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2.6 Measurement Errors

To be able to handle measurement error, it is necessary for the curve fitting tool to

interpolate data in a very well behaved manner. GRNN has the ability to interpolate the data. In

order to do that, GRNN does not use a minimization method like curve fits or B-Splines but

uses a statistical approach. The necessary parameter σ has to be selected by one of the

available methods. In the figures below the results for using the wiggle-method is shown. The

data for the following predictions was artificially generated and a measurement error was

artificially introduced. For the first figure (Fig. 2.6-1) the allowable number of wiggles was

two. For (Fig. 2.6-2) the allowable number of wiggles was four. The curves below show that

GRNN has an ability to interpolate data. The curve follows clearly the trend the noisy data has.

The wiggle method was capable, despite the noisy data, to select a smoothness parameter for

which the predicted curve still fit the data. The impact of noisy data is more thoroughly

discussed in Chapter 2.
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Fig. 2.6-1 GRNN prediction of data including measurement errors, 2 inflection points

allowed
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Fig. 2.6-2 GRNN prediction of data including measurement errors, 4 inflection points

allowed
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2.7 Extrapolation

Extrapolation is a desired ability for any curve fitting tool. Only very few methods are

able to extrapolate beyond  the range of available data. For the prediction in (Fig. 2.7-1) the

training samples shown as circles were used. The solid line is the prediction by GRNN. GRNN

fits the data in the known manner in the range where data are available. As soon as the range

of available data is left, the prediction levels off and yields the value of the closest training

sample.
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Fig. 2.7-1 Extrapolation ability of GRNN

The proof that GRNN really predicts the value of the last training sample is shown

below. A sufficiently small value for σ has to be assumed for this proof. The equation used for

GRNN (Eqn. 2.1-1) is examined.
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Eqn. 2.7-1

with (Eqn. 2.2-1) this means for an approximation for a small σ that only the last data point, in

this case the data point for the biggest value of Xi, has influence on the prediction such that

(Eqn. 2.7-1) becomes
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Eqn. 2.7-2

This equation (Eqn. 2.7-2) states that GRNN will continue to predict the value of the training

sample with the biggest value for X. Respectively GRNN will predict the value of the last

training sample as the range of training samples is left to the other side of the range for

available training samples.
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2.8 Underlying function

A method that better accommodates all the needs for both precision and smoothness

is the use of an underlying function. The goal is to introduce two procedures (Fig. 2.8-1) to

work together as a team, using the abilities of each one of them to come to a better solution as

a whole. One of the procedures is GRNN, the other one is incorporate knowledge about the

data available. This knowledge will be used to give the trend; the direction for the fit. The

knowledge could be a simplified model or equation that is available for many components in

practice. The difference between this trend and the available training data will be corrected by

GRNN.

A simple model is very often known for a complicated problem. The use of this

solution will not represent the problem correctly and a certain error is made. Depending on the

conditions the error varies. This error shall be corrected. Since the simple model is not

completely wrong, the simple model will support the prediction.
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Fig. 2.8-1 Different prediction methods, using only training samples and using an

underlying function in addition to training samples

GRNN will still have the same kind of problems as before with extreme values,

unequally spaced data, multi-dimensions and extrapolation. The impact of these problems will

be smaller because the error that is made is on a smaller scale compared to the case when

GRNN predicts results without any trend.

In the following examples the use of an underlying function compared to a prediction

without an underlying function is compared. The training data for the case not using an

underlying function is again represented by circles. The prediction used again a value for σ that
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resulted out of a search using the wiggle method. The prediction shows as before problems for

extreme values of the prediction.

The approach using an underlying function only uses the difference between the

underlying function and the training samples for training. GRNN then only predicted a difference

between the underlying function and the final result. The final result is a summation of the

simple model and the difference predicted by GRNN.

GRNN had previously problems to predict extreme values. The prediction in (Fig. 2.8-

2) using only GRNN still shows this problem, as seen at the values for x=0 or x=1.0. The use

of the underlying function supports the prediction for these values. The problems at the edges

becomes less and the problem with the extreme point at x=0.5 is reduced too.
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Fig. 2.8-2 Influence of an underlying function on the extreme values

If the data are non-equally spaced, the use of an underlying function minimizes the

influence of the problems GRNN has. The use of an underlying function is not a cure of the

problem, rather it is a cure of a symptom (Fig. 2.8-3, Fig. 2.8-4). In Section 3.4 the influence

of using an underlying function on the quality of the prediction using data is thoroughly studied

on a technical example.

In (Fig. 2.8-3, Fig. 2.8-4) the example that was shown in Section 2.2.3 is used again

here. The training samples are again shown as circles. The underlying function is shown too.

The training and the prediction are performed as it was described for the example using
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equally spaced data shown in (Fig. 2.8-2). The difference between the prediction using no

underlying function and the one using the underlying function is bigger than for the example of

equally spaced data. The prediction using the underlying function performs better than the one

without the underlying function. The prediction is more precise for the edges and as well for

the minimum at x=0.5.
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Fig. 2.8-3 Influence of an underlying function on the effects of unequally spaced data,

two inflection were allowed

The following example allowed four inflection points in the wiggle method. The

difference in the prediction between the two approaches using an underlying function or not

can be again seen in the more accurate prediction for extreme values. Another difference that
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can be seen in (Fig. 2.8-4) is that the additional inflections at x=0.2 and x=0.4 are not as

distinct for the prediction using the underlying function as for the prediction not using the

underlying function.
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Fig. 2.8-4 Influence of an underlying function on the effects of unequally spaced data,

four inflections were allowed

The choice of the smoothness parameter is no longer that sensitive as for the approach

using no underlying function. The problems that GRNN has are cushened by the use of the

underlying function such is the selection of the smoothness parameter. I all the previous

examples the smoothness parameter was chosen with the wiggle-method. The same emphasis

was put on the smoothness as for all the other examples.
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2.9 Chapter Summary

The selection of the smoothness parameter is the critical step for a good prediction

with GRNN. The method Specht suggests, the holdout method, does not perform as desired.

The holdout method simply optimizes for precision and ignores an important issue of

smoothness. The wiggle method allows the user to decide what is more important, smoothness

or precision. It can be adjusted such that it accommodates the needs for the individual

application. The wiggle method is more flexible than the holdout method.

GRNN has several limitations. One very severe problem is the prediction for extreme

values. With the use of a normal distribution in GRNN, GRNN becomes sensitive to unequally

spaced data. This is a very limiting aspect. Another problem is that GRNN with one parameter

cannot accommodate different characteristics of the individual dimensions. Measurement

errors are very easy to cope with. The wiggle method gives enough room to adjust sigma such

that measurement errors are not a big problem. Extrapolations using GRNN and no simple

model are not possible. The predicted value after leaving the range of the available data is the

value of the closest training sample to the point of prediction. A constant value will be

predicted for the correction when a underlying function is used to support the prediction.

Despite the mentioned problems, GRNN is still a very powerful tool, but it needs a lot

of attention and design of GRNN depending on the context and the use of the prediction.


