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2 General Regression Neural Network (GRNN)

GRNN, as proposed by Dondd F. Specht in [Specht 91] fdls into the category of
probabilistic neurad networks as discussed in Chapter one. This neural network like other
probabilistic neura networks needs only a fraction of the training samples a backpropagation
neural network would need [Specht 91]. The data available from measurements of an
operating system is generaly never enough for a backpropagation neurad network [Specht
90]. Therefore the use of a probabilistic neura network is especialy advantageous due to its
ability to converge to the underlying function of the data with only few training samples
available. The additional knowledge needed to get the fit in a satifying way is rdaively smdl
and can be done without additiona input by the user. This makes GRNN a very useful tool to

perform predictions and comparisons of system performance in practice.



2.1 Algorithm

The probability dengty function used in GRNN is the Normd Didtribution. Each training
sample, X;, is used as the mean of a Normal Digtribution.
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Egn. 2.1-1

The distance, D;, between the training sample and the point of prediction, is used as a
measure of how well the each training sample can represent the postion of prediction, X. If
the Distance, D;, between the training sample and the point of prediction is smal, exp(-
D;*/2s), becomes big. For D;=0, exp(-D;?/2s?) becomes one and the point of evauation is
represented best by this training sample. The distance to al the other training samples is
bigger. A bigger distance, D; , causes the term exp(-D;%/2s) to become smaller and therefore
the contribution of the other training samples to the prediction is ratively smdl. The term
Y;* exp(-D;*/2s?) for the jth trainng sample is the biggest one and contributes very much to the
prediction. The standard deviation or the smoothness parameter, s, asit is named in [Specht
91], is subject to a search. For a bigger smoothness parameter, the possible representation of

the point of evauation by the training sample is possible for a wideer range of X. For a smdll
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vaue of the smoothness parameter the representation is limited to a narrow range of X,

respectively.
With (Egn. 2.1-1) itispossbleto

- predict behavior of systems based on few training samples
- predict smooth multi-dimensiond curves
- interpolate between training samples.

In (Fig. 2.1-1) a prediction performed by GRNN is shown. The circles represent the
data points or training samples used to predict the solid line going through most of these
samples. The bl shaped curves are theindividua terms of (Egn. 2.1-1). Each of these curves
is one term, Y;* exp(-D;*/2s%)/S-,"exp(-D;%/2s?) of the whole equation (Egn. 2.1-1) used in
GRNN for the prediction. These terms are normdized normd distributions. Summing up the
vaues of the individua terms a each pogtion yieds the vaue of the prediction, the solid line
going through most of the data points. The smoothness parameter was arbitrarily chosen to

s=0.1.
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Fig. 2.1-1 GRNN with individual terms contributing to prediction, s=0.1

In Chapter one it was discussed how Neurad Networks weight the individua signals of
eech neuron differently. In (Fig. 2.1-2) GRNN is shown in a familiar representation, a
Backpropagation Neurd Network was shown before (Chepter 1). The cdculaions
performed in each pattern neuron of GRNN are exp(-D;%/2s?), the normal distribution centered
a each training sample. The signds of the pattern neuron i, going into the Denominator neuron
are weighted with the corresponding vaues of the training samples, ;. The weights on the
sgnds going into the Numerator Neuron are one. Each sample from the training daa

influences every point that is being predicted by GRNN.
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Input Neurons

Pattern Neurons with
activation function:
exp(-Dlesz)

Summation
Neurons

Output Neuron

Fig. 2.1-2 GRNN built up in a way such that it can be used as a parallel Neural Network



2.2 How to choose s

Any prediction tool can potentialy be used for feed forward control. Controllers using
a derivative agorithm need vaues in tharr dgorithm that dso incude a derivative. This means
that the prediction tools have to submit a prediction that does not only represent the redlity in
the precison of the vaue of the prediction but as well in the dope of the prediction. The dope
of the prediction can even be more important than the actud vaue of the prediction,
depending on the agorithm a controller uses. Depending on the use of the prediction tool the
emphass has to be put on one of the two, precison or smoothness, or even both. Fault
detection and diagnoss can include severd methods, they can include as well dgorithms using
adopein their gpproach. But again, depending on the use of the prediction tool, many aspects

are important.

The smoothness parameter is the only parameter of the procedure. The search for the
smoothness parameter has to take severa aspects into account depending on the gpplication

the predicted output is used for.

A bad characteristic that GRNN shows is that it can have wiggles Fig. 2.2-1). A
wiggle is defined as an inflection point a a postion where no inflection should be. Wiggles can
be as severe that such sudden changes in the vaues of the prediction happen that these
changes almost appear to be steps. In (Fig. 2.2-1) again the individua terms of the prediction

usng GRNN are shown. The individua terms have a very narrow range of influence compared
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to (Fig. 2.1-1). The individud terms dmogt soldy influence the prediction in the close vicinity

of the training sample.

Predicted Curve with GRNN
Training Sample

Individual Terms
of Sum in GRNN

Fig. 2.2-1 GRNN Prediction with extreme wiggles, including the individual signals,

s=0.027
The gppearance of wiggles is soldly connected to the vaue of the smoothness
parameter s. For a prediction that is close to one of the training samples and a sufficiently
smdl smoothness parameter the influence of the neighboring training samples is minor. The
contribution to the prediction, exp(-Di%/2s?), is a lot smaler than the contribution of the
training sample that the prediction is close to, exp(-D;%/2s?). The influence of the training
samples that are further away from the point of prediction can be neglected. Due to the

normdization the prediction therefore yields the vaue of the training sample in the vicinity of
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the each training sample (Egn. 2.2-1). For a bigger smoothnes parameter the influence of the
neighboring training samples cannot be neglected. The prediction then is influenced by more

points and the prediction is getting smoother.
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Egn. 2.2-1

With even larger s the predicted curve will get flatter more smooth as well. In some
cases this is dedrable. For example when the available data include a lot of noise, then the
prediction has to interpolate the data wheress if the data are correct, GRNN has to fit the data
more precisely and has to follow each little trend the data makes. If s agpproaches infinity the

predicted value is smply the average of dl the sample points (Eqn. 2.2-2). The effect of a big
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smoothness parameter can be seen very early. starts very early. In (Fig. 2.2-2) an example for

a smoothenss parameter of oneis shown.
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Fig. 2.2-2 Prediction with GRNN for a large smoothness parameter, s =1.0
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Eqgn. 2.2-2
Due to the fact that data are not generadly without measurement errors and that the

circumstances change from application to gpplication, there cannot be a right or a wrong way



to chose s. The gpplication and the required feetures of the prediction highly determine which
s should be findly chosen. A tradeoff between smoothness and minima error has to be made

depending on the data and the later use of the prediction.

2.2.1 TheHoldout Method

Specht suggests in [Specht 91] the use of the holdout method to select a good vaue
of s. In the holdout method, one sample of the entire set is removed and for afixed s GRNN
is used again to predict this sample with the reduced set of training samples. The squared
difference between the predicted vaue of the removed training sample and the training sample
itsdf is then calculated and stored. The removing of samples and prediction of them again for
thischosen s is repeated for each sample-vector. After finishing this process the mean of the
squared differencesis calculated for each run. Then the process of reducing the set of training
samples and predicting the value for these samplesis repested for many different values of s.
The s for which the sum of the mean squared difference is the minimum of al the mean
squared differencesisthe s that should be used for the predictions using this set of training
samples. According to Specht there are no redtrictions to this process, but unfortunately it

turned out that for certain conditions this process does not show the desired results.

The holdout method works with smoothness parameters that are very smdl. The
evauation of the exponentid function therefore often causes numerica problems; even for 64
bit data storage. Given that there are no numerica problems, another problem is that the

minimum of the Sum of Squares, Specht describes dready as wide is Smply so wide (Hg.
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2.2-3) that thefind choosing of s isvery imprecise. s chosen in the range of the minimum can

show one of the above mentioned problems of ether extreme: Wiggles or an unacceptable
interpolation, but usualy wiggles were observed. In (Fig. 2.2-3) an example of the result of
the holdout method is shown. The Sum of Sgaures is plotted versus the smoothness
parameter. The holdout method suggests to use a smoothness parameter of s=0.01. With the
naked eye the minimum, the holdout method suggests expands up to a vaue of the smoothness

parameter of $=0.04.
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Fig. 2.2-3 Result from Holdout Method
In (Fig. 2.2-4) the results for these previoudy chosen smoothenss parameters are

plotted. Both of the plots yield a curve that includes wiggles. The wiggles are step like for a



smoothenss parameter of s=0.01, the wiggles are more gentle for a smoothness parameter of
s=0.04. The precison of the prediction is very good at the training points but the changes in
the dope of this curve are unacceptable for severa applications. As a comparison a prediction
with a smoothness parameter of s=0.07 is included too. This prediction does not include
wiggles but is therefore less precise a the training samples. A decision has to be made what

curve is better. This decison depends on the application the prediction isfindly used for.
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Fig. 2.2-4 Using s as suggested by the Holdout Method and other s to compare

2.2.2 TheWiggle-Method
All possible procedures for the choosing of s are empirica procedures and cannot
yield an exact or correct value for s. The holdout method can work very well for some

examples but the results of the holdout method cannot be influenced such that they
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accommodate for the different possible desired characterigtics of the prediction. Some effort
was undertaken to find a different, more flexible way of choosing s. The reault is the Wiggle-
Method. The wiggle-method is a purely empirical method that turns out to be very easy to
work with. The results using the wiggle-method can be influenced very eesily. It leaves room

to adjust the dgorithm to pay closer atention to smoothness or to precision in the prediction.

The wiggle-method (Fig. 2.2-5) works for any number of dimensons. Using a two
dimensond example the wiggle-method will be explained. The wiggle-method needs to have
the dlowable number of inflection points specified. This information is usudly known or can
eadly be assessed. The judgment that is needed though is to alow the right number of
additiond inflections to count for unequaly spaced data or measurement errors, problems that
will be discussed later. For the wiggle-method, GRNN predicts the curve over the entire range
of the data. Firgt s is chosen very smdl, too amdl to predict the curve without wiggles. The
vauefor s isincreased by a specifiable amount congtantly until the number of inflection points
is equd to the dlowable number of inflection points. Increasng s will sooner or later yield a
curve that is too smooth, that has not enough inflections, then s has to be decreased again.
This iteration will go on until a sop criteria is satisfied. The sop criteria can be a maximum
number of iterations around the maxima alowable number of wiggles, or it can be a maximum

tolerable changein s or a combination of these two.

The number of wigglesis cdculated with a numerica goproximation. Many predictions

for equally spaced points are calculated. The spacing of the predicted points needs to be



aufficiently more dense than the spacing of the training samples, otherwise the method would
not notice the inflection points. Using about five times or more points of predictions than
training samples is suggested. The second derivative usng three consecutive points is then
caculated numericdly (Egn. 2.2-3) over the entire range. Inflection points show a sign change
in the second derivative. The number of sgn changes over the range of the cadculated

predictionsis equd to the number of inflection points.

sec = (Vic1- 2yi +Yis1)
2Dx?

Eqgn. 2.2-3
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Only two wiggles left close to the
edges. Now some more iterations
can follow to get closer to the
border to three wiggles.

Fig. 2.2-5 Wiggle-method
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The precison of last curvein (Fig. 2.2-5) is not as good as it could possibly be but it

is very avery smooth curve. This curve has the desired characterigtics for many gpplications, it

issmooth and it is precise.

The number of inflections remain congtant over arange of s. But the precison a the
training samples changes continuoudy withs. The precison declines for bigger s. s should be
chosen a the lower bound of the range s for the desired number since the qudity of the

prediction of the training samplesincreasesass getssmdler (Fig. 2.2-6).
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Choose s at this
end of the range

Do not choose s at
this end of the range

) L

Number of Inflections

Fig. 2.2-6 Selection of s
The qudity of the prediction is not going to be bad, supposng that the number of
inflections given is dose to the true number of inflections that the system redly has. It was
proven by Parzen in [Parzen] that the probabilistic approach will converge to the underlying
function as more training samples are avallbae. Counting the inflection points suggested by the

user is a measure of how close the prediction is to the underlying function. This is amply a
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measure of quaity as the sum of squares is as well a measure of qudity. The wiggle-method
aso dlows handling of measurement errors and handling of the influence of unequaly spaced
data. These problems will be discussed later. Using the wiggle-method the curve will not be
influenced by the scatter of the data such that extreme deviations occur as with Spline
functions. The curve will have the desired shagpe and the proof of convergence by Parzen
make sure that the curve will interpolate the data. A procedure can be included that shows the
development of the mean squared error over the entire process. Adjustments to the search
method can then be made. These adjustments are nothing else than increasing or decreasing
the tolerable number of wiggles for the prediction in order to get a more precise or smooth
curve. Later (Section 3.6) a way to increase the precison without loosing the smoothness of

the curve will be discussed.

The wiggle-method will converge to a vaue of the smoothness parameter s. For a
vay andl s the prediction includes too many wiggles. For a s that is aming towards infinity,
the vaue of the prediction will be the average of the vaues of the training samples without any
wiggle. According to [Specht 91] thereisavaue of s for which the prediction converges to
the underlying function of the samples. The wiggle-method will find a vaue thet lies between

these two boundaries, many wiggles or average vaue and no wiggles.

As mentioned before a trade-off has to be made between precison and smoothness.
In (Fig. 2.2-7) the same example that was previoudy used is shown again. Previoudy the

prediction did not yied very precise vaues. The prediction is very smooth but the prediction
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does not represent the training samples very precisdy. In (Fig. 2.2-8) the prediction

represents the training samples very well but the prediction has many wiggles. Depending on
the use of the results one or the other prediction can be better. In (Fig. 2.2-7) and (Fig. 2.2-8)
the prediction itsdlf and the dope of the prediction is shown for the examples used in (Fig. 2.2-
7) and (Fig. 2.2-8). The dope of the prediction for usng a s=0.1 is very smooth too. A
controller using the two signds, vaue and dope of the prediction will perform very different for
the prediction using a s =0.1 than the same controller using the prediction and the dope for a

s$=0.027.
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Fig. 2.2-7 Prediction and Sope of Prediction for a very smooth curve, s =0.1
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Fig. 2.2-8 Prediction and Sope of Prediction for a curve with many wiggles, s =0.027
It cannot be assumed that the wiggle-method is the best way of choosing s, but the
results turned out to be very satisfying. The holdout method could work without additional
information provided by the user; the wiggle-method needs additiona information. This makes

the method vulnerable to errors but as wdl more flexible,



