict the
time duration of the conduction and quasi-steady regimes as
well as determine the appropriate parameters to correlate the
decay period. This can be accomplished by the use of scaling
analysis. Scale analysis is a technique which considers the gov-
erning differential equations only in an order-of-magnitude
sense. Patterson and Imberger (1980) used scaling analysis
extensively in their study of a differentially heated square and
their work is used as a basis for the estimates derived here.
Interestingly, the scale estimates developed for the geometry
considered here are similar to those which arise for the dif-
ferentially heated cavity. )

The following sequence of estimates attempts to predict the
time duration of the conduction dominated regime. Consid-
ering the dimensional form of the energy equation in an order
of magnitude sense, e.g., :
oT 9T  aT (18 ( 9T\ ’r
a o T rar\"ar ) T o2

AT AT AT o AT AT AT

Ta e D T e Y D

where AT= (T, ~T,), At is the time duration, é; is a char-

acteristic thermal boundary layer thickness, and D is the heat

exchanger tube diameter. Assuming the velocity components

are small during the early transient and the boundary layer

thickness is much smaller than the tube diameter (6r<< D),

the remaining terms balance providing an estimate for the
thermal boundary layer thickness.

5r~(@At)'? %)

Considering the dimensional form of axial momentum (Eq.
(3)), the buoyancy force gBAT accelerates fluid within the
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80 T T T v

Computation E
Pure Conduction
ceeoo Scale Estimates -

50

40

1000

10 100
' Time (sec)
Fig.6 Scale estimates for the end of the conduction dominated regime

180 T T T T T
S Computation E
Infinite Medium
50 b ‘oeeeo Scale Estirmnates -
4 ) Y Y o |
40Fh 4 gei10® 107=Res
L % 10%810T T Y ]
= k i B
£ sob
20} ' .
10 -
O 3
.01 0.1

’ Time (sec)
Fig. 7 Scale estimates for the end of the quasi-steady regime

boundary layer 8rand for a Prandtl number greater than unity,
the viscous force terms vuz/ézr dominates the inertia force v,/
At term. The resulting balance between the buoyancy and vis-
cous force terms vields an estimate of the vertical velocity
component.

gBAT
Pr A

An energy balance on the thermal boundary layer imposes
a balance between the conducted energy from the heat ex-
changer and that convected away.

AT AT

Py AT

. ‘D 8%
The above expression can be simplified by Egs. (7) and (8)
which results in an estimate for the time duration of the con-
duction dominated regime. Conduction limit time estimates

from Eq. (9) are shown in Fig. 6. The scale estimates accurately
predict the duration of the conduction dominated regime.

t €))

Vv~

‘ At~ ARl )
At the end of the conduction dominated regime, », becomes
VY~ D

and the boundary layer thickness is 57~ D/Raj’*. Assuming

the volume flow of fluid through the boundary layer is constant
during the quasi-steady period, the flow rate Q is given by

O~ vdr~aRaf*.

The end of the quasi-steady regime occurs when the temper-
ature in the tank begins to rise significantly. This will surely

Journal of Solar Energy Engineering

occur if a volume of fluid equivalent to that above the heat
exchanger is circulated through the coil thermal boundary layer.
The time required to circulate the volume of fluid above the
heat exchanger through the thermal boundary layer around
the heated coil yields the quasi-steady period duration estimate.

Pyl = (g + ¢)]
2a¢*Ray?

where r,=D/2, y=Ry/Hy, n=H/Hr, and ¢=r/Hr. The
quasi-steady time duration scale estimates shown in Fig. 7 agree
well with the apparent end of the quasi-steady period identified
by the onset of the computed heat transfer diverging from the '
infinite medium case.

The above scale estimates can be used to approximate the
time duration of the conduction and quasi-steady regimes whose
temporal behavior are well characterized by the limiting cases
given in Section 4.1. It is desirable to identify relevant param-
eters to correlate the decay period; scale analysis is used to
identify these parameters.

An energy balance on the heat exchanger yields a result which
requires that the conducted energy must balance the convected
energy.

Atgs~ (10)

(T,-T) Nuk
k-————-—~5T - (Tw—T,).

Since &7 is not constant as the decay period progresses, the
expression for the characteristic thermal boundary thickness
must be modified.

1n

D = D
— 6T~=l75

br~—"17
4 Ra};’“ Rap

‘where Ra}’* is the Rayleigh number based on the temperature

difference (T,,— T) similar to that used by Hall et al. (1988).
Substituting the above expression in Eq. (11) results in an
estimate for the Nusselt number.

Nu~(1-7*)"*Rajy* 12)

with T*=(T-T,)/(T,—~T,) which is proportional to the
fraction f of the cavity heated to temperature T,. Equation
(12) is not a useful expression for correlating the Nusselt num-
ber since the bulk cavity temperature or heated fraction f are
required. An expression for the heated fraction can be found
by considering an overall energy balance on the enclosure for
the differentially heated fraction as .

df=—34
me(Ty,—T,)
Solving the above differential equation and applying the con-
dition @¢=0, f=1 gives an expression for the heated fraction
which can be substituted into Eq. (12). The result is an expres-
sion to correlate the decay period heat transfer.-
— ax¢’Rakr] ™
Nu =0.5686[ 1 +~%D—z‘?——] Raj*
where « is the thermal diffusivity, k= R,/Hy, ¢ =r/Hr,y=Ry/
Hr, and Rap is defined based on the initial temperature dif-
ference. The coefficient 0.5686 is determined from a least
squares fit of the decay period results for all orders.of Rayleigh
number. The correlation given by Eq. (14) explains 99.86 per-
cent of the variation in the average Nusselt number over the
decay period. The agreement between the correlated decay
periods and the actual computed decay periods is demonstrated
in Fig. 8 for Rap=10°. Plots for other orders of Rayleigh
number are similar..

- For thermal storage, an important consideration is the time
required to charge the tank or the transient bulk temperature
response. Figure 9 shows the typical response of the bulk tem-
perature in the enclosure. : i

It is clear that the majority of energy transfer into the tank
occurs during the decay period. :

(13)

(14)
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Fig. 9 Transient bulk temperature response that occurs during the
respective regimes for Rap=10*
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Fig. 10 Contour maps at T =61 (t=140 s), Rap = 10% (a) Isotherms,
Twin=0.1, AT=0.1, Tha=1.0, Le., 0.1(0.1)1.0; (b) Stream function,
Ymin = 3.391, Ay =0.452, Ypnex = 0.673, Le., — 3.391(0.452)0.673

4.3 Flow Field Results. The transient evolution of the
temperature and fluid flow fields in the present geometry are
very complex. Farrington and Bingham (1986) used dye in-
jection techniques and noted the complex behavior of the flow
fields from the various heat exchanger configurations. In the
case of a smooth coil heat exchanger, the authors noted un-
stable and swirling convection’ currents Similar behavior is
observed in this study.

This section presents results of the temperature and velocity
flow fields for the case of Rap=10°, Figures 10(@) and 10(b)
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Fig. 11 Contour maps at t* =101 (t=232 s), Rap=10% (a) Isotherms,
0.1(0.1)1.0; (b) Stream function. - 1.88(0.20) - 0.07735

@
® ©0§

@ (b)

Fig. 12 Contour maps at t=141* (t=323), Rap=10% (a) Isotherms,
0.1(0.1)1.0; (b) Stream function, — 2.554(0.304)0.0955

show temperature and stream function' contours, respectively,
at the time corresponding to the early quasi-steady period.

By this time in the quasi-steady regime, the velocity flow
field near the cylinder is fully developed and the thermal plume
above the cylinder is reaching the top of the enclosure. Two
vortices circulate in opposite directions on either side of the
cylinder with a large component of flow proceeding down the
center of the enclosure,

Figure 11 shows the results at a later time in the quasi-steady
period. At this time, clockwise rotating eddies have formed
above the cylinder and the core flow near the cylinder source
in the center of the enclosure has reversed. The core of the
enclosure above the cylinder is relatively warmer than fluid
near the enclosure walls and stratification is not being induced.

The flow and temperature fields at a time corresponding to
the end of the quasi-steady regime are shown below in Fig.
12. The end of the quasi-steady period is caused by the weakly
stratified temperature field moving warmer fluid down near
the cylinder source; thereby, reducing the temperature differ-
ence across the source. Core flow near the cylinder source has
resumed its upward flow direction and several clockwise and
counterclockwise eddies have formed.

Temperature and flow field results at a time well into the

decay period are presented in Fig. 13. At this instant in the -

transient, the enclosure is 56 percent charged. The level of
stratification is greater than that observed at the end of the
quasi-steady period while the behavior of the flow field is quite
different. As the driving force for flow decreasés, the fluid
does not have enough momentum to penetrate below the heat
exchanger into the base of the enclosure. Only a small portion

'The strearn function y is defined by u=ady/dy, v= — dy/dx. This definition

- allows the generation of a contour which is everywhere tangent to the local

velocity vector. The change in stream function is an exact differential given by
Ay = [(V-n)dT where V is the velocity and v is a general path of integration.
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Fig. 13 Contour maps at 1* =373 (t=855 s), Ra,=10% (a) Isotherms,
0.1(0.1)1.0; (b) Stream function, —0.6326(0.06917)~— 0.01008

of fluid below the heat exchanger is entrained in the boundary
layer and heated. The fluid motion is largely confined to a
clockwise rotating vortex in the upper portion of the enclosure.

The temperature and flow fields in Fig. 14 correspond to
the late decay period when the enclosure is 80 percent charged.
Note the similarity in temperature and flow field results in Fig.
14 with those of Fig. 13. The level of stratification is similar
to that exhibited earlier in the decay period. The focus of the
elongated clockwise rotating vortex has moved directly above
the heat exchanger as the magnitude of the velocities continue
to diminish.

5 Conclusions

A cylindrical enclosure with an immersed circular coil heat
exchanger is considered. Computations are performed for a
range of Rayleigh numbers and three distinct heat transfer
regimes are identified. Initially, the transient heat transfer
process is characterized by pure conduction. This is followed
by a quasi-steady regime during which the heat transfer agrees
with a horizontal cylinder immersed in an infinite medium.
The final regime is a decay period. Scale analysis is used to
determine time estimates for the duration of the regimes and
identify the appropriate parameters to correlate the decay pe-
riod heat transfer.
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