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This paper describes a method in which the transfer functions describing heat flows
in building elements can be combined into a single transfer function for an
enclosure, referred to as a comprehensive room transfer function (CRTF). The
method accurately models long-wave radiation exchange and convection in an

enclosure through an approximate network, referred to as the “‘star’’ network.
Resistances in the star network are determined from a network that uses view factors
to model long-wave radiation exchange. The Padé approximation and bilinear
transformation are used to reduce the number of coefficients in a CRTF.

Introduction

Year-long simulations of the heating and cooling loads of
buildings are important for sizing heating, ventilating, and air
conditioning equipment, determining the effect of a design
change or retrofit on energy usage, and developing optimal
control strategies. Accurate calculation of building loads in-
volves the long-time solution of transient conduction, convec-
tion, and radiation heat transfer processes. Calculation of
these loads requires significant computational effort.

Transfer function methods are more efficient for solving
long-time transient heat transfer problems than Euler,
Crank-Nicolson, or other classical techniques. Transfer func-
tions relate the output of a linear, time-invariant system to a
time series of current and past inputs, and past outputs. Inputs
are modeled by a continuous, piecewise linear curve or
equivalently, a series of triangular pulses.

The definition of transfer function used in the field of heat
transfer in buildings is different from that used in the field of

.automatic controls. In automatic controls, a transfer function
is the Laplace or z transform of the output divided by the
Laplace or z transform of the input. In heat transfer, a

. transfer function is a difference equation that relates the out-
puts of a linear, time-invariant system to a time series of cur-
rent and past inputs, and a time series of past outputs. In this
paper, the latter definition will be used. Also, this paper uses
Laplace transfer function as the definition for the Laplace
transform of the output divided by the Laplace transform of
the input and z-transfer function as the definition for the z
transform of the output divided by the z transform of the
input.

There are a number of methods available for calculating
transfer functions. Stephenson and Mitalas (1971) present a
method for determining transfer functions for one-
dimensional heat transfer through multilayered slabs by solv-
ing the conduction equation with Laplace and z-transform
theory. Mitalas and Arsenault (1971) wrote a program for
computing transfer function coefficients based upon the
method of Stephenson and Mitalas. Transfer function coeffi-
cients computed from Mitalas and Arsenault’s program for 40
roof, 103 wall, and 47 interior partition constructions are
listed in the ASHRAE Handbook of Fundamentals (1977,
1981, 1985). Ceylan and Meyers (1980) and Seem et al. (1987)
present method= Jor calculating transfer function coefficients
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for multidimensional heat transfer. A discussion of two
methods that use transfer functions to calculate building loads
follows.

ASHRAE (1977, 1981, 1985) discusses the energy balance
method (ASHRAE refers to this as the heat balance method)
for calculating sensible heating or cooling loads for buildings.
An energy balance equation is written for every surface in a
room and the room air. For a room with N surfaces, these
energy balance equations can be formulated in the matrix
equation.

AT=B 0]

where A is an (N+1) by (N+1) matrix, which contains
transfer function coefficients, convection coefficients, and
linearized long-wave radiation resistances; T is a vector of
temperatures with all rows equal to an interior surface
temperature, except the last row, which is the room air
temperature; and B is a vector of current inputs, past inputs,
past interior surface temperatures, and transfer function coef-
ficients. After solving the matrix equation for the T vector, the
load due to convective heat transfer between surfaces and the
room air can be calculated. The computational effort is re-
duced when the A matrix is time invariant, i.e., convection
coefficients and linearized long-wave resistances are constant.
Mitalas (1965) shows that the cooling loads for a room are
quite insensitive to changes in the interior convection coeffi-
cient. Walton (1980) shows that long-wave radiation exchange
between surfaces in a room can be linearized without introduc-
ing significant errors. Assuming long-wave radiation
resistances are constant does not introduce significant errors
because the average température of surfaces in a room is fairly
constant. Estimating exterior convection coefficients that vary
with time is difficult due to the large number of factors (e.g.,
building size, building shape, building surrounding, wind
direction, local wind velocity) that affect convective heat
transfer from exterior surfaces.

Madsen (1982) develops a comprehensive room transfer
function (CRTF) by using linear regression on results from an
energy balance simulation. A CRTF is a single transfer func-
tion equation for computing loads or floating indoor air
temperatures in a room or zone. CRTF simulations require
less computational effort than energy balance simulations
because only outputs of interest are computed.

This paper describes a method in which the transfer func-
tions describing heat flows in building elements can be com-
bined into a CRTF for an enclosure. The first section of this
paper presents the derivation of the equations for combining
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transfer functions with parallel heat transfer paths. The sec-
ond section of this paper is devoted to a method for accurately
modeling the convection and radiation heat transfer processes
in an enclosure by a star network. A star network allows in-
dividual transfer functions for building elements to be easily
combined for rooms. The third section of this paper presents
equations for combining transfer functions for a room model
based on a star network. A method that can be used to reduce
the number of coefficients in a transfer function equation is
presented in the fourth section. The last section of this paper
compares the computational effort of energy balance simula-
tions with CRTF simulations that use reduced coefficients.

Parallel Path Combination

Equations for combining transfer functions for walls with
parallel heat transfer paths, as shown in Fig. 1, are derived in
this section. The transfer function equation for the heat flux
for wall a is

QIa E (anaTl n60+bnaTl mSl)
n=0

E (Crali-rsa) @)

The upper limits on the summations in equation (2) are depen-
dent upon the method used to obtain the transfer function
coefficients.

Equation (2) can be expressed in terms of the backshift
operator B as

( E cn.aBn>q;,la = < ann.an> Tl,o + ( E bn.an> Tl,i (3)
Tn=( n= n=0

where ¢, ,=1.0. The backshift operator (Box and Jenkins,

Walla

T
T[’Q ’_\/\ {1
Wall b
d tb
Fig. 1 Walls with parallel heat transfer paths

Bz, =z, ; 4)
Dividing by the summation on the left side of equation (3)

results in
( E an,aB") Tl,o + < E bn.uBn> Tl.i
" =0 =0
=" i (5)

(Z o)

A similar equation for wall & is

(L asB) oo+ (X 620B") T,
0

q;,'b= n=0 n= ) (6)

1976) is defined as

S8

h

o> =

‘Nomenclature

(L)

outdoor temperature
transfer function coeffi-
cient for a wall; input
transfer function
coefficient

input coefficient for
Laplace transfer func-
tion, input coefficient for
w transfer function

area

window area

(N+1) by (N+ 1) matrix,
equation (1)

indoor temperature
transfer function coeffi-
cient for a wall; output
coefficient for transfer
function

input coefficient for
Laplace transfer func-
tion, input coefficient for
w transfer function
backshift operator, equa-
tion (4)

(N+1) vector of inputs,
equation (1)

transfer function coeffi-
cient for past heat fluxes
for a wall, input coeffi-
cient for reduced transfer
function
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0,

o

fa»fb

coefficient for power
series expansion of
Laplace transfer function
outdoor temperature
transfer function coeffi-
cient, output coefficient
for reduced transfer
function

input coefficient for
reduced Laplace transfer
function coefficient, in-
put coefficient for re-
duced w transfer
function

star or indoor air
temperature transfer
function coefficient, out-
put coefficient for re-
duced transfer function
output coefficient for
reduced Laplace transfer
function, output coeffi-
cient for reduced w
transfer function

solar radiation transfer
function coefficient

area fraction for walls a
and b, respectively, equa-
tion (7)

radiation transfer func-
tion coefficient

i

G(s)
G, (s)

transfer function coeffi-
cient for past outputs
absorption factor be-
tween surfaces / and /,
equation (15)

Laplace transfer function
in Appendix A

reduced Laplace transfer
function in Appendix A

= incident solar radiation
= number of surfaces in

enclosure or room
resistance between star
node and room air,
equation (28)

resistance between sur-
faces / and j in the view
factor network, when
other nodes are floating,
equation (20)

resistance between sur-
face i and the room air
in the view factor net-
work when other nodes
are floating, equation
(22)

resistance between in-
terior surface of wall &
and star node, equation
(23)
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The heat flux for walls @ and b combined, g/, is

Ay
A, +A,

a

A +A,
=fodta +/p41p
Substituting equations (5) and (6) into equation (7) gives

( E an,aBn> Tt.a + ( E bn.aBn) Tl,i
n=0 n=0
(L enet)
n=0

— ” "
qiy= qla+ q:p

q{.x = a

(L asB) oo+ ( L 008" T,y
n=0 n=0

+/fb 6]

(L ewst)

Multiplying by the denominators of the terms on the right-
hand side of equation (8) results in

< EO Cn.aBn> ( 2:0 Cn,an>QII,Ix
n= n=

oy (E 2t (E cwt) 7.,

+ [fb ("Z::O an,an> (,.E:o Cn,aBn>] T

+f (;0 bnaB") ( z e0sB") | T,

o (G (Ger)]n

Carrying out the algebra and combining common powers of
the backshift operator yields

(Z enet)at=( L aneB) oo+ (L 00B) T (10
n=0 n=0 n=0

where
n
Apy = E ol aCnip +S6%ipCn-ipa) a1
i=0
n s
by = 30 UabiaCu_in+SoDisCr—ia) (12)
i=0
n
Cax= 0 (CiaCnin) (13)
i=0

Using the definition of the backshift operator, equation (10)

can be rewritten in a form that looks exactly like equation (2)

QI,.’x = E (an.x Tl—nb,a + bn.x Tl-né,i) - E Cn.XQI”-né,x (14)
n=0 n=1

where equations (11), (12), and (13) define the transfer func-

tion coefficients. The number of previous time steps in the

combined transfer function equation is equal to or greater

than the number of previous time steps for each individual
transfer function.

— ... NOomenclature (cont.)
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~ R;_jwa = resistance to radiation
exchange between sur- .
faces i and j, equation X = (N+1) by (N+]) matrix, — . .
Qas) equation (18) (ra), = fraction of incident solar
R, .oy = resistance to convective Y = elementinrowiof Y radiation that is ab-
' heat transfer between vector, equation (18) sorbed at the interior
surface ; and room air y = output surface of building ele-
Ry o = resistance to convective Y = 8\; ;F 1) vector, equation ment K

heat transfer between ex- .
terior surface of wall k z = complex variable Subscripts
and outdoor air z(y = elementinrowiofZ a = wall g

s = complex Laplace vector, equation (18) amb = ambient temperature
transform variable Z = (N+1) vector, equation b = wallb

T = temperature (18) i = inside

T = average temperature of q = heat flow I = solar radiation
surfaces in a room, equa- q” = heat flux k = building element &
tion (15) o = solar absorptance load = heating or cooling load

T = (N+1) vector of ¢ = emittance for building
temperatures, equation o = Stefan-Boltzmann n = transfer function coeffi-
1 constant cient for n time steps

u = input ¢, = fraction of radiation prior to time ¢

w = complex variable that gains from people, o = outside
results from bilinear equipment, and lights r = room air
transformations that is absorbed at the rad = radiation gains from peo-

X j = element in row i and col- ‘internal surface of ple equipment and lights
umn j of the X matrix, building element & sa = sol-air temperature,
equation (18) ¥, = dimensionless error func- equation (30)
X jyiw = element in row i and col- tion, equation (25) {—nd = input or output n time

umn j of the inverse of ¥, = weighted error function, steps prior to time ¢
the X matrix equation (26) x = combined
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Fig. 2 Star network for a room with three surfaces

The Star Network

Direct combination of individual wall transfer functions in-
to a CRTF when view factors are used to model long-wave
radiation in the room requires the manipulation of polynomial
matrices (Chen, 1984), an area of research in systems analysis.
Approximating the actual radiation and convection heat
transfer processes in a room by a star network allows for each
combination (i.e., no manipulation of polynomial matrices) of
transfer functions. Figure 2 shows a star network for an
enclosure with three surfaces. This section presents a com-
putationally easy method for determining the resistances in a
star network that uses wall-to-wall view factors to model long-
wave radiation exchange, i.e., a view factor network. (Davies
(1983) presents a method for modeling the radiation heat
transfer processes in a room with a star network. The star net-
work developed in this paper models both the radiation and
convection heat transfer processes in a room.)

Figure 3 shows a view factor network for an enclosure with
three surfaces. The resistance to long-wave radiation exchange
between surfaces in the view factor network is

1
e 15
6,\4.,‘(;,'_1'0'47"3 ( )

The absorption factor (Gebhart, 1971), G;_;, is the fraction of
energy emitted by surface / that is absorbed by surface j.

Two main steps are involved in determining the resistances
in the star network from the resistances in the view factor net-
work. First, the resistance between each pair of nodes in the
view factor network is determined when all other nodes are
floating. A floating node is defined as one in which heat
transfer occurs only by convection to the air or by long-wave
radiation exchange with other surfaces in the enclosure. As a
result, conduction through building elements, solar radiation
gains, and radiation gains from people, equipment, and lights
do not affect floating surface nodes, and infiltration or con-
vection gains from people, equipment, and lights do not affect
the floating room air node. Second, an approximation is used
to determine the resistances in the star network from the
resistances between nodes in the view factor network.

To compute the resistances between nodes in the view factor
network, an energy balance must be performed on each sur-
face in the enclosure and on the air in the enclosure. An energy
balance for surface / in an enclosure with N surfaces is

Ri—j,rad =

(T, -T)) (T,-T)) +In=T)
Rl—i.rad Rz——i.rad R N—irad
T,~T;
+—7T) g0 (16)

i,cony

where g; is the energy input to surface / other than by convec-
tion to the air or long-wave radiation exchange with other sur-
faces in the room, e.g., absorbed solar energy. An energy
balance for the air in the room is

Journal of Heat Transfer

R
1-2,rad. TZ Rl-j.rad.

Fig. 3 View factor network for a room with three surfaces

(7,~-T,) (T,-7,) + (Ty—T,)
R 1,conv Rz.conv RN.conv
The N energy balances for every surface in the room and the

energy balance on the room air can be combined into the
matrix equations

= Q1oad (17)

XY=2
where (for i=1to Nand j=1to N)

o <ﬁ 1 ) 1
tha ~IR R

(18)

i—jrad i,conv
Xy =X = !
[EAF ) Il VI ) Bt Ri—j,rad
Xinen=0
X(N+1,i) =_§l__
i,conv
Xvernen=—1
Yi=T—T,
YN+1) = Qioad
2y =—4dg;
Zneny=0

To compute the resistance R;_; between surfaces / and j when
all other nodes are floating, arbitrarily let g; be unit y so that

T.~T,
gi=—q;=1.0[W or Btu/h]:——i—T

S 19
R (19
then
Ri_j=(T;—=T)— (T;~-T) =y, -y
=X, v T X Gaiviny — X iyine — X G, j)iny (20)

To compute the resistance R;_, between surface / and the
room air, again let :

T,—T,
i = Goad AC k)08 1.0 [W or Btu/h] 1)
Ri-—r
then
Rir=Ti=T, = =X p inv (22)

A number of approximations could be used to obtain the
unknown resistances in the star network from the resistances
between nodes in the view factor network. For example,
nonlinear regression could be used to minimize the error in
heat flow between nodes, or linear regression could be used to
minimize the resistance to heat transfer between nodes. An ap-
proximation that accurately models the heat transfer processes
in a room and requires less computational effort than linear or
nonlinear regression is as follows.

The net heat flow to the air (i.e., load) for steady-state
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temperature differences between enclosure surfaces and the air
will be the same for the star network and the view factor net-
work if the following N equations are satisfied:

R, +R=R,_,
Ry+R=R,_,

Ry+R=Rn_, (23)

One more equation is needed to provide N+ 1 equations with
N+ 1 unknowns. The last equation is selected so that the heat
transfer between surfaces for the star network approximates
the heat transfer between surfaces in the view factor network.
The difference in resistance to heat transfer between surface
nodes i and j when other nodes are floating for the view factor
network and the star network is

Ri+Rj-Ri—j=Ri-r+Rj—r—'Ri (24)

Squaring a dimensionless form of this error in resistance be-
tween all surface nodes gives the function

N (R_,+R,_,—R;_
= E E i-r JR,Z_I. i

i=2 j=1

—-2R

-J

—2R)?

(25)

Surfaces with a lower resistance (R;_;) between them have a
larger heat transfer for the same temperature difference. The
following error function will place more weight on resistances
between surfaces with a smaller R;_;:

v +R;
_;; lr R3

Other weighting functions could be used to obtain y,, but as
will be shown, this weighting function results in accurate
modeling of the heat transfer processes for rooms with a wide
variety of thermal physical properties, resistances to long-
wave radiation exchange, and resistances to convective heat
transfer. The derivative of y, with respect to resistance R be-
tween the star node and the air is

LY

f=2 j=1

R;_;~2R)?

(26)

d(\l/z) 2R)

~4(R;_,+R;_,~R;_;— @n

3
RL;

Setting the derivative Y, with respect to R equal to zero gives

~R;_;

R= i=2 j=1 i-J (28)

The second derivative of ¥, with respect to R will be positive
for all positive values of R. Therefore, i, will be a minimum
when R is positive. The other N unknown resistances in the
star network can be obtained from equation (23) after equa-
tion (28) is used to compute the resistance between the star
node and the room air node. Seem (1987) shows that this
thethod résults in an exact transformation for a room with two
surfaces and for rooms that have the same resistance to long-
‘wave radiation exchange and resistance to convective heat
transfer for all surfaces.

Loads with the star and view factor networks were com-
pared for a three-surface room and an eight-surface room. To
test the star network, building elements with a wide range of
thermal physical properties, resistances to long-wave radiation
exchange, and resistances were used. The three-surface room
contained the following building elements:

268/Vol. 111, MAY 1989
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Fig. 4 Response to 0.56°C (1°F) step change in outdoor temperature
for eight-surface room

Table 1 Percent difference in steady-state loads between the
star and view factor networks

Input Three-Surface Room Eight-Surface Room
Temperature Difference  0.45 percent 0.69 percent
Solar 0.12 percent 0.36 percent
Radiation 0.006 percent Q.17 percent

1) 3 m? of exterior glazing
2) 3 m?® of an exterior frame wall with 80 mm of insulation
3) 30 m? of 0.3 m heavy coucrete interior partition

The eight-surface room contained the following building
elements:

1) 6 m? of exterior glazing

2) 1 m? of the stud path of an exterior frame wall

3) 5 m? of the insulation path of an exterior frame wall

4) 12 m? of an 0.2 m low-weight concrete floor deck

5) 6 m? of a frame partition with 30 mm wood

6) 12 m? of interior partition consisting of an 0.2 m clay tile
with 20 mm plaster

7) 6 m? of interior partition consisting of 0.1 m clay tile
with 20 mm plaster

8) 12 m? of a 0.1 m wood deck with false ceiling

Loads resulting from step changes in outdoor temperature,
indoor temperature, solar radiation gains, and radiation gains
from people, equipment, and lights were computed for the
star and view factor networks for both rooms. A one-hour
time step was used. The time step with the largest percent dif-
ference in loads between the networks is shown in Fig 4. Table
1 contains the percent difference in steady-state loads between
the star and view factor networks for the following inputs:
temperature difference between the ambient and indoor air,
solar radiation gains, and radiation gains from people, equip-
ment, and lights. Figure 4 and Table 1 demonstrate that the
star network accurately models the heat transfer processes for
both rooms and all inputs.

"This section described a method for determining the
resistances in a star network from a network that uses view
factors to model long-wave radiation exchange. Locations of
room surfaces are needed to compute view factors. Carroll
(1980) developed a mean radiant temperature (MRT) network
for modeling the long-wave radiation exchange in rooms.
There are two advantages of the MRT network over the view
factor network. First, no information concerning the location
of room surfaces is required. Second, it is easier to include fur-
nishings in a MRT network (Walton, 1984). The resistances in
the star network could also be obtained from a MRT network.

Transfer Function Combination for a Star Network
This section presents a method for combining individual
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q
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Surface Radiation Absorbed

/\/\I from Inernal Sources

{but not from other walls)
Fig. 5 Energy flows for an exterior wall

building component transfer functions into a single transfer
function for an enclosure modeled by a star network. This
method requires three main steps. First, transfer functions are
developed for each building component (e.g., wall, floor, ceil-
ing) that relate heat flow to the star node with the inputs.
Second, transfer functions for each building component are
combined in order to relate the total heat flow to the star node
with the inputs. Third, the star temperature is removed from
the combined transfer function equation by relating the
building load to the temperature difference between the star
node and the room air temperature.

A transfer function equation for an exterior wall will be
developed that will relate the heat flow to the star node with
solar radiation gains (from one direction), outdoor
- temperature, star temperature, and radiation gains from peo-
ple, equipment, and lights as indicated in Fig. 5. The methods
previously discussed can be used to calculate the coefficients
for a transfer function equation of the form

Gibim = E (@n Ak T s psa + Onic AR Ty s ki)

n=0
- Cn ki —nd k,int (29)
n=1
The sol-air temperature (Mitchell, 1983) for wall £ is
Tl——né,k,sa =4y psamb + Il—néakRk.outAk (30)

An energy balance on the interior surface results in the follow-
ing equation for heat flow to the star node from wall k:

€3]

The interior surface temperature is related to the star
temperature and heat flow to the star node by

‘L—m&,k.inl = Qt—-né.k - ¢th—-n6,rad - Il—-nﬁA w (Ta)k

T s i = RaQrens e + Tro s star (32)

Substituting equations (30), (31), and (32) into equation (29)
results in

ql.k = E (dn.k Tt—né,amb + en.k Tl-n&.star

n=0

S ot wns + Bk Qi —nsrad) — "Zl Pk s ns i (33)
where
D=7 —-(Z;fqi}e . (34)
eng = T:IZ:,I::—,;R—,: (35)
Fox= CaicAw (T0) i+ @y k0 Ry oA} 36)

1—bg AR,
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Cn,kd)/f

Bk = e RAL 37
Cok—bp 4 RLA
.Y KAy 38)

1—bg R A,
Equation (33) relates the heat flow to the star node for exterior
wall £ with the inputs. Seem (1987) develops similar transfer
functions for heat flow to the star node from an interior parti-
tion and a window. The equations for an interior partition are
similar to the equations for an exterior wall, but the surface
temperature on both sides of the interior partition are iden-
tical. For a window, there are no past time steps involved in
the transfer function equation because the thermal
capacitance of glass is small.

The transfer functions for heat flow from each building ele-
ment to the star node can be combined in a nested fashion
(i.e., combine the transfer functions for building elements 1
and 2, then combine the transfer function for building element
3 with the combined transfer function for building elements 1
and 2, and continue). The backshift operator can be used to
combine any two transfer functions to give the combined heat
flow q,,:

ql,x = E (dn‘x Tl—né.amb + en,x Tl-nﬁ.star
n=0

+fn.xlt—n6 +gn.th—n5,rad) - E hn.x‘Il—-mS_x (39)
n=1
where
QI——mS,x =QI—-mS,1 +ql—-n§.2 (40)
n
= 2y (ducjilia +jahta ;) (41)
j=0
n
Eny = E (en—jitiateahy 1) (42)
j=0
n
Jox = E Ui Mo +i2Mn-j1) 43)
j=0
n
Enx= 25 (Gnmjalya+8jahn_) 44)
j=0
n
Mue= 25 (hyahn_2) 4s)
s

Combining heat flows from every surface to the star node
gives .
qrx = G (q:,l +QI,2) +Q1.3)+QI.4)

+.. '+QI.n—-I)+Qt.n) =4} load (46)

The load is related to the temperature difference between the
star node and the air node simply by

Tl.star - Tl,r

qt.load = R (47)

Substituting equations (46) and (47) into equation (39) gives

QI.load = E (dn T!—-n&.amb + €, Tt-—nb‘,r +fn-[1—n6
n=0

+gnQI—n6,rad) - E tht—n&,load (48)

n=1

MAY 1989, Voli. 1117269



where

d, =T%§;()T 49)
e, =T;E“ (50)
s, =T§E~ 51)
g =—1_g”T";m— 52)
hy = h;"‘_ ;}:;:"‘ (53)

Equation (48) is a CRTF, which relates the load for an
enclosure to past and current inputs and past loads. The next
section presents a method for reducing the computational ef-
fort of CRTF simulations.

Model Reduction

The multiple input CRTF given by equation (48) involves
more coefficients than required for any of the individual
building components. Not all of these coefficients are needed,
however, and computational effort can be significantly re-
duced by model reduction, i.e., find a smaller set of coeffi-
cients (i.e., requiring less past information) that provides near-
ly the same results. Model reduction techniques for multiple
input CRTF are complex. A simpler approach to model reduc-
tion is to use superposition to decompose the multiple input
CRTF into single input CRTF’s. Performing a simulation with
the single input CRTF’s would require more computational ef-
fort than would be required with the multiple input CRTF
[equation (48)], but the model reduction method discussed in
this section can be used to obtain a reduced set (i.e., fewer
coefficients) of single input CRTF’s, which greatly reduces the
necessary computational effort.

The following four single input CRTF’s are required to
compute the same building loads as given by the multiple input
CRTF, equation (48):

qt‘load.amb:; E (dn Tl-—n&.amb)_ E (hnqt-né.load.amb) (54)
1 n=1i

n=0

41 load,r = E (en Tl—nﬁ,r)— E (hnql-né.load.r) (55)

n=0 n=1
4t load,s = E (.ntt—mS) - E (hnqt-ms.load,l) (56)

n=0 n=1
qt.load.rad: E (gnQI-nB.rad)_ E (hnql—né.load,rad) (57)

n=0 n=1

The net heating or cooling load for a room is

qt)oad = G load,amb t 1 load,r T 1 toad,1 + D1 load,rad (58)

Shamash (1980) said that the Padé approximation is a
popular method for reducing single-input Laplace transfer
functions because it requires little computational effort,
cancels common factors if they exist, and matches the steady-
state response of the original and reduced Laplace transfer
functions for polynomial inputs. This section extends the Padé
approximation to model reduction for single-input transfer
functions.

The following single-input transfer function relates the in-
puts of a system to the outputs:
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n

Y= E (aju,_j) — E (bYi-js)
j=t

j=0

(59

Taking the z transformation (Jury, 1964) of equation (59)
results in

(L teh]r@=[ L @z ]via (60)
Jj=0 Jj=0
From equation (60), the z transfer function is
Y az
Y(z) i3
Gl(z) = =
O=Tw T ©h
Y bz
j=0

J
Equation (61) is a z transfer function that relates the z
transform of the input to the z transform of the output, and it
is unstable if there are poles outside the unit circle. (Poles are
roots of the denominator of a transfer function.) To reduce z
transfer functions, the bilinear transformation (Kuo, 1980)
1+w 6
=TT (62)
is used to transform a z transfer function into a w transfer
function. (A w transfer function is a ratio of polynomials of
the complex variable w.) The bilinear transformation maps the
unit circle on the z plane into the left half of the w plane. A w
transfer function behaves like a Laplace transfer function
because both transfer functions are unstable if they have poles
in the right half of their complex planes. Substituting equation
(62) into equation (61) gives the following w transfer function:

n

u T+w)\ 4 1-wN\/
B o)
= 1-w - 1+
G(w)=-2= 1 —= 1 - j
+w\ -w
o) ASry)
/Z:‘; Ni-w g N i+w

2 a;(1=w)i (1+w)r=
= (63)
0

J
Y b, (1—w) (1 4wy~
j=

Appgngiix A describes an algorithm for determing the v; )
coefficients in the following equation: '

n
A=w) (L+w)=i = Y v W (64)
i=0
Substituting equation (64) into equation (63) gives
n n n
.2 af( L ”"U-"’W') > ( ) a.i”i(j.n)> w!
G(w)=120 =0 _ =0 “j=0
n - n n
L b ( ) ”iu‘,mw') > ( ) bj”io,n)) w
j=0 i=0 i=0 Nj=0 ,
(65)

Equation (65) is a ratio of polynomials of the complex variable
w. Appendix B contains equations for reducing Laplace
transfer functions with the Padé approximation. The Padé ap-
proximation can also be used to reduce w transfer functions.
To use the equations in Appendix B to reduce w transfer func-
tions, the coefficient for w" in the denominator of equation
(65) must be set equal to one.
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Table2 Transfer function coefficients for exterior wall 17

ASHRAE Reduced
i a;, ¢ [ C;
W/(m2-K) W/(m?-K)
0 0 1 -0.00505 1
1 0.00006 —2.35214 0.02339 -2.13547
2 0.00125 1.98104 - 0.03895 1.47238
3 0.00511 —0.73353 0.03486 —0.32658
4 0.00454 0.12178
5 0.00108 —0.00859
6 0.00006 0.00021
0.8
0.7 e » o-0-00
64 . - ‘;D_O_O_o-o—c-o—o-
£ o0s v sad
g 04
_;_ﬁ 03 ©  Full Set (6 past time steps)
= Dropped Set (3 past time steps)
0.2 — Reduced Set (3 past time steps)
0.1
0 0-0-orom0= + 4 } 4 + + {
0 5 10 15 20 25 In 35 A0

Time (Hours)

Fig.6 Response to 0.56°C (1°F) step change in outdoor temperature
for ASHRAE exterlor wall 17

Z aw
G(w)=-22 (66)
E E[W'
where i=0
z Vi)
Gy = 67)
Y b
j=0
n
_ 5:3 bivijmy
b=t (68)
Y by
j=0

The Padé approximation described in Appendix B can be used
to obtain a reduced w transfer function of the following form:

m
daw
G, (w) =—° (69)
E €, iW'
where i=0
éo = 1
m=number of past time steps in reduced transfer func-
tion

Next, the reduced w transfer is transformed into a reduced z
transfer function by using the bilinear transformation
z~1 1-z-!
W o= e —————
z+1 1+z!

Substituting equation (70) into equation (69) results in
oLy -zl & X —_
d(—-——-—————-) di(1=z=1)i(1+z" 1y
,-‘;,’Hz” Z,(z)(z)
m ) l_z__l i - m
L) ke

(70)

(1_ ~l)l(l+z~l)m i

Q)]
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The algorithm described in Appendix A can be used to com-
pute the »;; . coefficients in the following equation:

m
A=z L4z~ Yym=i= Y vz (72)
j=0

Substituting equation (72) into equation (71) gives

- J(E Vit~ ) E(Ed: ./('"'))
g: (E Vjtim)Z ) E(E (:m))

m

(73)
Equation (73) can be rewritten as
E diz™/
0
G, (z) =2 (74)
ejz_j
i=0
where
m -
E d Jtiam)
dj=— (75)
€iV0(i,m)
i=0
m
; € Vjti,m)
e =——————~:""° (76)
E 2,%0,m)
i=0

Transforming equation (76) back into the time domain gives
the following reduced transfer function:

Edu,-,a E P a7

ASHRAE contains tables of single input transfer functions

‘for walls, roofs, and interior partitions.The Padé approxima-

tion and bilinear tranformation can be used to obtain a re- .
duced set of coefficients that closely model the response of the
full set of coefficients listed in ASHRAE. As an example,
Table 2 contains transfer function coefficients for exterior
wall 17 (4-in. face brick, 8-in. common brick with air space)
listed in ASHRAE. Table 2 also contains reduced transfer
function coefficients for three time steps back rather than six
as given by ASHRAE. Figure 6 is a plot of the response to a
0.56°C (1°F) step input for the full set of coefficients, the
reduced set of coefficients, and a dropped set of the coeffi-
cients, i.e., the ASHRAE coefficients for three time steps
back. The reduced coefficients closely reproduce the full set of
ASHRAE coefficients while the dropped set results in errors.

When combining transfer functions for building elements,
the number of past time steps in the resulting transfer function
increases. Fortunately, the number of past time steps required
to perform a simulation accurately can be significantly re-
duced by using the Padé approximation and bilinear transfor-
mation. Figure 7 shows the response to a 0.56°C (1°F) step
change in outdoor temperature for full and reduced sets of
single input CRTF’s for the eight-surface room.

Comparison of Methods

Table 3 contains the number of mutiplications required per
time step for energy balance simulations of view factor net-
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Fig.7 Response to 0.56°C (1°F) step change in outdoor temperature
for eight-surface room

works with time-independent A matrices, multiple-input
CRTF simulations, and single-input CRTF’s simulations with
reduced coefficients for the rooms previously described. For
the methods compared in Table 3, the number of additions re-
quired per time step is close to the number of multiplications
required per time step. Table 3 demonstrates that the com-
putational savings of using reduced single-input CRTF’s in-
crease with the complexity of the zone, i.e., the larger the
number of surfaces the greater the computational savings.

Table 3 shows that the computational effort of single-input
CRTF simulations with reduced coefficients is less than the
computational effort of energy balance simulations with time-
independent A matrices. Sowell and Walton (1980) deter-
mined that the execution times are similar for energy balance
simulations with time-dependent A matrices and DOE 2.1
(1980). (DOE 2.1 is an advanced weighting factor program,
which assumes that heat transfer processes are linear and time-
invariant.) The computational effort of energy balance
simulations with time-independent A matrices is less than the
computational effort of energy balance simulations with time-
dependent A matrices. Therefore, reduced CRTF simulations
should require significantly less effort than DOE 2.1
simulations.

Conclusion

A procedure for accurately and efficiently computing loads
and floating room temperatures in buildings is presented in
this paper. Three main steps are involved in this procedure.
First, the resistances for a star network are computed from the
resistances for a view factor network. Second, transfer func-
tions for individual building elements of a star network are
combined. Third, the Padé approximation and bilinear
transformation are used to reduce the number of coefficients
in the combined transfer function equation.
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APPENDIX A

Extension of Pascal’s Triangle

Numerical analysis textbooks (Conte and de Boor, 1980;
Sedgewick, 1983) contain algorithms - for multiplying
polynomials. These algorithms could be used to obtain the
v coefficients in the following equation:

A=x) (L+x)" 1= Y vm¥ (78
j=0

j=
This appendix contains a numerically efficient algorithm for
determining the w;;,, coefficients in equation (78). The
algorithm is numerically efficient because no multiplications
or divisions are required. The following algorithm for com-
puting the coefficients in equation (78) is based upon an exten-
sion of Pascal’s triangle (Spiegel, 1968):

Transactions of the ASME



voim =1
>For k=1 to { with a step size of 1

Vitiny = ~ Vi-1m)

For j= (k—1) to 1 with a step size of ~1
Yitimy = Yjtiny = Vi ttim)

Next j

- Next k

®For k=(i+1) to n with a step size of 1

Victiny = Vie—1(i,n)

For j= (k1) to 1 with a step size of ~1
Yitimy = Vi TV

Next j

L-Nextk
APPENDIX B

Padé Approximation

Jamshidi (1983) presented equations for reducing Laplace
(i.e., continuous) transfer functions when the order of the
numerator is equal to or less than the order of the
denominator. In this paper, equations for reducing Laplace
transfer functions when the order of the numerator is equal to
the order of the denominator are needed. Therefore, this ap-
pendix contains equations for reducing single-input Laplace
transfer functions with the Padé approximation when the
order of the numerator is equal to the order of the
denominator.

The reduced Laplace transfer function

do+ds+dyst+. . . +d,sm

= 79
G (s) L+Es+65*+. . .+€,5" 79
is the Padé approximation of
Ao+ G5+ a8 +. . . +a3,5"
G(S) = 0 i 2 n (80)

L+ b5+ by8%+. . . +Db,s"
(where m is less than #n) if the power series expansion for G, (s)
is equal to the power series expansion of G(s) for terms of
order s9 to s>, Next, the equations for calculating the power
series of

@81

will be formulated. The following equation results from
equating equation (81) with equation (80):

G(S)=Cp+C S+ 6,82+ 683 +. .,

do+a;S+dps?+. . +4,8"=(1+bs+b,s2+. ..+ b,s")
(82)

Multiplying the terms on the right-hand side of equation (82)
together and combining common powers of the Laplace
transform variable s results in

(Cp+CiS+68%+. ..

dy+ a5+ dyS? +. . .+ G,8" =6y +(Gyb) +¢))s
(83)

The ¢; coefficients for the power series expansion of G(s) are
determined by equating the coefficients of equal powers of s in
equation (83).

+ (Coby + 6,8, + 652 +. . .

I

i=1
o

o
il
)
|

<
o
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(84)

To calculate the Padé approximation for G(s), the power
series for G(s) is set equal to the Laplace transfer function
G, (s). The following equation results from combining equal
powers of s when the numerator of G, (s) is set equal to the
denominator of G, (s) times G(s):

do+dis+dys2+. . . +d,s™ = +(¢, +€,6,)s
+ (6 + 8,6, + 8,08 +. . .
F(Co 6,6, | +6,Ch_s+. . + €, Cp)s™
+ (Cray HE€1C + 3G F. . +E,6)sm
F(Crmiz T €1Cnu +6:C,+. . . +8,6)s" 24, ..

+(Com 461G+ Eylop oy ¥ HE G )M . L. (85)

A set of m linear equations with m unknown denominator
coefficients (¢;) of the Padé approximation can be formulated
by equating powers of s from (m + 1) to (2m) in equation (85).

Cm Cony .. ¢ ¢ ] ( é
Cost Com C. 6 G é;
Cam-2 Com-3  « .. Cm Crm—1 €m_y
L Com-1 Com-2 5m+l C:m _J_. ém .J
~Crm+1
Em+2
(86)
—Com—1
—Cum

The denominator of the Padé approximation is determined by
solving equation (86) for the e, &, ..., é, coefficients,
After determining the denominator of the Padé approxima-
tion, numerator coefficients of the Padé approximation are
determined by equating powers of s from 0 to m in equation

(85). ;.
d0=C0

d,=¢ +€6
d-z"—”éz‘l"élél +ézéo

i

@7
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Determination of Thermal
Resistance of Lightweight Board
Insulations

Four techniques for determining the in situ thermal resistance of rigid board in-
sulation installed in conventional low-sloped roofs are described and compared. All
techniques use measured temperature distributions and heat fluxes in the roof sys-

tems. The limitations of the techniques are discussed. Test results are presented to
allow a comparison of the methods.

1 Introduction

Thermal resistances (R-values) of roofs or other building
envelope systems are normally obtained by a calculation based
on the conductivity of the individual materials making up the
components. For a one-dimensional layered geometry, e.g.,
an insulated low-slope roof, R is given by

where ; and k; are, respectively, the thickness and thermal
conductivity of the ith layer. For more complex geometries,
i.e., multiple heat flow paths, other methods such as the ASH-
RAE Zone Method (ASHRAE Handbook, 1985) can be used.
Frequently, these values are confirmed by laboratory hot box
experiments (Mumaw, 1980; Van Geem, 1984) that can sim-
ulate the geometry of roof and wall components. The actual
installed R-value of a system may differ significantly from a
calculated or laboratory value due to material differences,
aging, thermal bridging, moisture, the quality of construction,
and other factors. Field measurement is the only unambiguous
way to determine the in-place thermal resistance. However,
there currently is no established, reliable technique for making
field measurements of installed R-values of building envelope
systems. The purpose of this paper is to describe and discuss
several techniques for applicability of determining R-values
from field data. )

The motivation for this study arises from a need to provide
measurements of heat transfer in building envelope systems
under field conditions. These measurements are needed to as-
sess the thermal performance of ‘‘as-built’’ envelope systems
and to monitor the thermal properties of in-service systems
that may change because of time or because of environmental
conditions.

Two techniques based on averaging are discussed in Section
2, and two techniques based on the use of least squares are
given in Sections 3 and 4. Section 5 provides experimental
results and Section 6 gives the conclusions.

All techniques for determining the thermal resistance of
field-mounted building insulation specimens require perivelic
measurements of the temperature difference and the heat flow
across the specimen over an extended period of time. Ther-
mocouples are placed on either side of the specimen and a heat
flux transducer is mounted within or at the boundary of the

Contributed by the Heat Transfer Division for publication in the JOURNAL oF
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specimen. Sensor calibration is critical. Thermocouples cut
from the same wire spools are preferred and ASTM procedures
should be followed for the heat flux transducer (ASTM C1046-
85).

2 Averaging Techniques for Determination of Thermal
Resistance From in Situ Data

2.1 Averaging Technique. One method for determining
the R-value of a building system in the field is the Averaging
Technique (Flanders, 1980), which gives theratio of the average
temperature difference across a sample divided by the average
heat flux. This expression for R-value can be derived from the
one-dimensional transient heat conduction equation

d al aT

— | k— ) = pc— 2

ax ( 3x> " @
to show more clearly the limitations of the technique. In equa-
tion (2).x is the space coordinate, ¢ is time, T is temperature,
k is thermal conductivity, p is density, and c is specific heat.
Use of equation (2) implies that the heat transfer is by con-

duction only (no radiation or convection). Integrating equation
(2) over a layer of thickness L, from x = 0to x = L, gives

Lo
aT « oT . = Sx=0 pc — dx 3)
x=

k o — —_
ax x=L dx

If this expression is then integrated over time for cyclic con-

ditions, which somewhat approximates diurnal temperature
variations, one obtains

toar toaT

S k — dt — S k—

0" 3x |x=L 0 ax

The right side of equation (4) is zero because the integrand is
the change in internal energy of the system, which, over one
cycle, does not change. Since this result is true for a layer of
any thickness, equation (4) can be rewritten to show that, under
the conditions of the derivation, the average heat flux at any
location in the system is a constant

dt =0 4

x=0

| S' 1 S' oT
= - = - -\ ko 5
=7 \andt = -2 | ki ®)
Notice the similarity of equation (5) to the steady-state equation
aT
= = [ 6
q I (6)

In the Averaging Technique method, k in equation (5) is as-
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