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ABSTRACT

Heated rollers are used in the forest product, printing and plastic processing industry

to regulate product temperature during web processing.  Improved regulation of product

temperatures during processing results in a higher quality product as well as reduced waste

and energy usage. This project leads to better understanding of the thermal contact resistance

and the thermal interactions between heated plastic webs and rollers.

A new experimental method to measure the contact resistance between the two

surfaces of one rigid and one pliable material is developed and used to measure the thermal

contact resistance of a different plastic web to roller interfaces.  Two blocks, initially at

different temperatures, are brought together with the sample being studied between the

blocks. The resulting time temperature profile can be used to determine the joint contact

resistance. The physically static, thermally transient technique allows joint resistance

measurements to be made quickly and easily using minimal equipment. The average joint

resistances measured for the polyester, polypropylene and embossed polyethylene samples

were 0.0006, 0.0007 and 0.0028 m2-K/W respectively over a pressure range of 0.25 to 6 kpa.

A finite difference model of the web and roller system was used to model the heat

transfer between rollers and webs. Given the required roller and web inlet conditions, the

program could calculate the web outlet temperature and power draw from the roller.

The roller model was developed with following intentions and results:
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1. To simulate an internally heated roller as well as a roller having surface heat generation.

Little difference was found in the surface temperature profiles of the differently heated

rollers, but for the internally heated roller case, the hot fluid supply temperature needed was

substantially higher than the actual roller surface temperature.

2. To develop a simple algebraic correlation that predicts the web heating effectiveness for

thin webs accurately. This was achieved for plastic webs of less than 0.30 mm thickness over

a wide range of processing conditions.

3. To calculate the roller to web interface contact resistance based on measured web inlet,

outlet and roller surface temperatures. A series of tests with a pilot scale facility was used to

determine the effect of air entrainment on the contact resistance.

The contact resistance measured in the static tests was then used to predict the web

heating found in dynamic tests cases using the pilot scale facility. Infrared pyrometers were

used extensively in the experiments and were the limiting factor in experimental accuracy.

Good agreement was found for the opaque PVC sample within the experimental margin of

error. For the highly translucent plastics, the static and dynamic tests did not show a good

match, and the high error in the infrared temperature measurements was apparent.
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