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Abstract 

Pulsating Heat Pipes (PHPs) are simple two-phase heat transfer devices, which have 

received increased attention in recent years due to their flexibility, low cost and reliability. 

Developed to improve upon the shortcomings of conventional heat pipes, PHPs have exhibited 

many qualities that are attractive to engineers across many disciplines. Their ability to operate 

over a wide range of temperatures and heat loads has motivated a significant amount of research 

into understanding their operating principles. Simply put, a PHP consists of a partially filled tube 

that meanders between an evaporator, where heat is absorbed, and a condenser, where heat is 

rejected. Effective conductivities of up 90,000 W/m-K have been observed for nitrogen. The 

motivation of this work is to investigate the concept of using a nitrogen PHP as a cryogenic 

distributed cooling device for space science applications.  

Commonly, PHPs are comprised of one evaporator and one condenser. A novel idea of 

having one continuous length of tubing connect three isothermal evaporators to just one 

condenser is explored through this work. An apparatus was designed, fabricated and tested in a 

cryogenic facility in order to characterize performance under various operating conditions.  The 

heat loads applied to each evaporator section were varied independently to study the PHPs ability 

to operate with various heat loading configurations. Results show that to a certain degree, the 

distribution of the total heat load doesn’t have an effect on the performance of the PHP. The 

percent difference between the maximum and minimum heat loads applied can be up to 50%. 

Furthermore, for this particular PHP a minimum total heat load of 3.5 W must be applied to the 

evaporators in order to sustain operation. However, this heat load can be distributed among the 

evaporators unequally.  
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1 Introduction 

  Over 50 years, the goal of NASA, and private aerospace companies alike, has 

transformed from putting humans in orbit around earth to putting humans on Mars, a destination 

that is 34 million miles away. Reaching such a distance requires a significant amount of fuel, in 

this case, liquid cryopropellant. NASA’s best-suited rocket for launching satellites into earth’s 

orbit and probes into deep space, Centaur, boasts a fuel boil-off rate of 0.1% per day. Even with 

this low boil-off rate, over the 200-day trip to Mars, this results in 18% loss in propellant mass 

[1]. Maintaining cryopropellants at temperatures below their boiling point during such a lengthy 

trip is an engineering challenge undertaken by NASA and the aerospace industry in order to 

ensure an efficient mission to Mars. Known as zero-boil-off systems (ZBO), NASA has deemed 

methods involving active cooling techniques necessary for a mission of such magnitude [2]. 

 A collaborative effort between several NASA centers focused on testing a large-scale 

ZBO system on a 10 ft. ø and 10 ft. tall hydrogen tank. The system circulated the hydrogen 

across a GM-type cryocooler using a pump and then reinjected it into the tank using a spray bar. 

The group was successful at demonstrating that ZBO is possible for the life of the mechanical 

equipment [30]. In another collaboration between NASA Ames and NASA Glenn, researchers 

worked to prove a ZBO system can be achieved by circulating a chilled fluid in tubes attached to 

the outside of a cryopropellant tank. Using liquid nitrogen to imitate cryopropellant, the group 

built a ZBO system which uses a reverse turbo-Brayton cycle to circulate neon through 0.25 in 

diameter tubing attached to the outside of the tank [3]. These two systems have been successful 

at demonstrating that an active cooling method is necessary for ZBO, however, it is not ideal to 

have so many mechanical components present on a spacecraft. A system that can achieve ZBO 
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Although the intricacies of PHP operation are still not well understood, researchers have 

been working on their application to thermal systems. Concepts such as using PHPs to cool 

superconducting magnets, server racks, electronics and vehicles have been investigated. A more 

complete understanding of the operation of PHPs is needed so that reliable PHP design tools can 

be developed.  

PHPs are a viable candidate for a ZBO system due to their ability to operate without the 

use of a pump. By winding loops of capillary tubing around a tank, a pulsating heat pipe would 

inherently circulate a working fluid while distributing heat loads and rejecting them to a 

cryocooler. No data exist to prove that PHP’s will work with multiple independently heated 

evaporators. This work describes the construction, and experimental evaluation of a nitrogen 

PHP with three separate evaporators and one condenser.  This proof of concept device has been 

fabricated and tested to support the design of a zero boil-off system. 

1.1 Thesis Outline 

The following body of work is the culmination of work completed for partial fulfilment 

of a Master of Science Degree in Mechanical Engineering by Mason Mok at the University of 

Wisconsin-Madison. The scope of the project along with supporting data and analysis is 

described in detail.   

2 PHP background 

  2.1 Conventional Heat Pipe 

 A conventional heat pipe is a two-phase heat transfer device that can transfer heat with 

high conductance across a wide temperature range. Generally comprised of an evacuated vessel, 

a two-phase working fluid and a wick structure, these devices have been implemented in many 
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 Thus far, experimental data has shown that a closed-loop PHP has better heat transfer 

performance [5]. Some research groups have investigated the closed loop PHP with a check-

valve; however, at cryogenic temperature this would be difficult to implement. The reduced 

weight and complexity of a PHP make them ideal for space applications. 

  2.2 Operating Principle of PHPs 

  For a given fluid, there are many parameters of a PHP that can be varied to study 

performance. These parameters generally fall into one of two categories: geometric parameters 

and operational parameters. Evaporator, condenser and adiabatic section length, size, shape and 

relative configuration are geometric parameters. Fill ratio, inclination angle, heat flux and 

temperature are examples of operational parameters that can be varied. Furthermore, in the world 

of PHP research there exists two distinct fields of study: theoretical/computational and 

experimental research. Theoretical research involves modeling PHP systems using programs like 

Fluent ® and Matlab ® to determine expected performance of a device geometry. This thesis 

will focus on experimental laboratory work where a PHP was manufactured and its performance 

characterized with respect to a range of operating parameters.  

 A PHP can be constructed in a way that allows geometric as well as operational 

parameters to be adjusted easily. For example, the PHP can be designed to have the ability to 

vary the length of the adiabatic section relatively easily.  Then data can be compared to 

determine performance characteristics associated with adiabatic length. It is more common to 

vary operational parameters because these changes can be made without modifying the 

construction of the PHP. A few of geometric and operational considerations that researchers 

consider are discussed in detail below.  
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  2.2.1 Fill Ratio 

 The amount of fluid present in the PHP is an experimental parameter that needs to be 

carefully controlled as performance of the PHP can vary greatly with fill ratio. Fill ratio is 

defined at the volume of liquid in the PHP to the total volume of the PHP: 

௙ܸ௜௟௟ ൌ
௟ܸ௜௤

௉ܸு௉
 

Equation 1: Fill Ratio. 

 The method of setting the fill ratio for this experiment is outlined in section 4.6 of this 

thesis. Investigators such as Khandekar et al. have found that no matter the operating 

temperature, there exists an optimal fill ratio where the PHP performs best [6]. This optimal fill 

ratio also depends on the working fluid. According to Khandekar, their PHP operated as a true 

PHP between the limits of 20% and 70% with maximum performance for water of 15-30%, 25-

55% for ethanol and 35-60% for R-123. Due to different PHP geometries and the properties of 

fluids under various conditions, the optimal fill ratio can lie anywhere in the range of 20-80% 

[7].  

 Furthermore, Yang et al. tested an ethanol flat-plat PHP and compared thermal resistance 

at various fill ratios and heat inputs. They showed that for horizontal heating mode there exists 

an optimal fill ratio around 60%. Shown in Figure 4, this group also found that this optimal fill 

ratio is independent of heat load [8].  
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W/m-K.  Thus, effective conductivity is calculated at each fill ratio and an optimum fill ratio is 

found. Other investigators such as Yang et al. define an optimal fill ratio as the fill ratio where 

maximum heat throughput is achieved without evaporator dry-out [13].  

It is important to notice that normalizing by ΔT makes this method the same as the first 

method described.  The author recognizes that effective thermal conductivity does not entirely 

capture the conductance per mass for PHPs. However, it is the standard valve reported in the 

literature for these devices and does provide some indication of the relative performance between 

PHP designs.  

 This brings us to an important characteristic of PHPs: dry-out. As described above, dry-

out occurs when the heat flux of the evaporator section causes an excess amount of vapor to exist 

in the evaporator section and the thermo-hydraulic heat transfer method of the PHP ceases. If the 

liquid film at the wall evaporates and is not replenished, the temperature in the evaporator 

increases. At lower fill ratios, dry-out tends to happen at lower heat loads than at higher fill ratios 

due to a lack of sufficient liquid to replenish the evaporated liquid at the wall. Virtually all 

investigators including the author have observed this phenomenon. The opposite of dry-out can 

occur at very high fill ratios. At fill ratios above 80%, investigators have seen PHPs behave like 

thermosiphons. Khandekar et al. found that their PHP actually performed better at 100% 

compared to 85% due to the single-phase thermosiphon mode present at 100% fill [6].  

2.2.5 Capillary Tube Dimensions 

  The capillary tubes are the most important part of a PHP because they are the path for 

heat transfer between the evaporator and condenser. The dimensions of the tubes is very 

important to ensure successful operation of the PHP. Holding all other experimental factors 
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Equation 7: Critical diameter of capillary tubes. 

 For nitrogen at its ambient pressure saturation temperature, Dcrit = ~ 2mm. As mentioned 

above, it would be beneficial to have an internal tube diameter that is as close to this dimension 

as possible to increase the amount of heat transfer between the two ends of a PHP. However, 

some investigators aim to test multiple fluids with their PHP so it is necessary to choose a 

diameter that suits the properties of each fluid.  

 As long as the capillary dimension is below the critical value the PHP will operate, but 

the conditions and quality of performance can still vary with tube diameter. Yang et al tested two 

R123 PHPs with tube internal dimensions of 1 mm and 2 mm. The thermal resistance of the two 

PHPs varied with orientation according to Table 1 below. The thermal resistance of the 1 mm ID 

PHP was consistently higher than the 2 mm PHP. Furthermore, while the performance of the 1 

mm ID PHP was not as good as the 2 mm, the 1 mm exhibited almost no orientation-dependent 

performance. [28] 
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microgravity [18]. When operating in horizontal mode, Mangini et al. tested a 

Thermosyphon/Pulsating Heat Pipe with a diameter larger than the critical limit and showed that 

while their device performed strictly as a thermosyphon in normal gravity conditions, in 

microgravity the device exhibited PHP behavior [19]. This group also showed that the hyper-

gravity portion of a parabolic flight was able to eliminate partial dry outs. 

 Reduced-boil off cryogenic propellant systems have become a concept of interest to 

NASA engineers as more rigorous and lengthy space missions are proposed. Current methods 

will eventually be irrelevant for proposed missions to Mars or other low-earth orbit tasks. 

Reducing the boil-off of a cryopropellant allows for longer mission durations by conserving fuel. 

Analytical and experimental methods such as those presented in Platcha et al. and Feller et al. 

aim to justify the added mass and complexity of an actively cooled system. Platcha et al. showed 

that compared to passive-only methods, a helium chilling boil-off reduction system begins to 

reduce system mass if mission durations are as low as 40 days for LH2 and 14 days for LO2 [20]. 

Experimentally, Feller et al. showed that actively cooling a thermal radiation shield using a 

Stirling type cryocooler could reduce the heat leak to a LN2 tank (a propellant tank simulator) by 

82% [21]. 

 To date, there has not been any research done using a PHP as a distributed cooling 

system for any application including spacecraft. It is necessary to prove a PHP with multiple heat 

pick-up points can operate successfully in the laboratory. The technology will need to be adapted 

for multiple heat pick up points if it is to be used as a distributed cooling system for cryogens in 

space. The intention of this work is to prove that a PHP can operate with multiple evaporators as 

a first step toward implementation in distributed cooling and heat spreading applications. 
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  3.2 Distributed Cooling for Server Rooms 

 While the focus of this research is on cryogenic PHPs, it is important to note that the 

findings of this thesis could be extrapolated to room temperature PHP systems. PHPs have been 

investigated for use as a distributed cooling system for servers. Recently the increased demand 

for data processing, data storage, and digital telecommunications have brought about dramatic 

growth in the data center industry. Energy statistics indicate that, worldwide, the data center 

industry is responsible for 1.3% of electricity consumption. Furthermore, 25-30%, or 30 Billion 

Watts, of the worldwide consumption of power for data centers comes from U.S. users [22]. Data 

centers consume a lot of power, but they are not very efficient. Green Grid is an association of IT 

professionals seeking to improve the energy efficiency of data centers by proposing short and 

long-term solutions. They define a metric called power usage effectiveness (PUE), which they 

use to determine how much of a facilities power (all power required including cooling systems) 

goes to IT equipment power (load associated with all IT equipment); a number near one is 

desirable. Currently many data center have PUEs near 3.0, but with proper design, a value of 1.6 

can be attained [23]. 

 Cooling systems consume 30% of the facility power at data centers [24]. Thus, one way 

data centers can improve their PUE is to improve cooling systems. Current conventional methods 

of cooling servers are called computer room air conditioning (CRAC) and computer room air 

handler units (CRAH). Figure 12 shows an air-cooled data center. The cold side and warm side 

of server racks face each other and chilled air is introduced to the cold side through vents in the 

floor. The air passes through the server racks and the warm side air is recirculated into an air-

chiller system. There are many documented issues with cooling servers using this method as 

outlined by Khandekar [25]:  
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 Ohadi et al. investigated another method of cooling. This group aimed to compare air, 

liquid and two-phase cooling of data center. Through CFD analysis, it was shown that a water or 

dielectric fluid cooled system could reduce the thermal resistance of the cooling system by up to 

79% compared to an air-cooled system. The group also showed that thin film microchannel 

cooling using a two-phase refrigerant could reduce the thermal resistance of a system by up to 

95% with a drastically reduced pressure drop compared to liquid cooled systems [26]. Two-

phase refrigerant cooling can also eliminate the use of chilled water and the equipment necessary 

to chill the water.  

 The methods outlined above show that there is a need for improvement in server cooling 

to decrease costs and reduce the burden that server cooling imposes on the power grid. A 

pulsating heat pipe system could also be used as an alternative method to CRACs. Lu et al. 

studied the ability of a pulsating heat pipe to cool a server rack. This type of cooling is rack-level 

cooling compared to room-level cooling associated with air-cooled systems. Lu et al. made a 

rack with heaters to replicate the thermal load of servers, forced air, an R600a plate pulsating 

heat pipe and a chilled water system to cool the PHP. A schematic of the experimental setup is 

showing in Figure 15. These investigators do not offer much in terms of performance capabilities 

other than comparing the influence of changing chilled air velocity and heat load [27]. 

Nonetheless, it shows that the technology of server cooling can be influenced using pulsating 

heat pipes.  
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4 Experimental Setup 

4.1 Intent of Experiment  
 

 In sections, 2 & 3 the work that has been done to demonstrate how PHPs operate and 

under which conditions they perform best has been summarized. Something that hasn’t been 

done previously is demonstrating a PHP can operate with multiple evaporator sections and just 

one condenser.  To do this, a 3-evaporator, 42 turn, cylindrical PHP was fabricated for operation 

with nitrogen at cryogenic temperatures. The capillary tube of the PHP meanders between the 

three evaporators and one condenser in a continuous loop similar to the schematic shown in 

Figure 16. Rather than having three separate PHPs, this configuration takes the multiple PHP 

concept one-step further and allows each PHP to interact with one another through the 

condenser. This arrangement simplifies assembly by maintaining one fill line and valve to room 

temperature. It is also possible to study the effect of heat spreading between the three sections, a 

concept that would lend itself to improved performance of a cryopropellant tank PHP system. 

The design, fabrication, assembly and instrumentation of the multiple evaporator PHP is 

discussed in detail in this chapter.  
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Figure 24: Bending and soldering jig used to simplify PHP fabrication. 

 Once all the tubes were bent, acid flux was applied to the necessary areas of the tubes and 

rosin core solder was applied using a soldering iron. The tubes were fastened to the evaporator 

and condenser sections and held in their desired position using large hose clamps. Each side of 

the PHP was heating using a propane torch and solder was applied to the entire section while 

being sure to get as much solder as possible around the tubes and in the grooves. Rectangular 

thermometer posts were soldered to each evaporator section and the condenser section to house 

Lakeshore PT-103® platinum resistance thermometers [33]. The final product can be seen below 

in Figure 25.  
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Figure 29: Results of fill line redesign of fall 2016. (top) New tee attached to evaporator sectoin 

2. (left) Extended fill line campled (heat sunk) to spokes by aluminum plate. (right) Fill line 

soldered an exopxied (heat sunk) to thermal jacket. 

4.6 Instrumentation 

  4.6.1 Thermometry 

 Five Lakeshore PT-103 platinum resistance thermometers [33] are used in this 

experiment along with one type-T thermocouple. Each evaporator section has a PRT fitted into 

its thermometer post, the condenser section contains one PRT (directly aligned with PRT on 

section 2) and the fifth thermometer is attached as close to the cold head as possible. Each 

thermometer location can be seen in Figure 30 below. The thermometers were fabricated using a 

4-wire measurement method where one side of two sets of stainless steel leads were attached to 

each thermometer lead using acid flux and rosin core solder. The thermometers were inserted 

into their posts using a small amount of Apiezon N ® thermal grease [36]. The leads of the 

thermometers are heat sunk, according to Lakeshore standard [29], to their post using cigarette 

paper and GE varnish. This can clearly be seen in Figure 30.  
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Figure 30: (left) Thermometer post located on each evaporator section. (right) Thermometer post 

on condenser (directly aligned with PRT on evaporator section 2). (middle) Thermometer near 

cold head. 

 The five thermometers were calibrated after all data was collected. The desired quantity 

for this experiment is the temperature difference between each evaporator and the condenser. All 

thermometers were calibrated according to the method outlined in Appendix A to find the offset 

to apply to each temperature measurement. Once this value was found, it was offset from all data 

before analysis.  

 The thermometers are powered using a Lakeshore 120 [33] current source with the 

exception of PRT5, which is intended to represent the cold head temperature of the cryocooler. 

This thermometer is powered using the current output of the cryocooler controller that has a 

nominal value of 1 mA. In addition to being supplied to LabVIEW, the voltage measurement of 

this thermometer is also fed back to the cryocooler controller to allow temperature control of the 

cold head. A breadboard is used to connect PRTs 1-4 in series with a nominal current output 

from the Lakeshore 120 of 1 mA as seen in Figure 31. Each thermometer voltage was read and 

the temperature was computed using the ratio of polynomials equation for RTDs shown below in 

Equation 8 [38].  
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 The one type-T thermocouple is used to measure the temperature of the thermal jacket 

and is uncalibrated because the measurement is not very critical. The thermocouple is soldered to 

a small thin piece of copper and epoxied to the inside of the thermal jacket near the top in order 

to represent the highest temperature of the jacket (furthest from the cold head).  

  4.6.2 Heaters 

 The four-wire heater measurement has evolved throughout the experiment. The 

measurement was originally made by measuring the voltage across a 26-Ohm resistor, which was 

in series with the current going into the heater in order to measure that current. This current was 

then multiplied by the measured voltage drop across each heater circuit to get the power applied 

to the system by each heater. The measurements were made using two multimeters and the 

power was calculated by the user using a standard Texas Instruments calculator. Since fall 2016, 

as part of an entire measurement system overhaul, the power was measured using a more 

sophisticated method utilizing op amps and LabVIEW. The intention was to be able to control 

the power applied to the heaters using LabVIEW and to control the heat automatically by 

stepping through a list of powers. This has proven to be incredibly useful.  

 A 0-5 V signal is output from LabVIEW to a USB 6009 DAQ [37], this signal is 

amplified using an op amp with a gain of 2. This signal is then received by a Tenma 72-2005 

[39] power supply and drives a 0-24 V voltage output proportional to the 0-10 V input signal. 

This signal is then sent to a control box, shown in Figure 32, where it is split into three voltage 

signals, one for each heater. Each signal is then run through a potentiometer to  independently 

control the heat applied to each section. The signal is then passed through a ~2 Ohm resistor and 

the voltage drop across the resistor is measured to find the current going into each heater. 
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resistance at 77 K of 118.2 Ohms. This is not the most accurate method for determining power, 

but it has nonetheless proven to be effective. See Appendix A for error analysis. 

  4.6.3 Pressure 

 Two different Endevco 8530B® pressure sensors [41] are used in the experimental set 

up. One is used to measure the pressure in the holding tank and one is used to measure the 

dynamic pressure of the PHP system. The excitation for both is provided by a HP 3611a  DC 

power supply [40] set to output 10 V. The sensors that were originally absolute pressure 

measurement devices were calibrated to using a MKS Baratron pressure gauge [42]. The voltage 

output of the sensor was measured at five different pressures and compared to the pressure 

measured by the Baratron. The ambient pressure was recorded during this calibration. (For more 

accurate results, this pressure could be measured every day and subtracted from any pressure 

measurements to be contingent with calibration.) A linear best-fit line was applied to these 

measurements and the equation of this line is used in LabVIEW to calculate an absolute pressure 

based on the voltage measured.  

 The vacuum pressure is measured using a thermocouple gauge. The gauge is installed 

near the turbo pump and is predominantly used to determine when to turn on the turbo pump.  

  4.6.4 Data Acquisition 

 The main data acquisition device is part of the National Instruments (NI) SCXI family . 

The set up consists of a SCXI 1300 Module  connected in series with an SCXI 1110 Multiplexer, 

a SCXI 1000 chassis and a USB 6363 A to D converter (All [37]). A downfall of this set up is 

that only one channel can be read at a time and a 0.20 second ramp up occurs when switching 

between channels. Thus, creative methods have to be used to acquire data using LabVIEW. At a 
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sampling rate of 30,000 S/s and a sample count of 15,000 the first 65% of each temperature 

measurement is ignored to counteract the effects of the ramp up. In addition, each time a 

measurement is complete, the LabVIEW task is cleared and a new task involving the next 

channel is created. Other things such as voltage output for slaving the Tenma 72-2005 power 

supply [39] and the voltage measurements for calculating heater power are done using NI 6008 

and 6009 devices [37].  

  4.6.5 Safety Valve  

  A safety valve is hooked up in parallel with the room temperature fill lines and set to 

crack at 80 psi, which corresponds to a saturation pressure of ~95 K. This pressure allows for 

continued operation if the input heat flux is high enough to drive the condenser temperature to a 

temperature approaching 95K while protecting the system against an event where the cryocooler 

turns off unexpectedly.    

 4.6.6 Cryocooler 
 

  The cold end of the PHP is cooled with a SunPower Inc. Cryotel CT Stirling type 

cryocooler [43]. The warm end of the cryocooler was originally cooled with fins and forced air, 

but in the spring of 2017, a water jacket was fabricated to increase the efficiency of the cooler. 

Before the water jacket was added the cryocooler could only achieve ~5.5 W of cooling at a 

temperature of 79 K. After the water jacket was installed the cooler could achieve the same 

cooling power but at a temperature of 72 K. The jacket is cooled using a Polyscience 575 water 

chiller [44]. Due to complications with the water jacket, it needed to be replaced with a 

temporary jacket. Once these complications are solved, the original jacket should be reinstalled 

for maximum performance.    
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4.7 Experimental procedure 

 Fill ratio is an extremely important experimental characteristic of pulsating heat pipes. 

The fill ratio is defined as the volume of liquid in the PHP to the total volume of the PHP.  

௙ܸ௜௟௟ ൌ
௟ܸ௜௤

௉ܸு௉
 

Equation 1 Revisited 

Other investigators have had success with fill ratios ranging from 20-80% [7] with varying 

system performance at different fill ratios. To precisely fix the fill ratio of the PHP a system of 

known volumes, pressure gauges and the ideal gas law are used. A schematic of the experimental 

setup can be seen below in Figure 34. First, the system is evacuated to a pressure of 10^-3 Torr 

through the purging valve (V1). Next valves 1, and 3 are closed. This isolates the cold end of the 

PHP and the pumping system. A large tank of ultra-high purity compressed nitrogen provides the 

working fluid to the PHP. This tank is connected to a small reservoir, which contains an Endevco 

pressure sensor. Fluid is allowed into the reservoir and the adjacent connecting lines. Knowing 

the pressure, volume and temperature of the fluid in the reservoir and connecting lines allows 

one to determine the mass of nitrogen contained in the volume using the ideal gas law. Next, 

valve 3 is opened, fluid begins to condense on the cold end and the pressure in the reservoir 

drops continuously. At a calculated reservoir pressure, valve 3 is closed. Based on the pressure 

drop of the reservoir the amount of mass that has moved to the cold end can be found. Knowing 

the volume, temperature and mass of fluid in the PHP the fill ratio is found. A detailed 

explanation of this calculation can be found in Appendix B.  
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 The main accomplishment of the redesign was that the fluid no longer had to meander its 

way through the large VCR® tee volume and there was a direct path from outlet-to-inlet. With 

the improved fill lines, the PHP was tested again at similar conditions to those tested before the 

improvement. The new data showed that the PHP had significantly improved performance.  A 

test plan was made to ensure a thorough investigation before making any conclusions about 

performance of a PHP with multiple evaporators. The test plan is shown in Appendix C.  The test 

plan was designed to address various performance conditions that may affect the operation of the 

PHP.  Running with valve 3 open proved to be unsuccessful. Continuing with the test plan, the 

PHP was tested at heat loads greater than the 0.25-1.25W range that was explored previously. 

The PHP was filled to 70% and each heater was set to 1.5 W.  The PHP performed well at these 

heat loads.  

5.2 Successful Operation  

 Shown in Figure 38 is a plot of temperature over time once the system reached a steady 

operating state. The evaporator and condenser sections settled at a mean temperature of ~88.5 K 

with the cold head settling at 78 K. The temperature difference between the condenser and 

evaporators ranged from 0.6-0.9 K with an equal heat load of 1.5 W on each section.  This 

corresponds to effective conductivities of 47-67 kW/m-K. The PHP ran at these levels for a full 

24 hours, proving that this performance was sustainable. These results were further verified by 

pumping out the fluid and repeating the test with the same conditions. For future reference, 

Figure 38 represents what will henceforth referred to as ‘successful operation’. Constant 

condenser and evaporator temperatures with no noticeable change in performance for a period of 

2 hours characterizes successful operation. 
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This corresponds to a change in the total heat load of 3.6 W to 3.5 W. The PHP behaved 

normally throughout the test with the conductivity of each section varying according to Figure 

45. The only deviation from expected performance during this run was when the total heat load 

was changed from 4 W to 3.9 W as shown in Figure 46 and annotated in Figure 45. The PHP 

seems to “adjust” to the new heat load (note: there is no user intervention during this process). 

Adjustment entails a slight runaway of at least one section and then recovery, but at different 

temperatures. The PHP appears to settle at a new quasi-equilibrium and to continue operate with 

good performance.  

 The PHP stopped working when the total heat load, or the sum of Q1, Q2 and Q3, 

reached a value of 3.5 W. This is a concept that is explored further below to prove a minimum 

total heat load (regardless of which section the heat is applied to) must be applied for the PHP to 

operate successfully. Figure 47 shows the temperature over time of each component once Q1 is 

changed from 0.6 W to 0.5 W. Normal pulsations transition to increasingly uncharacteristic 

behavior and eventually there is a complete disconnect between the evaporators and condenser.  
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Figure 50: Adjustment as heat load in reduced from 4.1 W to 3.9 W. Q1=Q3=1.1 W, Q2=1.5 W. 

 

5.4.4 Increasing Load on One Sectoin while Decreasing Load on Another 
 

 The degree to which the heat loads can vary across the sections of the PHP was studied. 

The PHP was filled to 70%. Q2 was kept constant at 1.5 W while Q1 was decreased by 100 mW 

and Q3 increased by 100 mW, keeping the total heat load constant at 3.5 W. The temperatures 

were allowed to stabilize before continuing to the next heat load. The results showed that the 

PHP operates successfully with heat loads as various as 0.7 W, 1.5 W and 2.3 W on sections 1, 2, 

and 3, respectively. The success of this test can be represented in several ways. For instance, The 

PHP operates successfully when Q3 is 2.29 times greater than Q1. Also valid is claiming that 

successful operation is possible when the maximum heat load is 51.1% of the total and the 

minimum is 15.5% of the total. Furthermore, it is true to claim that the PHP operates with a 

maximum percent difference in heat loads of 72.7%.  

 There were two adjustments during this run, both near the end of the test. As the heat 

loads were changed from (0.9, 1.5, 2.1) to (0.8, 1.5, 2.2) all three sections ran away briefly but 

returned to within 1.4 K of the condenser and continued to pulsate. A similar adjustment 

happened between (0.8, 1.5, 2.2) and (0.7, 1.5, 2.3). These two instances can be seen below in 

Figure 51 and 52. When the heat loads were changed to (0.6, 1.5, 2.4) the PHP turned off.  



 

F

F

igure 51: Adj

igure 52: Adj

justment durin

justment durin

ng transition 

ng transition 

82 

from (0.9, 1.5

from (0.8, 1.5

5, 2.1) to (0.8

5, 2.2) to (0.7

8, 1.5, 2.2). 

7, 1.4, 2.3). 

 

 



 

 T

the indiv

conductiv

changes. 

comparis

maximum

conductiv

indicates

applied to

F

T

The effective

vidual effect

vities, or tot

The mean t

son. Accordi

m of 2.85%

vity begins 

 that the per

o the section

igure 53: Effe

Table 3: Sum o

e conductivit

ive conduct

tal conductiv

total conduct

ing to Table

% from the 

to decrease 

rformance o

ns until it no 

ective conduc

of effective co

ties of each 

ivity of each

vity, remain

tivity for he

e 3, before 

mean valu

significantl

of the PHP b

longer oper

ctivity of each

onductivity a

83 

section vari

h section va

ns constant a

at loads prio

the first adj

ue. Howeve

ly even thou

begins to deg

rates when th

h section vs. t

s the heat loa

ied accordin

aries through

as the distri

or to the firs

justment, th

er, after the

ugh the tota

grade with l

he difference

the heat loads

ads on section

ng to Figure 

hout the test

bution of th

st adjustment

he total cond

e first adjus

al heat load 

large differe

e becomes la

s on sections 

ns 1 & 3 are v

53. Even th

t, the sum o

he total heat

t is compute

ductivity var

stment, the 

is constant. 

nces in heat

arge.  

1 & 3. 

varied. 

hough 

of the 

t load 

ed for 

ries a 

total 

This 

t load 

 



 

  5
 

 T

project. T

During th

1.5, 1.8, 

correspon

temperatu

peak-to-p

   

.5 Pressure

The pressure 

The pressure

he test discu

respectively

nds to a satu

ure. Analyzi

peak pressur

e 

of the PHP 

e of the PHP

ussed in secti

y, pressure 

uration temp

ing one osci

re oscillation

was recorde

P is used to d

ion 5.4.4, wh

was recorde

perature of 8

llation revea

ns of ~7kPa. 

84 

ed over time

determine th

here the fill 

ed and is sh

87.3 K for n

als a period o

 

e at various p

he period of 

ratio was 70

hown in Fig

nitrogen, wh

of 2.17s and

points during

flow oscilla

0% and Q1, 

gure 54. Th

hich represen

d a frequency

g the term o

ations in the 

Q2, Q3 were

he mean pre

nts the cond

y of 0.46 Hz

 

of this 

PHP. 

e 1.2, 

essure 

denser 

z with 



85 
 

 

Figure 54: Pressure oscillations during stable operation.  

The pressure was not measured for each test; however, the result shown in Figure 54 is 

used to benchmark performance by comparing to other investigators. Fonseca et al. constructed a 

nitrogen PHP with the same geometry as the multiple evaporator PHP, but with 40 turns and 

only 1 evaporator section. Their pressure data is very similar. Figure 55 shows pressure 

oscillations vs. time with a period of about 2 s. A power spectral density analysis of pressure for 

a heat load of 3 W revealed multiple peaks near 0.5 Hz with the most notable peak just below 0.5 

Hz, corresponding to the 2 Hz oscillation period [31]. Comparing these results to the results of 

the multiple evaporator PHP helps corroborate the findings of this project.  
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Figure 55: Pressure oscillations of nitrogen PHP tested by Fonseca et al. [source] 

 

Figure 56: FFT analysis of pressure data from Fonseca et al. 
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6 Conclusions and Future work 

  6.1 Conclusions  
 

  A multiple evaporator nitrogen pulsating heat pipe was successfully designed, fabricated 

and tested. Results indicate that a PHP with three evaporators is able to efficiently transfer heat 

to one condenser over a range of heat loads. To a certain degree, the distribution of the total heat 

load across all evaporators has little effect on the overall performance of the PHP, making this 

type of system ideal for distributed cooling applications. A minimum total heat load must be 

applied to the evaporators in order for the PHP to operate successfully. However, the distribution 

of the total heat load can vary significantly across each evaporator.  

Although the work required for this thesis has been accomplished, there is still an 

abundance of work to be done in order to develop comprehensive design tools for PHPs. The 

development of PHPs will continue to require the efforts of many people and organizations over 

many years. Continued work with this device is necessary if the application of PHPs to 

spacecraft thermal control systems is to be realized.  

 There is a notable lack of two-phase modeling tools that can adequately explain the 

complex operation of PHPs. The expected performance of the multiple evaporator PHP was 

extrapolated using the results of previous PHP experiments. As the field continues to grow, 

computational models of PHPs will need to be verified through experimental research, such as 

the work presented in this thesis.  The combined efforts of members of the Cryogenic 

Engineering Lab at the University of Wisconsin will be essential to the future success of PHPs 

across all disciplines of thermal engineering. 
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To enhance the development of PHPs as distributed cooling devices, the multiple 

evaporator PHP will continue to be tested to gather meaningful data. A great deal of information 

has emerged from this thesis; however, there is a significant amount of testing to be done in 

order to characterize the multi evaporator PHP’s performance entirely.  

6.2 Future Work 
By adjusting the orientation of the PHP, it will be possible to quantify how performance 

is affected by gravity and buoyancy. The data presented in this thesis is limited to horizontal 

orientation, but the test facility has the ability to be orientated vertically with relative ease. 

According to Natsume et al. and Li et al., due to the natural buoyancy of vapor, the performance 

of a PHP improves if the evaporator is directly beneath the condenser [11, 12]. 

The multiple evaporator PHP was only tested with total heat loads in the range of 2.85 W 

to 4.5 W. To characterize the PHP fully, it must be tested at higher heat loads. However, there 

are multiple factors limiting the heat that can be applied to the evaporators. First, the temperature 

difference across the thermal strap between the condenser and cold head of the cryocooler large 

due to the limited conductance of the strap. Improving the thermal strap is necessary in order to 

minimize the mean temperature of the PHP when running at higher heat loads. Second, the 

cryocooler underperforms and needs to be replaced or fixed in order to reach total heat loads 

above ~5 W. Finally, the heat that can be applied to each section is limited by the power supply. 

The following improvement will negate this issue.   

Improving communication between LabVIEW and the heater system will be necessary to 

collect high quality data efficiently and to run at higher heat loads. The current virtual instrument 

can be edited to output the desired heat load to each evaporator. By using op amps, the signal 
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from an NI-6009 DAQ can be amplified to power each heater and the heat loads can be changed 

automatically according to the virtual instrument. 

The water jacket used to cool the warm end of the cryocooler contains a restriction that 

causes the circulating pressure to exceed a maximum value set by the chiller. The water jacket 

should be fixed so that the PHP can be tested at higher heat loads. 
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8 Appendix 

8.1 Appendix A: Error Analysis 
 

8.1.1 Equipment 

 Lakeshore PT-103 ® Platinum Resistance Thermometers  
 Lakeshore 120 ® Current Supply  
 Endevco 8530B ® Pressure Sensors  
 Hewlett Packard E3611A ® Power Supply 
 National Instruments SCXI 1100 ® Data Acquisition System  
 National Instruments USB-6363 ® Terminal Block 

 

8.1.2 Thermometer Error 

Thermometer Calibration 

The error in all temperature measurements is based on the error in measured temperature 

differences rather than the absolute temperature of each sensor. Since effective conductivity is 

based on the temperature difference between each evaporator and the condenser, the uncertainty 

used is the uncertainty in the temperature differences. After all data was collected, each 

thermometer was removed from the cryostat and inserted radially into a round copper stock using 

Apiezon N thermal grease [36]. A Styrofoam container with a 2.54 cm thick G10 block at the 

bottom was used as a vessel for liquid nitrogen. The copper stock was set on the block of G10 

and liquid nitrogen was poured into the container, submerging the entire copper stock. Over 

time, the nitrogen boiled away and the block was allowed to warm up to room temperature while 

continuously monitoring temperature. Each thermometer is assumed to be reading the exact same 

temperature. The measured temperature difference between each evaporator thermometer and the 

condenser thermometer in the range 85 -95 K is shown in Figure 57. This range was chosen 

because during successful operation, the evaporators are always in this temperature range.  
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  Applied Current Error 

The value of a resistor was measure to be 1306 ± 0.3406 Ω using a Hewlett Packard 

34401a ® multimeter [40]. The voltage drop across this resistor using the Lakeshore 120 current 

supply [33] set to 1mA was measured to be 1.3187 V ± 59.75 μV using the same HP multimeter. 

Based on these two measurements the current supplied to each thermometer is 1.0972 mA ± 

.2673 μA.  

  Data Acquisition Error 

 

Relevant errors from NI SCXI 1100 ®: 

 Gain Error (0.01% of reading) 

 Offset Error (5 μV) 

 Noise Error (Measured Noise * 1/√݊) 

Absolute Error = ඥ݊݅ܽܩ	ݎ݋ݎݎܧଶ ൅ ଶݎ݋ݎݎܧ	ݐ݁ݏ݂݂ܱ ൅  ଶݎ݋ݎݎܧ	݁ݏ݅݋ܰ

=ඨሺ0.01% ∗ 25	ܸ݉ሻଶ ൅ 5	μܸଶ ൅ 	0.225ܸ݉ଶ ∗ ൬
ଵ

ଵହ଴଴଴
భ
మ
൰
ଶ

	= ±5.79 μV 

Relevant Errors from NI USB 6363: 

 Gain Error (Reading * 95μV) 

 Offset Error (Range * 27μV) 

 Noise Error(3*21μV * 1/√݊) 

Absolute Error=ඥ݊݅ܽܩ	ݎ݋ݎݎܧଶ ൅ ଶݎ݋ݎݎܧ	ݐ݁ݏ݂݂ܱ ൅  ଶݎ݋ݎݎܧ	݁ݏ݅݋ܰ

=ඨሺ25ܸ݉ ∗ 95μVሻଶ ൅ ሺ0.20 ∗ 27μVሻଶ ൅ ൭2 ∗ 21μV ∗ ൬
ଵ

ଵହ଴଴଴
భ
మ
൰൱

ଶ

		= ±8.59 μV 
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Total Data Acquisition Error= ඥ5.79μVଶ ൅ 8.59	μVଶ = ±10.36 μV 

Propagating the current and data error gives a total temperature uncertainty of ±26.54 mK. 

Reference Equation Error 

The equation, which is used to find temperature based on the resistance of platinum, also 

has some reported error. According to Mosaic Documentation Web [38] the error involved with 

using Equation 8 is ±15 mK. 

Summary 

Thus, the error for one temperature measurement is: 

ଶܭ݉	26.54√ ൅  30.486 mK	ଶ = േܭ15݉

The error for a difference in temperature is then: 

ሺܶ2ߤ െ ܶ1ሻ ൌ ඥ30.486ଶ ൅ 30.486ଶ ൅ ܭ݉	10.79 ൌ േ	૞૜. ૠ૟	ࡷ࢓ 

8.1.3 Fill Ratio Error 

The error in fill ratio is due to the error in the pressure measurement used to determine 

the pressure change in the reservoir tank. According to Endevco the combined error in their 

8530B ® pressure sensors is േ0.25% FSO (full-scale output) [41]. For a FSO of 3447 kPa, this 

equates to an error of േ8.6175 kPa which corresponds to a fill ratio error of ~40%. However, 

since the quantity of interest for the fill ratio calculation is a pressure difference rather than 

absolute pressure, a different error analysis is used. The change of voltage output by the 

transducer between two pressure values is assumed to change linearly. The manufacturer 

specifies that the linearity error of the sensor is 0.20% FSO. Although it is not common practice, 

applying the linearity error to the range of operation during the filling process (0-345 kPa) gives 

an error of ±0.69 kPa. 
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The data acquisition error has already been found to be ±10.36 μV. Using the sensor 

sensitivity of 0.6 mV/psi this corresponds to an error of ±0.017 kPa. 

Combining these two errors gives a total error of 0.69 kPa which corresponds to a fill 

ratio error of ±1.97%. 

 

8.1.4 Heat Load Error 

The error in heat load is estimated to be 1%. 
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