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2.3 Extreme points

In (Fig. 2.3-1) the results for a prediction using avauefor s resulting out of thewiggle
method is shown. The circles are the available training samples used for GRNN in the
prediction. The dashed line is the result of the prediction. The prediction fits the training
samples very well in the range from x=0.1 to x=0.3 and x=0.6 to x=0.9. The training sample
a x=0.0 and the prediction deviae from each other Sgnificantly. The prediction for the training
sample at x=1.0 deviates respectively. The training samples a x=0.4, x=0.5 and x=0.6 and

the prediction deviate as well but not as sgnificantly as for the values a the edges.
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Fig. 2.3-1 GRNN with Problem at extreme points



Every prediction of any point isinfluenced by dl the training samples but mogtly by the
surrounding ones. If the surrounding training samples dl have smdler vaues than the prediction
a this point will be influenced such that it will as well follow the trend of the other training
points. For amaximum in y=f(X), GRNN will predict the maximum a a smdler vaue. For a
minimumin y=f(X), GRNN will predict the minimum with a bigger value. For extreme vaue a
the edges of the area of the training samples, the same underestimation or overestimation
happens (Fig. 2.3-1). For edges in addition to the influence of the neighboring points with
smdler vaues more points missng on the other sde of the border to influence the prediction

and therefore the prediction levels off even more.

The underestimation or overestimation of extreme points cannot be influenced by the
selection of sgma without other impact on the prediction. The leveling off towards the edges
introduces another inflection point. This must therefore be taken into account as the number of

inflection points is selected.
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2.4 Unequally spaced data

The normd digribution has a symmetricd digtribution around the mean vaue. Thisis
the bell shape of the normd didribution. The normd digtributions for GRNN are chosen such
that every training sample is the mean of one normad didribution. Training samples that are not
equaly spaced influence the prediction in areas of higher dengty of the training samples

differently than in areas of low dengty of thetraining samples (Fig. 2.4-1, Fig. 2.4-2).

The traning samplesin (Fig. 2.4-1) and (Fig. 2.4-2) originate from the same function
that was used to get the training samples in (Fig. 2.3-1). The samples at x=0.1 was moved
closer to the sample a x=0.2. The sample a x=0.3 was moved closer to the sample a x=0.4
and the sample a 0.6 was moved to x=0.55. This was done to test what influence unequaly
spaced data has on the prediction. The smoothness parameter was again sdected using the
wiggle method. For the examplein (Fig. 2.4-1) two inflections were dlowed, for the example
in (Fig. 2.4-2) four inflections were dlowed. The reault in (Fig. 2.4-1) shows a smooth curve.
The precison of the prediction at the training points is not very high for the firs example. The
curve is very smooth and does not show any wiggles. The two only inflection points are

located towards the edge, because of the previous mentioned effects at borders (Section 3.4).
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Fig. 2.4-1 GRNN with problems having unequally spaced training samples, two inflections

were allowed
The training samples in (Fig. 2.4-2) are exactly the same as in the example in (Hg.
2.4-1). The number of inflection points that were dlowed in the wiggle method were four
ingead of two. The precision a the training samples is increased but in the same ingance the
smoothness decreased. The curve now has four wiggles. Here again the tradeoff between

smoothness and precision has to be made.
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Fig. 2.4-2 GRNN with problems having unequally spaced training samples, four inflections

were allowed

Compared to fFig. 2.3-1) the curves in (Fig. 24-1) and (Fig. 2.4-2) are veary
imprecise. The matter of equally spaced data is very important. It would be very desirable to
adways have equdly spaced data. Data resulting from measurements on technica sysems is
not very likely to be equaly spaced. It is may be possible to obtain enough training samplesto
get equaly spaced data by using a Nonparametric Regresson [Hagti€]. The nonparametric
regresson caculates the average vaue of traning samples in a certain area and then sets the
average equd to a new training sample that is postioned such that the new training samples
are equaly spaced. In Fig. 2.4-3) the generd way a nonparametric regresson works is

shown for an example with two input variables. The samdl gray cirdes are pogtions for which



measurements are avallable. The big circles are the borders of the area for which the average
of al the samplesin this are is calculated. The areas for which the average is caculated can be
changed in size and the areas can overlap too. The average that was cadculated is the new

vaue of the training sample which is centered at the indicated point.

Training sample Average of samples in area =
new sample value at center of are

Fig. 2.4-3 Nonparametric Regression
This procedure reduces the number of training samples and causes a loss of
information. Loss of information can result in the loss of dgnificant points that include
information such as information about extreme points or drastic changes in the dope. Skipping
such information seems not to be a very good tactic. In addition to that, there is probably not

enough data to dlow aregresson and a further reduction of data. Results of this gppraoch are
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not shown. This gproach could be applicable for problems having a large amount of data

avalable.



2.5 Multi-Dimensions

GRNN should be able to predict the function vaue for a given multi-dimensiond input
vector. But the precison declines with increasing numbers of dimensions. Thisis not surprisng
since more things have to be taken into account than for one dimension. One problem can be
that the influence of the neighboring points results in a larger deviation of the expected vaue.
Another problem is that one smoothness parameter has to accommodate all the needs for all
the dimengons. It can be that one dimenson needs a larger vaue for the smoothness
parameter than the other dimension. This especidly happens if there are different numbers of
samples for changesin one dimension. It was shown earlier that the smoothness parameter has

avery big influence on the qudity and shape of the curve.

One posshility to circumvent the impact of multi-dimensiondity is to split the problem
in two or more pats (Fig. 2.5-1). This is possble under the assumption of additive
independence. Assume afunction Y=1(Xy,X,). If achangein X; by DX; results in a congant
changeof DYinY for any vaue of X,, then X; isindependent from X,. If the same is true for
Xz then X; and X, are independent. Under this assumption of independence the problem can
be split up in two parts. Yisthen afunction of Y=g(X;)+h(X3). Now the different parts of Y
can be predicted independently. This reduces the necessary number of training samples but
aso makes it necessary to get the training samples under very specific conditions. In Chapter

three the gpproach using independence assumptions was tested on atechnica example.

69



Ta e e <P
1st Subset of
independent
variables GRNN correcting error to
simple model
e —
QFinal prediction >
correcting error
. > made by
2nd Subset of disregarding other
independent GRNN information
variables
e —

Fig. 2.5-1 A way to circumvent the influence of multi-dimensionality for independence of

the inputs



