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ABSTRACT

A method is developed for calculating the monthly and annual values of heat loss from
basement walls and floors. The overall wall and floor conductances are calculated first.
These are determined from a two-dimensional finite element analysis. The numerical values
from this analysis are correlated in terms of the governing nondimensional parameters. These
conductance values are then combined with a representative ground temperature based on local
ambient temperature profiles. The results of this approach compare favorably with those in
the ASHRAE Handbook-1981 Fundamentals and more recent studies. The correlations presented are
suitable for use with programmable calculators or microcomputerse.

INTRODUCTION

The determination of the proper insulation level for basements has become increasingly
important. In the past, the heat loss from basements was considered negligible, and
insulation of other parts of the house was considered more important. As a result, the
portion of the total heat loss from a house due to the basement has become larger. A need
exists for a raplid and accurate method for calculating the amount of heat loss from
basements.

The advent of the programmable calculator and the affordable microcomputer has made it
possible for architects and engineers to perform energy and heat-loss calculations that were
virtually impossible only a few years ago. With this new hardware has come a demand for
simplified but accurate algorithms for "emergy calculatiouns that may readily be programmed.
Equations and correlations are preferable to tabular values.

Although well~established and simplified methods exist for calculating the heat loss
from above-ground structures (ASHRAE 1981), determining the heat loss from a basement or
underground structure is somewhat wmore complicated. This heat loss is a three-dimensional
phenomenon, with heat conducted radially away from the basement and vertically toward the
ground and deep soil. Several two-dimensional methods have been developed to approximate the
loss from basements. These include the circular heat-flow path method (Latta and Boileau
1969), the double heat-flow path method (Wang 1979), two-dimensional finite element or finite
difference programs (Wang 1979; Shipp and Broderick n.d.), and, more recently, a shape—factor
method (Mitalas 1983). The heat-flow path methods and the shape-factor method are time
consuming and tedious when parameters are being varied. The numerical techniques require
extensive computer facilities that are not usually available to architects and engineers. The
shape~factor method of Mitalas (1983) 1is accurate,. but it requires considerable time to
calculate yearly loss. Furthermore, it 1is restrictive with respect to the relationship
between floor and wall insulation thickness and the soil thermal conductivity allowed. This
paper presents a method of calculating basement heat loss in which correlations are developed
in terme of the governing nondimensional parameters. These closely approximate the results of
two~dimonsional finite element calculation programs but do not require extensive
computational time or effort.
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METHOD OF ANALYSIS

The method of calculating heat flow rate from a basement is based on the following conduction
equation:

q = UA(Ty = T g) + UA (T - Tgw) (1)

where q 1is the basement heat loss, U is the basement wall or floor and overall ground
conductance, A is the basement wall or floor area, Ty is the basement space temperature, and
T 1is an effective ground temperature. In order to calculate q, all of the variables on the
r%ght—hand side of equation 1 must be obtained. The areas are readily determined, and the
space temperature 1is either known or determined in terms of the house temperature. The

overall wall and floor conductances and the effective ground temperature must be established. .’

In the method developed here, the conductances are defined as the steady-state values for the
basement-ground-ambient air combination. The effective ground temperature accounts for energy
storage in the ground and seasonal temperature variations. It is the temperature that gives
the actual heat flow when combined with the steady-state conductance values. The advantage of
this approach is that the steady-state conductances are readily calculated in terms of
governing parameters.

The overall heat-transfer coefficients and the effective ground temperature were
calculated using a finite element conduction program (Myers 1978). Values of U and T
generated by this program were correlated as functions of readily available physica%
parameters in nondimensional form. The next two sections describe how values of U and T, were
generated and tabulated. &

Calculation of U

- In order to calculate conductances for the floor and walls of the basement, an array of
alements was set up as shown in figure 1. The right-hand and bottom elements along the
boundary were specified to be at a constant temperature, To+ The conductance, U, does not
depend on temperatures, and an arbitrary constant temperature, T., 1is used for .calculating
these steady-state conductances only. The conductances calculated in this manner will then be
used with the effective ambient and ground temperatures in order to calculate heat loss.

Convective boundary conditions were established between the ground surface and the
ambient at T. and between the inside of the basement and the basement air at Ty. The addition
of wall or fioor insulation is treated as an additional thermal resistance on the basement
floor or walls. This assumes that insulation has negligible capacitance and that licele
vertical heat flow occurs within the insulation. The walls were taken as conventional
concrete walls. The steady state heat flow, qgg, Wwas ~computed using the finite element
program. The conductances U, and Ug were then calculated from
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Values of U, and Ug were determined over a wide range of floor and wall insulation
values. These results were expressed in terms of dimensionless resistance and geometry ratios
as '
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The wall and floor resistances (R, and Rg) are the sums of the thermal resistances of
the concrete wall, insulation, wall coverings, and inside film coefficient. The ratios
(U D/kg) and UgD/kg) are nondimensional overall wall and floor conductances, rtespectively,
and include ground resistance. The ratios (D/Rykg) and (D/Rgkg) are nondimensional wall and
floor resistances, respectively, and do not include  the ground resistance. The ratio (W/D) is
a geometric ratio for the basement width and depth. These five nondimensional parameters
allow convenient generalization of these results to a wide range of situations. A least
squares Box algorithm (Ambrose 1970) was used to determine the appropriate functional
relationships between the groups.

Calculation of Tg

As previously discussed, T, is an effective ground temperature with no readily apparent
physical meaning. It is that ground temperature that gives the correct heat flow and it
depends on the seasonal ambient temperature profile. If the soil had no capacitance, T, would
always be equal to the current ambient temperature, and the heat flow at any time could be
calculated directly using equation 1. However, the soil does have capacitance and, therefore,
both the current amblent temperature and the ambient temperature history affect the value of

Tgﬂ

1t was decided to describe the ambient temperature profile in terms of a few readily
available parameters. The long=-term daily average temperatures are known to closely follow a
sine wave pattern, with the mean value of the sine wave equal to the yearly average
temperature. For different locations, the mean and the amplitude will vary, but the pattern
formed by the long-term daily average temperatures may always be approximated as a sine wave.
This allows the pattern of daily average temperatures to be predicted for any location. The
only parameters required to describe such an ambient temperature curve are the yearly average
temperature (the mean of the sine wave), the highest and lowest long-term daily average
temperatures (the amplitude of the ‘sine wave), and the phase angle (the day of the year that
the sine wave weather pattern first exceeds the mean value). The period of any long=-term
dally average temperature curve is always ome year.

The expected temperature curve of daily average temperatures can therefore be obtained.
However, diurnal variations in temperature may have to be taken in to account. Erbs (2t al.
1983) found that the average diurnal variation in amblent temperature can be expressed in
terms of a series of sinusoids. The average is the dally average value for the month, and the
amplitude depepds on the amount of solar radiation striking the ground surface.

The effective temperature was found using the sinusoidal variation of diurnal and daily
averge temperatures in the finite element program to calculate heat flow. It was found that
the daily heat flows, using a constant dally average temperature, were essentially the same
as those computed using the diurnal temperature variation. Therefore, daily heat-flow rates
were calculated using a constant daily average temperature for each day. Daily heat flows
were computed for each day of the year. The effective ground temperature for each day of the
year was then computed using
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where T, . and T N are the daily effective ground temperatures for the basement wall and
floor, and a4,w and q4,f are the average daily heat~-flow rates for the basement wall and
floor computed from the simulations.

The effective ground temperature calculated in this manner varies sinusoidélly over the
course of a year. It is written as

_ (n-ni)(360)
T, =T, * By sin(—5gz— - ) (3)



where T is the yearly average temperature, B, is the amplitude of the effective ground
temperature curve, ¢ is the phase lag between the effective ground temperature curve and the
ambient temperature curve (in degrees), ny is the day number on which the ambient temperature
curve crosses the mean value, and n 1s the. day number on which the heat flow is to be
calculated. The term ny reflects the fact that ambient temperature is out of phase with cthe
Gregorian calendar, while ¢ reflects the phase difference between the ground temperature at
any depth and ambient temperature.

The amplitude and phase lag are expfessed as functions of the amplitude and phase lag of

the daily average temperature curve and the Fourier modulus. The Fourier wmodulus is the
nondimensional time and is defined as '

Fo = a8/D? (9)

where 6 1is the period (one year), o is the soil thermal diffusiJity, and D is the basement
depth. The amplitudes and phase were found to be correlated as follows for the walls:

¢, = £(Fo) ' (1)
(Bg’w/Ba) = £(Fo) - (11)
For the floor
9 = E£(Fo) (12)
(Bg’f/Ba) = £(Fo) (L3)

where Ba‘is the amplitude of the ambient temperature curve. This must be determined from the
monthly values for a specific location.

Equation 8 together with equations 6 and 7 can be used to compute daily heat-flow rates;
however, this often provides more information than 1is required. The effective ground
temperature equation may be integrated to obtain the average effective ground temperature
over any period of time. The integrated relation is

Bg(365)2 oy (n,-n.)
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where n, is the first day noumber after the time period of interest ends, and n; is the day
number on which the time period of interest begins. The value of ny 1s found to be
approximately 110 days for U.S. locations. Using the above method, the expected average heat—
flow rate can be calculated for any peviod of time in any place.

RESULTS

The nondimensional overall conductances for the wall and floor are given in figures 2 and 3,
respectively, as functions of the corresponding nondimensional surface resistances. The
results show that conductances decrease as the surface resistance increases, as expected.
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These relations are valid for nondimensional floor and wall surface resistances ranging from
0.025 to 4. ‘

Neither of the overall conductances was found to be stongly affected by the amblant
conductance nor the depth tn the water table. The wall conductance is not a function of rthe
geometric relationship between floor and wall. However, the floor coefficient is a stronyg
function of W/D. This relationship is expressed mathematically in equation 17 and is
illustrated in figure 4.

The amplitude and phase lag of the effective ground temperature for the wall can be
expressed as

8 -
g’“ = =0.035 Fo 0¥ & 1.01 (18)
a
b, = 22, Fo 0% ~ 0.68 (19)
and for the floor
B, ¢ -0.172
_%;, = =0.,73 Fo ° + 1.12 (20)
a
b = 289 Fo~0+104 _ 176 (21)



The Fourier modulus 1s a function of the basement depth and the thermal diffusivity of
the soil. As the thermal diffusivity of the soll increases (i.e., if the soil. is wet), the
Fourier modulus increases; thereforé, the amplitude of the éffective ground temperature
increases and the lag decreases. Increasing the basement .depth has the opposite effect, since
the Fourier modulus decreases proportional to the inverse of the depth squared.

The relationship between the ambient temperature and the effective ground temperature is
illustrated in figure 5 for Madison, WI, for an 8.2 ft (2.5 m) deep basement. The amplitude
of the effective ground temperature for the floor is approximately 70% of that of the wall.
This demonstrates the damping effect of the soil. Furthermore, the effective ground
temperature of the floor lags that of the wall by about 60°. This lag is the result of the
time required for ambient temperature variations to penetrate the 8.2 ft (2.5 m) of soil.

Figure 6 illustrates the results of a comparison of the monthly average basement heat
loss by the method described here with the shape-factor méthod of Mitalas (1983). With the
exception of the insulation levels, the basement is identical to that used by Mitalas. It is
0.2 ft x 27.9 ft x 5.74 ft (9.2 m x 8.5 m x 1.75 m) below grade, located in Ottawa, Ontario,
Canada. The insulation levels correspond to type 25 of Mitalas. The total yearly energy loss
for this basement and two others is tabulated in table l. As shown in figure 6, the total
monthly heat loss predicted by each of the two methods compares quite favorably, particularly
during the crucial winter months. The predicted phase lags are virtually identical.

Both methods show an interaction between wall loss and floor imsulation. aAs £floor
insulation level 1is decreased, obviously the energy loss through the floor increases.
However, the wall energy loss decreases slightly, presumably because the increased floor loss
warms the soil, particularly that near the bottom portion of the wall.

For any of the three cases shown in table 1, the predicteq wall energy loss is very
_close. In fact, for floor insulation resistance 0.62 Btu/hreft<°F (3.52 m2-°K/w), wall,
floor, and total energy losses are remarkably close. With decreasing floor insulation, the
predicted values are not as close. The shape-factor method predicts a greater floor loss than
does the dimensionless parameter method, particularly for the case of no added floor
insulation.

EXAMPLE

An example of a basement calculation will be presented and compared to one using the method
of ASHRAE (1981). The basement is 7 ft (2.1 m) deep, 28 ft (8.54 m) wide, and 42 ft (12.8 m)
long. The soil has a thermal Sonductivity °§ 0.8 Btu/hreft+°F (1.38 W/m*°C) and a volumetric
thermal capacity of 24 Btu/ft-+°F (1.6 MJ/m”+°C). The inside wall is insulated with ome inch
of insulation, and the overfll R~value of the wall, including the surface films and the
concrete wall, is 5. hre<ft“°F/Btu (0.88 m“+°C/W). The floor is b%re, and the overall
resistance due to concrete and surface film is 1.5 hrefele °F/Btu (0.26 m*s°C/W).

For Madison, as shown in figure 3, the annual average temperature is 45°F (7.3°C) and
the amplitude B, is 25.2°F (14°C). The amplitude was obtained by plotting the monthly average
temperature over the year, fitting a sine curve to the values, and determining the amplitude.
The annual cyecle initiates on April 20 (“i = 110 days); this appears to be common to most
U.S. locations. The basement is heated at a temperature of 68°F (20°C). The energy loss in
February will be determined.

The nondimensional wall resistances are:

D D _
T 1.75 and T - 5.83
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From equations 15 and 16, the overall conductances for wall and floor are:

UWD UfD
- 0.905 and el 0.512
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The corresponding overall conductance values become U, = 0.103 Bcﬁ/hr°ft2-°F.and 0.
Btu/hr'ftz' °F.

The Fourier modulus is Fo = (a 8/0%) = 5.96

From equations 18 through 21, the wall and floor amplitude and phase lags are:

20.9°F  and 8.7°

[+~
i

e
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B = 14.7°F  and ¢f 64.0°

The effective ground temperatures for February are calculated from equation 14 to be

T = 25,2°F and T = 33.2°F
gW g,f

The average energy loss rate for February is 4320 Btu/hr from the wall and 24153 Btu
through the floor for a total of 6735 Btu/hr. These results compare favorably with the Je-
value obtained using the ASHRAE (1981) method of 5154 Btu/hr and 1457 Btu/hr for the wall
floor, respectively, for a total of 6611 Btu/hr. Since the highest predicted heat loss is
the month of February, it should be close to the design value.

CONCLUSIONS

A dimensionless parameter method for calculating basement heat loss is described abova.
algorithm is simple, straightforward, and well suited for use on a programmable calculator
a. microcomputer. In this last respect the method described here differs from previw
published methods- (Latta and Boileau 1969; Wang 1979; Shipp and Broderick n.d.; Mit
1983). :

Furthermore, the method allows any combination of wall and floor insulation lavels
soil thermal conductivity. The dimensionless parameter method can be extended to any loca:
using readily obtainable weather information.

NOMENCLATURE

A = area (ft2, m?)

B, = amplitude of expected daily average temperature curve (°F, °C)
B, = amplitude of effective ground temperature curve (°F, °C)

D = basement depth (ft, m)

Fo = Fourier modulus; ch/D2 (dimensionless)

H = distance from ground surface to water table (ft, m)

happ = convection coefficient at ground surface (Btu/hrefr2+°F, W/m2 °K)
kg = soil thermal conductivity (Btu/hrefre°F, W/me°K)

Rg = thermal resistance of basement floor (ft2e°Fehr/Bru, m2e°C/W)
R, = thermal resistance of basement wall (£t2¢°Fehr/Btu, m2+°C/W)
T, = yearly average temperature (°F, °C)

T, = basement base temperature (°F, °C)

T = reference temperature for calculating U (°F, °C)

Tg = effective ground temperature (°F, °C)

Tg = average effective ground temperature (°F, °C)

Ug = basement floor overall heat transfer coefficient (Btu/hre £r2s °F, W/m2°C)
U, = basement wall overall heat transfer coefficient (Btu/hreft2e°F, W/m2:°C)

w = minimum basement width (ft, m)



a = soil thermal diffusivity (ft2/hr, w?/s)
] = time (hr, s)
pe = soil volumetric heat capacity (Btu/fr 3+ °F, J/m3e°C)

¢ = phase lag between ambient temperature curve and effective ground temperature curve
(deg)
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TABLE 1

Comparison of Two Methods of Coﬁputing Total Yearly Energy Loss for Three Different
Floor Insulation Levels (Wall Insulation Resistance = 3.52 m2e °K/W)

R A B C
Wall 4.2 4.6 1 .95
0 Floor 7.7 11.6 .66

Total 11.9 | 16.0 e

Wall 4.9 5.0 .98
1.76 Floor 5.1 6.3 .81
Total 10.0 11.3 .89

Wall 5.2 5.2 ] 1.0
3.52 Floor 3.9 4,4 .89
Total 9.0 9.6 .94

R ~ floor insulation resistance, m2~°K/w

A - yearly energy loss computed with the
dimensionless parameter method, GJ

B - yearly energy loss computed with the shape-
factor method of Mitalas (1983), GJ

C - ratio of yearly energy loss of
method A to .method B ‘
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Figure 5. Ambient temperature profile and effective ground
temperatures for Madison, Wisconsin, Ta = 45°F
(7.3°C), basement W/D = 4.
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Monthly average bisement heat loss 'in W. Wall insulation
rgsistance 3.52 m“k/w, floor insulation resistance 1.76
m°“K/w. Solid line, calculated with dimensic~i=.:s parameter
method. Dashed line calculated with shap~ ¢1:t~r method

of Mitalas (5).






