3.3 Influence of Simple model on Prediction

The use of a smple modd for the prediction is compared under different conditions.
The four dimensona input vector contains values for the mass flow rate, the velocity of the air
flowing over the heat exchanger, the temperature of the water flowing into the heat exchanger
and the temperature of the air. For the first predictions 81 equaly spaced data points have
been used. This means a corresponding data set containing information on two dimensions
would congst of only nine samples. The training samples were positioned at both edges of the
range of each sample and the middle of the range of each sample. In (Table 3.3-1) the values

of the independent variables of the training samples are shown. The vaue of the effectiveness

for each possible combination of variables make up one training sample.

Massflowrate| Veocity air Temperature Water in | Temperatureair
0.5kgls 125 m/s 300 K 300 K
1.7 kgls 25m/s 350K 350K
2.9kgls 37.5m/s 400 K 400 K

In the plots (Fig. 3.3-1) and (Fig. 3.3-2) the solid line labded "red €ff" is the true
vaue of the effectiveness that GRNN should predict. These results were caculated with the

mode that was used to generate the training samples, described in Section 3.1. The training

Table 3.3-1 Values for 81 training samples
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samples are not shown in the following figures. It is dways mentioned in the caption how many
samples were used and how they were spaced, equaly or unequaly. The two other lines show
the result of the prediction using the two different gpproaches of using an underlying function
or not using an underlying function. These predictions are labdled "eff GRNN+Smple' or "eff
GRNN". The reaults are dways shown for two different conditions. It dways shows the plots
effectiveness versus mass flow rate. The temperatures for which the predictions are performed
do not change for the two different conditions, T,,;=300K, T, water = 360K. The velocity of the
arinadl thefirg plots (Fig. 3.3-1) is at the lower bound of 12.5 m/s, the velocity in the second
plots (Fig. 3.3-2) dways is 25m/s, which is in the middle of the range of the velocities. The
smoothness parameter was chosen usng the wigglemethod. The number of dlowable

inflections was two for the following examples using 81 equally spaced training samples.

The predictions differ from each other in values and shgpe. The prediction usng the
smple modd for both conditions yields more consgstent predictions than the prediction not
using the smple modd (Fig. 3.3-1, Fig. 3.3-2). GRNN used by itsdf turns out not to perform
as desired. As expected and shown aready in Chapter 3, the trend the smple mode gives

forces the prediction to follow this trend.

The results for the second plot (Fig. 3.3-2) for which the velocity is centered in the
middle of the range of the training samples show better predictions. The prediction of the
effectiveness for a very amdl mass flow rate, which should yidd a high effectiveness, is too

low for the approach usng no smple modd. This is the influence of the extreme vaues a
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edges, as discussed in Chapter two. For a velocity of 25m/s the predictions are generaly

better than for the podtion of a low veocity. The reason for this difference can be referred
again to the problem of the prediction towards edges, as discussed in Chapter two.
Predictions of extreme vaues, yidd bigger vaues than expected for minima vaues and smaller

vaues for maxima values repectively.
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Fig. 3.3-1 Effectiveness versus mass flow rate using 81 samples, equally spaced, plotted
for Tin,water=360K, Tair=300K, velocity=12.5m/s
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Fig. 3.3-2 Effectiveness versus mass flow rate using 81 samples equally spaced, plotted
for Tinwater =360K, T,,=300K, velocity=25m/s

In dl the following plots the two different gpproaches will be compared under different
conditions and the results for the same conditions are compared with each other. A prediction
should fulfill certain requirements. A prediction should not only be close to thered values but it

should as well have the same shape as the shape of the red function.

For the further discussion the precison of a prediction refers only to the correctness

of the predicted vaues compared to the function value and not the shape of the prediction.

In thefollowing plots (Fig. 3.3-4, Fig. 3.3-5, Fig. 3.3-6, Fig. 3.3-7) unequdly spaced
data has been used. Two different sets of data have been used for training. The first one for

the prediction shown in (Fig. 3.3-4, Fig. 3.3-5) conssted of 500 unequaly spaced samples,



the second one for the predication shown in (Fig. 3.3-6, Fig. 3.3-7) conssted of only 150
unequally spaced samples. None of the data included noise. The plots include the correct

curve of the effectiveness cdculated, using the detailed model, as discussed in Section 3.1.

Unequaly spaced data influences the prediction as discussed in Chapter two. In order
to yield a smooth curve as needed for severa applications the smoothness parameter had to
be chosen such that it accommodates for the desired number of inflection points. The
smoothness parameter was chosen using the wiggle method. The number of dlowable

infections for the following examples using unequally spaced data was three.

The predictions in (Fig. 3.3-3, Fig. 3.3-4), usng 500 unequdly spaced training
samples, do not include wiggles but the precison of the prediction epecidly for the method
without the smple modd is not very high for the shown examples. The dope for extreme
vaues of the effectiveness, a low mass flow rates, declines very much (Fig. 3.3-3, Fig. 3.3
4). The difficulty for the fit isto predict a curve that has only the alowable number of wiggles,
this means that the smoothness parameter has to be chosen to be alarger value. A larger vaue
of the smoothness parameter has as well the result that the predicted curve will be alot flatter,
closer to the average vaue of the training samples as well. The tradeoff between smoothness

and precision that was discussed in Chapter two has to be made here too.
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Fig. 3.3-3 Effectiveness versus mass flow rate using 500 samples unequally spaced,
plotted for Tinwater=360K, T4,=300K, velocity=12.5m/s
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Fig. 3.3-4 Effectiveness versus mass flow rate using 500 samples unequally spaced,
pI Otted fOI’ -nn’wa[er: 360K, Ta|r= 300K, Vel OCI ty= 25rn/S

The fallowing two examples (Fig. 3.3-5, Fig. 3.3-6) used only 150 training samples
that were unequally spaced. The correct curve for the effectiveness under these conditions is
shown again as a solid line. The first example seems to fit better than the second even though
the prediction for the first example was performed for an extreme value of the velocity and the
second for a velocity that is right in the middle of the range. The influence of the unequdly
paced data is such that it dominates the influence of the prediction under extreme conditions.
In this case the unequally spaced data has a positive influence but in (Fig. 3.3-6) the postive
influence does not hold for each postion of prediction. The prediction for a more centra

position is worse than for an extreme position.
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Fig. 3.3-5 Effectiveness versus mass flow rate using 150 samples unequally spaced,
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plotted for Tinwater= 360K, Ta=300K, velocity=12.5m/s
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Fig. 3.3-6 Effectiveness versus mass flow rate using 150 samples unequally spaced,
plotted for Tinwater=360K, T4,=300K, velocity=25m/s

It can be stated dready from these few examples that using the approach including a
sample mode yields better results than performing a prediction ignoring this knowledge. In the
plots above it is possible to compare the shape of the curves. The prediction usng the smple
modd yields curves for which the shapes of the curveis close to the shape of the curve of red
effectiveness. The precison can be compared as wdl in previous figures but only for certain

values of varidbles.

A better way to compare precision is to plot the predicted effectiveness againg the
redl effectiveness for many different conditions. 999 predictions for random values of variables

were performed and compared to the true vaues for these input vectors. The true vaues were
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obtained by caculating them agan with the detalled modd. This is a procedure that is

fortunately possble snce we are operating in an atificid environment. Usudly the only data

available isthe data that was dready used for traning.

The effectiveness ca culated with the smple model was plotted (Fig. 3.3-7) versus the

redl effectiveness. The results are widely spread but they show agood trend to start off with.
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Fig. 3.3-7 Predicted effectiveness using the simple model ver sus effectiveness from detailed

model for 999 randomly picked points

In (Fig. 3.3-8) 81 equaly spaced training samples have been used for the training of

GRNN for the approach without a smple model. The predicted effectiveness was plotted

againg the red effectiveness. The prediction of extreme vaues is worse than for the middle

area of the effectiveness. This result is the result of the influence of edges asit was discussed in

Chapter two.
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Fig. 3.3-8 Predicted effectiveness ver sus effectiveness from detailed model for 999
randomly picked points for 81 equally spaced training samples, using the approach using

no additional knowledge
In the following plot (Fig. 3.3-9) the smple modd was used as an underlying function
and the difference to the redl effectiveness was corrected. The precision is better than for the
gpproach not using the smple modd and better than the use of the Smple mode aone aswell.
The trend of the prediction is good. The predictions at the edges are a little off. Comparing
(Fig. 3.3-1) with (Fig. 3.3-9) the effectiveness a high effectiveness was too big for the smple
modd aone and the correction from the prediction was not big enough for the combined

approach.
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Fig. 3.3-9 Predicted effectiveness ver sus effectiveness from detailed model for 999
randomly picked points for 81 equally spaced training samples, using the approach to

correct simple model
For the prediction of the effectiveness in (Fig. 3.3-10) and (Fig. 3.3-11) 500
unequaly spaced training samples were used. The predictions show the same characteristics
for smdl and big vaues of the effectiveness as the prediction for 81 equdly spaced training
samples. The characterigtics for 81 equaly spaced training samples are about just as distinct
as for the use of 500 unequdly spaced training samples. The results usng 500 unequaly
spaced training samples makes the results for 81 training samples in (Fig. 3.3-8) even more

urprisgng.
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Fig. 3.3-10 Predicted effectiveness ver sus effectiveness from detailed model for 999
randomly picked points for 500 unequally spaced training samples, using the approach

using no additional knowledge
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Fig. 3.3-11 Predicted effectiveness ver sus effectiveness from detailed model for 999

randomly picked points for 500 unequally spaced training samples, using the approach to

For the following two examples 150 unequaly spaced training samples have been
used (Fig. 3.3-12, Fig. 3.3-13). The previoudy discussed characterigtics for 81 equaly
gpaced training samples or 500 unequaly spaced training samples are more digtinct for the
examples using 150 unequaly spaced training samples. The use of twice as many unequaly
gpaced training samples as equaly spaced training samples shows a large effect on the
prediction. If gill the same smoothness for unequaly spaced training samples shall be achieved
then the precision of the prediction will significantly decline, especidly for the approach using

no underlying function. With the underlying function the influence of the unequdly spaced
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Fig. 3.3-12 Predicted effectiveness ver sus effectiveness from detailed model for 999
randomly picked points for 150 unequally spaced training samples, using the approach

using no additional knowledge
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Fig. 3.3-13 Predicted effectiveness versus effectiveness from detailed model for 999
randomly picked points for 150 unequally spaced training samples, using the approach to

correct simple model
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In Chapter two it was shown how the precison increases at the vaues of the training
samples for smaler smoothness parameters. This was possible on the cost of smoothness. On
the technicd system the effect of the dlowable number of inflection points on the precison and
smoothness of the prediction was tested. It is known that for an increased number of inflection
points in the wiggle-method, the wiggle-method will select a smaler smoothness parameter. A
smdler smoothenss parameter will yield more precise vaues of the training samples but the
prediction will dso include more wiggles. The plots shown in (Fig. 3.3-14) and (Fig. 3.3-15)
represent again 999 randomly picked points for which the prediction was performed. The
predicted effectiveness was plotted again versus the caculated effectiveness with the detalled
model. For the calculated effectiveness the same detailled modd was used, that was used to

cdculate the training samples

The reaults in (Fig. 3.3-14) are very scattered. The results for dlowing more
inflections are worse than the results in (Fig. 3.3-8). At least for equaly spaced data the right

number of alowable inflectionsin the wiggle method is very important.
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Fig. 3.3-14 Predicted effectiveness ver sus effectiveness from detailed model for 999
randomly picked points for 81 equally spaced training samples, using the approach using

no additional knowledge, allowing 6 wiggles in the wiggle method

In (Fig. 3.3-15) the smple model was used as an underlying function. Again 999
points were predicted and compared to the calculated values of the effectiveness. The results
of this gpproach are better than the previous result of not usng the smple modd. The
digribution is a lot narrower and more evenly distributed than for the use of no smple modd.
Compared to the predictionin (Fig. 3.3-9), the prediction in (Fig. 3.3-15) isjust alittle worse.
The smple modd by itsdlf is not bad and the correction of the small mistake does have a good
impact on the prediction. The scatter of the prediction of the correction does not appear in
these plots, snce the correction is on a smdler scale than the effectiveness itsdf. The use of

the underlying function has a good influence as well on the use of a very high number of
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inflections in the wiggle method. The use of the ample modd disguises again the possble

problems GRNN can have.
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Fig. 3.3-15 Predicted effectiveness ver sus effectiveness from detailed model for 999
randomly picked points for 81 equally spaced training samples, using the approach using

the approach to correct the simples model, allowing 6 wiggles in the wiggle method
More inflection points mean a smaler smoothness parameter and a small smoothness
parameter means as well that the predicted curve includes wiggles. The following plots (Fg.
3.3-16) and (Fig. 3.3-17) show the curves of the predicted effectiveness for the same
smoothness parameter that was used for the plots of predicted effectiveness versus the
caculated effectiveness Fig. 3.3-14, Fig. 3.3-15). The curves are shown again for two
different velocities of the air; 12.5m/s and 25mvs. The temperatures for both predictions were

360K of the water and 300K of the air The predicted effectiveness in both examples for the



use of no ample modd includes severe sudden changes in the vaue of the effectiveness. The
predicted effectiveness jumps back and forth from overestimation to underestimation of the
red effectiveness. The shagpe of the curve is therefore not useful for many applications. The
prediction for usng a Smple modd is alot better than the prediction for not using the smple
modd. There are till sudden changes in the prediction but the magnitude of the changesis a
lot smdler than the magnitude of the changes for not usng the smple mode. The sudden
changes of the prediction happen on asmdler scde than the changes of the prediction without

the smple modd.
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Fig. 3.3-16 Effectiveness versus mass flow rate using 81 samples equally spaced, plotted
for Tinwater =360K, T,=300K, velocity=12.5nm/s, allowing 6 inflection points in the wiggle
method.
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Fig. 3.3-17 Effectiveness versus mass flow rate using 81 samples equally spaced, plotted
for Tinwater=360K, T4;=300K, velocity=25m/s, allowing 6 inflection pointsin the wiggle
method

Allowing more inflection points in the wiggle method for unequaly spaced data can
have a better impact on the prediction than it had for equaly spaced data. In Chapter two it
was shown how the prediction changes for unequally spaced data and that unequally spaced
data by it's own nature introduces more inflection points into the prediction. The different
dengties of training samples caused inflections in the prediction. An example for 150 unequally
gpaced training samples with eight ingtead of three inflections in the wiggle method is shown in
(Fig. 3.3-18). Only the approach of the direct prediction was tested. The results for the use of

the smple mode in the prediction will be not as distinct as they are here. The results of the
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effectiveness are a lot more scattered for alowing more inflections in the wiggle method. The
generd trend though is better. Again the tradeoff between smoothness and precision has to be
made. The precison of the prediction for the use of unequaly spaced training samples and
dlowing more inflection points yields about just as good results as in (Fig. 3.3-14) for usng

equaly spaced training samples and dlowing more inflections.
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Fig. 3.3-18 Predicted effectiveness ver sus effectiveness from detailed model for 999
randomly picked points for 150 unequally spaced training samples, allowing more

inflections, using the approach using no additional knowledge
Unequdly spaced training samples have the characteridtic tha the influence of the
unequdly spaced data on the shape of the curve cannot be extrapolated from looking at one
postion of the prediction. The prediction at this postion can be a lot different than the

prediction a another pogtion.
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The same conditions that were used in the examples at the beginning of the section

were used for the following prediction. The precison and the shape of the prediction Hg.
3.3-19, Fig. 3.3-20) is very good for these conditions. In some other range the shape will
look very different and not as good as here. Thereis some position in this prediction for which
the curve has three times as many inflections as the plots at the beginning of the section. The
plot of the predicted effectiveness versus the calculated effectiveness indicates by its
scatteredness that the prediction includes certain inaccuracy under certain conditions. These
conditions were obvioudly not the conditions that were used for the prediction in (Fig. 3.3-19)

and (Fig. 3.3-20)
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Fig. 3.3-19 Effectiveness versus mass flow rate using 150 samples unequally spaced,

allowing more wiggles, plotted for T waer =360K, To,=300K, velocity=12.5m/s
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Fig. 3.3-20 Effectiveness versus mass flow rate using 150 samples unequally spaced,

allowing more wiggles plotted for Tinwater =360K, T,,=300K, velocity=25m/s



