2.6 Measurement Errors

To be able to handle measurement error, it is necessary for the curve fitting tool to
interpolate detain a very well behaved manner. GRNN has the ability to interpolate the data. In
order to do that, GRNN does not use a minimization method like curve fits or B-Splines but
uses a atistica approach. The necessary parameter s has to be sedlected by one of the
available methods. In the figures below the results for using the wiggle-method is shown. The
data for the following predictions was atificidly generated and a measurement error was
atificidly introduced. For the firg figure (Fig. 2.6-1) the alowable number of wiggles was
two. For (Fig. 2.6-2) the alowable number of wiggles was four. The curves below show that
GRNN has an ability to interpolate data. The curve follows clearly the trend the noisy data has.
The wiggle method was capable, despite the noisy data, to salect a smoothness parameter for
which the predicted curve ill fit the data The impact of noisy data is more thoroughly

discussed in Chapter 2.
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Fig. 2.6-1 GRNN prediction of data including measurement errors, 2 inflection points

allowed



Fig. 2.6-2 GRNN prediction of data including measurement errors, 4 inflection points

allowed
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2.7 Extrapolation

Extrapolation is a desired ability for any curve fitting tool. Only very few methods are
able to extrgpolate beyond the range of available data. For the prediction in (Fig. 2.7-1) the
training samples shown as circles were used. The solid line is the prediction by GRNN. GRNN
fits the data in the known manner in the range where data are available. As soon as the range
of avalable data is left, the prediction levels off and yidds the vdue of the closest training

sample.
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Fig. 2.7-1 Extrapolation ability of GRNN
The proof that GRNN redly predicts the vaue of the lagt training sample is shown
beow. A sufficiently small vauefor s has to be assumed for this proof. The equation used for

GRNN (Egn. 2.1-1) is examined.
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with (Egn. 2.2-1) this means for an approximation for asmall s that only the last data point, in
this case the data point for the biggest value of X;, has influence on the prediction such that

(Egn. 2.7-1) becomes
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Egn. 2.7-2
This equation (Eqn. 2.7-2) states that GRNN will continue to predict the value of the training
sample with the biggest value for X. Respectivdly GRNN will predict the vaue of the last
traning sample as the range of training samples is left to the other sde of the range for

avalable training samples.
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2.8 Underlying function

A method that better accommodates dl the needs for both precison and smoothness
is the use of an underlying function. The god is to introduce two procedures (Fig. 2.8-1) to
work together as ateam, using the ahilities of each one of them to come to a better solution as
awhole. One of the procedures is GRNN, the other one is incorporate knowledge about the
data avallable. This knowledge will be used to give the trend; the direction for the fit. The
knowledge could be a smplified modd or equation that is available for many components in
practice. The difference between this trend and the available training data will be corrected by

GRNN.

A dmple modd is very often known for a complicated problem. The use of this
solution will not represent the problem correctly and a certain error is made. Depending on the
conditions the error varies. This eror shal be corrected. Since the smple modd is not

completely wrong, the smple modd will support the prediction.
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Fig. 2.8-1 Different prediction methods, using only training samples and using an

underlying function in addition to training samples
GRNN will dill have the same kind of problems as before with extreme vaues,
unequaly spaced data, multi-dimensions and extrapolation. The impact of these problems will
be smdler because the error that is made is on a smaller scae compared to the case when

GRNN predicts results without any trend.

In the following examples the use of an underlying function compared to a prediction
without an underlying function is compared. The training data for the case not using an

underlying function is again represented by circles. The prediction used again avauefor s that
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resulted out of a search using the wiggle method. The prediction shows as before problems for

extreme vaues of the prediction.

The gpproach usng an underlying function only uses the difference between the
underlying function and the training samples for training. GRNN then only predicted a difference
between the underlying function and the find result. The find result is a summation of the

smple model and the difference predicted by GRNN.

GRNN had previoudly problems to predict extreme vaues. The prediction in (Fig. 2.8-
2) usng only GRNN dtill shows this problem, as seen a the values for x=0 or x=1.0. The use
of the underlying function supports the prediction for these values. The problems at the edges

becomes |ess and the problem with the extreme point at x=0.5 is reduced too.
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Fig. 2.8-2 Influence of an underlying function on the extreme values
If the data are non-equaly spaced, the use of an underlying function minimizes the
influence of the problems GRNN has. The use of an underlying function is not a cure of the
problem, rather it isacure of asymptom (Fig. 2.8-3, Fig. 2.8-4). In Section 3.4 the influence
of usng an underlying function on the quality of the prediction usng data is thoroughly studied

on atechnica example.

In (Fig. 2.8-3, Fig. 2.8-4) the example that was shown in Section 2.2.3 is used again
here. The training samples are again shown as circles. The underlying function is shown too.

The training and the prediction are performed as it was described for the example using
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equally spaced data shown in (Fig. 2.8-2). The difference between the prediction usng no

underlying function and the one using the underlying function is bigger than for the example of
equaly spaced data. The prediction using the underlying function performs better than the one
without the underlying function. The prediction is more precise for the edges and as well for

the minimum at x=0.5.
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Fig. 2.8-3 Influence of an underlying function on the effects of unequally spaced data,

two inflection were allowed
The following example dlowed four inflection points in the wiggle method. The
difference in the prediction between the two gpproaches using an underlying function or not

can be again seen in the more accurate prediction for extreme vaues. Another difference that
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can be seen in (Fig. 2.8-4) is that the additiond inflections at x=0.2 and x=0.4 are not as

diginct for the prediction usng the underlying function as for the prediction not using the

underlying function.
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Fig. 2.8-4 Influence of an underlying function on the effects of unequally spaced data,

four inflections were allowed
The choice of the smoothness parameter is no longer that sendtive as for the approach
usng no underlying function. The problems that GRNN has are cushened by the use of the
underlying function such is the sdection of the smoothness parameter. | dl the previous
examples the smoothness parameter was chosen with the wiggle-method. The same emphasis

was put on the smoothness asfor al the other examples.
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2.9 Chapter Summary

The sdection of the smoothness parameter is the critical step for a good prediction
with GRNN. The method Specht suggests, the holdout method, does not perform as desired.
The holdout method smply optimizes for precison and ignores an important issue of
smoothness. The wiggle method allows the user to decide what is more important, smoothness
or precison. It can be adjusted such that it accommodates the needs for the individua

application. The wiggle method is more flexible than the holdout method.

GRNN has severd limitations. One very severe problem is the prediction for extreme
vaues. With the use of anormd didribution in GRNN, GRNN becomes sengitive to unequaly
gpaced data. Thisis avery limiting aspect. Another problem isthat GRNN with one parameter
cannot accommodate different characterigtics of the individua dimensons. Measurement
errors are very easy to cope with. The wiggle method gives enough room to adjust sgma such
that measurement errors are not a big problem. Extrgpolations usng GRNN and no smple
model are not possible. The predicted vaue after leaving the range of the available datais the
vaue of the closest training sample to the point of prediction. A congant vaue will be

predicted for the correction when a underlying function is used to support the prediction.

Despite the mentioned problems, GRNN s gill a very powerful tool, but it needs a lot

of attention and design of GRNN depending on the context and the use of the prediction.



