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Solar Energy Laboratory,
University of Wisconsin—Madison,
Madison, Wi 53706

Introduction

Transfer function and response factor methods are used in
building simulation programs to compute long-time solutions
of transient heat transfer problems in which the system prop-
erties are linear and time invariant. Response factors relate the
output of a system to a time series of current and past inputs.
Transfer functions additionally relate the current output to
past outputs, significantly reducing computational effort. In
both cases, the inputs or driving functions are modeled by a
continuous, piecewise linear curve or equivalently, a series of
triangular pulses. Transfer function and response factor
methods are more efficient for solving long-time heat transfer
problems than Euler, Crank-Nicolson, or other classical
techniques because there is no critical time step and the inter-
nal temperature distribution is not calculated.

The definition of transfer function used in the field of heat
transfer in buildings is different from that used in the field of
automatic controls. In automatic controls, a transfer function
is the Laplace or z transform of the output divided by the
Laplace or z transform of the input. In heat transfer, a
transfer function is a difference equation that relates the out-
puts of a linear, time-invariant system to a time series of cur-
rent and past inputs, and a time series of past outputs. In this
paper, the latter definition will be used.

For one-dimensional problems, Stephenson and Mitalas
(1967) determine the *‘exact’” set of transfer functions and/or
response factors .by solving the conduction equation by
Laplace and/or z transforms. To develop response factors or
transfer functions for multidimensional heat transfer, it is
necessary to discretize the problem spatially by use of finite
difference or finite element techniques. Spatial discretization
results-in a set of first-order differential equations.

Ceylan and Myers (1980) present a method for calculating
transfer functions for multidimensional heat transfer from a
set of first-order differential equations, which requires the
calculation of eigenvalues and eigenvectors of a matrix. Their
method involves first calculating response factor coefficients
and then converting the response factor coefficients into
transfer function coefficients.

. This paper presents a method for calculating transfer func-
tions for multidimensional heat transfer that results in fewer
coefficients than the method of Ceylan and Myers. In addi-
tion, the intermediate step of calculating response factor coef-
ﬁ.cnents is eliminated and it is not necessary to calculate the
eigenvalues and eigenvectors of a matrix. The necessary equa-
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ferential equations when the inputs are modeled by a continuous, Dpiecewise linear
curve. For long-time solutions, the method presented is more efficient than Euler,
Crank-~Nicolson, or other classical techniques.

tions and algorithms for computing transfer functions for
multidimensional heat transfer are included in this paper.
These transfer functions allow computationally simple and ac-
curate two or three-dimensional heat transfer calculations.
The method is useful for calculating heat transfer in buildings.

Analytical Solution

A state space formulation has traditionally been used to
analyze linear systems that may have many inputs and out-
puts. A heat transfer problem may be formulated in a state
space representation by using finite-difference or finite-
element methods (Myers, 1971) to discretize the problem
spatially. A state space representation for a continuous,
linear, time-invariant system is

—d-l‘-=Ax+Bu n
dr .
y=Cx+Du @

Equation (1) is called the state equation and equation (2) is
called the output equation in a state space formulation.

In a number of textbooks (Brogan, 1985; Bronson, 1973;
Chen, 1984) the solution to a system of first-order differential
equations with constant coefficients is given by

(£
X;vs =M, + | eMr+4-"Bu(rar @
t
The exponential matrix is defined by the power series
252 AB 53 Angn
e“=I+A6+-—-6-—+———+. .ot + . )
2! 3! n!

Appendix A describes a numerically efficient method for com-
puting the exponential matrix.

The first term on the right-hand side of equation (3) is called
the complementary function, force-free response, or zero-
input response, and the second term on the right-hand side of
equation. (3) is called the particular integral, forced response,
or zero-state response. The zero-input response of a system in-
volves the response of the state variables to the conditions at
time ¢ and the zero-state response is the convolution integral,
which integrates the response of the state variables to the in-
puts between times # and ¢+ 8. Inputs between times 7 and £+ 6
are modeled by a continuous, piecewise linear function and
are calculated by ,

(r—1)
8

At this point, the solution of the state equation for heat
transfer applications differs from the solution of the state

&)

wr)=u,+ (U, 5—up)
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equations in digital control systems because inputs for digital
control systems are not continuous, piecewise linear functions.

strom and Wittenmark (1984) discuss input construction for
digital control systems. Substituting equation (5) into equation
(3) results in

A -6 N -t
Xp.5 =M%, + Y{ e““‘°"’B{u,+£T—5—)-(u,+5—u,)]df (6)

By making the change of variables a=r—f, equation (6) can
be rewritten as

pd
Xo5 =M%, + [So e“““""da]Bu,
~d B
+ [50 aew—a)da] [——-—(5 . —u,)] Q)
Appendix B describes the steps for integrating the two in-
tegrals in equation (7). The solution to the first integral is
H
[, exo-atda=a~te -1 ®)
and the solution to the second integral is

5
So aeA(é'“)da=A'lA"l(e‘m-I)—A'lé )]

Substituting the solution of the two integrals, equations (8)
and (9), into equation (7) yields

Xies =®x, +(I'l -I'z)u,+r'2ll,+6 (10)
where
b =eAb
I =A"'(e* -DB=A"'(¢-1B
r
r;= [A-lA-'(eM —1)—A~‘5]—§-=A-‘ [-3-‘-—3]

Equation (10) relates the states at time ¢ + 6 to the states at time
¢ and the inputs,at the times ¢ and ¢ +6.
The forward shift operator F (Box and Jenkins, 1976) de-
fined by
Fz,=24 an
will be now be used to relate the states to previous inputs. Us-
ing the forward shift operator, equation (10) can be written as

(F1-®&)x,=(FT, +T -T2)u, (12)

Nomenclature

Multiplying equation (12) by the inverse of the (F1 - ®) matrix

" gives .
x,=(Fl-<§)"l(FTz +P‘—P2)u, (13)
Substituting equation (13) into equation (2) yields
y,=[cm—cb)-*(mm—rz)w]u, (14)

Equation (14) relates the outputs from the system to the
inputs.

The inverse of the (FI1— ®) matrix is equal to the adjoint of
(F1 - ®) divided by the determinant of (F1— &) (Wiberg, 1971).
The degree of F for the determinant of the (FI - ®) matrix is at
most n and the degree of F for the adjoint of (F1- &) is at
most n— 1. Thus, the (F1 - &) matrix can be written as

RoF~' +RF"24+. . . +R, . F+R,y
FleeFr-'+. . .+e, |F+e,
The R matrices and the e scalar constants can be determined
by computing the adjoint of the (FI~®) matrix and dividing
by the determinant of the (F1- &) matrix or by using Lever-

rier’s algorithm (Wiberg, 1971) described in Appendix C.
Substituting equation (15) into (14) results in

F1-9)-'=

(15)

(Fr+e, Fi=t+. .. +ey)y, = [C(R,,I-""l +R, -2
.. .-+-R,,_ZF+R,,_x)(F['z+I‘l -T5)

+D(F +e‘lF'"+...+e,,)]u, (16)

Multiplying the matrices on the right side of equation (16)
and combining common terms of the forward shift operator
gives

(Fr+e Fr-V+...+e,)y,= {(Ckorz +D)F"
* [C(erl -RiI ‘*'Rzrz)‘*'ezD]P"z .o
+ [C(Rn-lrl "Rn-zrz +Rn-1r2) +€,,_KD]F

+ [CR,-iT - R, T +e,D] o an

a; =entry in row i and column j of
the A matrix

I =identity matrix
k =integer used in algorithm for

u =vector of p inputs
x = vector of n state variables

A =area calculating exponential matrix y = vector of m outputs
A =(nx n) constant coefficient L =number of terms in truncated z=value of a state or signal
matrix power series of exponential «=dummy variable
B = (n x p) constant coefficient matrix T', =(nx p) matrix
matrix m=number of outputs rl = (nx p) matrix
C =(mx n) constant coefficient n=number of state variables é = time step
matrix p=number of inputs r=time
C =thermal capacitance q" =heat flux $ = (n x n) exponential matrix
¢ =specific heat " R=thermal resistance
Subscripts

D = (m x p) constant coefficient
matrix

e=transfer function coefficients
for previous outputs

F=forward shift operator

h = convection coefficient

matrix
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R = (n X n) constant coefficient

§ = (m x p) matrix of transfer
function coefficients for inputs

¢ =discrete point in time

T =temperature

in =inside temperature
out =outside temperature
t=state or signal at time ¢
t+nbd=state or signal n time steps
ahead of time ¢
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Using the definition of the forward shift operator, equation
(17) can be rewritten as

Yeenst€ 1Y ooty t. .- FEY, = (CROPZ + D)“H-nb

i
+ {C[Ro(, -y +Ri: | +eiDurs oo

+ {c R,(T, -Ty)+ RZI‘Z] +e2D}u,*(,,_z,6 .

R,_,(T, —I"z)-i—R,,_,I":] +e,. lD}“:+a

+{c

+ [cn,,-l(r‘ —1"2)+e,,D:]u, (18)

Shifting the inputs and outputs in equation (18) n time steps
back gives

Yi+eYs+...+€¥.n=(CReI'; + D)y,
B
+ {c R,(T, -r2)+R,rz] +e,D}u,,5

+ {C R,(I", -rz)+R2rz] +32D}u,_2§+. .o

-

R,_,T, ‘rz)"'Rn-ler +en-—lD}“r-(n-l)6

+fc

+ [CRn—l(rl _r2)+enD]ut-nﬁ (19)

Equation (19) can be written more compactly as

Y, = E Sy, j5) - E (€¥:-z) (20)
Jj=l

Jj=0
where
So = CRorz -+ D

Sj=C[Rj_‘(rl*rz)+Rjr2]+8jD forlsjsn—l
S,,=CR,,__,(I‘l —r2)+e"D

Equation (20) is a transfer function equation that relates cur-
rent outputs to time series of current and past inputs and time
series of past outputs. Ceylan and Myers’ derivation results in
one additional S coefficient. The additional S coefficient is
usually not significant.

The transfer function coefficients in equation (20) may
become numerically insignificant as j increases. Thus, the ef-
fort of calculating transfer function coefficients can be re-
duced if only numerically significant coefficients are
calculated. A large amount of computer memory would be re-
quired to store the n nx n R matrices if equation (20) was used
to calculate transfer functions. Fortunately, the storage re-
quirement for the R matrices can be reduced to 2 nxn
matrices if Leverrier’s algorithm is combined with eguation
"(20). Appendix D contains the steps for computing numerical-
ly significant transfer function coefficients with a minimum
amount of storage for the R matrices.

Results

The equations and algorithms presented in this paper were
used to write a 150 line FORTRAN program for calculating
transfer functions from a state space formulation. (The pro-
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Table 1 Transfer function coefficients for a 0.3 m concrste wall and
two, five, and twenty-node finite-differance modeis of the concrete wall

Pardial
Transfer Funcdon Differential

Coefficient Equaton 2 node 5 node 20 node

Sg Out Temp.W/m2.°C 0 0.0094 0.0006 0
Sy Out Temp. W/m2-°C 0.0057 0.0346 0.0108 0.0057
S Out Temp. W/m2.-°C 0.0301 0.0079 0.02450 0.0301
S3 Out. Temp. W/m2-°C 0.0227 0 0.0097 0.0221
$4 Out Temp. W/m2-°C 0.0028 0 0.0006 0.0028
5S¢ Ins. Temp. W/m2-°C -6.8395 -7.8820 ~7.1530 -6.8554
1 Ins. Temp. W/m2-°C 12.8767 13.9866 15.3087 12.9579
59 Ins. Temp. Wim2-°C -7.3415 -6.1566  -11.1153 -7.4482
S3 Ins. Temp. Wim2-°C 1.2935 0 3.2980 1.3406
Sa Ins. Temp.W/m2-°C -0.0500 0 -0.4015 -0.0551
Ss Ins. Temp.W/m2-°C 0.0006 0 0.0165 0.0006
e -1.7442 -1.6820 -1.9782 -1.7502
e 0.5050 0.7037 1.3116 0.9147
3 -0.1395 -0.3509 -0.1437
e 0.0041 0.0383 0.0045
es 0.0000 -0.0014 0.0000

gram used a library routine in LINPACK (1979) for
calculating the inverse of a matrix.) The program was used to
compute sets of transfer function coefficients for 2 through 50
node finite-difference models of a 0.3 m homogeneous con-
crete wall with a density of 2200 kg/m?, specific heat of 0.84 "
kJ/kg-°C, thermal conductivity of 1.7 W/m-°C, and convec-
tion coefficients at both sides of the wall of 8.3 W/m2-°C. In-
side and outside air temperatures were the inputs to the
transfer function equation and the heat flux at the interior sur-
face of the wall was the output. Appendix E contains the steps
required to calculate transfer function coefficients for a two-
node finite-difference model. (When the number of nodes in
the finite-difference or finite-element model is small, an in-
teractive matrix package such as Matlab (1982) can be used to
compute transfer function coefficients.) Mitalas and
Arsenalt’s program (1971), which is based upon the solution
of a system of partial differential equations, was also used to
compute transfer function coefficients. Transfer funcrion
coefficients for a 2, 5, and 20 node finite-difference models
and the Mitalas and Arsenalt program are compared in Table
1. As the number of nodes in the finite-difference model in-
crease, the transfer function coefficients from the state space
formulations approach those of Mirtalas and Arsenalt, which
are based upon the solution of the partial differential equation
(i.e., the continuous model).

To compare the transfer functions, heat fluxes were com-
puted when the air temperature on one side of the wall varied
with the periodic temperature profile

T=~15°C+2.8°Csin{(rr)/24 h]

and the air temperature on the other side of the wall.was
—17.7°C. Figure 1 (outside air temperature varying: and Fig.
2 (inside air temperature varying) contain a graph of the heat
flux at the interior surface of the wall for transfer functions
based upon two and five-node finite-difference modeis and the
continuous model. Table 2 contains the sum of squares of the
residuals (SSQ) between the calculated heat flux for the finite-
difference models and the continuous model for a 24 hour
period. As the number of nodes in the finite-difference model
increases the SSQ decreases.

Table 3 contains the central processing unit (CPU) time of a
Micro Vax computer to compute all transfer function coeffi-
cients, numerically significant coefficients, and the exponen-
tial matrix for different numbers of nodes. (The tolerance
limit in Appendix D for the calculation of numerically signifi-

FEBRUARY 1889, Vol. 11117



3 °\°\
r-ng \
371 \\
'_; 5 / @ Conunuous q\
2 / 2 Nodes N
N — 5 Nodes o
1
0 5 10 15 20 25
Time (Hours)

Fig. 1 Heat flux at interior surface of concrate wall with outside air
temparature varying
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Fig. 2 Heat flux at interior surface of concrete wall with inside air
temparature varying

cant coefficient was 0.000001.) Table 3 demonstrates the im-
portance of computing only numerically significant coeffi-
cients. Also, a majority of the effort in calculating numerical
significant coefficients involves the calculation of the ex-
ponential matrix.

Application

Building simulation programs such as DOE-2, TRNSYS,
and TARP (1980, 1983, 1983) currently use transfer functions
or response factors to tnodel one-dimensional-heat transfer
through walls, roofs, and floors. Many walls of common con-
struction cannot be accurately modeled with one-dimensional
heat transfer. The equations and algorithms described in this
paper can be used to calculate transfer functions for walls that
require two-dimensional models, e.g., walls that contain metal
tee-bars or tie rods. Simulation programs could use these
transfer functions to model multidmensional heat transfer in
building elements. The ASHRAE handbook of fundamentals
(1977, 1981, 1985) lists tables of transfer functions for one-
dimensional heat transfer through multilayered slabs. These
tables could be updated to include walls that have muitidimen-
sional heat transfer. An example demonstrating the impor-
tance of properly modeling a roof deck section with steel bulb
tees follows.

Transfer function coefficients were generated for one-
dimensional and two-dimensional models of a roof deck sec-
tion taken from an example in ASHRAE (1977, 1981, 1985).
Figures 3 shows the inputs (Tins Tou) and output (g ") for the
transfer functions. The transfer functions were determined for
the section of the roof deck shown in Fig. 4. Transfer function
coefficients for the one-dimensional model were determined
for a multilayered roof with the same area-weighted thermal
physical properties as the roof deck section. The steady-state
response for the one-dimensional model is equal to the steady-
state response in the ASHRAE example. Figure 5 shows the
nodal spacing for the two-dimensional finite difference model.
Table 4 contains the thermal physical properties of the
materials in the roof. The outside convection coefficient is 34
W/m?-°C and the inside convection coefficient is 9.3

8/Vol. 111, FEBRUARY 1889

Table 2 Sum of squares of the rasiduals batween continuous madel

. and finite-ditference model for a 24 hour period

Sum of Square of Residuals W2/m+

Qutside Temp. Varying

Number of Nodes Inside Temp. Varying
2 1.0 200.0
5 0.017 1.6
10 0.00070 0.060
15 0.00012 0.010
20 0.000035 0.0030
Table 3 CPU time to compute the exponential matrix, all transfer tunc-

tion cosfficients, and all numericaily significant transfer function
coetficients

Central Processing Unit Time in Seconds

Numencally
Number Exponendal All Significant
of Nodes Marrix Coefficients Coerficients
10 0.25 0.54 0.32
20 - 18 47 2.1
30 6.1 19.1 6.3
40 15.0 54.5 16.3
50 30.6 123.2 329
Tout ,
L !
%\‘ NANNNNNN NSVANNNN \\\\@
4 i )
q"
T.

Fig. 3 Roof deck with buib tees 0.8 m on canter

| e 38 mm-—-J 16 MUT: | e 38 TTIITY emmney L

Roofing H H t0mm
. ' T
] 4
1 ]
' '
Gypsum ': E 29 mm
Concrete : !

Fig. 4 Sectlon of the roof deck

W/m2-°C. Table 5 contains the transfer function coefficients
for the one-dimensional and two-dimensional models of the
roof deck section. . ,

A graph of a 0.56°C (1°F) step change in outdoor
temperature with an indoor temperature equal to zero for one
and two-dimensional models can be seen in Fig. 6. The steady-
state and transient response for the two models is significantly
different. This graph demonstrates the importance of properlb
modeling the steel bulb tees in the roof deck section. ’

The equations presented in this paper could be used to com-
pute a comprehensive room transfer function (CRTF) for a
room. A CRTF is a single transfer function that relates the
loads for a room, zone, or building to the inputs, e.g., solar

Transactions of the ASME



Table 4 Thermal properiles of tha materials in the roof deck

Thermal '
Conductvity Densiry Specific Heat
Marerial (Wim-"C) (kg/m?) (kIfkg-"C)
Roofing 0.16 110.0 1.5
Gypsum Concrete 0.24 82.0 Q.88
Steel 45.0 7800.0 0.50
Glass Fiber 0.036 8.0 0.96

Table 5 Transfer lunction coefficients for one-dimensional and two-
dimensional modeis of roof deck section

ONE-DIMENSIONAL TWO-DIMENSIONAL
OQuside Inside Outside Inside
Temp. Temp. Temp. Temp.
§i 5 & : 54 5 - &
i W2C)  (Wim?C) Wm0 (Wim2.°C)
0 0.508 -6.280 0.304 -3.567
I 1172 4.571 -0.406 0.857 3.536 -0.469
2 0.115 -0.085 0.004 0.125 <0257 0.019
3 0.000 0.000 0.000 0.000 0.002 -0.000
2 "
M1
Z
Z
7
Zi
7
7 A
Z Z
2 7
Adiabaic =7 <~ Boundary
Boundary 7 Assumed
2 Adiabatic
2
7
Z
Z
Z
7
Z
Z
7
Z 2
[ e se—

Fig. 5 Nodal spacing of two-dimensional finite-difference model

1-Dimensional Model \
{
1.5 4
-3 /

§ / o
Z 14 ' »
= 2-Dimensional Model

0.5+

]
0
0 1 2 3 4 5 & 7 & 9 i
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Fig. 6 Raesponse to 0.56°C (1°F) step change in outdoor tomporaturo
for a section of the root deck

gains outdoor temperature, indoor temperature. Seem et al.
(1987) have reported on the computational savings of using a
CRTF over the heat balance method discussed in ASHRAE
(1977, 1981, 1985).

Conclusion

There are a number of areas of application, besides walls,
where transfer functions for muitidimensional heat transfer
could be used. Transfer functions could be developed to
model multidimensional heat transfer processes in an attic, a
basement, or earth-contact structure, or a room or building.
These transfer functions could be used to improve the speed
and accuracy of building simulation programs. Transfer func-
tions for all these applications can be efficiently calculated by
using the algorithms presented in this paper.
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APPENDIX A
Calculation of the Exponential Matrix

The calculation of the exponential marrix is an important
step in the calculation of transfer functions from a system of
first-order ~differential equations with constant co-
efficients. There are a number of different methods available
for calculating the exponential of a matrix. Moler and Van
Loan (1978) have compared 19 different algorithms for
calculating the exponential of a matrix and have concluded
that the power series expansion with scaling and squaring is
one of the most effective methods. This method is described
below.

The apprommanon

A%5r A ALt
6w R [,
e =1+ Ad+ T + — 3 —_— T @2n

for the exponential matrix is obtained by truncating the power
series expansion for the exponential matrix, equation (4), after
L terms. A criterion is required for determining the number of
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terms to keep. Cadzow and Martens (1970) give the following
relation for calculating L:

L =minimum of {31Aéll, +6] or 100 (22)

A5l is a matrix row norm (Atkinson, 1978). The matrix row
norm is calculated by

1S, =Maximum 3 la;d!

isisn j=1

(23

Equations (21) and (22) can be used to calculate the exponen-
tial of a matrix with at least six digits of accuracy. From equa-
tion (22) it can be seen that the number of terms in the trun-
cated power series expansion increases and thus the computa-
tional effort increases as the matrix norm of Ad increases.
Scaling and squaring can be used to reduce the computational
effort when the matrix norm of Aéd is large.

The following steps can be used to calculate the exponential
matrix by a truncated power series expansion with scaling and
squaring:

1 Use equation (23) to calculate 1AGH .

2 Find the smallest integer & such that 2k = 1A6l.,

3 Divide all entries in the matrix Ab by 2¢

4 Determine L frgm equation (22) for [A8/2F]

5 Calculate e"‘Z"z 1 from equation (21)

6 Square e A¥2") k times t0 obtain e*?

APPENDIX B
Integration of Integrals in Equation (7)

This appendix contains the steps for evaluating the two in-
tegrals in equation (7). Substituting the power series expansion
for e-Ae, equation (4), into the first integral in equation )
resuits in : :

] & Azal
AG-a) oy = @A _
Soe dex eA[SO (1 Aar— +...>da] 24)

Integrating the power series expansion for e~A« term by term
and substituting in the limits of integration gives :

] A:&Z
Soem °'doz=(l+A6+ 5 +. . )
A5 A2
(15—--2-—+T-. . ) 25)

Multiplying the two power series in equation (25) and combin-
ing common erms results in

Ast A A%
+...

5
SoeA‘5““’da=la+ 5 + I = (26)
Equation (26) can be rewritten as
8 252 A3S
=) Jry == A~ | A=
Soe" °d§ A (I+A5+—-—-——2! +—-——3! +) A~}
=A"l(eM-T) @n

Next, t_he second integral in equation (7) will be determined by
following a similar procedure.

Ad?

TR .)da]
A )&
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4 H
S aeA(é-a)da = eAli [S (IOI — Aa! +
Y 0

=(I+A5+

AP AW AW
T TR T TR

282

2!

=A"A“<I+A6+ +...)-A“A“--A“*5

=A"A“<e"5—l>-.~\"6 (28)

APPENDIX C

Leverrier’s Algorithm

Wilberg (1971) presents 2 proof of Leverrier’s algorithm for
calculating the inverse of the (FI—®) matrix. Leverrier’s
algorithm for calculating the e scaler constants and R matrices
in equation (15) consists of the following sequential relation-
ships: )

- Tr(®¢R,
R, =1 o =—r 0)
R1=®R0+ell ez=“ Tr(ikl)
Rz =®R1 +e:[ 93 = - Tr(‘zR:)

| |

{ |

i ' !

Tr($R,_

Rn_‘,=®R"_z +‘en_,xl e,,= ——r-S—';"""""-)'

where Tr (G) is the trace of the matrix G. The trace of a matrix
is equal to the sum of the diagonal elements of the matrix.

APPENDIX D

Efficient Calculation of Transfer Functions

A large amount of computer memory would be required to
store the n n x n R matrices if Leverrier’s algorithm were used
to compute transfer function coefficients. Fortunately, the
storage requirement can be reduced to two X n matrices if
Leverrier’s algorithm is combined with the analytical solution.
Also, it may not be necessary to calculate all transfer function
coefficients because the coefficients may become numerically
insignificant as j increases. The absolute values of the ¢; coef-
ficients decrease as j increases. This fact can be used as a
criterion to stop calculating transfer function coefficients. The
following steps can be used to compute numerically significant
coefficients with a minimum amount of computer storage for
the R matrices (only two nxn R matrices need to be stored):

1 Compute the exponential matrix ® =e*®
2 Use equation (10) to compute 'yandI;
3 Use equation (20) to compute S

4 R =1
5 For j=1to n—1 with a step size of 1
Ry = Roew
__ Tr(@Rqq)

Ryew = PRoq + &1
§;=C[Rgq(T; ~T2) +RpeuT2 ] + e,D
Stop if the absolute value of ¢; is less than a tolerance limit
Tr(2R,..)
T n
7 8,=CRye (', -T3) +€,D

e, =
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APPENDIX E

Two-Node Example

This appendix demonstrates the calculation of a transfer
function equation for a homogeneous plane wall with constant
thermal properties. Heat transfer through the wall is assumed
to be one dimensional. Inputs are inside and outside air
temperatures. The heat flux at the interior surface of the wall
is the output of interest. The first step in calculating a transfer
function equation is to use finite-difference methods to
discretize the problem spatially. A two-node finite-difference
model can be seen in Fig. 7.

Energy balances performed at the two nodes result in the set
of first-order differential equations

dTl T2 - T;

C—E—'-‘-"- hA(Tau, - Tl) + R (29)

de Tl - T-:
el 20 L = 0
p hA(T;,, - T,)+ R 30)

The resistance between the nodes can be calculated from the
following equation:

L
R=—
T @n '
The thermal capacitance of a node can be calculated by
LA
C= "cz 32)

The heat flux across the interior surface of the wall can be
calculated by

q"=hT,-T,) (33)
Equations (29) through (33) can be formulated in the follow-
ing state space representation by letting the temperatures of
the nodes be the two states:

dT, 1 ha 1
dr RC C RC [7-,}
dT, 1 1 h4 T
“dr RC RC C

h4a

c [T]
+

0 hA Tin

C

Tl Toul
(g"1=10 h][ } +[0  ~—h] [ ]
TZ Tin

For a 0.3 m concrete wall with a density of 2200 kg/m?,

specific heat of 0.84 kJ/kg-°C, thermal conductivity of 1.7.

W/m-°C, and convection coefficients of 8.3 W/m?-°C, the
matrices in the state space formulation become
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Fig. 7 Two-node model of plane wall

0.1043 0.0
h-! B=

-0.1757 0.0714
A= h-!
0.0 0.1043

0.0714 -0.1757

C=[0.0 83]W/m?-°C D=[0.0 -8.3]W/m?-°C

The exponential matrix & can be calculated by the algorithm

_described in Appendix A or by the techniques demonstrated

by Brogan (1985) or Chen (1984). The Brogan and Chen
methods are easier to use when making hand calculations of
an exponential matrix. For this example, the exponential
matrix with a 1 hour time step is

I [0.8410 0.0600}

0.0600 0.8410

Carrying out the matrix manipulations described by equation
(10) results in

0.0957 0.0033
I =A-Y&-DB=

0.0033 0.0957

- I, 0.0492 0.0011
=A" e =
z 8 0.0011 0.0492

The inverse of the (FI — &) matrix is computed by dividing the
adjoint of the (F1—®) matrix' by the determinant of the
(F1 - &) matrix.

F-0.8410 —0.0600 ] -
-— -1 -
(F1-2) [ ~0.0600 F—-0.8410]

[F—0.8410 0.0600 ]
0.0600 F-0.8410

= (F—0.8410)(F - 0.8410) — 0.0600°

[1 O]F+[—O.8410 0.0600]
01 0.0600 -0.8410

F*-1.6820 F+0.7037

The constant coefficient matrices and scaler constants in equa-
tion (15) are
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S‘ =C[R0(Pl "'Fz)‘}‘R‘Fz] +E|D

e, = —1.6820

e = 0.7037 ~[0.0346  13.9866]W/m2-°C

Ry=1 S, =CR,(I', -T';) +e,D=[0.0079 -6.1566]W/m*-°C

The transfer function equation for this two-node example is
R, = !l' -OfSMO 0.0600 q'=Sou, +S U+ Sall o3 — €140 ~exq/.x
[ 0.0600 —0.8410 =0.0094T, gy, +0.0346 T, _; our +0.0079T, _3;

Equation (20) can be used to compute the S matrices. ~7.88207, jn +13.98667, ;.
S,=CRoI: +D=[0.0094  —7.8820]W/m*-°C - 6.15667, .30 + 1.6824/5 = 0.703747 5

ERRATA

Errata for “Natural Convection Heat Transfer From a Discrete Ther
T. L. Ravine and D. E. Richards, published in the November 1988 iss

TRaNSFER, Vol. 110, pp. 1007-1009: 4
Figure 2 was printed upside down. The correct orientation of the figure is shown below.

mal Source on a Vertical Surface’’ by
ue of the ASME JournaAL oF HEaT

Fig. 2 Interferograms of a vertical fiat plate with a discrate thermal
source (Ray = 5774, d/l = 2.00, and L/ =9.00)
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