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Abstract

An insulated square cavity enclosing an isothermal vertical flat
plate is proposed as a suitable geometry for validating codes and
algorithms capable of computing solutions to the transient
Navier-Stokes and energy equations. The vertical flat plate in the
enclosure is very thin and located in the center of the cavity which
permits assumptions of symmetry. The relative length of the plate
is-half that of the side of the enclosing cavity. Inidally, the cavity
{ jains a quiescent isothermal fluid. At time zero, a step change in
p:ate temperature begins to influence the internal flow. The final
condition in the cavity is a quiescent isothermal fluid at a temperature
equal to the plate temperature: (An advantage of this configuration
is the unambiguous initial and final conditions.)

The problem is solved using a finite element computer code
FIDAP [6]. Benchmark solutions are obtained for 10° € Ra < 10°,
Specific quantities of interest include: average Nusselt number over
time, maximum x and y components of velocity (maximum over ail
time), and maximum stream function (maximum over all time). The
heat transfer results compare well with limiting cases.

Nomenclature

Vector of forcing functions

Acceleration due to gravity (m¥s)

Mesh size parameter (smallest element size)
Rectangular cavity height (m)

Combined momentum and thermal diffusion matrix
Flat plate length (m)

Combined mass and capacitance matrix
Normal directed unit vector

Average Nusselt number (Eq. 5)

Pressure (N/m?)

Prandtl number (v/ar)

Rayleigh number (gBL’AT/var)

Time (s)

Temperature (C)

x-component of velocity (my/s)

Characteristic velocity (m/s)

y-component of velocity (m/s)

Vector of nodal unknown velocities and temperatures
Rectangular cavity width (m)

x-coordinate distance (m)
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y y-coordinate distance (m)
Greek Symbols:
B Volume expansion coefficient (1/C)
AT Initial temperature difference (T,-T,) (C)
Y Time truncation error tolerance -
€ Penalty parameter, (1E-8)
p Density (kg/m’)
" Stream function

max Maximum over time of a dimensionless quantity
o Initial value

w Wall
Dimensionless quantity

1 Introduction

The simplest and one of the most comprehensively studied
enclosure problems is the steady state solution of a two dimensional
rectangular cavity with differentially heated side walls and adiabatic
top and bottom. Jones [1] suggested that this problem would be
suitable for validating and testing new computer codes and numerical
techniques. This prompted a large scale computational comparison
exercise by de Vahl Davis and Jones [2]. Thirty contributors
submitted solutions to the cavity problem with a unity aspect ratio
and 10" <Ra < 10°. Various calculated and derived quantities e. g
max stream function, velocity components, etc were selected to be
included in the comparison. In an atternpt to determine the "true”
solution, de Vahl Davis [3] solved a stream function - vorticity
formulation using refined grids (11 x 11 — 81 x 81 uniform meshes)
and Richardson extrapolation. This problem continues to be used as
a basis for testing new codes and numerical techniques. .

As a preface to this work, the steady state differentially heated
square cavity problem was solved with the code used in the current
work (FIDAP). A graded mesh of 30x30 elements yielded excellent
agreement with the de Vahl Davis benchmark solution (e.g. Nu
results were within 0.33% of de Vahl Davis over the range of Ra).
Although the current geometry and conditions differ considerably
from the differentially heated cavity, agreement with the de Vahl
Davis benchmark lends some level of confidence in the ability of the
code to model coupled flows.



2 Problem Definition

The existing benchmark problem of the differentially heated
square cavity only considers steady state analysis with the bounding
walls being responsible for "driving" the flow. A number of relevant
applications are time dependent and contain sources within an
enclosure which are responsible for driving the natural convection
flow. For example, printed circuit boards with electronic devices
generating heat are responsible for driving the flows in many
electronic packaging configurations. Another example is found in
thermal storage tanks with energy being transferred to the tank storage
medium via immersed heat exchangers. These applications dictate
the need foranalyzing natural convection in an enclosure that contains
sources. This type of configuration would also be suitable as a test
problem for codes capable of computing transient fluid flow and
energy transfer. .

One of the simplest transient enclosure problems containing a
source is an insulated rectangular cavity with a heated vertical flat
plate on the interior as shown in Fig. 1.
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Fig. 1 : Adiabatic cavity with a heated vertical plate source.
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Khalilollahi and Sammakia [4] considered the problem of a
vertical flat plate (of height H/3) centered in an adiabatic cavity. The
overall aspect ratio (H/W) of the cavity was 0.25 and the Rayleigh
number was fixed at Ra = 3.35 x 10°, The authors noted the existence
of three temporal regimes. Initially the behavior is dominated by
pure conduction followed by a brief convective regime which closely
agrees with the behavior of a flat plate in an infinite medium. At later
times the flow field decays as the bulk temperature in the cavity rises.

The benchmark problem proposed here is same as that shown in
Fig. 1. The height of the unit aspect ratio enclosure is assumed to be
twice the vertical plate length L (H=W=2L). The vertical plate is
centered inside the cavity and the Rayleigh number (based on the
plate length L and initial temperature difference (T —T,} will be
varied from 10'SRa <10° The quantities of interest include:
~ average heat flux from plate (average Nusselt number), maximum x
and y components of velocity (maximum over all time), and
maximum stream function (maximum over all time). The working
fluid has constant properties with Pr=3.57.

3 Mathematical Formulation and Solution Technique

Assuming the plate in the square enclosure is infinitely thin and
located in the center of the cavity i.e. atx=W/2, symmetry can be used
to reduce the computational domain in half as shown in Fig. 2.
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Fig. 2 : Computational domain
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or the enclosure with a flat plate.

It is convenient to non-dimensionalize the governing system of
equations with the variables given in Table 1.

x"=xIL y =yiL

u'=ulU vi=viU
T'=T-TYTy-T)| P"=P/pU?

' =tUIL  |U=VgBTy-T.X|

Table 1 : Variable Non-dimensionalization.

The Boussinesq approximation is used to relate the force term
(buoyancy force) to temperature. Gray and Giorgini [5] develop anc
investigate the validity of the approximation. The essence of the
approximation consists of the following: density is assumed constant
except in the momentum body force terms, all other-properties are
assumed constant, viscous dissipation is negligible. Based on the
above assumptions, the dimensionless governing equations
(dropping the * superscript) and boundary conditions are:

Conservation of Mass:
ou v _
ox dy ey
X - Momentum:
Ra[du odu ou oP] du du
i it via e B
y - Momentum:

Ra[dv dv dv oP]_dv v ,Ra
N 7r 5?+"5§+v55+$]”ax2+ay’+ O

Energy:

of oTf oT] T oT €Y
RaPr a:*“ax”ay] ax’+8y2

Boundarv Conditions:
@x=0 0<y<0.5 u=0,0viox=0 oT/n=0
@x=0 1.5<ys2 u=0,0viox=0 oT/on=0
@x=0 05<y=<15 u=y=0 T=T,=1
@x=1 0Osys2 u=v=_0 oT/on =0
@y=0 0sx<1 u=v=_0 dT/on =0
@y=2 0sxg1 u=v=0 oT/on =0

Initial -

forallx and y u=v=0 TO)=T.=0

)
A quantity of primary interest in this study is the average t‘gna'ﬂlt
number (average dimensionless heat flux) Nu over the plate. The
average Nusselt number is the integral of the local heat flux over the
length of the vertical plate as given by
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The governing partial differential equations given by Eq. 1-4 are
solved in primitive variable form with FIDAP [6] using a Galerkin
finite element approximation. The penalty function approach is used
b approximate pressure in the primitive variable formulation. The

penalty method relaxes the strict contipuity requirement by letting

ou  ov

-a-;--i--a-; =—€pP (6)

where € is a penalty parameter (e~10~°~10"). Solving Eq. 6 for
pressure and substituting the result into Eq. 2 and 3 eliminates
pressure from the system. The pressure can be obtained subsequently
by postprocessing P = -[du/ox +av/dy}/e. For further discussion of
the penalty method, see Sani, et al. [7].

The elements are nine node quadrilaterals with a quadratic basis
for velocity and temperature. Element integrals are performed
numerically using a third order Gaussian quadrature.

Upon applying the finite element approximations (Galerkin
optimizing criteria, basis function selection, etc.), the system of
partial differential equations (Eq. 1-4) are transformed into a discrete
set of ordinary differential equations as given by

—dV - —
ME—+K(V)V—F N

where M isa combined mass and capacitance matrix, X is acombined
momentum and thermal diffusion matrix, V is a vector of unknown
nodal velocities and temnperatures, and F is the vector of forcing
functions. Eq. 7 represents a system of initial value problems for
each of the nodal unknowns.
-~ A second order implicit trapezoid rule multi-step scheme is used
integrate this system of equations. The first step (a predictor) is
“based on the Adams-Bashforth method with variable time increment
as given by

o, o ). O .
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Vk+l_Vk+ 2 {(2+&k—l)Vk ar‘-lvt-l} (8)

where V{,, is the predicted vector of unknowns at time k+1, V, is
the time rate change of the unknowns at time k, and 8 is the time
increment at step k. The second step (a corrector) is the trapezoid
rule with a variable time increment. When applied to Eq. 7, the
trapezoid rule yields

17 Via -V,

1 — c e v, l = F3
& *+.2.{K(VM)V,,,,+K(V,‘)V,‘}=-2-{Fk+|+ﬂ} ®

The acceleration vectors V in Eq. 8 and 9 are computed recursively
from the definition of the trapezoid rule by
. 2
Via= S—t: Vi

-Vi}-v, (10)

where V, is found from the previous use of Eq. 10.

The above two step time integration scheme is able to
accommodate a variable step size time increment. If a fixed time
increment is specified, further simplifications to the above scheme
are possible. Although a fixed time increment would allow the use

)Richardson extrapolation at each time step, the exorbitant
wwmputational resources required to carry out the time integration for
the system of equations considered here precludes this approach. The
authors have elected to use an adaptive time integration scheme. The

adaptive scheme allows the time step to increase or decrez
depending on the magnitude of the local time truncation error. T
local time truncation error for the Adams-Bashforth method is

3, - |
Vfu-V(tm)=—i(2+3—-'-‘——)6tivm+O(8r:) (]
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12 or,

by

. 1.5
Ek-l-l=Vk+l-v(!t+l)=i§6tzvk+l+0(6t:) (l: ‘

Combining Eq. 11 and 12 yields

c
Vu-l"

Vkp+l 4 1
3‘ 1 +—&-,— '

The result in Eq. 13 can be used to estimate the size of the next tirr
step by requiring the relative norm of the error for the next step to ¢

less than a specified tolerance (|E,,,] <y). From Eq. 12, t
following relationship for ime truncation error results.

Euz__[&un)avuz (1=

Eh-l— 8'& Vh-!

By taking norms and using the fact V,,,=V,,,+O(5t) as well :
1 Ei.all <7, Eq. 14 results in an expression to determine the relati-
size of the next time increment.

8&4,‘“ Y )l/! - (15
&k - lEtHl

where the norm | E I is defined in Appendix A and higher ord:
terms have been omitted. The time integration scheme results in
system of nonlinear algebraic equations to be solved at each timr.

step. The system of nonlinear equations is solved by a quasi-Newtc
method.

4 Results

The results of computations performed for the proposed transie:
benchmark geometry shown in Fig. 2 are given in this section. Firs
spatial and temporal refinement techniques are employed :
determine appropriate mesh densities for computing accura:
solutions. Next, the Nusselt number results are compared with sorr
limiting cases. Finally, solutions for Ra=10%, 10, 10°, and 10° a-
presented.

4.1 Mesh Refinement Results

The development of a "benchmark" solution demands caref:

consideration to spatial and temnporal resolution to assure the fin:

solutions are independent of the computational meshes (space an
time). Ideally, an exwapolation scheme such as Richardsc
extrapolation would be applied to construct both the space and tirr
accurate solutions. The adaptive time integration scheme create
difficulty in extrapolating solutions because the dependent variable
are not necessarily known at the same times for various refine
meshes. Thus, the mesh refinement process will be performed in tw
steps. First, spatial resolution will be performed to demonstrate
solution that is independent of the mesh. Second, time mes
refinement will be performed to determine an allowable level of tirm:
truncation error .

!

Similarly, the local time truncation error for the trapezoid rule is give



Since obtaining accurate solutions becomes more difficult as the
Rayleigh number increases, mesh refinement will be performed on
the Ra=10° case. Two quantities will be used as indicators of the
effects of successive mesh refinement: Nu and the v-velocity. The
v-velocity was selected since it is the dominant velocity component.
The average Nusselt number for the 1299 element case is shown in
Fig. 3. The relative differences in the average Nusselt number with
respect to the finest mesh (1299 elements) for successively
refinement meshes are shown in Fig. 4.
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Fig. 3 : Transient Nu for 1299

Fig. 4 : Relative difference in Nu with
Elements, Ra=10%.

respect to 1299 element mesh for 120,
449, 740, and 968 element meshes,
Ra=10%

The relative differences in the average Nusselt number become very
small for the 740 and 968 element cases. Thus, it is appears that the
temperature solution is mesh independent when the 740 element level
is reached. (A measure of the mesh size for 740 element case is h =
0.007051 and for 1299 elements & =0.004892.) Next, the distribution
of dimensionless v-velocities across the width of the cavity are plotted
at three vertical heights (1/3, 2/3 from plate bottom and top of plate)
for a time in which the velocities are near their peak values.
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The velocities are essentially identical for mesh densities greaterthan
740 elements. Since the 740 element mesh provides an acceptable
level of spatial resolution of both velocities and temperature, it will
used to compute the final benchmark solution for this problem. The
740 element mesh is shown below in Fig. 8a along with the 1299
element mesh in Fig. 8b.
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Fig. 8 : Mesh for square cavity with a heated vertical flat plate; (a) 740 elemen:
(b) 1299 elements.

Temporal refinement was performed by varying the tolerance o
the local truncation error of the time integration scheme Y an
observing the effect on the magnitude and time in which the pea
values of dimensionless u and v velocities and stream function | Yl

occur. The temporal refinement results are given below

* -

v Uy t Vimex t 1 Lea r
0.005 |} 0.4003 551 05382 | 440 0.0545 5.51
0.003 | 0.4038 589 | 05368 | 4.95 0.0548 5.51
0.001 § 04018 552 ] 05364 | 499 0.0556 5.52
0.0005 § 0.4022 566 [ 05373 5.03 0.0559 5.49
0.0001 § 04025 |' 558 § 0.5381 5.03 0.0559 5.48
0.00005 | 0.4025 560 | 05381 | 5.01 0.0558 5.52

Table 2 : Temporal refinement results, Ra=10°, 740°element mesh

The results from Table 2 indicate that the maximum velocitie< an
stream function have converged and a tolerance of Y= 0.000, th
local truncation error will yield time accurate solutions. Thus, th:
mesh shown in Fig. 8 and a tolerance of y=0.0001 on the tim
truncation error will be used for computing the final benchmar:
solution.

4.2 Limiting Cases

The mesh refinement techniques performed in the previou
section attempted to determine spatial and temporal mesh densitie
which yield accurate solutions. There are two additional comparison
that can be made to lend confidence to the solutions. The heat transfe
results can be compared with two limiting cases: pure conduction an.
natural convection from a vertical flat plate in an infinite medium
The analytical solution to the one-dimensional transient pur
conduction problem is compared with the numerical solution in Fig
9.
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Fig. 9 : Transient Nu for the complete range of Rayleigh numbers
including one-dimensional pure conduction solutions.

The respective one-dimensional conduction solutions are given by
the solid lines. The agreement between the computed solution and
the analytical solution is very good during the early conduction
dominated regime. The computed solutions compared with the steady
state infinite medium solutions are shown below in Fig. 10.
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Fig. 10 : Transient Nu for a range of Rayleigh numbers including
infinite medium solutions.

The solid lines are the heat transfer results for a vertical flat plate in
an infinite medium as given by Churchill and Chu [8]. Reasonable
agreement for each Rayleigh number case is obtained during a short
quasi-steady period.

4.3 The Benchmark Solution

Time dependent benchmark problems present unique difficulties
in selecting useful and appropriate quantities to present for
comparison. Because the amount of data generated in the time
dependent computation of this problem is immense, only selected
quantities which characterize the heat transfer and fluid flow aspects
of this problem will be presented graphically. Tabular results for
three positions in the cavity at £'=5.0 are given in Appendix B.

Table 3 presents the benchmark results for the velocity
components and stream function y. Included in the table are the
maximum magnitudes of the respective variables, the time at which
the maximum occurs as well as the x-y location (nodal maximum i.e.
without spatial interpolation) of the maximum.

Raf the | €| X |y | v [ £ |y 'Wimm x|y
10°§0.0716 | 6.68|0.465/1.748§ 0.1220 [ 5.71 10.174 1.100§0.03546] 5.71 [0.419]1.1C
10§ 0.1965 | 6.220.419{1.812§ 0.2706 1 5.76[0.135 1.35080.07075{ 6.22[0.419] 1.35-
10°§ 03059 | 5.54]0.309{1.881§ 03843 | 5.3610.000 1.69780.07233{ 5.94 [0322] 157
10°§ 0.4025 | 5.580.174|1.946§ 0.5381 | 5.03 0.000 l.748l0.05591 5.4810276{1.69"
Table 3 : Benchmark solution results, 740 element mesh,
v=0.0001.
The benchmark Nu results are shown in both Figs. 9 and 10.
In addition to the above benchmark solutions, contours of v, L

T, and y at time '=5.0 for the complete range of Rayleigh number
are given in Figs. 11-14.
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Fig. 11 : Contour maps of u velocity at £'=5.0: (a) Ra=10’,
Upniq =-0.05, Au =0.02, u,,,, = 0.06 i.e., -0.05(0.02)0.06; (b)
Ra=10", -0.06(0.04)0.16; (c) Ra=10", -0.04(0.05)0.28; (d) Ra=10°
-0.06(0.05)0.36.
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1 The stream function v is defined by u =3y/dy, v =—3y/dx. This definitio
generates a contour which is everywhere tangent to the local velocity vector. Th
change in stream function is an exact differential given by Ay = (v « n)dI" wher
V is the velocity vector and I"is a general path of integration.



Table 4 includes the CPU times required for carrying the
"computations to a point in time such that the average temperature in
the cavity is 97% of the plate temperature. (All computations are
performed on an 8-CPU Cray YMP computer.)

Ra CPU Time
(sec)
10° 685
10* 922
10° 1105
10° 2190

Table 4 : CPU time required for cavity bulk temperature to reach 97% of Tw,
740 element mesh, Y= 0.0001.

5 Conclusions

A square cavity enclosing a heated isothermal vertical flat plate
has been proposed as a suitable geometry for validating codes capable
of computing solutions to time dependent Navier-Stokes and energy
equations. Solutions are obtained over the Rayleigh number range
10°<Ra <10° Spatial and temporal refinement was performed to
assure the computed benchmark solutions are mesh independent.
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) Appendix A
The norm [ E{,,| (j=u,v,T) is defined based on the truncation
error as given by Eq. 13.
an "jf+l
&y
&

-
Ek+l"'

+0(8t)

Since the order of magnitude for each variable may differ
considerably, the error is approximated by defining a relative norm.

1 m( gs mlen ¥ o gt Y “
= {7l 2| == |+ 2| = | + 2] ==
ENENT L, ) vial) =T,

where N,,N,, Ny are the respective number of free u-velocity,
v-velocity, and temperature components. :
Appendix B

As a supplement to Figs. 12-15, tabular results of v, u, T, and y
at time r'=5.0 for three locations in the cavity are given in Tables
B1-B3. The time r'=5.0 was selected because it is the time when
velocities in the cavity are approaching their temporal maximums.
The positions in the cavity selected for tabulating the results are
regions with relatively high velocities or high gradients in the
dependent variables. Linear interpolation is used when the quantities
are not known at time r'=5.0 or the three x-y locations.

Ra u v & T
10° 00 [o003888| 00 | 03909
‘ 10° 00 | 01405 | 00 | 05751
10° 00 | 03s88 | 00 | 06126
10° 00 | 05319 | 00 | 05783

Table B1: Variable data at r'=5.0, x'=0.0, y'=1.75.

(11

2]

3]

(4]

(5]

(6]
[71

(8]

Ra u v b T
100 | 0.05015 | 0.02962 |-0.009171] 03021
10¢ 0.1358 | 0.07178 | -0.02936 | 0.3669
10° 0.1480 | 0.04847 | -0.05489 | 02072
10° | 0.04349 |-0.007634 | 0.05391 | 0.1624
Table B2: Variable data at £'=5.0, x"=0.25, y"=1.75.
Ra u v ) T
100 | 0.06848 | -0.008%0 | -0.01182 | 0.1504
10t 0.1593 | -0.05447 | -0.03037 | 0.1056
10 0.1462 | -0.1481 | -0.03663 | 0.03963
10° | 0.06211 | 0.1211 | -0.02227 | 0.000399

Table B3: Variable data at r'=5.0, x"=0.50, y"=1.75.
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