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transformation. First, if the original transfer function is Stable, then the reduced
transfer function will also be stable. Second, reduced multiple-input single-output
transfer functions can be determined by this method.

Introduction

Year-long simulations of the hourly (or shorter time period)
heating and cooling loads for buildings are important for sizing
heating, ventilating, and air conditioning equipment, deter-
mining the effect of a design change or retrofit on energy usage,
and developing optimal control strategies. Yearly simulations
require a large amount of computational effort because the
solution to a long-time transient heat transfer problem must
be determined. For long-time solutions, transfer function
methods are more efficient than Euler, Crank-Nicolson, or
other classical techniques because there is no critical time step
and the internal temperature distribution is not calculated.
Transfer functions relate the output of a linear, time-invariant
system to a time series of current and past inputs, and past
outputs. Inputs are modeled by a continuous, piecewise linear
curve.

The detinition of transfer function used in the field of heat
transfer in buildings is different from that used in the field of
automatic controls. In automatic controls a transfer function
is the Laplace or z-transform of the output divided by the
Laplace or z-transform of the input. In heat transfer, a transfer
function is a recursive difference equation that relates the out-
put of a linear, time-invariant system to a time series of current
and past inputs, and a time series of past outputs. In this
Paper, the latter definition will be used. Also, this paper uses
the Laplace transfer function as the definition for the Laplace
transform of the output divided by the Laplace transform of
the input and the z-transfer function as the z-transform of the
output divided by the z-transform of the input.

Transfer functions for computing heat flow through building
elements (e.g., walls, floors, roofs, partitions) are of the form

n n
0 = 1 T ot bT, ) - ¥ (caly) (1)

Jj=0 Jj=1
There are a number of methods available for calculating the
transfer function coefficients in equation (1). Stephenson and
Mitalas (1971) presented a method for determining transfer
functions for one-dimensional heat transfer through multilay-
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ered slabs by solving the conduction equation with Laplace
and z-transform theory. Hittle (1981) presented a very detailed
description of the development of transfer functions for mul-
tilayered slabs. Celyan and Myers (1980) and Seem et al. (1989a)
presented methods for determining transfer functions for mul-
tidimensional heat transfer by determining the exact solution
to a system of ordinary differential equations.

Seem et al. (1988b) presented a method in which the transfer
functions describing heat flows in building elements can be
combined into a single transfer functions for an enclosure,
referred to as a comprehensive room transfer function. The
number of past time steps in the combined transfer function
is equal to the summation of the number of past time steps
for the individual transfer functions. Thus, the computational
effort of performing a simulation with a comprehensive room
transfer function is not significantly different from the effort
required to perform a simulation with the individual transfer
functions. Fortunately, model reduction methods can be used
to reduce the number of significant coefficients in transfer
functions. -

A number of different model reduction methods have been
developed by researchers in the fields of automatic controls
and systems analysis. The motivation behind the development
of these methods is to reduce computer time for system sim-
ulation and to make control system design and analysis easier.
Shamash (1980) notes that the Padé approximation is a popular
method for reducing single-input Laplace transfer functions
because it requires little computational effort, cancels common
factors if they exist, and matches the steady-state response of
the original and reduced Laplace transfer functions for pol-
ynomial inputs. The Padé approximation requires the power
series expansion of the original Laplace-transfer function to
be equal to the power series expansion of the reduced Laplace-
transfer function for terms of order ° to s (The number of
coefficients in the reduced Laplace-transfer function js equal
to 2m+ 1.) There are two disadvantages of the Padé approx-
imation. First, if the original transfer function is stable, then
the reduced transfer function s not guaranteed to be stable.
Second, reduced multiple-input transfer functions cannot be
obtained with the Padé approximation.

Seem et al. (1989b) have used the bilinear transformation
and Padé approximation to reduce single-input transfer func-
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tions. There are five main steps required to compute a reduced
transfer function with m past time steps. First, z-transform
theory is used to determine a z-transfer function from the
original transfer function. Second, the bilinear transformation
is used to transform the z-transfer function into a w-transfer
function. w-transfer functions and Laplace transfer functions
have similar properties because both are unstable if they have
poles in the right halves of their planes. Third, the Padé ap-
proximation is used to determine a reduced w-transfer func-
tion. The Padé approximation requires the power series
expansion for the reduced w-transfer function to be equal to
the power series expansion of the original w-transfer function
for terms of order w® to w*m, Fourth, the bilinear transfor-
mation is used to determine a reduced z-transfer function from
the reduced w-transfer function. Fifth, z-transform theory is
used to transform the reduced z-transfer function into a re-
duced transfer function.

This paper presents a new model reduction method for re-
ducing the number of coefficients in transfer functions used
to solve heat transfer problems. There are two advantages of
this method over the Padé approximation and bilinear trans-
formation. First, if the original transfer function is stable, then
the reduced transfer function will also be stable. Second, re-
duced multiple-input single-output transfer functions can be
determined by this method.

The first section of this paper contains the development of
equations for reducing single-input transfer functions. In the
second section of this paper, a step-by-step procedure for re-
ducing multiple-input transfer functions is presented. The last
section of this paper contains applications of dominant root
model reduction.

Reduction of Single-Input Transfer F uhctions

This section describes a method for determining a reduced
single-input transfer function with m past time steps from a
single-input transfer function with n past time steps (m is less
than n). First, a derivation is presented for determining the
roots of the original transfer function that have the largest
effect on the transient response to a step input. (The roots of
a transfer function are determined from the output coeffi-
cients.) The roots that have the largest effect on the transient
response are defined as the dominant roots. The dominant
root of the original transfer function are used to determine

the output coefficients of the reduced transfer function. Inpuyt
coefficients of the reduced transfer function are determined
by using the same procedure that the Padé approximation and
bilinear transformation use to determine input coefficients,
i.e., the power series-of the original and reduced w-transfer
functions are equated for powers of w from 0 to m. The seven
main steps required to determine a reduced single-input trans-
fer function are described as follows. .

Dominant Roots (Step One). Thjs step uses Z-transform
theory (Jury, 1964) to determine the explicit solution of the
Tesponse to a unit step input for a single-input transfer func-
tion. This explicit solution is used to determine which roots
have the largest effect on the transient response to a step input,
i.e., the ‘*“dominant roots.””

The following single-input transfer function relates the in-
puts of a system to the outputs:

n n
yo= 1 (@)=Y by, ) @
i=0 j=1
The z-transform of the output, Y(z), is related to the z-trans-
form of the input, U(z), by the following relationship:

Z (az™ Y (az"th
Y(z) = 52 U(z) = 58—or )

3 bz PIYCE

=0’ j=0

P
¢l

where b, = 1.
The z-transform of a unit step is )
Z
U(z) =——
(2) -1 4
Substituting equation (4) into equation (3) gives

ZE az"~i
Y(z)=—Lf20 ()

n
@-1) bz
. jﬂo
Equation (5) is the z-transform of the output when the input
is a unit step. Equation (5) can be rewritten in the following
form:

Nomenclature
a = input transfer function transfer function, output sults from the bilinear
coefficient, outdoor tem- coefficient for reduced transformation )
perature transfer function _ transfer function ¥ = output
coefficient d = input coefficient for re- Y(z) = z-transform of the output
@ = input coefficient for w- duced w-transfer function Z = complex variable that re-
transfer function e = output coefficient for re- sults from z-transformation
b = output coefficient for trans- duced transfer function 8 = constant that results from
fer function, indoor tem- G(w) = w-transfer function partial fraction expansion,
perature coefficient for a G.(w) = reduced w-transfer function equation (8)
building element transfer G(z) = z-transfer function d = time step
~ function G,.(2) = reduced z-transfer function A = root, equation 6)
b = input coefficient for w- m = number of past time steps A = dominant root
transfer function in reduced transfer funcrion w = quantity used to select
¢ = transfer function coefficient n = number of past time steps dominant roots, equation
for past heat fluxes for a in original transfer function 12
building element N.(w) = function of complex vari- .
¢ = coefficient for power series able w Subseripts
expansion of w-transfer q" = heat flux i = inside
function u = input ‘ 0 = outside
d = outdoor temperature coeffi- U(z) = z-transform of the input t-né = input or output 7 time steps
cient for a building element w = complex variable that re- prior to time ¢
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Y (azmti)
Y(z) = &% (6)

H (z=X\))
j=0

where Ag=1and N\, N\, Ny, .. ., \, are the roots of
0T 0" L+ b,z b,=0 @)

Prandt and Wu (1983) state that a transfer function will be
stable if the absolute value of every root in equation (7) is less
than one. For heat transfer problems that have at least one
convective or specified temperature boundary condition, the
roots of equation (7) are real and between zero and one (Ceylan,
1979). Hittle (1981) shows that all the roots are distinct for
partial differential equations describing heat transfer. When
all roots are distinct, the response (e.g., temperature or heat
flux) to a step change in an input (e.g., temperature or heat
flux) is a summation of exponentials. Transfer functions gen-
erated from finite-difference/element models or from a com-
bination of transfer functions for building elements may have
multiple real roots. Seem (1987) describes a method for elim-

inating multiple roots in transfer functions.
When the roots are real and distinct, partial fraction ex.
pansion can be used to write the z-transform of the output as
Boz Bz Byz Bnz ®)

e e e T Y
) Z-N =N z=N, -\,

where

n
¥ @n
By=F—— )
Hov-»
i=0
i#j
Transforming equation (8) back to the time domain gives
Yesrs=Bo+ BN +BNE+. . L +8,\K (10)
where k0.
Equation (10) is the explicit solution for the response at time
6 to a step input at time zero. The response to a step input
can be split into two parts: the steady-state response and the

transient response. The steady-state response is 8, and the
transient response is

YI+k6“BO=6l>\,l(+62>‘§+‘ oo+ BN (11

The summation of the transient response from time zero to
infinity is
-~}

L Giw=80 = ¥ BN 48N+ . 18N
k=0

k=0
= 8, - B, + + B, 12)

=X 1=), 7 I-A,
The roots with the largest effect on the transient response are
the roots with the largest value of the following quantity:

B; A
1-x (13)

The dominant roots are defined as the roots with the largest
effect on the transient response, i.e., the roots with the largest
@ computed from equation (13). (The third section of this
Paper shows that the largest root is not always the dominant
root.)

-Output Coefficients of the Reduced Transfef Function (Step
Two), Equations (9) and (13) can be used to determine the
mdominant roots of the original transfer function. This section
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contains equations for determining the output coefficients from
the m dominant roots.

The following equation is used to determine the numerator
of the reduced z-transfer function from the m dominant roots:
m
"), (dz™)

' PACAR)
Gr(Z)'—' ’j"=0 = £20

II z-%) IMa-%5:y
j=1 J=1

(14)

where X,-: one of the m dominant roots; m = number of past
time steps in the reduced transfer function, ’
Multiplying the m terms together in equation (14) results in

¥ (az)
G, (z) =122 (15)
(ez™)
0

J=

where

. (16)

en=(-D"[[ N
f=]

The ¢; coefficients in the reduced z-transfer function, equation
(15) are the output coefficients for the reduced transfer func.
tion. As an alternative to equation (16), Appendix A contains
an algorithm for determining the ¢, coefficients in equation
(15).

This step used a subset of the roots of the original transfer
function (i.e., the dominant roots) to determine the output
coefficients of the reduced transfer function. Thus, if all the
roots of the original transfer function are less than one in
absolute value, then all the roots of the reduced transfer func-
tion will be less than one in absolute value. Recall that the
transfer function is stable if all the roots are less than one in
absolute value. Therefore, if the original transfer function is-
stable, the reduced transfer function will also be stable.

Original w-Transfer Function (Step Three). The input
coefficients of the reduced transfer furiction are determined
by equating the power series expansion of the original w-trans-
fer function with the reduced transfer function for terms of
wd to w™, Step four contains equations for determining the
power series expansion of the original wtransfer function from
the original w-transfer function. This step contains equations
for determining the original w-transfer function from the orig-
inal transfer function, i.e., equation (2),

To determine the original w-transfer function, G(w), the
bilinear transformation (Kuo, 1980)
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is substituted into the original z-transfer function, i.e., equa-
tion (3). This results in

@ (1 —wy(l +w)n-i
=0

G(w)=° = = 42
Yo, 1ow) ™ Yo =wy(1+w)n-s
~ I\ +w il
/= J=

(18)

Appendix B contains an algorithm for determining the Yijum
coefficients in the following equation:

=WVt )= Vo, wh) (19)
i=0

Substituting equarion (19)into equation (18) gives

n n n n
i . i
Yo (Do w) ) 2)
i=0 i=0 f=0

G(w) =12

" = (20)
Eaj <E vi(j,n)wi) E Eiji(/.ﬂ)> Wi
j=0 i=0 i=0 \j=0

Rearranging equation (20) resuits in

n
Y

Glw) =50 @n
El;iwi
i=0
where
Zz,r=ajv,~(j.,,, (22}
bi=b;;n) (23)

Power Series Expansion for the w-Transfer Function (Step
Four). Following is a description of equations for determin-
ing the power series expansion of the original w-transfer func-
tion from the original w-transfer function. The power series
expansion for the original w-transfer function is of the form

G(W)=60+,élw+ézwz+é3wj+. .. (24)

The following equation results from equating equation (24)
with equation (20):

do+a\w+, . L+ a,w

=(bo+b,w+. . bW (Eo+ E w WL L) (25)

Multiplying the terms on the right-hand side of equation (25)
together and combining common powers of the complex vari-
able w results in

Ao+ @ Ww+. . . +a,w"
=b-oc-‘0+ (505,+5,éo)w+ (b-gé:+ 516[+5262)w2+- .«
(26)
The coefficients for the power series expansion of G(w) are

determined by equating the coefficients for equal powers of
W in equation (26).
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Denominator of the Reduced w-Transfer Function (Step
Five). This Step contains equations for determining the de-
nominator of the reduced w-transfer function from the e; coef-
ficients in the reduced Z-transfer function, i.e., equation (15).
Step six contains the equation for determining the numerator
of the reduced w-transfer function from the denominator of
the reduced w-transfer function and the power series expansion
of the original w-transfer function.

Substituting the bilinear transformation, equation (17), into
equation (15) results in the following reduced w-transfer func-
tion:

d (w) = N (w) _ IN.(W)] (1 +wym 28)
r —m l"'W J = m ] i

);[e, r ] E[ej(l—w)f(l+w) i

J=0 /=0

where
N.(w) =function of complex variable w

Thealgorithm described inappendix B can be used to determine
the v;; ., coefficients in the following equation:

(= wy(l+wym=i= E(Ui(j.m)wi) 29

i=0
Substituting equation (29) into equation (28) gives
IN (W11 + wym IN(W)]1(1 + wym

G (w)= m ™ == ™
) [‘—’/E (UiU.m)wl)J 2[ (/Eejv,uv,,,,). W'J
J=0L =0 1=0 j=0
(30)
Rearranging equation (30) gives
Ydw
Gr(w) =152 31
Eé,w‘ :
i=0
where
J,»:coefficients to be determined in step six
m
=Y etim (32)
j=0

Numerator of Reduced w-Transfer Function (Step
Six). This step describes equations for computing the ny-
merator of the reduced w-transfer function, G.(w), from the
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denominator of the reduced w-transfer function and the power
series expansion of the original w-transfer function. Equating
the reduced w-transfer function, equation (31), with the power
series expansion of the original w-transfer function, equation
(24), gives
d‘o‘*‘d‘ﬂt""dzwz"'. .. +dm)Vm

=(Eg+ EWH Wt Lk E W) (Got Giwt G, )

=e9Co+ (€0C1+€,Co)w+ (69éy+ 6,6, + e:C )W+, .

+(éoém+é|ém_|+ézém-z+...+ém£’0)wm+... (33)

The numerator coefficients ¢, ¢, ¢, . . . , € of the reduced
w-transfer function are determined by equating powers of w
from zero to m in equation (33).

d0=é050
di=éoC,+¢eCq
d',_: €0Ca+ €,C )+ e,¢,

m
d-m=éoém+2éiém~—i (34)

i=|

Input Coefficients From the Reduced Transfer Function
(Step Seven). Next, the bilinear transformation and z-trans-
form theory will be used to determine the input coefficients
of the reduced transfer function from the reduced w-transfer
function. The reduced w-transfer function, G,.(w), can be
transformed into a reduced z-transfer function by using the
bilinear transformation

- |
w=izl 1=z (35)
z+1 14z

Substituting equation (35) into equation (31) results in

m . JE (N m - ) : )
2[41,.(:—;—‘;—_7) J Yld(1=z"Yi(1+z7 )y

Grla) =t = 2
e +—— [ei(l—z")(1+z" )™=

Z;)[ (Hz ') J g

(36)
The algorithm described in Appendix B can be used to compute
the vj; m, coefficients in the following equation:

A=z7h(1=z=ym=i = Yy, 2~ 37
=0

Substituting equation (37) into equation (36) gives

Gr(Z) =
mnoosm m m m
Ed ( Vitim?Z ™ E Ed:l’ju,m)) z™/ Zdjz"
=0 =0 i=0 \i=0 =0

= = iz
m m = "m m = m
Ee (/ L/(i.m;zﬁ) E (Eélvj(i.m))z ! Ee: !
=0 = j=0 \i=0 1=0

(38)

where
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Edfv/(i.M)
i=0
4 = F— (39)

m
E eIUOli.m)
i=0

Recall that the e, coefficients were determined from the dom-
inant roots, i.e., equation (16) or the algorithm in Appendix
A. Transforming the reduced z-transfer function back into the
time domain gives the following reduced transfer function:

m m
2= )~ Ve, ) (40)
Jj=0 Jj=1

An example of dominant root mode] reduction for a single
input transfer function is considered in Appendix C.

Reduction of Multiple-Input Transfer Functions

This section extends the single-input model reduction method
described in the previous section to multiple-input rransfer
functions. First, a step-by-step procedure for reducing mul-
tiple-input transfer functions is presented. Then, a discussion
of dominant root model reduction for building element rransfer
functions and CRTF’s will be presented.

The following procedure can be used to compute reduced
multiple-input transfer functions:

4

1 Use a root-finding procedure to determine the roots of
equation (7). The roots in equation (7) are the same for all
inputs because equation (7) is based upon the transfer function
coefficients for outputs.

2 Use equation (9) to determine n B; terms for every input
(n is equal to the number of past time steps in the original
transfer function).

3 Use equation (13) to determine the n w; values for every
input. .

4 Select the dominant roots for every input. Let m equal
the total number. of dominant roots for all inputs.

5 Useequation (16) or the algorithm described in Appendix
A to determine the transfer function coefficients for past out-
puts from the m dominant roots.

6 Use z-transform theory and the bilinear transformation
to determine single-input w-transfer functions for every input
from the original transfer function, i.e., use equations (22)
and (23) and the algorithm described in Appendix B to deter-
mine the coefficients in equation (21) for every input.

7 Use equation (27) to determine the power series expan-
sion of the w-transfer functions for terms of order w° 1o w™
(a power series expansion must be computed for every input).

8 Use equation (32) and the algorithm described in Ap-
pendix B to determine the denominator of a reduced w-transfer
function. (The denominators of all the reduced transfer func-
tions are the same.)

9 Use equation (34) to determine the numerator of the
reduced w-transfer functions from the denominator of the
reduced w-transfer function and the power series expansion
of the original w-transfer functions,

10 Use equation (39) to determine the coefficients for the
inputs in the reduced multiple-input transfer function from
the reduced single-input w-transfer functions.

When using the methods of Stephenson and Mitalas (1971),
Ceylan and Myers (1980), and Hittle (1981) to determine trans-
fer functions for building elements, the roots are determined
before the output transfer function coefficients are computed.
Thus, a root-finding procedure is not needed when computing
reduced transfer functions for building elements, i.e., step one
can be eliminated. Determining the roots of a CRTF may be
a numerically difficult problem. Seem (1987) presented a
method for avoiding this numerical problem.
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Tablel Transfer function coefficients for ASHRAE wall 25

J e, (W/m*C) b (W/m™-°C) c,

0 0.0021224 -4.0930276 1.0000000
! 0.0467467 6.9131200 - 1.0305444
2 0.0558484 - 3.0653380 0.2012205
3 0.0071115 0.1336760 ~-0.0072612
4 0.0000640 ~0.0002212 0.0000026

Table 2 Roots and w; values for ASHRAE wall 25

wj
J A Outdoor temperature Indoor temperature
1 0.78640705 0.718 0.066
2 0.19749089 0.062 0.722
3 0.04628098 0.019 0.002
4 0.00036547 0.002 0.004

Table3 Reduced transfer function coefficients for ASHRAFE
wall 25

J a; (W/m*-°C) b, (W/m?*-°C) ¢

0 0.0136599 —4.0877158 1.0000000
1 0.0128340 6.7063322 -0.9838979
2 0.0908708 —-2.7359821 0.1553082

Table4 Reduced transfer function coefficients for ASHRAE
wall 25

Dominant root Largest root

i b (W/mP-°C) g, b, (W/m%-°C) ¢,

0 -4.30546 1.00000 ~1.64838 1.00000

1 3.75600 ~0.19749 1.50217 ~0.78641
Applications

To test dominant root model reduction for building elements
with a wide range of properties, reduced transfer functions for
the following ASHRAE (1977) building elements were com-
puted:

1 Exterior Wall 4 (0.1 m face brick, air space, and 0.2 m
high). :
2 Exterior Wall 25 (frame wall with 0.1 m brick veneer),
3 Exterior Wall 28 (metal curtain wall with 0.05 m of
insulation).
4 Exterior Wall 36 (frame wall with 0.08 m insulation).
5 Exterior Wall 54 (0.1 m face brick, air space, and 0.3 m
high weight concrete).

For all of the building elements tested, dominant root model
reduction was used to obtain a reduced set of coefficients that
closely modeled the response of the full set of coefficients.

Table 1 contains transfer function coefficients generated
from Mitalas and Arsenault’s (1971) program for ASHRAE
wall 25. Table 2 contains the roots and values of w; for
ASHRAE wall 25. Table 2 shows that the first root is the
dominant root for a step change in the outdoor temperature
and the second root is the dominant root for a step chnge in
indoor temperature. These two dominant roots were used to
obtain the reduced transfer function coefficients in Table 3.
Figure 1 is a graph of the response to a 1°C step change in
outdoor temperature for the full set of coef ficients, the reduced
set of coefficients, and the dropped set of coefficients, i.e.,
the full set of coefficients for two time steps back. Figure 2 is
a similar graph for a 1°C step change in indoor temperature.
Both these graphs demonstrate that the reduced set of ceef-
ficients closely match the response of the full set of coefficients
and the dropped set of coefficients produces a response dif-
ferent from the full set of coefficients.

To demonstrate that the second root is dominant for the
indoor temperature, reduced transfer functions were computed
with both the largest root and the dominant root. (The largest
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root is the root with the largest value.) Table 4 contains these
reduced transfer functions. Figure 3 is a graph of the response
to a 1°C step change in temperature for the full set of coef-
ficients and reduced sets of coefficients, which were obrained
with both the dominant root and the largest root. The response
for the reduced transfer function with the dominant root is
much closer to the response of the full set of coefficients than
the response for the reduced transfer function with the largest
root.

Dominant root model reduction can also be used to deter-
mine reduced CRTF’s. Seem (1987) contains the original and
reduced transfer function coefficients for an eight-surface
room. Figure 4 shows the response to a 1°F step change in
outdoor temperature for a CRTF with 19 past time steps and
a reduced CRTF with 3 past time steps. The responses for the
original and reduced transfer funcrions are nearly identical.
Seem (1987) shows similar figures for step changes in indoor
temperature, solar radiation gains, and radiation gains from
people, equipment and lights. These figures demonstraté that
dominant root model reduction can be used to reduce signif-
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Fig. 4 Response to 1°C step change in outdoor temperature for the
eight-surface room.

icantly the number of coefficients in a CRTF. Seem (1987)
describes a method for determining the ““correct”” model order
of reduced transfer functions, i.e., the minimum number of
past time steps required to model the heat transfer processes
accurately in a building with a reduced transfer function.

Conclusions

A new model reduction method for reducing the number of
coefficients in multiple-input transfer functions with real and
distinct roots has been presented in this paper. This model
reduction method can be used to reduce significantly the com-
putational effort of performing simulations of transfer func-
tions used to solve heat transfer problems.
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of Formulas and Tables,

APPENDIX A

Algorithm for Determining Output Coefficients

This appendix contains an algorithm that can be used to
determine the output coefficients of the reduced transfer func-
tions from m dominant roots of the original transfer function.
The following equation relates the m dominant roots of the
original transfer function with the output coefficients of the
reduced transfer function: '

m m
Ma-%zY =Y ez (41)
i=1 j=0
where

% = one of the m dominant roots

The following algorithm can be used to determine the e; coef-
ficients in equation (15) or equation (41):

€ = 1
e = —N\ §
—=Fori = 2 to m with a step size of 1
' e =20
For j=1ito I with a step size of — |
g = e—e_\\

Next j

Next |

APPENDIX B

Extension of Pascal’s Triangle

Numerical analysis textbooks (Conte and de Boor, 1980;
Sedgewick, 1983) contain algorithms for multiplying polyno-
mials. These algorithms could be used to obtain the Uitim
coefficients in the following equation:

n
A=x)(1+0"" = Vv, 00 (42)
i=0
This appendix contains a numerically efficient algorithm for
determining the Vjim coefficients in equation (42). The algo-
rithm is numerically efficient because no multiplications or
divisions are required. The following algorithm for computing

the vy, coefficients is based upon an extension of Pascal’s
triangle (Spiegel, 1968):

Voti,my =1
r—&For k=1 to i with a step size of 1
Vktiy = = Uk - 1(iym
Forj=(k-1)to 1 with a step size of -1
Yrtim = Vjimy = Vi 1gimy

Next j

e Next &
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[——b- For k={(i+1)t0 n with a step size of |
V(i = Uk = (i)
For j=(k-1)to | with a step size of —|
Yitim = Yjtim + Uy~ iy
Next j ‘
Next k

APPENDIX C

Example

To demonstrate dominant root model reduction, a reduced
transfer function with one past time step (i.e., m=1) will be
determined from a transfer function with two past time steps

(i.e., n=2). For this example, the following transfer function
will be reduced:

Y=ol =a\Uy g+ gty _25~ b1y, 5= by, 5

=u,+0.5u,_6+0.lu,_25+l.ly,_5~0.3y,_25
From equation (5), the z-transform of the output when the
input is a unit step is
Y(z)= Z(a* + a7+ ay) __2(2+0.52+0.1)
(2= )(beZ + b,z + by) - 1)z*-1.12+0.3)

The quadratic equation can be used to determine the roots of
equation (7).

X _=bi=Vbi-4p,
Iy A2 2
_ LIxN/(~ 1.1)2—4(0.3)

2

Using the roots determined from the quadratic equation, the
z-transform of the output can be written as

& +aP+az __ D4+0.57+0.12
T (Z=N)(z-N)(z=Ny) (z2-1)(2-0.6)(z~0.5)
From equation (9), the B; coefficients in equation (8) are
__9N+ah+a  1(0.6)+0.50.6)+0.1 _
b= A=M)(M=X)  (0.6-1)0.6-0.5)

=0.6, 0.5

Y(z)

g =GN ta) +a, 1057 +0.50.5 +0.1
0= M) (M=) (0.5-1)(0.5-0.6)

Using equation (13), the following w; quantities can be com-
puted for the roots:

=B | =
ll—x,,‘ ’l-—’0.6 =475
B l_
-]

(.v)x—-
12
2
R mem— | = 24
@2 ’x lx 05 |2
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w; is larger than w,, therefore the domin
N=XA =06

Next, the coefficient in
transfer function is comp

ant root is

the denominator of the reducec
uted from equation (16)

e6=-X = -0.6

From equation (18), the original w-transfer functjon is

G(w)=a°(l+w)z+“l(l“W)(1+W)+'0:(l-w)3
b0(1+W)2+b[(]—w)([+w)+b:(l_w)z

- (1+w)2+0.5(l—w)(1 +w)+0.1(1 - w)?
(l+w)z~l.l(l-w)(l+w)+0.3(1 -w)?

_L6+1.8w+0.6w gy a\w+ g.w?
T0.2+ Ldw 2.ami Bo+byw+ byu?
The first two terms in the power serie
be computed from equation (27) -

. a 1.
CO=£" = ——6 =8

By 0.2

S expansion of G(w) ¢;

- dl“bléo

i = _ 18-(ay®)

bo 0.2 -
From equation (28), the reduced w-transfer function is
No(w) (1+w) i
e(l+w)+e (1-w)

G,(W) =

—__ Nwa+w
,‘(1+w)+(—o.5)(1-w)

_N.(w)(1 + W) N.(w)(1+w)

T 04+16w | épq ew
The numerator coefficients of the reduced w-
are determined from equation (34)

do= éoéo = (0.4)(8) =32

transfer function

dy=éy¢, + €1Co=(0.4)(~47) +(1.6)(8) = — 6

Equation (36) can be used to compute the reduced z-transfer
function from the reduced w-transfer function

_do(l+z7)+d\(1-z")
Gr(z)= eo(l+z" Y+ e(l—z")

32 +z"h-6(1-z"")
T04(l+z- N+ L6(1-z7Y

_—l4+46z"!
T 1-0.6z-"

Transforming the reduced z-transfer function into the time
domain gives

Y= — l.4u,+4.6u,_5+0.6y,_,5
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