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Abstract

The objectives of this research concern two main topics: methods of estimating

hourly diffuse radiation on a horizontal surface and evaluation of hourly tilted surface

radiation models.

The influence of climatic and geometric variables on the hourly diffuse fraction

is studied based on a data set with 22,000 hourly measurements from five North

American and European locations. The goal is to determine if other predictor

variables, in addition to the clearness index, will significantly reduce the standard

error of correlations which are based solely on the clearness index (referred to as Liu

and Jordan type correlations).

Stepwise regression is used to reduce a set of 28 predictor variables down to

four significant predictors: the clearness index, solar altitude, ambient temperature,

and relative humidity. A correlation which is a function of these four predictor

variables is developed to predict the hourly diffuse fraction. In cases when ambient

temperature and or relative humidity data are not available, a second "reduced"

correlation which expresses the diffuse fraction as a function of clearness index and

solar altitude is developed. A third correlation of the Liu and Jordan type (IfI = f

(k)) is derived from the same data set to provide a direct measure of the value of the

added predictor variables.

The full diffuse fraction correlation reduced the residual sum squares by 14%

when compared to the correlation that is a function of the clearness index only. The

reduced correlation diminished the residual sum squares by 9%.

The performance of tilted surface models is investigated using monthly average

hourly utilizable energy as a metric. Differences between the utilizable energy

measured and the utilizable energy predicted are observed for various surface

slope/azimuth orientations and critical radiation levels. Normalized root mean square
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difference (NRMSD) and normalized mean bias difference (NMBD) statistics are

formed to quantify each model's ability to estimate the utilizable energy on a tilted

surface.

Three existing tilted surface radiation models are evaluated: isotropic, Hay, and

Perez. In addition, a new tilted surface algorithm based on the Hay model is

developed and evaluated. The tilted surface radiation models in this investigation

share the same techniques for calculating the beam and ground reflected radiation on

a tilted surface; they only differ in the treatment of calculating diffuse radiation on a

tilted surface.

Estimating the hourly radiation on a tilted surface requires knowing the division

of global radiation into its beam and diffuse components. A database composed of

four years of hourly radiation data from Albany, New York and one year of hourly

radiation data from San Antonio, Texas provide the basis for model comparisons.

Measured values of global horizontal and diffuse radiation on a horizontal surface

were available for input to the tilted surface models. The influence of horizontal

diffuse on tilted surface model performance is examined by comparing the predicted

utilizable energy on a tilted surface using measured horizontal diffuse and predicted

horizontal diffuse radiation (using various diffuse fraction correlations). The

database also contained tilted surface radiation measurements for five different

surface slope/azimuth orientations (43's, 90'n, 90's, 90'e, 90'w).

The difference in the utilizable energy measured and the utilizable energy

predicted are observed, via the NRMSD and NMBD statistics, for the five surface

slope/azimuth orientations and a wide range of critical radiation levels. On an overall

basis, the isotropic sky model showed the poorest performance and is not recom-

mended for estimating the hourly radiation on a tilted surface. The anisotropic

models (Hay, Perez, and new model) all have comparable performance. The Hay and
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new model are much simpler to use when compared to the Perez model. Within each

model's limitations, any of the anisotropic models should yield acceptable perfor-

mance for estimating the radiation on a tilted surface.

The tilted surface models showed little sensitivity to the input of horizontal

diffuse radiation. There was no significant degradation of tilted surface model

performance when a diffuse fraction correlation is used to estimate the horizontal

diffuse radiation for tilted surface model input.
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Chapter 1 INTRODUCTION

This chapter is intended to identify areas that show potential for improving

existing diffuse fraction correlations and models used to estimate terrestrial solar

radiation on inclined surfaces from measured horizontal solar -radiation. Research

objectives are established and the thesis organization presented.

1.1 Problem Definition

It is of great value to study solar energy systems using computer simulation

programs such as TRNSYS [1]. Computer simulation provides a medium for both

research and design of systems. The modular architecture of TRNSYS allows

detailed models to be formulated for transient analysis on a system or subsystem

level. The transient nature of real systems is mimicked by TRNSYS using hourly

(or smaller) time steps. In a research regime, computer simulation offers a

controlled environment to study a system's performance and response to variations

in parameters, properties, inputs, etc. This leads to a better understanding of the

systems and their sensitivities. Computer-aided simulation is also a cost effective

tool that can be used to evaluate a wide variety of complex system configurations

and design alternatives such as collector sizes, orientations, storage volumes, etc.

in a relatively short period of time.

A crucial input required in transient simulation of solar energy systems is

hourly radiation incident on the collecting surface. Because radiation (in the solar

spectrum) is the driving force for solar systems, accurate hourly radiation values
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are essential for meaningful simulation results. Incorrect or unrealistic solar

radiation data can abrogate proposed solar system designs which result from the

simulations.

A problem that arises when attempting to design or predict actual solar

system performance is the lack of measured radiation data for simulation input.

Actual measurements of hourly solar radiation data would be desirable for input

but probably are not available for the site and collector orientation under

consideration. Hourly. radiation and weather data are available for various

locations in the United States through the National Oceanic and Atmospheric

Administration (NOAA), SOLMET [2]. In the case of SOLMET data, global

horizontal radiation is the only true measured radiation value. Typically, collect-

ing devices are not oriented horizontally but sloped at some angle, 03, with respect

to the horizontal. Thus, the total radiation on a tilted surface is required for

simulation input and must be calculated from horizontal radiation data.

The total radiation incident on a tilted surface is composed of three distinct

elements: beam, diffuse, and ground reflected. Beam radiation is the component

from the sun that reaches the earth's surface without change in its direction of

propagation. Diffuse radiation is the portion of radiation whose direction has been

changed (possibly several times) as it passes through the earth's atmosphere.

Diffuse radiation can be further divided into three sub-components: circumsolar,

horizon brightening, and sky diffuse. Circumsolar diffuse radiation results from

particles in the atmosphere (commonly referred to as aerosols) scattering the

incident radiation. Circumsolar scattering is predominantly forward directed and
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limited to the region in the neighborhood of the sun. The magnitude of circumso-

lar diffuse is dependent on the scattering particle's composition, size, and

distribution in the atmosphere. Additional information on circumsolar radiation

can be found from Watt [3]. Horizon brightening is the increase in diffuse

radiation near the horizon due to a larger portion (with respect to the sky dome) of

the incident radiation scattering as it passes through the longer pathlength of

atmosphere near the horizon and by multiple internal reflections of radiation

within the earth's atmosphere. Clear sky measurements made by Temps and

Coulson [4] confirm an increased intensity of radiation near the horizon; this

increase is horizon brightening. The sky component is the remaining diffuse

energy which is assumed to be isotropically distributed over the sky dome.

Ground reflected radiation results from both beam and diffuse striking the earth's

surface in the collector's field of view and reflecting with an effective albedo, p,,

to the collector surface.

The investigation undertaken in this research deals with broadband solar

radiation models, i.e. the models are not spectrally dependent. The wavelength

band of interest for solar energy applications is in the range from 0.3 -3.0 pm

according to Duffle and Beckman [5]. Radiation at wavelengths less than 0.3 Pm

will not reach the earth's surface due to the strong absorption of ozone in the

atmosphere [6]. Much of the radiation above 2.5 pm is absorbed in the atmosphere

by H20 and CO2. At wavelengths larger than 3.0 pm, there is no appreciable

energy from a thermal systems utilization standpoint. The broadband assumption



greatly simplifies models which predict both diffuse radiation on a horizontal

surface and total radiation on a tilted surface by eliminating the need to integrate

over all radiation wavelengths.

Because of the importance of hourly tilted surface radiation as an input

variable for simulations and its potential complexity due to the large number of

components, it seems fitting to measure the tilted surface radiation directly for

input. In reality, the use of hourly tilted surface radiation data as an input for

system simulation is not practical due to the prohibitive costs associated with

measuring radiation on all the possible collector surface slope/azimuth orientations

for a proposed system and site location over a long period of time. However,

hourly global radiation on a horizontal surface is one of the most widely available

measurements in addition other climatic variables (ambient temperature, dew

point, etc.). Extensive databases exist for a variety of locations including

SOLMET [2], McKay [7]. Hay and McKay [8] indicate that monitoring global

horizontal radiation produces: measurements that are spatially representative,

measurements that are free from horizon obstructions, and measurements that

minimize the influence of local conditions such as ground albedo.

If only global horizontal radiation is measured, two problems exist: first, to

determine the fraction of the global which is diffuse (or beam); second, to estimate

the respective beam, diffuse, and ground reflected components on a tilted surface

of any orientation. Several correlations have been developed to determine the

diffuse fraction given measured global horizontal. Orgill and Hollands [9] and

Erbs, et al. [ 10] correlate the diffuse fraction with the hourly cleamness index, kL(=Id



/I). Stauter and Klein [5] use a clearness index, k, , relative to a "clear sky"

radiation, I.o, as a predictor of the diffuse fraction. Iqbal [ 11] built on the work of

Bugler [12] to develop a correlation which predicts hourly diffuse radiation (in the

form I/I) as a function of k, and solar altitude. The models based on kt

(commonly referred to as Liu and Jordan type models) are desirable because the

only required input is hourly global horizontal radiation, I. Extraterrestrial

radiation is also required but can easily be calculated from equations given in

Appendix A. Davies, et al. [13] concluded that the Liu and Jordan type models

(Orgill and Hollands, Erbs, etc.) provided the best estimates of hourly diffuse

radiation when compared to other cloud based models. If the diffuse radiation is

estimated, the beam radiation can be calculated from the following relationship:

IbI -I(1.1)

The drawback of diffuse fraction correlations based on k, is the large

standard error associated with hourly estimates of the diffuse fraction. It is

important that the diffuse radiation be determined as accurately as possible to

ensure minimum error when calculating radiation on a tilted surface. Error in

prediction of diffuse radiation also introduces error into the estimate of beam

radiation (by equation 1.1) and its projection to tilted surface.
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Subsequent to determining the magnitude of the beam and diffuse radiation

on a horizontal surface, a method for projecting each radiation component onto a

tilted surface of any orientation must be employed. The beam radiation can be

projected to the tilted surface by a simple geometric calculation as given in [5].

cos(8) IbT (1.2)
cos(O,) Ib

Projecting diffuse radiation onto tilted surfaces is more difficult because each

diffuse component must be treated separately. The diffuse components: circumso-

lar, sky, and horizon brightening each have different magnitudes and angular

relationships with respect to the collector; thus each component must be treated

individually. One method of simplifying the calculation of tilted surface diffuse is

to assume that all the diffuse radiation is isotropic (uniformly distributed over the

complete sky dome) as done by TRNSYS [1] and Duffie and Beckman [5]

(originating from Hottel and Woertz [14]). Several authors have investigated the

validity of the isotropic sky model [8,15,16,17]. All studies conclude that the

isotropic model underpredicts radiation on south facing surfaces. By underpre-

dicting incident radiation, the isotropic model leads to conservative estimates

(probably representing a lower bound) of system performance.

Several models which account for the anisotropic behavior of diffuse

radiation have been proposed and tested in large scale model evaluation studies

[ 18,19]. Two models that consistently appear as good performers in the studies are

the Perez, et al. [20] model and the Hay and Davies [21] model. By accounting for



the circumsolar, horizon brightening, and sky diffuse, the Perez model provides

hourly estimates of the tilted surface diffuse radiation. The Hay model only

considers circumsolar and sky diffuse radiation to provide hourly diffuse radiation

on a tilted surface. Both models have the same required inputs but the simplified

Perez model is cumbersome and difficult to use while the Hay model simple and

quite elegant. Hay and McKay [19] use a large database composed of tilted

surface data to compare model predictions with measured data ranking all models

from best to worst. In addition to comparing measured and predicted values of

tilted surface radiation, van den Brink [18] uses various reference systems

(dwellings with and without active solar, swimming pools, etc.) to explore model

effects on the auxiliary energy required when using measured and predicted values

of radiation. This method lacks the generality to extend the results to other types

of solar systems. From a thermal system point of view, it is of interest to compare

the model's ability to estimate the utilizable energy on a tilted surface at varying

critical radiation levels. The critical radiation level is defined as the minimum

quantity of radiation required to overcome losses and produce useful output.

Utilizable energy (as used in this research) is a statistic that represents the monthly

average hourly amount that the critical radiation level was exceeded (for further

discussion of utilizable energy concepts see Appendix A). Since every solar

energy system has an associated critical level, the utilizable energy for that

system's critical level can be calculated. Utilizable energy provides a means of

comparing model predictions independent of a particular system; thus is a more

general method for comparing the performance of tilted surface radiation models.
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In summary, it is important to provide precise estimates of hourly diffuse

radiation on a horizontal surface when only the hourly global horizontal radiation

is known and to properly "project" that diffuse irradiance onto a tilted surface of

any orientation. Meaningful simulations of solar energy system performance will

not be realistic without accurate inputs of the system's driving force, solar

radiation on the collecting device.

1.2 Research Objectives

The objectives of this research concerns two main topics: methods of

estimating the hourly diffuse fraction on a horizontal surface; and evaluation of

tilted surface radiation models.

In each case there is a significant question that needs to be answered. First,

additional climatic information (ambient temperature, dew point, etc.) is usually

measured along with global horizontal radiation at the monitoring sites; can this

information be used to reduce the standard error associated with estimating the

diffuse fraction via correlations which use k, only? Error in determining the

diffuse fraction on a horizontal surface effects both projected diffuse radiation and

beam radiation (beam radiation is calculated given total and estimated diffuse) to

the tilted surface. Second, what is the best model for determining hourly radiation

on a surface of any orientation using utilizable energy as a metric?
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1.3 Thesis Organization

This thesis is organized into four main chapters. Chapter 2 will discuss the

data sets used in the diffuse fraction correlation research and the tilted surface

model investigation.

In Chapter 3, theoretical models using the radiative transfer equation will be

introduced and contrasted with the current broadband empirical correlations

typically used to estimate hourly diffuse radiation. An hourly diffuse fraction

correlation that utilizes additional climatic information is developed and its

relative improvement over current diffuse fraction correlations is quantified.

Chapter 4 compares three existing tilted surface models on a utilizable energy

basis. A fourth model, based on the Hay anisotropic model, is proposed and its

performance evaluated along with the other three models.

Chapter 5 discusses the overall conclusions of the research. Model recom-

mendations are made as well as suggestions for future areas of research.
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Chapter 2 Solar Radiation Data

Accurate knowledge of solar radiation provides valuable information for

studies among a number of diverse disciplines including: biology, climatology,

hydrology, daylighting, building load analysis, solar system design, etc. The

research described in this thesis deals with the evaluation of both diffuse fraction

radiation models and tilted surface radiation models in the context of solar system

applications.

Good quality solar radiation measurements are an absolute necessity for

diffuse fraction radiation model studies and tilted surface radiation model

evaluation. This chapter is intended to provide a brief overview of the instruments

associated with radiation measurements, databases used in the course of this

research, and the quality control procedures applied to all datasets.

2.1 Instrumentation

As indicated in section 1.1, the single most widely available radiation

measurements is the total or global radiation on a horizontal surface. The total

radiation on a horizontal surface is the sum of beam and diffuse radiation

components. By measuring any two of these three quantities, the remaining can be

calculated by equation (1.1). The two basic instrument types used to measure

these radiation components are discussed below.
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One commonly used instrument for measuring radiation is a pyranometer.

Pyranometers can be configured to measure the total radiation (on a horizontal or

tilted surface), the diffuse radiation, and the ground reflected radiation. Pyranome-

ters measure radiation indirectly by comparing the surface temperatures between a

black detector and a white detector exposed to incident radiation. The black

detector has a high absorptance in the solar spectrum while the white detector has

a high reflectance in the solar spectrum. Thermopiles monitor the detector

temperatures and produce a voltage proportional to the detector's temperature.

The temperature difference between the black detector and the white detector is a

measure of the absorbed radiation. Both detectors are covered by a hemispherical

glass dome to help eliminate environmental effects (wind, dust, etc.). When the

unit is calibrated, the thermopiles produce an output voltage proportional to the

incident radiation flux nearly independent of ambient temperature. Mohr, et.al.

[22] and Nast [23] stress the importance of re-calibrating instruments prior to site

installation to assure that the common sources of instrument error will be

eliminated or minimized.

An unshaded pyranometer oriented horizontally is exposed to beam and

diffuse radiation from the complete sky dome; thus, the total (or hemispherical)

radiation on a horizontal surface will be measured. When tilted at some slope, f0,

the pyranometer will measure the total radiation on a tilted surface which includes

that part of the beam, diffuse, and ground reflected radiation that is in the

instrument's field of view. The pyranometer can also be configured to measure

the diffuse by "blocking" out that portion of the sky containing beam radiation.

This is usually accomplished by means of a shade ring or disk positioned between
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the sun and the instrument's detector to block the beam radiation from the sun.

Unfortunately, the shading device blocks a portion of the diffuse radiation that

normally would reach the detector; thus correction factors that account for this

diffuse shading must be applied to the instrument observations. Similarly, ground

reflected radiation can be measured by orienting the instrument vertically and

shading its view to the sky as discussed in Hay and McKay [8].

When using pyranometer data, it is beneficial to understand factors that

influence the instruments performance. This knowledge may help in decisions

regarding the rejection of spurious data that arise during quality control tests, as

well as providing a level confidence (or doubt) in the quantities the pyranometer

was used to measure (i.e. some pyranometers are sensitive to tilt and should not be

used for tilted surface measurements). Factors that influence the performance of

pyranometers include: detector nonlinearity, incidence angle dependence, slope

orientation, and climatic effects i.e. wind speed, temperature, etc. A basic

instrument requirement for accurate radiation measurements is assuring linearity

between the incident radiation and the instrument's electrical output. The absorp-

tance of solar radiation for a given surface is dependent on the incidence angle of

radiation impinging upon that surface. As the incidence angle of radiation

increases, the absorptance of the surface decreases. The accuracy of most

pyranometers deteriorates rapidly as the incidence angle of radiation becomes

greater than 800. Because of convective flow changes in the hemispherical dome

housing the detector, some pyranometers are sensitive to being tilted. Climatic

conditions can also influence the performance of some pyranometers. For

example, high wind conditions can increase the convective losses of the instru-
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ment's detectors causing inaccurate radiation measurements. Proper instrument

calibration and compensation can counter the majority of the above mentioned

performance degrading effects [22,23].

Another commonly used instrument for measuring solar radiation is the

pyrheliometer. A pyrheliometer is used to monitor the beam irradiance at normal

incidence. A tube shields the detector from diffuse radiation while providing a

direct field of view (typically 5.7') of the sun and a small region around it. With

proper calibration, the voltage output from a thermopile located at the detector's

base will be proportional to the incident radiation. An important component

associated with the pyrheliometer is a drive tracking mechanism which keeps the

tube pointed directly at the sun. Improper tracking can cause large errors in the

measured direct normal; thus, both instrument calibration and drive accuracy are

vital to the reliability of pyrheliometer data.

For further information related to instruments and their use, see Duffie and

Beckman [5] and WMO [24].

2.2 Radiation Database

In this investigation, radiation data are required for two purposes: developing

an improved diffuse fraction correlation and evaluating the performance of tilted

surface models. The specific data needs for each task overlap but differ slightly.

Hourly measurements of global horizontal, diffuse (or direct normal), ambient

temperature, and dew point (or wet bulb) are required to study their influence on
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the diffuse fraction. Evaluating the performance of tilted surface models requires

hourly values of global horizontal, diffuse (or direct normal), and total radiation on

tilted surfaces of various slope and azimuth orientations. The primary dataset used

to accomplish the above objectives represents six locations with a minimum of one

year of data from each location.

A recurring question related to the development of empirical correlations is

"how much data is needed to develop a reliable model ?" Erbs [10] suggests that

the exact number is somewhat arbitrary but he recommends 10 years per location

for the data to be representative. This recommendation is based on monthly

average daily values of radiation which by its nature will require longer time spans

when compared to hourly data values. Balaras [25] suggests that 15 years of solar

radiation data are required for representative annual averages. For hourly models,

the number of years of data to represent a location will be much less than the

10-15 year intervals recommended for monthly and annual averages. The author

believes that the total time duration along with the number of locations represented

in the primary dataset provide sufficient data for developing an hourly diffuse

fraction correlation.

A full description of the data (on a location by location basis) used in this

research is provided below.
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2.2.1 Albany, New York

The data from Albany, New York were taken under the Solar Energy

Meteorological Research and Training Sites (SERMTS) [26] program at the State

University of New York, Albany. The data was reported in the Research

Cooperator Format [27]. Table 2.1 lists a summary of the Albany site location and

data duration and Table 2.2 lists the measurements available during the span of the

four year data period at Albany.

Table 2.1: Albany Site Information

Location: Albany, New York Latitude: 42.70 north

Data Period: 1/1/79 - 12/31/82 Longitude: 73.80 west

Interval: Integrated hourly (LST) Standard Meridian: 75.00 west
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Table 2.2: Albany Site Measurements

Instrument Description Inst. Type Interval Units

1000 * Global, horizontal Eppley PSP 60 min. integ. kJ/m2-hr

1460 Global, 330 s** (280-2800 nm) " "

1560 Global, 43's ** "

1660 Global, 53'si**

1920 Global, 90'n ** LiCor Pyranometer

1940 Global, 90e ** (400-1200 nm)

1960 Global, 90'si** "

1980 Global, 90'wi**

2010 Direct normal Eppley NIP

3000 Diffuse, horizontal Eppley PSP w/disc

3001 Diffuse, horizontal Eppley PSP w/band

9300 Ambient Temp. 1 60 min. Ave. 0C

9320 Dew point 2 "

* Consistent with the Research Cooperator Format.

** Artificial horizons affixed to sensors eliminate ground reflected radiation.
1 - Climatronics motor aspirated temperature sensor.
2- Climatronics with LiCi dew cell sensor.

2.2.2 San Antonio, Texas

Data were also taken under the SERMTS program at Trinity University, San

Antonio, Texas. The Trinity data are reported in the Research Cooperator Format

[27]. Table 2.3 provides site information for the Trinity location and Table 2.4

lists the measurements made at the Trinity site during the data period.
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Table 2.3: Trinity Site Information

Location: San Antonio, Texas Latitude: 29.50 north

Data Period: 1/1/80 - 12/31/80 Longitude: 98.5' west

Interval: Integrated hourly (TST) Standard Meridian: 900 west

Table 2.4: Trinity Site Measurements

Instrument Description Inst. Type Interval Units

1000 * Global, horizontal Eppley PSP 60 min. integ. kJ/m2 -hr

1260 Global, 20's ** (295-2800 nm)i"

1360 Global, 300 si** "

1460 Global, 40'si**

1920 Global, 900n**ItIt

1940 Global, 900e **

1960 Global, 90'sI**i

1980 Global, 90'wi**

2010 Direct normal Eppley NIP

3000 Diffuse, horizontal Eppley PSP w/disc
3001 Diffuse, horizontal Eppley PSP w/band

* Consistent with the Research Cooperator Format.

** Artificial horizons affixed to sensors.

2.2.3 Cape Canaveral, Florida

Data from Cape Canaveral, Florida were provided by the Florida Solar

Energy Center (FSEC). This data set will be referred to as the Cape data in the

remainder of this thesis. The Cape site does not include as extensive measure-
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ments as the Albany and Trinity sites but the data are applicable for the

development of an hourly diffuse fraction correlation. Cape site summary is given

in Table 2.5 and Table 2.6 lists the available measurements made at the Cape site.

Table 2.5: Cape Site Information

Location: Cape Canaveral, Florida Latitude: 28.420 north

Data Period: 1/1/80 - 12/31/80 Longitude: 80.61 0 west

Interval: Integrated hourly (LST) Standard Meridian: 750 west

Table 2.6: Cape Site Measurements

Instrument Description Inst. Type Interval Units

1 * Ambient Temp. a 60 min. ave. °C

2 Dew Point b of 5 min. "

3 Relative Humidity c readings %

4 Global, horizontal Eppley PSP 60 min. ave. of W/m 2

5 Direct normal Eppley NIP 10 sec reads

* Data is in FSEC Format.

a - platinum resistance thermometer, ± 0.1 °C.
b - bifular heating element wound over LiCl treated fiberglass cloth encasing

a three thermistor network, ± 0.5 °C.
c - thin film capacitor, ± 2%, 0-80% RH; ± 3%, 80-100% RH.
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2.2.4 Europe

Three sites with one year of data from each location comprise the European

dataset. The European datasets are not in the Research Cooperator Format and

detailed information on specific sites is not available. Table 2.7 indicates the

locations and site information available and Table 2.8 details the radiation and

climatic information monitored at the European sites. All the data measurement

information is common to the three sites.

Table 2.7: European Site Information

Location: Copenhagen, Denmark Latitude: 55.680 north

Data Period: 1/1 - 12/31; year n/a Longitude: 12.57' east

Interval: Integrated hourly (TST) Standard Meridian: 15.0 east

Location: Hamburg, Germany Latitude: 53.50 north

Data Period: 1/1 - 12/3 1; year n/a Longitude: 10.00 east

Interval: Integrated hourly (TST) Standard Meridian: 15.00 east

Location: Valentia, Ireland Latitude: 51.950 north

Data Period: 1/1 - 12/31; year n/a Longitude: 10.220 west

Interval: Integrated hourly (TST) Standard Meridian: 0.00
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Table 2.8: European Site Measurements

Instrument Description Inst. Type Interval Units

1 Ambient Temp. unknown spot obs. °C

2 Wet bulb unknown "1

3 Global, horizontal * W/m 2

4 Diffuse, horizontal "

5 Direct normal

* - Radiation measurements were performed by logging irradiance from Kipp

solarimeters every minute and forming a mean over the hour. Diffuse
measurements used Kipp instruments with a shade ring. Beam measurements
were taken with pyrheliometers.

2.3 Data Quality Control

The integrity and validity of any empirically derived correlation relies on the

volume and quality of data used in the model development. It is assumed that a

sufficient volume of data exists but the quality of the data need to be examined.

Prior to the development of an hourly diffuse fraction correlation or testing

tilted surface models, it was necessary to screen the datasets to assure that

erroneous data points were eliminated. Since complete equipment and data logs

for each location were not available to identify and eliminate data points

associated with known sources of error, various methods were employed to

determine if the hourly measurements were reasonable. Three types of data checks

were performed to identify missing data, data which clearly violate physical limits,

and extreme data.



21

When the data were known to be "bad" or "missing", the data fields were

filled with a key sequence of numbers to clearly indicate the erroneous observa-

tion. Data fields filled with 9s for the SERMTS and European data and 32767 for

Cape data indicated missing or bad data. Any hour with data flagged-as bad or

missing was omitted. Night hours were also excluded from the datasets. Thus as a

first pass for data checking, daytime hours with presumed good values were used

and subjected to further quality tests.

The next step is to identify data points which violate physical limits. Any

hour with an observation that violated a physical limit or conservation principle

was eliminated from the dataset. For example, reported hours with negative values

of radiation were deleted from the dataset. By conservation principles (equation

1.1), the fraction of the total radiation which is diffuse cannot be greater than 1. If

the measured values of total and diffuse radiation produced a diffuse fraction

greater than 1, the hour was not used. Hours that beam radiation exceeded the

extraterrestrial beam radiation were also eliminated. From thermodynamic prin-

ciples, the dew point temperature cannot be greater than the dry bulb ambient

temperature. If the measured dew point temperature was larger than the measured

dry bulb ambient temperature, the hour was removed from the dataset.

In other circumstances, reported data values did not exceed physical limits

but were categorized as "extreme" or outliers and had to be edited manually.

Anscombe [28] discusses conditions for rejecting outliers indicating that if the

outlier was caused by a large measurement or instrumentation error, discarding the

data is justified. If the outlier appears to be the result of some non-normality and
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its exact cause cannot be identified, the data point can be discarded from a

statistical analysis based the least squares method but the observation should not

be forgotten i.e. there may be important information in a collection of outlying

points.

There are various combinations of the diffuse fraction and clearness index

values which would produce questionable data points. The limits below were used

to identify such particular cases. (Similar limits were used by Erbs [10].) Under

cloudy overcast sky conditions (low values of kr), it is reasonable to expect that a

large portion of the incoming radiation will be scattered by the clouds in the

atmosphere resulting in a large diffuse fraction. Case 1 places a limit on the

diffuse fraction under the cloudy overcast sky conditions. If an hour had measured

diffuse fraction that was less than 0.90 for a clearness index less than 0.20, it was

eliminated from the dataset. For clear sky conditions (high values of k), a smaller

portion of the total radiation received on a horizontal surface will be diffuse. Case

2 places a limit on the diffuse fraction under clear sky conditions. If the measured

diffuse fraction was greater than 0.80 for a clearness index greater than 0.60, the

hour was not used in the final dataset.

Case 1 II < 0.90 and k, < 0.20

Id/I > 0.80 and k, > 0.60Case 2
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Even though less than 1% of the data points fell into the above category, the

points were omitted due to suspected pyrheliometer tracking and instrument

calibration errors.

Another condition checked was hours with k > 1.0. It is possible for the total

radiation on a horizontal surface to exceed the extraterrestrial radiation on a

horizontal surface for short intervals under partly cloudy sky conditions due to

reflected radiation off of clouds in addition to the direct and diffuse radiation

impinging upon the pyranometer. It is less likely for an integrated hourly global

value to exceed the integrated hourly extraterrestrial value. A limit of k < 1.1 was

imposed on the data.

The quality tests discussed will help eliminate spurious data and minimize

any impact that suspect data would have on a derived correlation. The final

dataset was constructed from the measured data that passed all of the quality

control checks discussed above.
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Chapter 3 Determination of Horizontal Diffuse Radiation

In general solar radiation measurements are made on a horizontal surface; but

values of solar radiation on a tilted surface are needed for input to solar system

simulations. The methods for calculating the radiation on a tilted surface require

that the magnitude of the beam and diffuse components on a horizontal surface be

known. The most common hourly radiation measurement is the global or total

radiation on a horizontal surface. In cases when the diffuse (or beam) radiation on

a horizontal surface is not measured, alternative methods must be employed to

estimate the magnitude of the diffuse (or beam) component. By measuring the

total radiation on a horizontal surface and estimating the diffuse radiation, the

beam radiation component can be calculated by equation (1.1).

Fundamentally there are two methods for estimating the diffuse (or beam)

radiation on a horizontal surface: solving the radiative transfer equation or

empirical correlations. The two methods differ greatly in the computational effort

and information required to estimate the diffuse (or beam) radiation. Both

methods will be discussed in this chapter. First, the radiative transfer equation will

be introduced (in its beam form for simplicity) to illustrate the difficulties

associated with its solution on an hourly basis. Second, empirical diffuse fraction

correlations will be presented along with the development of a new hourly diffuse

fraction correlation. In both cases, it is assumed that the global radiation on a

horizontal surface is measured.
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3.1 Theoretical Model

On a monochromatic basis, the radiation on a horizontal surface is expressed

as a sum of the monochromatic beam and diffuse components.

IX = Ib,X+ Id, X (3.1)

The attenuation of monochromatic beam radiation as is passes through the

earth's atmosphere, Figure 3.1, is commonly described by using Lambert's law

given in equation (3.2). The atmosphere is assumed to be horizontal parallel-plane

and cloudless.

00

00

Y

g _ _ __ __

Figure 3.1: Atmospheric Radiation Geometry
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dIx = -Ixl.c. p dl (3.2)

where:

ic = mass extinction coefficient, L2/M

p = density, m/L 3

dl = differential path length, L

d/x = differential radiation intensity, E/L2

but from Figure 3.1,

l=
cos(0,)

dY
cos(O)

substituting dl into (3.2),

d/x = -Ix xx p dY / cos(6.) (3.3)

integrating (3.3) from outer atmosphere to ground level,

(3.4)
J dI / Ix =- Kc p / cos(O,) dY

F9 1(3.5)
IX= Im. expf- Kx p/cos(e,) dYJ

Paltridge and Platt [30] define optical depth as the wavelength dependent quantity

given by equation (3.6).
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9 pd (3.6)

thus, equation (3.5) reduces to the following;

x= I. ~exp - [t. m] (3.7)

where:

I= beam normal radiation at the earth's surface, Em2
22

I = beam normal radiation above the earth's atmosphere, Elm

-= vertical optical depth, (dimensionless)

m = 1/cos(0), relative air mass, (dimensionless)

In equation (3.7), the vertical optical depth (VOD) consists of both absorption

and scattering coefficients. Paltridge and Platt [30] indicate that the main

difficulty in solving the transfer equation centers around determining the absorp-

tion and scattering coefficients as a function of wavelength for all atmospheric

constituents as well as the coefficient's dependence on pressure and temperature.

In the clear sky case, the vertical optical depth will be the sum of extinction due to

both scatter and absorption.

TX = "tRX +to,, +tX + "tX+D, (3.8)

The respective components in equation (3.8) represent Rayleigh scatter,

ozone absorption, combined scatter and absorption by water vapor and dust,
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respectively. Paltridge and Platt [30] list both functional forms and approxima-

tions to all of the vertical optical depth coefficients. The Rayleigh scatter

component can be approximated as a simple function of wavelength only. The

ozone absorption becomes more complicated requiring knowledge of the amounts

of ozone at various levels in the atmosphere. Water vapor absorption and

scattering is even more complex. Water vapor absorption is highly dependent on

wavelength, pressure, and temperature; the relationships to accurately determine

the necessary coefficients are not available. The final component is dust absorp-

tion and scattering. Characterizing dust scatter and absorption is similar to

characterizing clouds. Both have complex particle shapes, sizes, atmospheric

distributions, and radiative properties; consequently, significant simplifications are

necessary to determine the vertical optical depth.

Although not presented, vertical optical depths can be approximated by

methods given in Paltridge and Platt [30]. When each of the vertical optical

depths are computed, the transfer equation must be integrated over all wave-

lengths. Typically, this is accomplished by integrating over small wavelength

bands because the mass extinction coefficients are highly wavelength dependent.

It can be seen that a significant amount of computation is needed to employ

the radiative transfer equation for calculating the beam radiation reaching the

earth's surface under the assumed cloudless sky conditions. Numerous simplifica-

tions and approximations are required to obtain the vertical optical depths for the

various atmospheric absorbing and scattering constituents. Goody [29] points out

that although the equation of transfer is the primary building block in atmospheric
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radiative transfer problems, its physical content is slight due to the approxima-

tions necessary to determine the VOD coefficients. Under partly cloudy sky

conditions, determining the VOD coefficients become nearly impossible due to the

complex nature of the clouds. Detailed knowledge of the cloud distributions

within the atmosphere and cloud microphysics are required to attempt to

approximate some type of VOD. Therefore, the radiative transfer equation has

little practical use in estimating the beam radiation reaching the earth's surface for

all sky conditions. Although the radiative transfer equation was presented in its

beam radiation form, it can be formulated (with more difficulty) to estimate diffuse

radiation.

3.2 Diffuse Fraction Correlations

An alternative to solving the radiative transfer equation is to use empirical

models or correlations derived from extensive databases of radiation measure-

ments. The empirical correlations presented in this thesis will estimate the diffuse

fraction of the global horizontal radiation. The primary advantage of empirical

correlations is computational simplicity which becomes very important in comput-

er-aided simulations of solar energy systems. For a yearly solar system simula-

tion, hourly radiation values must be calculated upward of 4000 times. In this

application, simple empirical models are attractive to ease the computational

burden that would result from using the full transfer equation. The disadvantages

of empirical correlations are the high standard error of predicting the diffuse

fraction and the correlation's potential for being location dependent.
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Early work by Liu and Jordan [31] showed a relationship between daily

diffuse and daily total radiation on a horizontal surface. Although their original

correlation was developed for daily values, it has been used for computing the

hourly diffuse fraction as a function of the hourly clearness index, kt [1]. Other

authors have developed diffuse fraction correlations as a function of the clearness

index, k [9,10] specifically for hourly intervals. Fundamentally these models are

similar and will be referred to as Liu and Jordan type models.

A drawback with using the Liu and Jordan type models is the high standard

error associated with estimating the hourly diffuse fraction. The scatter plot shown

in Figure 3.2a graphically illustrates the problem of estimating the hourly diffuse

fraction as a function of k. For example, at k = 0.5, the measured diffuse fraction

ranges from 0.25 < If < 1.0. It is clear that the hourly diffuse fraction is not a

function of k only. Models such as Orgill and Hollands [9] and Erbs [10] provide

a single deterministic value of the hourly diffuse fraction for a given kt. In an

effort to mimic the variation of the diffuse fraction at a particular value of kt,

Hollands and Chra [32] developed a probability density function which allows the

diffuse fraction, k, to vary about its mean value, iE, at a given k. Other authors

suggest that the variation of the diffuse fraction for a particular value of kt is due to

other unidentified variables [9,11,12,33,34].
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Histogram of kt distribution for Albany Data 1979; N = 2178
Each * represents 10 obs.

Midpoint Count

0.00 5 *
0.05 35
0.10 35
0.15 17 **
0.20 36
0.25 51
0.30 120
0.35 106
0.40 111
0.45 160
0.50 159
0.55 155
0.60 217
0.65 256
0.70 321
0.75 307
0.80 86
0.85 1 *

Histogram of kt distribution
Each * represents 10 obs.

Midpoint Count

0.10 4
0.15 12
0.20 26
0.25 57
0.30 99
0.35 164
0.40 152
0.45 161
0.50 180
0.55 203
0.60 226
0.65 264
0.70 336
0.75 279
0.80 47
0.85 2
0.90 2

Figure 3.2: (b)
(C)

for Albany Data 1980; N = 2214

*

**

** ** * * * * * **** * * **

* * * * * * ** *** **

* *** **** **** *** * *** *** *** * * * * * ** * *

*

*

Clearness index distribution, Albany 1979

Clearness index distribution, Albany 1980
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Histogram of kt distribution for Albany Data 1981; N = 2126
Each * represents 10 obs.

Midpoint Count

0.05 5 *
0.10 12 **
0.15 24
0.20 48
0.25 89
0.30 118
0.35 141
0.40 172
0.45 134
0.50 160
0.55 151
0.60 203
0.65 227
0.70 302
0.75 285
0.80 52
0.85 1 *
0.90 2 *

Histogram of kt distribution for Albany Data 1982; N = 1994
Each * represents 10 obs.

Midpoint Count

0.05 5 *
0.10 25
0.15 25
0.20 41
0.25 85
0.30 86
0.35 120
0.40 98
0.45 126
0.50 156
0.55 175
0.60 223
0.65 226
0.70 294
0.75 246
0.80 55
0.85 8 *

Figure 3.2: (d)
(e)

Clearness index distribution, Albany 1981
Clearness index distribution, Albany 1982
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Garrison [33] uses post - 1976 SOLMET data from 33 U.S. sites to graphically

illustrate the diffuse fraction's dependence on surface albedo, atmospheric

precipitable moisture, atmospheric turbidity, solar elevation, and global horizontal

radiation. Without further statistical analysis, the relative significance of the

variables suggested by Garrison [33] remains unknown. Skartveit and Olseth [34]

and Iqbal [11] suggest that the second most important variable after kt is solar

elevation.

The research described in this thesis focused on assessing the influence of

commonly measured climatic variables on the diffuse fraction and correlating the

significant variables to reduce the standard error of Liu and Jordan type models.

First, examples of existing hourly diffuse fraction correlations are introduced.

Second, the influence of commonly measured climatic variables on the diffuse

fraction are investigated. Third, a new hourly diffuse fraction correlation is

presented. Fourth, the relative improvement of the new correlation over current

Liu and Jordan type models is quantified.

3.2.1 Existing Correlations

Several authors, already mentioned, have proposed models for calculating the

hourly diffuse fraction given the hourly clearness index. Three models commonly

used to calculate the hourly diffuse fraction are given below.
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3.2.1.1 Liu and Jordan Model

A relationship between the daily diffuse and daily total radiation was

developed based on 10 years of data (1947-1956) from Blue Hill, Massachusetts

(latitude = 420 N). On an hourly basis, the correlation is given by [1]

[dI = 1.0045 + 0.04349 k, - 3.5227 e + 2.6313 k k, <0.75 (3.9)

/Id =0.166 k, > 0.75 (3.10)

Erbs [10] points out that the Liu and Jordan hourly correlation underpredicts the

diffuse fraction due to possible instrumentation errors or the fact that the

correlation is a daily rather than an hourly model (although it has been applied to

hourly data by many authors).

3.2.1.2Orgill and Hollands

Orgill and Hollands [9] use four years of data (September, 1967 - August,

1971) from Toronto, Canada to develop an hourly diffuse fraction correlation as a

function of the clearness index. The four years of data yielded 12,704 valid hourly

periods to base the three piece curve fit of IA = f(k).

1,4/I= 1.0-0.249 k, 0<k, <0.35 (3.11)

0.35 k,< 0.75 (3.12)AIdI = 1.557 - 1.84 k,
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/Id' =0.177 k, > 0.75 (3.13)

3.2.1.3 Erbs

Erbs [10] used a database composed of four U.S. locations to develop an

hourly diffuse fraction correlation as a function of the hourly clearness index. The

correlation is very similar to that of Orgill and Hollands. Erbs also uses a three

piece curve to fit the diffuse fraction. The primary difference between the Erbs

correlation and the Orgill and Hollands correlation, with the exception of the

individual data sets, is that Erbs chose to use a fourth order polynomial in the

center portion of the curve fit. The two models yield essentially the same result.

Id/I = 1.0-0.09 k, k, < 0.22 (3.14)

Id/I=0.9511 -- 0.1604 k, + 4.388 k- 16.638 k' + 12.336 kt 0.22 <k t <0.8 (3.15)

I/I = 0.165 k, > 0.8 (3.16)

The three correlations are shown graphically in Figure 3.3. The similarity of

the Orgill and Hollands and Erbs correlation is obvious. Also, the underpredicting

nature of the Liu and Jordan model is evident. It is important to remember that the

curves shown in Figure 3.3 actually represent average values of the diffuse fraction

at a given value of kt. In contrast, Figure 3.1 illustrates an example of actual

measured diffuse fraction data plotted against k.
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Figure 3.3: Existing hourly diffuse fraction correlations
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3.2.2 Development of A New Hourly Diffuse Fraction Correlation

The motivation behind investigating hourly diffuse fraction correlations is to

determine if incorporating additional predictor variables will significantly reduce

the standard error of the current Liu and Jordan type models. The goal is to find

an hourly diffuse fraction model which is more accurate than current Liu and

Jordan type models but computationally simple for use in hourly simulation

programs such as TRNSYS [1]. Also, the correlation's inputs should be limited to

commonly observed climatic variables or quantities that can be calculated from

commonly observed climatic variables e.g. ambient temperature, wet bulb temper-

ature, dew point temperature, relative humidity, etc.

3.2.2.1 Datasets Used

Hourly radiation and climatic data from five locations (Albany, Cape,

Hamburg, Valentia, and Copenhagen) provided the basis for the investigation into

improving the current diffuse fraction correlations. The necessary hourly measure-

ments for this study included global horizontal radiation, diffuse (or direct normal

beam) radiation, ambient temperature, and wet bulb (or dew point) temperature.

Complete site information for each location is provided in section 2.2.

Two methods, direct and indirect, are used to determine the hourly diffuse

radiation on a horizontal surface. The direct method is to simply use the value of

diffuse radiation observed from a shaded pyranometer (with the appropriate shade

ring correction factors applied). The European locations measured diffuse radia-
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tion with a ring shaded pyranometer while the Albany location measured diffuse

radiation with both ring shaded and disk shaded pyranometers. The indirect

method for determining the hourly diffuse radiation is by subtraction of pyrhe-

liometer measured direct normal beam radiation from the observed global

horizontal radiation given by:

I'j = I - I'j cos(0) (3.17)

where Id is the hourly diffuse radiation on a horizontal surface, I is the hourly

global radiation on a horizontal surface, I. is the hourly measured direct normal

beam radiation, and 0, is the solar zenith angle calculated at the midpoint of the

hour.

The accuracy of both methods is debatable. Hogan and Loxsom [36] show

that corrected ring shaded pyranometer diffuse radiation measurements are more

accurate than diffuse radiation calculated indirectly from measured global horizon-

tal and direct normal beam radiation. On the other hand, Huang [37] maintains

that calculated diffuse radiation from global and direct normal beam radiation is

more accurate. The indirect method for calculating diffuse radiation has two

potential sources of error: measured global radiation and measured direct normal

beam radiation. The two sources of error can compound resulting in inaccurate

estimates of the diffuse radiation. For the purposes of this study, directly

measured diffuse radiation by shaded pyranometers will be used in lieu of
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calculating the diffuse radiation from global and direct normal beam radiation.

However, the indirect method will be used to estimate the diffuse radiation when

the pyranometer measurements are bad or missing.

A complete dataset was formed with the measurements that met the quality

control criteria discussed here and in section 2.3. The available hourly data for

each location on a monthly basis is given in Table 3.1.

Table 3.1 Distribution of Valid Hourly Data

Month Albany * Cape Hamburg Valentia Copenhagen

J 402 272 140 153 106
F 493 239 190 200 176
M 382 325 265 287 278
A 887 304 316 343 333
M 694 362 366 407 395
J 1074 343 405 416 375
J 1231 350 429 416 428
A 933 330 362 326 358
S 944 274 298 306 295
0 720 305 232 242 210
N 432 222 152 168 136
D 320 270 124 122 60

Total 8512 3596 3279 3386 3150

*.-Albany: 1979 - 1982

Total data points all locations = 21923

Prior to performing any type of statistical analysis, it is useful to view overall

plots of the diffuse fraction vs. the cleamness index on a location by location basis.
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The plots help reveal obvious errors and unusual characteristics of the measured

diffuse fraction and clearness index values; included with the plots are histograms

of the distribution of clearness index values.

U.S. Data: The diffuse fraction plotted against the clearness index for the

Albany, New York data was presented in Figure 3.2. As noted in section 3.2, a

large range of diffuse fraction values may exist for a given clearness index. The

Cape Canaveral, Florida data shown in Figure 3.4 is very similar to the Albany

data.

European Data: The European data exhibits several peculiarities. First, the

Valentia dataset in Figure 3.5 has several hours with a diffuse fraction around 0.94

at very low values of k. This behavior is not as salient in the other data sets. The

Hamburg data in Figure 3.6 has a solid line of unity diffuse fraction values for a

large range of the clearness index ( 0 < k ,< 0.5 ). The Copenhagen data in Figure

3.7 has "bands" of diffuse fraction values (near Id = 1.0) that occur over wide

ranges of kt. Also, lower diffuse fractions are observed at middle values of kt

making the data in center portion of the plot appear to be more widely spread. The

kt distributions indicate that the average kt value for the European data is lower

than the average kt of the U.S. data. It is clear that location differences in the data

sets exist.
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3.2.2.2 Model Development

Several steps are necessary to develop an empirical model which improves

the prediction capabilities of the current Liu and Jordan type models. The

approach used in this study included the following four basic steps: assemble a set

of predictor variables, identify a potential model form, adopt a predictor selection

procedure, and fit the model.

Predictor variables are independent variables that may affect the response. It

is clear that the response, the diffuse fraction, is affected by the predictor, k,.

Garrison [33] suggests that the diffuse fraction also depends on ground reflectance,

atmospheric precipitable water, atmospheric turbidity, and solar elevation. The set

of predictors used in this study was limited to kt and other commonly measured

climatic data. Factors such as atmospheric turbidity and ground reflectance were

not included because they are not commonly measured. Other subjective quanti-

ties such as cloud type, visibility, etc. were avoided as potential predictors because

they lack repeatability. The full set of predictor variables used in this investigation

is given in Table 3.2.
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Table 3.2: Diffuse Fraction Predictor Variables

Ta(hr)

Ta(hr)

Ta(hr)/Ta(hr)

Td,(hr)

Td,(hr)
Tp( hr )IT, (hr )

o(hr)

o)(hr)

o(hr)/o(hr)

sin(a)

m = 1 /cos(A,)
k,(hr) .m

exp [sin(ct)]

exp [k, .mI

Twb(hr)
Twb(hr)

Twb(hr) wb(hr)

k,(hr)

k,(hr)

k,(hr)/k,(hr)

4(hr)
€o(hr )

4(hr)/o(hr)

T(hr) .0(hr)

4(hr) / [Ta + 273]
4(hr)/A-(hr). Ta(hr)

exp [4(hr)/(T,(hr))]

exp [4(hr)/(40(hr). T,(hr))]

where:

To(hr) = hourly ambient temperature, C.

Tb (hr) = hourly wet bulb temperature, C.

T 4P(hr) = hourly dew point temperature, C.

4(hr) = hourly relative humidity, %.

o(hr) = hourly humidity ratio, dimensionless.

k,(hr) =clearness index, dimensionless.

X(hr) = indicates monthly average hourly quantity.

= solar altitude.

m = optical air mass.

The TRNSYS Type 33 psychrometrics subroutine was used to calculate the

relative humidity, humidity ratio, and dew point temperature given the hourly

ambient temperature and hourly wet bulb temperature at an assumed total pressure

of 1 atmosphere.
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Water vapor is one of the atmospheric constituents that absorbs and scatters

solar radiation as it passes through the earth's atmosphere. The humidity ratio is

defined as the ratio of the mass of water vapor to the mass of dry air. Thus, it

would seem that the humidity ratio would provide some indication of the moisture

content in the atmosphere and lead to a measure of the amount of solar radiation

scattered as it passes through the atmosphere. Similarly, the relative humidity

along with the ambient temperature may provide an indication of the water vapor

content in the atmosphere leading to a measure of the amount of solar radiation

scattered.

Monthly average hourly quantities and ratios of the hourly to monthly

average hourly values of the climatic predictors and k, were included in an attempt

to account for possible predictor location dependence. For example, the range of

ambient temperature over a year at Albany, New York will be much larger than the

range of ambient temperature for Cape Canaveral, Florida but each location

experiences a similar range of measured diffuse fractions over the year. However,

the ratio of hourly ambient temperature to monthly average hourly ambient for

both locations may be approximately the same magnitude. This form of scaling

the predictors may help their correlation with the response.

Other predictors such as the sine of the solar altitude or air mass have been

suggested as significant predictors of the diffuse fraction [11,12,33,34]. These

predictor variables provide a measure of the path length required for radiation to

reach the earth's surface. With a longer path length, more air molecules and other
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atmospheric constituents are available to absorb and scatter the incoming solar

radiation. The exponential forms used in the predictor set are an attempt to mimic

the extinction effects as given in the transfer equation.

With the set of predictors identified, a model form must be established e.g.

linear, nonlinear, first order, second order, etc. The Liu and Jordan type models

presented in section 3.2.1 are all linear models. Liu and Jordan [1] and Orgill and

Hollands [9] use first order piecewise fitted models. In other words, the data is fit

in two or three intervals of k, rather than fitting data over the entire range of k.

The piecewise procedure allows lower order models (straight line) to be fit in each

interval rather than a more complicated higher order model to fit the diffuse

fraction over the entire range of k,. For this study, a linear model of the following

form will be used to fit the data:

Y = 0 +I 3x 1+P 2 "x2+ ... +  XjF(3.18)

where: y is true the response, 03, is the j" model parameter, and x, is the j" predictor,

e represents the model error.

The Liu and Jordan type models rely on multiple piece curve fitting to

accurately predict the diffuse fraction as a function of the clearness index. Based

on the overall plots of diffuse fraction vs. clearness index shown in Figures 3.2a

and 3.4 - 3.7, it is clear that a piecewise model in kt will fit the data better than a

single piece model. The question here is: should a multiple piece curve be used in

a higher dimensional model ? In other words, if the final model was a function of
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three variables, x1, x2, and x3, is it acceptable to fit the response in multiple pieces

based on one variable, say x, ? This procedure would be acceptable if the variable

xi is highly correlated with the response and x2 and x3 were somewhat less

correlated with the response.

To further investigate the possibility of using a piecewise approach, correla-

tion coefficients for each predictor variable were calculated. The correlation

coefficient, rK,, is a measure of the linear association of the variable, x, with the

variable, y. Minitab [39] was used to calculate the correlation coefficients for each

predictor variable; a subset of the correlation coefficient results are given below.

Table 3.3: Variable Correlation Coefficients, r,

I/I (hr) k (hr) sin(a) T (hr) 4(hr)

k (hr) -0.894

sin(xc) -0.239 0.342

T. (hr) -0.194 0.195 0.503

0(hr) -0.439 -0.460 -0.233 -0.065
co(hr) 0.004 -0.003 0.312 -0.755 0.467

It is clear that k, has a substantially higher correlation with the diffuse

fraction when compared to the other variables. Therefore, fitting the diffuse

fraction piecewise in kt is acceptable. Based on the scatter plots given in Figures

3.2a and 3.4-3.7, three intervals of kt seems appropriate. The intervals of k, are

initially approximated by the intervals used by Orgill and Hollands: lower interval

kt < 0.35, middle interval 0.35 < kt < 0.75, and high interval kt 0.75.



51

At this point, the question of fitting other predictor variables in a piecewise

fashion arises. Predictor variables other than k will not be fit piecewise for several

reasons. First, the statistical analysis and predictor selection for a set of approxi-

mately thirty variables would become too complex if each predictor were allowed

variable intervals. Second, the goal of maintaining a simple model would be in

jeopardy if several variables had to be fit piecewise. Fitting each variable

piecewise would require a separate equation for all possible intervals of the

selected variables. For example, if three variables were deemed significant and

each variable required three intervals, 27 unique equations would have to be

provided to estimate the hourly diffuse fraction for all possible variable intervals.

Therefore, other predictor variables are not fit in a piecewise manner.

With the set of potential predictor variables assembled (Table 3.2) and a

tentative model form defined (equation 3.18), a predictor variable selection

procedure must be established. One selection procedure is the method of all

possible regressions. With this method, all possible combinations of predictor

variables are fit and the best regression equation is selected. The best equation

will have a minimum overall standard error with a reasonable number of variables

in the equation. Given the large number of predictor variables in this investigation

(28), the computational effort required to carry out all possible regressions is

prohibitive. For three intervals of k, the number of regressions to complete all

possible combinations would be 3.227= 402,653,184.



52

An alternative to all possible regressions is the stepwise regression procedure

(stepwise and other selection procedures are discussed in Appendix B). The goal

in applying the stepwise procedure is to minimize the standard error and the

number of variables in the final correlation.

In an effort to gain understanding of the diffuse fraction's association with

the predictor variables, analysis was performed on the center interval of kt ( 0.35 <

lt < 0.75 ). Stepwise regressions were performed on a monthly basis for each

location to determine if location or seasonal bias existed in the selection of the best

set of predictors. The complete set of predictor variables listed in Table 3.2 was

used in the stepwise procedure. On a monthly basis, there was not a great deal of

consistency in the variable selection due to the relatively short time interval;

therefore, stepwise regression was performed on a yearly basis for each location.

The results of the stepwise regression for the first 5 variables selected are listed in

Tables 3.4 - 3.13. The tables include parameter estimates, t-ratios, and the overall

standard errors of the correlation at each step. In this case, the t-ratio is related to

the F-statistic and is a measure of the variable's "strength." A high t-ratio

indicates that the variable is important in explaining deviations in the response,

diffuse fraction. For further information on stepwise regression, F-statistics or

t-ratios, consult Appendix B.
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Table 3.4: Stepwise Regression Results, Albany (1979)

Step

Variable 1 2 3 4 5

k, -1.916 -1.854 -1.731 -1.667 -1.685
t-ratio -61.13 -62.98 -58.35 -55.67 -56.37

k -m -0.095 -0.086 -0.112 -0.122
t-ratio -15.69 -14.83 -17.47 -18.38

O/(To) 0.661 0.675 0.633
t-ratio 12.72 13.29 12.41

-0.312 -0.226
t-ratio -8.70 -5.76

T-0.002

t-ratio -5.25

std. error 0.141 0.131 0.125 0.122 0.121

Table 3.5: Stepwise Regression Results, Albany (1980)

Step
Variable 1 2 3 4 5

k, -1.920 -1.844 -1.734 -1.681 -1.675
t-ratio -67.81 -67.53 -60.22 -55.60 -55.74

k,. m -0.084 -0.082 -0.097 -0.114
t-ratio -14.16 -14.55 -15.53 -16.03

O(To) 0.488 0.528 0.491
t-ratio 9.93 10.71 9.90

Ft -0.214 -0.227
t-ratio -5.37 -5.73

T-0.002

t-ratio -4.97

std. error 0.138 0.131 0.127 0.126 0.126
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Table 3.6: Stepwise Regression Results, Albany (1981)

Step
Variable 1 2 3 4 5

k, -1.938 -1.822 -1.787 -1.708 -1.675
t-ratio -68.71 -67.95 -68.60 -63.26 -61.37

k -m -0.095 -0.128 -0.112 -0.192
t-ratio -17.10 -20.86 -19.81 -13.74

-0.004 -0.004 -0.005
t-ratio -11.03 -11.11 -12.06

O/f 0.145 0.135
t-ratio 8.79 8.24

exp(k,- m) 0.012
t-ratio 5.74
std. error 0.134 0.123 0.119 0.116 0.115

Table 3.7: Stepwise Regression Results, Albany (1982)

Step
Variable 1 2 3 4 5

k, -1.773 -1.967 -1.989 -1.909 -1.898
t-ratio -58.71 -67.94 -70.64 -64.80 -64.96

sin(a) 0.288 0.362 0.352 0.351
t-ratio 19.06 22.00 21.77 21.95

Ta -0.004 -0.008 -0.007
t-ratio -9.86 -12.52 -10.35

co 0.108 0.137
t-ratio 7.81 9.38

co -0.099
t-ratio -5.62

std. error 0.130 0.116 0.113 0.110 0.109
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Table 3.8: Stepwise Regression Results, Cape

Step
Variable 1 2 3 4 5

k, -1.694 -1.937 -1.946 -1.910 -1.889
t-ratio -69.18 -82.42 -86.13 -82.97 -80.14

sin(a) 0.320 0.409 0.411 0.414
t-ratio 26.45 31.06 31.47 31.75

-0.009 -0.012 -0.009
t-ratio -14.38 -15.49 -8.74

T 0.005 0.017
t-ratio 6.76 5.10

03 -0.143
t-ratio -3.80
std. error 0.136 0.120 0.116 0.115 0.114

Table 3.9: Stepwise Regression Results,_Hamburg

Step
Variable 1 2 3 4 5

k- 1.687 -1.747 -1.715 -1.684 -1.669
t-ratio -65.26 -67.41 -67.98 -64.64 -62.55

sin(a) 0.142 0.240 0.242 0.253
t-ratio 9.80 14.48 14.63 14.80

-0.006 -0.006 -0.005
t-ratio_ -11.05 -11.58 -8.16

04 0.032 0.034
t-ratio 4.48 4.73

-0.107
t-ratio -2.53

std. error 0.123 0.120 0.116 0.116 0.115



56

Table 3.10: Stepwise RegressionResults,_Valentia

Step
Variable 1 2 3 4 5

k,-1.564 -1.604 -1.585 -1.604 -1.591
t-ratio -53.63 -60.02 -59.97 -61.22 -60.61

sin(a) 0.277 0.214 0.153 0.166
t-ratio 18.04 12.36 8.01 8.61

Ta .1 0.009 0.012 0.012
t-ratio 7.47 9.61 9.73

f I-0.597 -0.748
t-ratio -6.91 -8.00

E-0.213
t-ratio -4.11
std. error 0.137 0.125 0.123 0.121 0.120

Table 3.11:_StepwiseRegressionResults,_Copenhagen

Step
Variable 1 2 3 4 5

k, -1.055 -0.967 -0.987 -0.995 -0.997
t-ratio -33.18 -31.63 -33.58 -35.15 -35.30

01T/2 0.591 0.793 1.043 1.102
t-ratio 13.99 17.88 21.50 21.18

sin(a) 0.219 0.289 0.267
t-ratio 11.26 14.60 12.72

IT ,71-4.420 -4.66
t-ratio -10.85 -11.27

T0.002
t-ratio 3.08

std. error 0.146 0.137 0.132 0.127 0.127
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Table 3.12: Stepwise Regression Results, U.S. Data

Step
Variable 1 2 3 4 5

k, -1.848 -1.983 -2.018 -1.940 -1.859
t-ratio -144.6 -161.8 -171.8 -156.7 -119.3

sin(a) 0.259 0.365 0.357 0.233
t-ratio 39.87 51.02 48.76 15.51

-0.005 -0.005 -0.005
t-ratio -29.68 -31.60 -31.58

0 0.127 0.126
t-ratio _17.49 17.44

k, m -0.049
t-ratio -8.55
std. error 0.138 0.127 0.121 0.119 0.119

Table 3.13:_StepwiseRegressionResults,_All Data

Step
Variable 1 2 3 4 5

k, -1.709 -1.807 -1.814 -1.776 -1.742
t-ratio -164.8 -177.0 -182.8 -178.8 -171.7

sin(cx) 0.211 0.300 0.321 0.310
t-ratio 37.79 47.90 51.42 49.51

I I-0.004 -0.005 -0.001
t-ratio -28.48 -30.73 -3.69

0.342 0.527
t-ratio 20.91 25.22

(WO -0.082
t-ratio -14.08

std. error 0.142 0.135 0.131 0.129 0.128
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The stepwise regression results on a yearly time period show that kt is the

single most important variable by being selected first in stepwise and by its high

t-ratio. The next most important variable does not appear as straight forward as k,

because of the nature of the stepwise procedure. At a given step, the stepwise

regression procedure will select the variable that has the highest t-ratio. Although

other variables may have t-ratios that are nearly as large, they will not be selected.

However, Minitab [39] has a feature which prints the best alternative variables as

determined by the magnitude of their t-ratio. This feature was used to identify the

second most important variable, sine of the solar altitude. In some cases (Albany,

1979-1981) sin(a) was not selected as the second most important variable but its

t-ratio was nearly as high as the variable actually selected. To illustrate the

example, Table 3.14 lists the t-ratio results for cases when the sine of the solar

altitude was not selected.

Table 3.14: Alternative Variable Results

Location Variable Selected Alternative Variable

(t-- ratio)

Albany (1979) k,. m sin(o)

(-15.69) (15.49)

Albany (1980) k,. m sin(o)

(-14.46) (14.42)

Albany (1981) k,.-m sin(oa)

(-17.10) (15.78)
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It can be seen that the sine of the solar altitude has nearly the same magnitude of

t-ratio as k,*.im. Therefore, the sine of the solar altitude is the second most

important variable. The most consistent third and fourth variables are the monthly

average hourly ambient temperature and the ratio of the hourly relative humidity to

the monthly average hourly relative humidity, respectively. Addition of a fifth

variable does not substantially reduce the overall standard error of the model.

Thus, the best four predictor variables to explain the deviations in the diffuse

fraction are:

IJ = f( k,, sin(a), To, 4/14)

Unfortunately, monthly average hourly data are not included in commonly

used datasets [2, 7]. A correlation with monthly average hourly variables would

force users to derive the necessary quantities from existing datasets. At this point,

a decision was made to eliminate the use of monthly average hourly predictors and

pursue a correlation based only on hourly values of the predictors. The impact of

this decision will be investigated when the new set of predictor variables are

selected.

The stepwise selection procedure was applied to the center interval of kt using

the set of predictors with the monthly average hourly predictors removed. On an

hourly basis, the top four predictors were selected in a fashion similar to that

described above. The best predictors to explain the deviations in the diffuse

fraction are:
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I= f ( k,, sin(00, 7.,

This set of predictors provides the foundation for the remaining development and

analysis of a new diffuse fraction correlation.

The next step in the diffuse fraction correlation development is to determine

the best k, intervals for piecewise fitting. The current interval is based on that of

the Orgill and Hollands correlation. The appropriate k, interval will minimize the

standard error of the final correlation. Since the center interval of k, contains the

majority of data points, it was the primary region of concentration for determining

the specific bounds on the intervals. A manual search technique was employed to

find the best interval for k,. The search routine varied the range of the center k,

interval until the overall standard error of the full correlation for the center interval

was minimized. The center interval which minimized the standard error is 0.3 < k,

< 0.78. The standard error for the correlation in the center interval is 0.129. In

Table 3.13, the standard error for the correlation which included the monthly

average predictors is 0.129 (based on the interval 0.35 < lt < 0.75). Thus, it

appears that there is not a significant loss by not including the monthly average

hourly predictor variables in the correlation. The three intervals of k, for piecewise

fitting and the number of data points in each interval are given in Table 3.15.
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Table 3.15: Data Distribution In kt Intervals

Interval Number of Points % of Total

0< kt < 0.30 4783 21.8

0.3 < kt < 0.78 16286 74.3

0.78 <5kt <1.0 854 3.9

The results of stepwise regression performed on the final kt intervals are

given in Tables 3.16 - 3.19.

Table 3.16: Stepwise Regression Results, 0 < kt _ 0.30

Step
Variable 1 2 3 4

k, -0.248 -0.234 -0.239 -0.232
t-ratio -28.52 -25.36 -25.75 -24.97

0.018 0.020 0.020
t-ratio 4.52 5.08 4.91

sin(a) 0.015 0.024
t-ratio 4.42 6.65

Ta -0.0007
t-ratio -6.39

std. error 0.0462 0.0461 0.0460 0.0458
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Table 3.17: Stepwise Regression Results, 0.3 < k < 0.78

Step
Variable 1 2 3 4

k, -1.665 -1.749 -1.753 -1.716
t-ratio -211.4 -219.6 -224.9 -217.3

sin(a) 0.177 0.252 0.267
t-ratio 35.04 44.43 47.25

Ta -0.003 -0.004
t-ratio _-26.94 -29.51

0 0.106
t-ratio 20.32
std. error 0.138 0.133 0.130 0.129

Table 3.18: Stepwise Regression Results, 0.78 kt

Step
Variable 1 2 3 4

sin(a) -0.219 -0.272 -0.239 -0.256
t-ratio -14.07 -16.99 -13.59 -12.63

0.081 0.079 0.0734
t-ratio 8.92 8.75 4.73

k, 0.406 0.426
t-ratio 4.31 4.54

Ta 0.00349
t-ratio 7.52

std. error 0.100 0.0960 0.0948 0.0936
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The stepwise regression in each interval reveals some interesting behavior of

the predictor variables. The relative importance of each variable is consistent with

the exception of the last interval. Table 3.19 lists the order of importance of each

predictor and its associated sign (indicating if the variable is negatively or

positively correlated with the diffuse fraction).

Table 3.19: Relative Importance of Predictors

k, Interval
Order Low Middle High

1 k (-) k (-) sin~x) (-)

2 sin(a) (+) sin(a) (+) Ta (+)

3 Ta(-) 0(+)(+)

4 ((+) Ta(-) lk(+)

The clearness index is the most important variable in the low and middle

intervals but at the high interval, the significance of the clearness index decreases

dramatically. At the low and middle interval, k is negatively correlated with the

diffuse fraction thus, an increase in the clearness index (clear skies) causes a

decrease in the diffuse fraction. At high intervals there is an inversion in the sign

of the k, coefficient implying that a further increase in the clearness index above

0.78 will increase the fraction of solar radiation diffusely scattered. This situation

could arise in the following scenario: highly intermittent cloudy sky conditions

with direct solar radiation reaching the measuring surface unimpeded and only a
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portion of the diffuse blocked by the clouds. A significant portion of the incident

radiation is reflected from the earth's surface to the clouds and back to the

measuring instrument. Thus, the increase in diffuse radiation due to internal

reflection of the incident total radiation causes the diffuse fraction to increase with

apparent increasing clearness.

The solar altitude effects are not as strong under cloudy skies (low values of

k) but under clear skies (high values of kr), the solar altitude becomes the

dominant predictor variable. For clear sky conditions, the diffuse fraction increas-

es for decreasing solar altitude angles due to the longer path length required for

radiation to travel. These results are consistent with those found by Skartveit and

Olseth [34]. The only problem with the high interval of k, is the apparent

discontinuity of the predicted diffuse fraction caused by the coefficients of k,, sine

of solar altitude, and ambient temperature changing their signs. The sparsity of

data in this interval does not greatly contribute to understanding this peculiar

effect.

The effect of relative humidity and ambient temperature on the diffuse

fraction are consistent in the low and middle intervals of k. When the ambient

temperature is constant and relative humidity increases, the diffuse fraction

increases because there is more moisture in the atmosphere scattering incident

radiation. A decrease in ambient temperature means the air will hold less

moisture. Thus, for constant relative humidity, a decrease in the ambient tempera-

ture causes the diffuse fraction to decrease because there is less moisture in the
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atmosphere available for scattering incident radiation.

The appropriate intervals of kt have been selected as well as the final set of

predictors. The final version of the hourly diffuse fraction correlation was

determined by applying the method of least squares to each k, interval. The results

of the fitted models in each interval along with the appropriate statistical tests are

presented below (Appendix B contains further information regarding the tech-

niques used in this statistical analysis).

Interval: 0 _ k, _50.3.

Id/i = 1.000 - 0.232 k, + 0.0239 sin(a) - 0.000682 Ta + 0.0195 (3.19)

The equation carries a subsequent constraint IJI 1.0. The ANOVA (analysis of

variance) is given in Table 3.20 (for more information regarding analysis of

variance, see Appendix B).

Table 3.20: Analysis of Variance, 0 < k 50.3

Source d.f. Sum Sq. Mean Sq. F

Regression I bo 4 1.90672 0.47668 227.087

Residual 4778 9.83642 0.00210

Total, corrected 4782 11.74314



66

The null hypothesis for testing the overall significance (at a 95% confidence level)

of the fit is given by:

H,: 1 = =  34= =

Comparing the calculated F-statistic with the appropriate F-distribution point at a

95% confidence level [40],

F =227.08, Fs,.. =2.21

The overall regression is highly significant and the null hypothesis is rejected. In

other words, all parameters in the fitted equation are not zero. The test does not

indicate if a particular parameter is zero. Partial F-tests are performed to

determine if each parameter is significant. If the parameter is not significant, it

will be removed from the fitted equation. In general, the null hypothesis and

alternative, respectively for the partial F-tests are given by:

Ho: fi = 0, HI:3Pi # 0

Since there is only one degree of freedom in the null hypothesis, a t-test can be

performed by using the following relationship given by Draper and Smith [40]:

F1, V 2 - 2
El 2 ='tV2

At a 95% confidence level, the individual parameters must have a calculated

t-statistic greater than t = abs(1.96). The results of the t-statistics calculated for

each parameter are given below.
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Predictor

constant

sin(a)

Ta

t-statistic

230.91

-24.97

6.65

-6.39

4.91

Result

significant

significant

significant

significant

significant

Thus, all parameter estimates are statistically significant at a 95% level and none

will be excluded from the final correlation.

Interval: 0.3 < k, < 0.78.

(3.20)I/I = 1.329 - 1.716 k, + 0.267 sin(a) - 0.00357 T, + 0.106

Equation (3.20) has the subsequent constraints: IfI 50.97 and Ifl > 0.1. The Ifi

< 0.97 constraint is used to ease the transition from the lower kt interval to the

middle interval.

Table 3.21: Analysis of Variance, 0.3 < kt < 0.78

Source d.f. Sum Sq. Mean Sq. F

Regression I bo 4 894.29 223.57 13483.0

Residual 16281 269.79 0.02

Total, corrected 16285 1164.08
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Overall regression is highly significant at a 95% level. The t-statistics for each

variable are given below.

Predictor

constant

sin(a)

Ta

t-statistic

216.67

-217.28

47.25

-29.51

20.32

Result

significant

significant

significant

significant

significant

All parameter estimates are statistically significant at a 95% level and none will be

excluded from the final correlation.

Interval: 0.78 _ k.

Id/I = -0.0312 + 0.426 kt - 0.256 sin(c) + 0.00349 T, + 0.0734

Equation (3.21) has the subsequent constraint: IA/I > 0.1.

Table 3.22: Analysis of Variance, 0.78 < k

(3.21)

Source d.f. Sum Sq. Mean Sq. F

Regression I bo 4 3.1254 0.7813 87.20

Residual 849 7.6028 0.00896

Total, corrected 853 10.7282
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Overall regression is highly significant at a 95% level. The t-statistics for each

variable are given below.

Predictor t-statistic Result

constant -0.39 not signif.

k 4.54 significant

sin(0a) -12.63 significant
Ta 7.52 significant

4.73 significant

Since the t-statistic for the constant is not significant, it will not be included in the

final correlation.

The distributional tests (t-tests) performed will not be valid until the proper

diagnostic tests are performed. The diagnostic tests consist primarily of residual

plots to assure that the underlying assumptions made during the t and F-tests are

not violated. The hypothesis tests performed on the models assume the residuals

are normally distributed with mean zero and constant variance.

e, -N(0, 2)

Two methods to test for normally distributed residuals include residual histograms

and normal probability plots. The residual histograms should look like a normal

distribution centered at 0. The normal probability plot should produce a straight

line. Figure 3.8 shows both the histogram and normal probability plots of

standardized residuals for the center interval of k. The data in the upper and lower

intervals are not as normal due to the subsequent constraints placed on the models.
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The remaining diagnostics will consist of residuals being plotted against time,

predictors, and predicted values of the diffuse fraction. In all cases, the points on

each plot should appear as a band of noise centered at a residual value of 0. There

should not be any linear, curvilinear, or funnel shapes in the residual plots. For

more information on residuals for diagnostic analysis see Draper and Smith [40]

and Belsley, Kuh, and Welsch [41]. A sample residual plot of each type will be

presented for illustration purposes. The remaining residual plots are available for

inspection in Appendix C.

To determine of seasonal or time dependent trends exist, the residuals are

plotted in time series. Figure 3.9 is a time series plot of residuals on an hourly and

daily basis for Albany data. The plots appear to be acceptable. No noticeable time

dependencies are apparent from the time series plots. Figure 3.10 - 3.11 plots

residuals against each predictor variable for Albany. The plots of residual vs. l,

appear abnormal due to the piecewise fit. If the plot is viewed within each k,

interval, it appears acceptable. The plots of the residuals against the other

predictors appear acceptable. The final plot in Figure 3.12 shows the residuals

against the predicted diffuse fraction values for Albany. The plot appears odd due

to the subsequent constraints placed on the fitted equations. On an overall basis,

the diagnostic plots are acceptable and support the derived correlation.
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The final version of the correlation is given below.

Interval: 0 < kt 0.3; Constraint: I/I <1.0.

d/I = 1.000 - 0.232 k, + 0.0239 sin((x) - 0.000682 Ta + 0.01954 (3.19)

Interval: 0.3 <k <0.78; Constraint: II <0.97 and Ifd 0.1.

L3/I = 1.329 - 1.716 k, + 0.267 sin(x) - 0.00357 T, + 0.1064 (3.20)

Interval: 0.78 < kt; Constraint: IJI >_ 0.1.

IdJ/I = 0.426 k, - 0.256 sin(a) + 0.00349 T, + 0.07344 (3.21)

At this point, a simple piecewise correlation exists which gives the hourly

diffuse fraction as a function of hourly clearness index, solar altitude, ambient

temperature, and relative humidity. Although hourly ambient temperature and

relative humidity are commonly measured climatic quantities (or can be calculated

from measured quantities), they may not be available in some data sets. It would

be desirable to provide a reduced form of the current correlation for use when

hourly ambient temperature and/or relative humidity data are not available. The

bias for each of the current model parameters is calculated to determine the new

parameters when hourly ambient temperature and/or relative humidity data are not

available. The result is a piecewise model which provides estimates of the hourly

diffuse fraction as a function of the clearness index and solar altitude angle.

Interval: 0 < k A 0.3; Constraint: Id/I < 1.0

L4/I = 1.020 - 0.254 k, + 0.0123 sin(c ) (3.22)



77

Interval: 0.3 < kt < 0.78; Constraint: Id/I <0.97 and Id/I >0.1.

II = 1.400 - 1.749 k, + 0.177 sin(a) (3.23)

Interval: 0.78 < kt; Constraint: Id/I > 0.1

I = 0.486 k, - 0.182 sin(a) (3.24)

Therefore, when hourly ambient temperature and or hourly relative humidity are

not available, the correlation given by equations 3.22-3.24 should be used for

estimating the hourly diffuse fraction.

A final correlation which is a function of k, only was also developed. This

was done to allow direct comparison to the Liu and Jordan type correlations

presented in section 3.2.1. The reduced correlation is given below.

Interval: 0 < k <0.3; Constraint: Ifi 1.0.

Idll = 1.020 - 0.248 k, (3.25)

Interval: 0.3 < k < 0.78

/Id= 1.45- 1.67 k, (3.26)

Interval: 0.78 k

fd"/=0.147 (3.27)

The correlation is plotted in Figure 3.13 along with the Liu and Jordan type

correlations introduced in section 3.2.1. The derived correlation based on kq is

similar to Orgill and Hollands [9] and Erbs [ 10].
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3.2.2.3 Model Performance

An obvious question at this point is: does the new hourly diffuse fraction

correlation provide any improvement over the current Liu and Jordan type

correlations? A simple composite residual sum squares (CRSS) comparison is

used to quantify the improvement of the new hourly diffuse fraction correlation

over current Liu and Jordan type models. In an effort to provide a fair comparison

between the new hourly diffuse fraction correlation and the current Liu and Jordan

type models, the reduced correlation based on kt (given by equations 3.25 - 3.27)

derived from the existing dataset will be included in all model comparisons. The

reduced model will be referred to as "ktcorr" in the remainder of this thesis. By

comparing the ktcorr model with the new diffuse fraction correlation, the relative

merit of added climatic and geometric terms in the new model will be directly

assessed. The reduced correlation based on k and sine of solar altitude (given by

equations 3.22 - 3.24) will also be included in the correlation comparison. The

model will be identified by DTR(k). The only other existing model that will be

included in the model comparisons will be the Erbs model as given in section

3.2.1.3. Location and seasonal effects are noted.
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The CRSS is calculated by the following relationship:

(3.29)
CRSS= X Id--Id

location year hour I I W a

Applying equation 3.29 to the complete dataset yielded the results listed in Table

3.23.

Table 3.23: CompositeResidual Sum Squares Results

Location New Corr. DTR(k) ktcorr Erbs

Albany, '79 33.04 35.67 38.16 37.01

Albany, '80 35.42 36.05 39.64 37.73

Albany, '81 27.37 29.72 32.96 30.99

Albany, '82 23.38 25.07 28.80 29.54

Cape 45.85 50.63 55.29 57.97

Valentia 37.95 41.04 46.37 47.24

Hamburg 34.75 34.51 35.59 37.30

Copenhagen 55.49 58.52 65.78 77.64

Total 293.25 311.21 342.59 355.42

The new hourly diffuse fraction correlation reduces the residual sum squares of the

correlation based on k only (derived from the same dataset) by 14.4%. The

reduced hourly diffuse fraction correlation shows a 9% improvement over ktcorr.

As pointed out in section 3.2.2.1, location differences were observed in the

plots of diffuse fraction vs. clearness index for each data set. The location
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differences are quantified here in the form of residual sum squares for each

location. The variation in the residual sum squares for each location suggests that

the correlation is not location independent. Copenhagen exhibits the largest

residual sum square. The peculiarities of the Copenhagen data noted in section

3.2.2.1 explain the high residual but the unusual behavior of the data in that

particular data set remains unexplained.

To observe potential seasonal effects, the residual sum squares is plotted on a

monthly basis. Three histograms are presented to show the typical trends in the

monthly residual sum squares for each of the correlations listed in Table 3.23.

Figure 3.14 shows the monthly residual sum squares for Albany, 1979, 1980 data.

Figure 3.15 plots monthly residual sum squares for Hamburg. The plots are

representative of the other locations and suggest that errors tend to be higher in the

spring and summer months. Seasonal effects were not apparent in the plots of

residuals in time order (Figure 3.9). No attempt is made to account for location or

seasonal effects. The author feels that the current correlation is acceptable.

3.3 Conclusions

Two methods for calculating the beam and diffuse radiation were introduced

in this chapter. The first method uses Lambert's law to model the monochromatic

beam radiation passing through a cloudless atmosphere (formally identified as the

radiative transfer equation). The second method estimates the diffuse fraction of

the global horizontal radiation by means of a spectrally independent empirical

model derived from extensive datasets of radiation measurements.
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The radiative transfer equation was developed for a cloudless sky with four

constituents responsible for absorbing and scattering radiation. The difficulty in

this method arises in determining the vertical optical depths for each of the

atmospheric constituents that absorb and scatter radiation. The vertical optical

depths for a given constituent will vary with temperature and pressure. The final

solution to the radiative transfer equation is computationally intensive because it

must be integrated over all wavelengths.

The second method uses empirical spectrally independent models to estimate

the diffuse fraction of the global horizontal radiation (diffuse fraction correlations).

Diffuse fraction correlations are derived from large databases of actual radiation

measurements. The fitted diffuse fraction models are very simple and well suited

for use in estimating radiation inputs for hourly simulation of energy systems. The

drawback associated with current diffuse fraction correlations is the high standard

error of estimating the diffuse fraction.

The goal of this chapter was to reduce the standard error of the current Liu

and Jordan type correlations by including additional predictor variables in the

model. Stepwise regression is used to reduce a large set of potential predictor

variables down to four significant predictors. The significant predictors include

hourly values of clearness index, sine of solar altitude, ambient temperature, and

relative humidity. The final version of the piecewise correlation is given on p. 76

by equations 3.19-3.21. In the event that hourly ambient temperature and or
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hourly relative humidity are not available, a reduced form of the correlation was

derived to predict the diffuse fraction as a function of kt and sine of the solar

altitude (equations 3.22-3.24).

The improvement of the new correlation is demonstrated in section 3.2.2.3.

The new correlation reduced the composite residual sum of squares by 14.4%

when compared to a k correlation derived from the same dataset. The reduced

form of the correlation reduces the composite residual sum squares by 9.2%.

Some location and seasonal dependencies were suggested but their effects are

considered to be negligible to the correlation's overall performance.
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Chapter 4 Tilted Surface Models

Simulation of solar energy systems requires knowing the total radiation

incident on the system's collecting surface in a specified time interval. An hour

time step is the most common interval used in system simulations but simulations

are not limited to hourly intervals. Consistent with the notation used by Duffle

and Beckman [5], I indicates an hourly time interval of radiation. Although not

explicitly stated, the intervals discussed herein are assumed to be hourly intervals.

Most collecting devices associated with solar energy systems are tilted at some

angle, 03, with respect to the horizontal. Due to the lack of tilted surface solar

radiation data, models are commonly employed to estimate the radiation incident

on the collector's surface. Estimating the radiation on a tilted surface requires

knowing the division of global horizontal radiation into its beam and diffuse

components. In general, hourly global radiation measurements are available;

hourly measurements of horizontal diffuse (or beam) radiation are not as widely

available. If diffuse (or beam) radiation measurements are not available, the

methods described in Chapter 3 can be used to estimate the hourly diffuse

radiation. In this chapter, methods for projecting the horizontal radiation compo-

nents onto a tilted surface are presented and evaluated.

The total radiation on a tilted surface is composed of three elements: beam,

diffuse, and ground reflected.

IT = b T+ Id,T + I,T(41 (4.1)
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where: I represents the total radiation on a tilted surface; Ib,T, IdT , and Ig.T represent

the respective beam, diffuse, and ground reflected radiation components on a tilted

surface. The methods for projecting each radiation component onto a tilted surface

are discussed below.

4.1 Beam Radiation

Projecting the beam radiation onto a tilted surface is accomplished by

geometry. Duffie and Beckman [5] define the geometric factor, Rb as the ratio of

beam radiation on a tilted surface to the beam radiation on a horizontal surface.

Rb, as given in Chapter 1,

b,T COSO (1.2)

b = - COS

Thus, the beam radiation on a tilted surface is,

/b'T= I b • Rb (4.2)

When calculated values of either 0 or 0. exceed 900, the beam radiation on the

tilted surface will be zero. When 0 is greater than 900, the sun is behind the

collecting surface. When 0, is greater than 900, the sun is below the horizon.
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4.2 Diffuse Radiation

Diffuse radiation is the most difficult and challenging component to model or

project onto a tilted surface. Chapter 1 introduced the diffuse sub-components

consisting of circumsolar, horizon brightening, and isotropic sky diffuse. Several

models have been proposed to estimate the diffuse radiation on a tilted surface, not

all of which account for these three diffuse sub-components. Three existing tilted

surface models are presented: isotropic, Hay and Davies [21], and Perez [20], et al.

A new model based on the work of Hay and Davies, Temps and Coulson [4], and

Klucher [16] is developed and evaluated with the above models.

4.2.1 Isotropic Model

The isotropic model [14] is the simplest of the tilted surface models. This

model assumes the diffuse radiation is uniformly distributed over the complete sky

dome. When integration is performed over the complete sky dome in the

collector's field of view, the following view factor is obtained [4],

1 + cos() (4.3)f = cosk(l3/2) - 2

where 03 is the surface slope. Thus, the diffuse radiation on a tilted surface by the

isotropic sky model is given by,

IdIdi(1 + cos(P)) (4.4)
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Under completely cloudy skies, the isotropic sky model becomes a good

approximation. As skies become clearer, the validity of the isotropic sky model

deteriorates due to the presence of anisotropic effects including: increase in

intensity of diffuse radiation near the sun (circumsolar diffuse) and near the

horizon (horizon brightening).

4.2.2 Hay and Davies Model

Hay and Davies [21] developed a model to predict the tilted surface diffuse

which accounts for both circumsolar and isotropic diffuse. This model will be

referred to as the "Hay" model. Realizing that the anisotropic behavior of

circumsolar diffuse becomes more pronounced under clear sky conditions, Hay

and Davies defined an "anisotropy index" to weight the circumsolar and isotropic

radiation components. The anisotropy index is given by,

Ibn (4.5)AI =F
ion

where: Ib. is the hourly direct normal beam radiation and 1. is the hourly

extraterrestrial radiation at normal incidence. The anisotropy index defines a

portion of the diffuse radiation to be treated as circumsolar with the remaining

portion considered isotropic. The circumsolar diffuse on a tilted surface is:

cosO0 1 d(M.Rb)N(4.6)
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Since the circumsolar diffuse radiation originates from a region in the neighbor-

hood around the sun, it is projected onto the tilted surface in the same fashion as

beam radiation. In other words, the directional dependence of circumsolar diffuse

is lumped with the directional dependence of beam radiation. The remaining

diffuse radiation is treated as isotropic diffuse.

JITrio =-Id (1 AI) . 1+ Cos 32(4.7)

The complete Hay model is,

Id =TId[(1 -AI) ( +c s 3 J A .Rb]"2(4.8)

Under clear skies, the anisotropy index will be high and the circumsolar

diffuse is weighted heavier than the isotropic diffuse. Under cloudy skies, the

anisotropy index goes to zero and the model will treat all diffuse radiation

isotropically. This behavior is consistent with diffuse sky measurements made by

Temps and Coulson [4] (and others as given in Hay and McKay [8]). Their

measurements show that diffuse radiation is directionally dependent under clear

skies and the directional dependence diminishes under cloudy skies.

The Hay model is very simple and quite elegant in its formulation of tilted

surface diffuse radiation but there are potential weaknesses in the model. The Hay

model does not include the anisotropic effect of horizon brightening. This could

cause the model to underestimate the radiation on a tilted surface. Another
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weakness is observed for cases when the angle of incidence, 0, is greater than 900.

When 0 is greater than 900, the circumsolar diffuse is set equal to zero because the

sun is not the collector's field of view. However, if the anisotropy index is not

zero, the Hay model will predict a lower value of tilted surface radiation than the

isotropic sky model.

4.2.3 Perez, et al. Model

Perez et al. [20] proposes a new simplified version of a previous "Perez"

anisotropic model [35] to estimate the diffuse radiation on a tilted surface. The

new version of the anisotropic model will be referred to as the "Perez" model. The

Perez model incorporates three components to account for circumsolar diffuse,

horizon diffuse, and isotropic diffuse.

The sky is modeled by superimposing a circumsolar region and a horizon

band on an isotropic background. Geometrically, the circumsolar region has a half

angle of 250 and the horizon region is assumed to be infinitesimally thin at a 00

elevation. The contribution of diffuse radiation from the circumsolar, isotropic,

and horizon regions is determined by two empirically derived coefficients

(reduced brightness coefficients). The coefficients represent the normalized

contribution of circumsolar diffuse and horizon diffuse to the total horizontal

diffuse radiation. Perez derived the reduced brightness coefficients using two

years of data from Carpentras, France and two years of data from Trappes, France.

The Perez model is represented by the following:
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Id Id [(1 -F ) (1 +cos%+ FIt (a)j+ F.'sin (4.9)

where: a/c is a weighted circumsolar solid angle; F,' and F2' are the reduced

brightness coefficients representing the normalized contribution of circumsolar

diffuse to the diffuse radiation on a horizontal surface (Id) and the normalized

contribution of horizon diffuse to Id. The first term within the brackets represents

the diffuse radiation received on a tilted surface from the isotropic portion of the

sky dome. The second term is the contribution of circumsolar diffuse and the last

term represents the contribution of horizon brightening diffuse.

The reduced brightness coefficients are a function of three parameters: zenith

angle, sky clearness, and sky brightness. Perez defines the following as the sky

clearness parameter,

(Id + Ibn) (4.10)
Id

where Ibn is the hourly direct normal radiation. The sky brightness parameter is

defined by,

Id (4.11)
A----
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where 1L is the hourly extraterrestrial radiation on a horizontal surface. Once the

zenith angle, sky clearness, and sky brighmess parameters are calculated, the

reduced brightness coefficients can be found by the following equations:

Fi'= Fxx'(e) + F12'(E) • A + F13'(E) • 0z

F2' = F21'() + F22'(E). A + F23'(e) • Oz

(4.12)

(4.13)

where 0, is in radians. The intermediate coefficients, Fl, F12, etc. are given by

Table 4.1 depending on the value of e.

Table 4.1: Intermediate Brightness Coefficients *

epsilon bin Upper Fil F12  F13  F21 F22 F23

Limit
Leni t

1 1.056 -0.011 0.748 -0.080 -0.048 0.073 -0.024
2 1.253 -0.038 1.115 -0.109 -0.023 0.106 -0.037
3 1.586 0.166 0.909 -0.179 0.062 -0.021 -0.050

4 2.134 0.419 0.646 -0.262 0.140 -0.167 -0.042

5 3.230 0.710 0.025 -0.290 0.243 -0.511 -0.004
6 5.980 0.857 -0.370 -0.279 0.267 -0.792 0.076
7 10.08 0.734 -0.073 -0.228 0.231 -1.180 0.199

8 - 0.421 -0.661 0.097 0.119 -2.125 0.446

* Coefficients for a circumsolar half angle of xc= 250.
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The ratio a/c represents a weighted circumsolar solid angle. The "a"

parameter is the circumsolar solid angle weighted by its average incidence on the

tilted surface. The "c" parameter is the circumsolar solid angle weighted by its

average incidence on a horizontal surface. Perez provides functional forms for "a"

and "c" which depend on the angle of incidence, zenith angle, and circumsolar half

angle. Since the Perez model requires the ratio a/c, the functional forms for "a"

and "c" were combined and reduced to the five cases presented below.

i.) r

<2 -a Z2 -

a cosO
c -co8~= RbC Cos OZ

ii.) rt7t7
-a < 0< 1+ a, 0. <.-at

2 2 2

( 0 +a) sin(!-2+a)

c 2a cos0.

iii.) Ic

2

a
-=0C
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iv.) n n
0<--a, 0o >--a

2 Z2

a cosO
C sin 'x-e,+a

v.) ic: 71i7V. - a<O< 7C+ a, 0 > -a
2 2 2

a (0+() sin( -+i)

C 5 cez &\c 2 a sin4--+-

In the first case (i), the complete circumsolar region is in the tilted surface's

field of view and the weighted solid angle reduces to the familiar Rb factor. The

second case (ii) represents the situation when part of the circumsolar region is

behind the collector..In the third case (iii), the entire circumsolar region is out of

the collector's field of view; therefore, the contribution from circumsolar diffuse

will be zero. The fourth case (iv) occurs when part of the circumsolar region is

obscured by the horizon and the last case (v) results when part of the circumsolar

region is obscured by the horizon and part of the circumsolar region is behind the

collector surface.

In summary, there are four major steps in estimating the tilted surface diffuse

radiation by the Perez model:
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1. Calculate the sky brightness, sky clearness, and zenith angle parameters.

2. Enter Table 4.1 in the appropriate , bin. Use the intermediate brightness

coefficients, Fl, F12, etc. along with A and 0, (in radians) to find the

reduced brightness coefficients by equations 4.12 and 4.13.

3. Calculate the angle of incidence, 0. Find the proper a/c case based on

the values of 0 and 0, (using a circumsolar half angle of at=25').

Calculate the weighted circumsolar solid angle, a/c.

4. Substitute the reduced brightness coefficients, weighted circumsolar

solid angle, surface slope, and horizontal diffuse into equation 4.9 to

find the diffuse radiation on a tilted surface.

The Perez model is quite complex when compared to the isotropic or Hay

models. The Perez model also relies heavily on the empirically derived reduced

brightness coefficients; this could make the model location dependent. Because of

the large circumsolar region, the model is limited to collectors that have a wide

field of view, e.g. flat plate collectors.

4.2.4 New Tilted Surface Model

The new model is the result of modifications made to the Hay model. As

indicated in section 4.2.2, the Hay model does not account for horizon brightening

diffuse. Preliminary calculations of predicted radiation incident on south facing

surfaces indicated that the Hay model was underpredicting the measured tilted
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surface radiation. The author believes that the underpredicting nature of the Hay

model is partly due to the absence of a horizon brightening term in the model.

Thus, the accuracy of the Hay model may be improved by the addition of a

horizon brightening factor.

In their study of clear sky radiance distributions, Temps and Coulson [4]

approximated the horizon brightening effects by applying a correction factor of

[1+sink(P/2)] to the isotropic diffuse radiation. A similar correction factor was

applied to account for the circumsolar diffuse in their model. The correction

factors pertained to clear sky conditions only. Klucher [16] modified the Temps

and Coulson clear sky model by introducing a modulating factor, F = [1 - (IfI)2].

This modulating factor forced the anisotropic correction factors to approach 1

under cloudy sky conditions. Thus, under cloudy sky conditions, the model would

revert back to the isotropic sky model.

The horizon brightening correction factor suggested by Temps and Coulson

was applied to the isotropic term in the Hay model. A new modulating factor was

defined to account for the sky cloud conditions. The factor f= -ITt was used to

modulate the Temps and Coulson horizon brightening term. The isotropic term in

the Hay model becomes,

IT.o)rdI[(1-AI) (1+cos 3 (1 +f sin3(p/2))j (4.14)

The new modified Hay model becomes,
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[I (1 -AI). 1 +Cos .(1l+f sin3(V/2)) +AI Rb](4.15)dT2b

The first term in brackets represents the isotropic diffuse corrected to include

horizon brightening. The second term represents the contribution of circumsolar

diffuse. Under cloudy skies, the modulating factor and the anisotropy index go to

zero and the model reverts to the isotropic model. Under partly cloudy skies, the

modulating function and anisotropy index are non-zero; therefore, the isotropic

term is corrected to account for horizon brightening. In other words, the

contribution of horizon brightening is added to the isotropic portion of the diffuse

radiation.

The new model will always predict equal or greater values of tilted surface

diffuse radiation when compared to the original Hay model. The new model

remains relatively simple but weaknesses still exist. The weaknesses of the Hay

model discussed in section 4.2.2 regarding incidence angles greater than 90 and

non-zero anisotropy index still exists but its effect is mitigated by the addition of

the horizon correction term. The addition of this term will cause the new model to

predict higher values of tilted surface radiation compared to the original Hay

model under the same circumstances. Another problem is attributed to the

model's behavior under clear sky conditions. For increasing clear skies

(anisotropy index approaching 1), the isotropic term is forced to zero. Conse-

quently, there will be no contribution of diffuse radiation by horizon brightening.

This is not expected to cause large errors because under clear sky conditions, the

magnitude of the horizontal diffuse is small.
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4.3 Ground Reflected Radiation

A common method for calculating the ground reflected radiation incident on

a tilted surface is to assume that the foreground in the collector's field of view

behaves as an isotropic reflector. Other authors have proposed anisotropic ground

reflectance models [4,42,43] but the lack of experimental data has hampered their

validation. Therefore, the ground reflected radiation is assumed to be isotropic.

Calculating the ground reflected radiation requires knowing the collector to ground

view factor. Recall, the surface to sky view factor for calculating the isotropic

diffuse is cose(p/2). Thus, the collector to ground view factor is given by,

fc =1-cos2(P/2)= 1 _+cos P J( -cos P(4.16)

The isotropic ground reflected radiation is obtained by [5],

'g,=IPg (1 -cosP 3
1  

(4.17)

where p, is the surface albedo (reflectance). The above relationship for calculating

ground reflected radiation assumes the foreground is a long horizontal surface with

a constant albedo that reflects incident radiation uniformly in all directions.

Liu and Jordan [44] recommend p, = 0.2 as a typical average albedo for

ground without snow cover and p, = 0.7 for ground with fresh snow cover.

Albedos for more specific surfaces are reported by Hunn and Calafell [45].
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4.4 Tilted Surface Model Evaluation

It has been routine practice [8,16,17,18,19,35,36,42,43] to assess tilted

surface model performance by comparing predicted tilted surface radiation to

measured tilted surface radiation for surfaces of various slope/azimuth orienta-

tions. Usually root mean square difference (RMSD) and mean bias difference

(MBD) statistics are formed to quantify individual model performance. Compar-

ing predicted and measured values of tilted surface radiation does not provide a

good indication of a model's performance when used for solar energy system

simulations.

van den Brink [18] uses various reference systems (dwellings with and

without active solar, swimming pools, etc.) to explore effects on the auxiliary

energy required for a given system when using measured and model predicted

values of tilted surface radiation. Bugler [12] compares the calculated heat output

of a typical flat plate collector using measured and model predicted values of tilted

surface radiation. These methods lack the generality to extend the results to other

types of collecting devices and solar energy systems. From a thermal system point

of view, it is of interest to compare a model's ability to estimate the utilizable

energy on a tilted surface at different critical radiation levels. Utilizable energy

provides a means of comparing the tilted surface model performance independent

of a particular system. Thus, it is a more general method for comparing individual

model performance.
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The goal is to determine which tilted surface model performs the best (in the

context of solar energy systems). All models share the same techniques for

calculating the beam and ground reflected radiation on a tilted surface. The data

sets used in this study are discussed and the results of the model evaluation are

presented.

4.4.1 Data Sets Used

Four years of hourly radiation data from Albany, New York and one year of

hourly data from San Antonio, Texas (Trinity) provided the basis for comparing

the tilted surface radiation models. The two data sets have five common surface

slope/azimuth orientations: 43's, 90'n, 90's, 90'e, 90'w. The actual pyranometer

slope difference at Trinity (03-40') and Albany (3=43') is assumed negligible for

purposes of model comparison.

Both radiation monitoring sites use artificial horizons affixed to the tilted

surface pyranometers to reduce the ground reflected radiation component. At

Albany, the artificial horizons completely eliminated the ground reflected radiation

(p, = 0). At Trinity, the artificial horizons reduced the ground reflected radiation to

an effective albedo of P, = 0.05.

In addition to the data quality control checks discussed in section 2.3, a

tolerance was imposed on the predicted values of tilted surface radiation. The

tolerance limits the absolute deviation of the predicted value of tilted surface

radiation from the measured value of tilted surface radiation to be no greater than
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200 kJ/m2 + 10% of the measured tilted surface radiation. The hour was omitted if

the tolerance was exceeded. A similar tolerance was used by Hay and McKay

[19]. This assures that some consistency exists between the horizontal measure-

ments and the tilted surface measurements.

4.4.2 Results

All tilted surface models were compared on the basis of monthly average

hourly utilizable energy. Throughout the remainder of this thesis when utilizable

energy is mentioned, monthly average hourly utilizable energy is implied. The

monthly average hourly utilizable energy is given by,

UE= 1 1 (IT - Ir )+ (4.18)

n n

where: n is the number of hours summed, I is the total hourly radiation on a tilted

surface (measured or predicted), IT, is the critical radiation level, and the +

indicates that only positive differences are summed. The utilizable energy

measured is obtained by using the actual tilted surface measurements in equation

4.18. The utilizable energy predicted is found by using the estimated tilted surface

radiation in equation 4.18.
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Utilizable energy measured and utilizable energy predicted were calculated

for all surface slope/azimuth orientations over a wide range of critical radiation

levels at each surface orientation. The following root mean square difference

(RMSD) and mean bias difference (MBD) statistics were calculated,

r 1 211/2 (4.19)
RMSD = [-IX(UEea- UEPTed)J

1 (4.20)

MBD = 1 (UE,, - UEp.d) (4.20)
n n

where: UEm. , is the utilizable energy measured and UEp is the utilizable energy

predicted by a given model. Because the tilted surface measurements are not

without error, the nomenclature root mean square difference and mean bias

difference is used rather than root mean square error and mean bias error.

The RMSD provides a measure of a model's short term prediction perfor-

mance. The MBD is a measure of a model's long term prediction performance;

because over a long period, cancellation of overpredicted and underpredicted

utilizable energy will allow the statistic to go to zero. However, the RMSD does

not allow cancellation and a few large deviations or differences in the UEn,, and

UEpd can inflate the statistic. Both statistics will be used to evaluate all tilted

surface models. A tilted surface model with good performance will have a low

RMSD and near zero MBD. The problem here is determining what are low values

of RMSD or MBD. This problem is resolved by normalizing the RMSD and
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MBD statistics with respect to the utilizable energy measured.

RMSD (4.21)NRMSD U = a
UE,,,,.

NMBD=MBD 
(4.22)

UE,,,,

The normalized root mean square difference (NRMSD) and normalized mean

bias difference (NMBD) statistics were formed for each tilted surface model

predicting the utilizable energy on five surface orientations over a range of critical

radiations levels. The inputs to the tilted surface models are measured values of

global horizontal and diffuse radiation on a horizontal surface. Table 4.2 shows

the surface orientations and critical levels used in forming the NRMSD and

NMBD statistics.
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Table 4.2: Tilted Surface Model Parameters

Location/Year Slope/Azimuth I. (increment), kJ/m2

Albany, 1979 43's 0- 2500 (500)

Albany, 1980 43°s 0- 2500 (500)
90's 0 - 1500 (500)
90,w 0
90'e 0- 500(500)
90'n 0

Albany, 1981 43's 0- 2500 (500)
90°s 0 - 1500 (500)
90'w 0
90'e 0
90'n 0

Albany, 1982 43's 0-2500 (500)
90's 0 - 1500 (500)
90,w 0
90°e 0
90°n 0

Trinity, 1980 43's 0 - 2500 (500)
90's 0 - 1000 (500)
90°w 0
90'e 0- 500 (500)
90'n 0

The resulting NRMSD and NMBD statistics for each model for all surface

orientations are graphically presented in Figure 4.1 for the hour 10-11:00 am. The

NRMSD results indicate that the anisotropic models (Hay, Perez, and new model)

show similar performance but the isotropic model exhibits much larger differences

from the utilizable energy measured. The NMBD results show that the isotropic,

Hay, and new model are underpredicting the utilizable energy while the Perez

model overpredicts the utilizable energy on an overall basis.
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Most collecting devices for solar energy systems are oriented south facing. It

is useful to observe the model's performance when applied only to south facing

surface orientations. The NRMSD and NMBD statistics were calculated using the

two available south facing surface orientations (43's and 901s) at the critical levels

indicated in Table 4.2. The results are shown in Figure 4.2. On an overall basis,

the NRMSD was reduced by about 2% for each model. The NMBD revealed

some interesting results. When compared to the results in Figure 4.1 (all surface

orientations), the NMBD for the isotropic model increased. This indicates that the

isotropic model overpredicts for non-south facing surface orientations. For south

facing surfaces, the NMBD for the Perez model decreased when compared to

Figure 4.1. The margin of overprediction by the Perez model is reduced for south

facing surfaces when compared to its performance for all surface orientations. The

Hay and new model have larger underpredicting differences for south facing

surfaces. This indicates that the Hay and new (Reindl) model overpredict for

non-south orientations. It is clear that all models overpredict the utilizable energy

for non-south surface orientations. Another NMBD peculiarity is noted in the

Trinity results. All models underpredict the utilizable energy at Trinity. The

author attributes this to possible uncertainty in the reported value of effective

ground reflectance associated with the artificial horizons. A value of reflectance p,

-0.05 is reported but if the actual reflectance was higher, the measuring instrument

would receive more energy due to ground reflectance causing the measured

utilizable energy to be higher. This would explain the consistent underprediction

of utilizable energy by each model for Trinity.



Year ad ocatin
~Perz M Hay M Rein

Year and Locan
ZZ Ism*pi E: Perez M Hay Reund

Normalized root mean square difference and normalized mean bias
difference for south facing surface orientations, 10-11:00 am

3

2

0
Mben

[- ISOrC

16

14

12

10 n

Figure 4.2:



109

Up to this point, the model performance was evaluated for various surface

orientations and a range of critical radiation levels. To observe the effects of

critical radiation level on model performance, NRMSD and NMBD statistics were

calculated for a 430 south facing surface at critical levels of 0 and 1000 kJf/m The

results are shown in Figures 4.3a, and 4.3b. It can be seen that the models which

tend to underpredict (isotropic, Hay, new model) have an increased difference

when going from 0 to 1000 kJ/m2 critical radiation level. This can be explained by

examining the method for calculating the RMSD and MBD. Both the RMSD and

MBD contain the difference between the utilizable energy measured and utilizable

energy predicted.

(UE ,s - UEpd)

Substituting the definition of utilizable energy,

AUE =-I [ I
qTC'TI -  ) +-

( Ip - IT)]

where: lr, is the measured tilted surface radiation; and ITP is the tilted surface

radiation predicted by a given model. If the predicted value of tilted surface

radiation exceeded the critical radiation level for the same hours which the

measured tilted surface radiation exceeded the critical level, the critical radiation

level would effectively cancel out of the difference. That is, if ITP > ITc when Ir

> IT., the following results,

AU 1 Tm-~'Tc-~'~ Tc
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However, a model that underpredicts the tilted surface radiation will cause the

summation of AUE to increase rapidly if the underpredicted value of tilted surface

radiation does not exceed the critical level when the measured tilted surface

radiation exceeds the critical level. That is, if if IT'P < IT, when IT, > I,,, the

following results,

AUE =- (T,,-IT)-0

causing the RMSD and MBD statistics to inflate quickly. This may be the reason

why the NRMSD and NMBD increased for the isotropic, Hay, and new model as

the critical level increased to 1000 kJ/m2.

The effect of changing the surface slope from 43's to 90's was also

investigated. Figure 4.4 illustrates the NRMSD and NMBD statistics for a 90'

south facing surface with a critical radiation level of 0. When compared to Figure

4.3a, the Perez model shows the sharpest increase in the NRMSD due to the model

overpredicting the utilizable energy by a greater margin for a vertical surface.

Seasonal variations in model performance are investigated by observing the

NRMSD and NMBD on a monthly basis.
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The monthly variation in the utilizable energy measured and the utilizable energy

predicted by each model at critical radiation levels of 0 and 1000 kJ/m2 for Albany,

1980 (3 = 43"s) is plotted in Figures 4.5 and 4.6, respectively. The NRMSD and

NMBD statistics for the same location and surface orientation are plotted on a

monthly basis in Figures 4.7 and 4.8 for critical radiation levels of 0 and 1000

kJ/m 2. The Perez model tends to overpredict the utilizable energy in the summer

months. The NRMSD for Perez is the highest in the winter months. The RMSD

for the Hay and new model indicate that both are more accurate in the winter

months. The NMBD shows that both Hay and new model tend to underpredict the

utilizable energy nearly all year round. The isotropic model consistently underpre-

dicts.

The previous analysis probed model performance using tilted surface model

inputs of measured global horizontal radiation and measured horizontal diffuse

radiation. In cases when measured diffuse radiation on a horizontal surface is not

available, correlations such as those presented in Chapter 3 must be used to

estimate the diffuse radiation on a horizontal surface. To explore the effects of

using a diffuse fraction correlation on the resulting utilizable energy predicted by

each tilted surface model, the full diffuse fraction correlation developed in Chapter

3 (equations 3.19-3.21) is used to estimate the diffuse radiation on a horizontal

surface for input to the tilted surface models. The NRMSD and NMBD statistics

are formed for each measured tilted surface orientation and a range of critical

levels. Table 4.3 shows the surface slopes and ranges of critical levels used to

generate the above statistics.
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Table 4.3: Tilted Surface Model Parameters (using predicted horizontal diffuse)

Location/Year Slope/Azimuth k (increment), kJ/m 2

Albany, 1979 43's 0- 2500 (500)

Albany, 1980 43's 0 - 2500 (500)
(excluding March) 90's 0 - 1000 (500)

90'w 0
90e 0 - 500 (500)
90'n 0

Albany, 1981 43's 0 - 2500 (500)
(excluding March) 90's 0 - 1000 (500)

90°w 0
90e 0 - 500 (500)
90'n 0

Albany, 1982 43's 0 - 2500 (500)
(excluding Jan, Feb, 90's 0 - 1000 (500)

and March) 90'w 0
90'e 0- 500(500)
90'n 0

Due to instrumentation problems, five months of data from Albany and all of the

Trinity data were not available to include in the NRMSD and NMBD. The results

of the NRMSD and NMBD statistics for all surface orientations are shown in

Figure 4.9. Interestingly, the results are not greatly influenced by the use of an

empirical correlation to estimate the diffuse radiation on a horizontal surface.

Figure 4.10 displays the results for south facing orientations only. Again, the use

of the diffuse fraction correlation does not have a great impact on the predicted

utilizable energy as implied by the magnitude of the NRMSD and NMBD

statistics.
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Another diffuse fraction correlation was developed in Chapter 3 (equations

3.22-3.24). The reduced diffuse fraction correlation was intended for use when

ambient temperature and or relative humidity data are not available for input to the

full diffuse fraction correlation. The NRMSD and NMBD statistics were comput-

ed for each location using the surface slopes and critical radiation levels listed in

Table 4.1. The results for all surface orientations and south facing orientations are

given in Figures 4.11 and 4.12, respectively. On an overall basis, the use of the

reduced diffuse fraction correlation to estimate the horizontal diffuse radiation did

not significantly affect the utilizable energy predicted by any given model.

The last comparison uses the Orgill and Hollands correlation to predict the

hourly diffuse radiation on a horizontal surface. The NRMSD and NMBD

statistics were formed for each location using the surface orientations and critical

levels given by Table 4.1. The results for all surface orientations and south facing

orientations are shown in Figures 4.13 and 4.14, respectively. There is no

significant difference in the utilizable energy predicted when using the Orgill and

Hollands correlation to predict the diffuse radiation on a horizontal surface for

input to the tilted surface models.

An additional data set which includes 4 locations with approximately 6

months of data from each location was available for model comparisons. Because

the data sets did not include complete years of data, the author hesitates to base

solid conclusions on their results. However, NRMSD and NMBD results from

these four locations are included in Appendix D. The results from this additional

data set do not alter the current conclusions of model performance.



Albay'79 Abamy '80 Albany '81 Abany '2 Thty '80 Overal

Yw xd Locawo
Z- Ism o Perz M Ray Red

Figure 4.11:

Yea and Locaton
ZZ Iso#Opi F Peez M Hay Reind

Normalized root mean square difference and normalized mean bias
difference for all surface orientations using reduced correlation (eq.
3.22-3.24) to estimate horizontal diffuse, 10-11:00



M"'79 Albny'80 Alb" '81 Aly '82 Thinty'80 Overd

Yea ur Location
~Perez Hay M Remcd

'79 Albany '80 Aany '81 any '82 Triniy '80 Over

Yes and Location
Perez Hay M Rend
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4.5 Conclusions

Three existing models for estimating the diffuse radiation on a tilted surface

were presented and evaluated in this Chapter. The models include: isotropic, Hay,

and Perez. A fourth model was developed by modifying the Hay model to include

horizon brightening. Utilizable energy is used as a metric for model performance

evaluation. Each model used the same methods for projecting beam and ground

reflected radiation onto a tilted surface. Thus, the only difference in the estimated

total radiation on a tilted surface is due to the method used to project the diffuse

radiation onto a tilted surface.

Two statistics were defined to quantify each model's short term and long

term prediction performance. The statistics are normalized root mean square

difference and normalized mean bias difference. On a model by model basis, the

NRMSD and NMBD statistics were formed for five surface orientations and a

range of critical levels.

Each tilted surface model requires hourly input of global horizontal radiation

and horizontal diffuse radiation. Measured values of global horizontal and

horizontal diffuse radiation were used as inputs to evaluate each model's ability to

predict the measured utilizable energy on a tilted surface. To investigate the

influence of diffuse radiation on the performance of each tilted surface model,

three different correlations (equations 3.19-3.21, 3.22-3.24, and Orgill and

Hollands) were used to estimate the horizontal diffuse radiation for input to the

tilted surface models.
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On an overall basis, the isotropic model showed the poorest performance and

should not be used for estimating the hourly diffuse radiation on a tilted surface.

The three anisotropic models: Perez, Hay and new model all have comparable

performance. Plots presented suggest that the Perez model underpredicts the

utilizable energy in the summer and overpredicts the utilizable energy in the winter

months with the highest NRMSD present in the winter months for south facing

non-vertical surface. The Hay and new model are more accurate in the winter

months but tend to underpredict year round. The choice of the "best" model is

influenced by the model's relative complexity. The Hay and new model are much

simpler to use when compared to the Perez model. The new model is recommend-

ed because of its good NRMSD performance and its better NMBD performance

when compared to the Hay model.

From a utilizable energy standpoint, the tilted surface models evaluated

showed little sensitivity to the method for determining horizontal diffuse radiation.

There was no significant degradation of tilted surface model performance when

using any of the three diffuse fraction correlations mentioned above to estimate the

horizontal diffuse for tilted surface model input.
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Chapter 5 Conclusions and Recommendations

5.1 Conclusions

Diffuse Fraction Correlations

Chapter 3 of this thesis dealt with investigating the influence of climatic and

geometric predictors on the hourly diffuse fraction. The goal was to determine if

addition of these predictor variables will significantly reduce the standard error of

existing Liu and Jordan type diffuse fraction correlations. This investigation used

data from five locations (yielding 21,923 hours of measurements) to develop a new

diffuse fraction correlation.

Stepwise regression is used to reduce the set of 28 potential predictor

variables down to four significant variables. A piecewise correlation is developed

to predict the diffuse fraction as a function of the clearness index, solar altitude,

ambient temperature, and relative humidity. The method of least squares is used

to fit the diffuse fraction in three intervals of kt. In cases when ambient

temperature is not available, a reduced form of the above correlation is included

which predicts the diffuse fraction as a function of the clearness index and solar

altitude.

The two correlations developed are compared to a Liu and Jordan type

correlation (fdII=f(k,)) derived from the same data set. This provides a direct

measure of the value of the added predictor variables. The full diffuse fraction
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correlation reduced the residual sum squares by 14.4% when compared to the

diffuse fraction correlation as a function of kt only (derived from the same data

set). The reduced form of the developed correlation diminished the residual sum

squares by 9%.

Care should be taken when using empirically derived correlations due to their

potential for being location dependent. In this research, the derived correlations

exhibited some degree of location dependence. This is expected due to the fact

that the climate types of each location in the data set differ. The derived

correlations also showed slight seasonal variations. The prediction errors were

higher in the spring and summer months.

Tilted Surface Models

Chapter 4 dealt with assessing the performance of various tilted surface

radiation models. Three existing models (isotropic, Hay, and Perez) and a new

model developed in section 4.2.4 are included in this investigation. The new

model adds a horizon brightening term to the existing Hay model. Utilizable

energy is used as a metric for model performance comparisons. The utilizable

energy measured is compared with the utilizable energy predicted by each model

for five surface orientations (43's, 90'n, 90's, 90'e, and 90'w) and a range of

critical radiation levels at each surface orientation. Normalized root mean square

difference and normalized mean bias difference difference statistics are formed for

each model to quantify their individual performance.
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All tilted surface models studied required inputs of global horizontal

radiation and horizontal diffuse radiation. Measured values of global horizontal

and horizontal diffuse radiation were provided as inputs to evaluate each model's

ability to predict the utilizable energy on a tilted surface. Diffuse fraction

correlations were also used to estimate horizontal diffuse radiation for model

input.

The isotropic model showed the poorest performance and is not recommend-

ed for predicting the hourly radiation on a tilted surface. The remaining three

anisotropic models: Hay, Perez, and new model all showed comparable perfor-

mance. The Perez model tends to underpredict the utilizable energy in the summer

and overpredict in the winter. The Hay and the new model are more accurate in

the winter but tend to underpredict the utilizable energy year round.

Interestingly, the models showed little sensitivity to the method used for

determining the horizontal diffuse radiation. No significant degradation of the

tilted surface model performance is observed when correlations are used to

estimate the horizontal diffuse radiation in lieu of measured horizontal diffuse

radiation.

5.2 Recommendations

Although addition of climatic and geometric predictors to the Liu and Jordan

type correlation yielded some reduction in the error of predicting the diffuse

fraction, unexplained deviations in the diffuse fraction still remain. The unex-
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plained error could be due to latent factors such as site pollution or cloud types.

Study of diffuse radiation behavior in short time intervals i.e. one minute intervals

may provide further insight regarding unexplained diffuse fraction errors. Also,

additional data at intervals of high k, values ( > 0.75 ) may help explain the

unusual behavior of the diffuse fraction in that interval.

The improvement to Liu and Jordan type correlations had little impact on a

model's ability to predict the utilizable energy on a tilted surface. It would be

interesting to observe the effect of diffuse faction correlations on the utilizable

energy of systems using concentrating collectors.

All tilted surface models performed poorly on off south facing surfaces.

Although this does not greatly affect simulation of energy systems, it is important

for accurate studies of daylighting and building load analysis. Detailed data are

needed to refine existing tilted surface models. Measurements of radiant intensi-

ties throughout the sky dome would be required to effectively build more accurate

tilted surface models.

The weakness of the Hay and new model discussed in sections 4.2.2 and

4.2.4 regarding incidence angles greater than 90' and non-zero anisotropy index

may be rectified by constraining the models. The constraint would require that the

anisotropy index be set equal to zero when the angle of incidence is greater than

900. This causes the models to revert to the isotropic (horizon enhanced for the

new model) assumption when the circumsolar region is out of the collector' s view.
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Although not specifically investigated here, modified methods for determin-

ing the transmittance-absorptance (-ra) product are required when using anisotropic

models. For the new model, the author recommends treating the circumsolar

diffuse and isotropic/horizon diffuse separately. The (ta) product for circumsolar

radiation should be calculated as beam radiation i.e. effective angle of incidence is

the angle of incidence of beam radiation. The effective angle of incidence for

isotropic sky diffuse, as reported in Duffle and Beckman [5], varies as a function

of surface slope from approximately 57-60. The author recommends lumping the

isotropic and horizon diffuse at an effective angle of 580 for purposes of

calculating (ra). The same procedure is recommended for the Hay model. These

recommendations do not apply to the Perez model. The Perez model would

require further investigation to determine the (rx) product due to the large size of

the circumsolar region.

The final recommendations are summarized below.

1. For estimating horizontal diffuse:

full correlation - eq. 3.19-3.21

if ambient temperature and/or relative hu-
midity data are not available,

reduced correlation - eq. 3.22-3.24

2. For estimating diffuse radiation on tilted
surface,

new model - eq. 4.15

3. Effective angle for transmittance-absorp-
tance product,

circumsolar diffuse - Oe=0

isotropic/horizon - =,-58
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Appendix A . Solar Radiation Principles

Unless specifically cited, the definitions and formulas presented have been taken

from Duffie and Beckman [5]. They are included here for completeness.

A.1 Definitions and Formulas

Chapter 3 introduced diffuse fraction correlations. The hourly clearness index, kt

along with other variables were correlated with the hourly diffuse fraction. The hourly

clearness index is given by,

I0

where: I is the hourly total radiation on a horizontal surface and I is the hourly

extraterrestrial radiation on a horizontal surface. The integrated hourly extraterrestrial

radiation on a horizontal surface is calculated by the following relationship,

12x3600G[1+0.033c(360n)R 1 C L Y 365/_

cos() cos(6) (sin(c 2) - sin(c 1)) + 3 sin()
360

where: G., is the solar constant (a value of 1353 W/m 2 was used in this research), n is

the day of the year, 0 is the site latitude, 8 is the declination, and l, 02 are hour angles

(o is larger, 15'hr, mornings negative, afternoon postive). The declination is the

angular position (at solar noon) with respect to the equator plane.
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284 + n)
S = 23.45 sin(360 365

The angle of incidence, 0, is required for tilted surface calculations and is given by,

cos(0) = sin(8) sin(O) cos(p3) - sin(8) cos(O) sin(p) cos(y)

+ cos(8) cos(O) cos(3) cos(cO)
+ cos(8) sin(O) sin([3) cos(y) cos(co)

+ cos(8) sin(f3) sin(y) sin(co)

where: 3 is the surface slope, y is the surface azimuth (--0 for south facing, east

negative, west positive), co is the hour angle. For this study, the angle of incidence was

calculated at the midpoint of the hour by using the hour angle, W, evaluated at the

midpoint of the hour. When the surface slope is zero, the angle of incidence is the

zenith angle. The zenith angle is given by,

cos(0) = cos(B) cos(O) cos(co) + sin(8) sin(4)

The zenith angle is related to the solar altitude angle, cc, by the following,

a =90 -0

A.2 Utilizable Energy

Utilizable energy (as used in this research) is a statistic that represents the

monthly average hourly amount that the critical radiation level is exceeded. For a

given hour or hour pair, the monthly average utilizable energy is given by,
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UE = 1 1(IT- T) +
nfi

where: I is the hourly tilted surface radiation, IT. is the critical radiation level, n is the

number of hours over the month that the quantity is summed, and the + indicates only

positive quantities of the difference are summed.

The utilizable energy on a tilted surface is a function of several variables

including: month, location, hour pair, surface orientation, and critical radiation level.

However in this research, the quantity of interest is the difference in the utilizable

energy measured and the utilizable energy predicted.

AUE = (UE., - UEP,,d)

where: UEm., is calculated by using the measured tilted surface radiation in the

equation for monthly average hourly utilizable energy and UEped is calculated by

using the model predicted tilted surface radiation in the equation for monthly average

hourly utilizable energy. Since AUE is the basis for forming the root mean square

difference and mean bias difference statistics used for model comparison, it is of

interest to determine the variables that affect AUE. One variable that did not

significantly affect AUE is hour or hour pair used to calculate the utilizable energy.

This was verfied by means of a fractional factorial data analysis using both hour and

hour pair as variables and AUE as the response. The hour and hour pair (not including

hours near sunrise and sunset) variables did not significantly affect the response; thus,

they were not included as variables in the tilted surface model analysis. The tilted
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surface model analysis used the hour 10-11:00 am for all calculations. The factors that

are varied to observe the effects of AUE for each tilted surface model include: month,

location, surface orientation, and critical radiation level.
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Appendix B. Statistical Procedures I Techniques

The purpose of this section is to inform the reader of the statistical procedures

and techniques used throughout the course of this research. Much of the information

presented here is from Draper and Smith [40] and from class notes [46].

B.1 Regression Analysis by The Method of Least Squares

An empirical (regression) model is usually fitted to approximate a true but

unknown function or relationship. A model typically takes the following general

form.

Y = Model Function + error

where: Y is the response (dependent variable), the model function consists of predictor

variables and model parameters used to describe the response. A simple example is

the straight line model.

Y = 3"+3 13X, + F,

where: the O's represent the model parameters, X is a predictor variable, and e is the

model error.

In this research, only linear models are considered. A linear model means linear

in the model parameters. An example of linear and nonlinear models are given below,
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r
2 + (linear)

Y=e ,+ePiXI+ (nonlinear)

The models proposed in this thesis were fit using the method of least squares. The

method of least squares minimizes the error (residual) sum of squares. For example,

the straight line case,

Yi := ,, + DIX, + F-

2 n2
P (e) = X (Yr-Po - ,X)

Estimates (b., b1) of the true parameters (00, P,) are chosen such that P is a minimum.

This is accomplished by differentiating P with respect to each of the parameters and

setting the result equal to zero producing a system of equations with unknown

parameter values. In matrix form, this system of equations is given by the normal

equations,

X'X b =X'Y

where: X is an n x p matrix (p=# of parameters) that contains the value of each
I

predictor, X- is the transpose matrix, b is a p x 1 vector containing the unknown model

parameters, and Y is the n x 1 vector of response values. Estimates of the model

parameters are found by solving the above system of normal equations.
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B.2 Analysis of Variance

With estimates of the model parameters, the next step involves assessing the

model fit. Analysis of variance (ANOVA) table is constructed to summarize the

information crucial to judging the model fit. A typical ANOVA is presented below.

Source d.f. Sum Sq. Mean Sq.

Regression I b. p-1 b'X'Y- (Y) 2/n Sum Sq./d.f.

Residual n-p-2 Y-b Y Sum Sq./ d.f.

Total, corrected n- 1 I - 0)

The entry Regression I b. represents the regression sum squares (SS) corrected for the

constant term bo. The residual sum squares represents the response variation unex-

plained by regression. The sum of regression and residual sum squares comprise the

total sum squares. An important entry in the ANOVA is the residual mean square.

This quantity is an estimate of the overall variance of the fitted equation. A measure

of the amount or percent variation explained by regression is given by R2 (multiple

correlation coefficient).

R 2 = Regressioni bo SS
Total, Corrected SS
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At this point, we are primarily interested in determining if the regression (more

specifically each parameter) is statistically significant. Two tests that are helpful in

assessing the statistical significance of the estimated model parameters include: t-test

and F-test. Each test is performed by computing a t-statistic or F-statistic and

comparing this value with the respective t- or F-distribution (at the desired confidence

level and degrees of freedom). In its most general form, the t-statistic is given by the

following,

t (estimate of parameter) - (postulated value of parameter)
(std. error of the estimate of parameter)

For example in the straight line case if we are testing to determine if the parameter

estimate b. is significant, the following null hypothesis is assumed and t-statistic is

computed,

H0: f3o=0

bo-0

se (bo)

The calculated t-statistic is compared to a t-distribution (at the desired confidence

level) with degrees of freedom equal to the degrees of freedom in the standard error of

bo. If the calculated t-statistic is greater than the t-distribution value, the null

hypothesis is rejected. That is, the estimate of bo is not equal to zero. If the t-statistic

is not significant (the calculated t-statistic is less than the t-distribution value), the null
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hypothesis is not rejected.

When testing more than one parameter at once, the t-test cannot be used. The F-test is

used to test multiple parameters. For example, the F-test for overall regression in a

multiple parameter model is given by,

MS,, MS,,s

where: MSe is the regression mean square and MS rsid is the residual mean square, v,

is the degrees of freedom in MS Mg, and v2 is the degrees of freedom in MS rsid* The

F-statistic is compared with an F-distribution (at the desired confidence level) with

V1, v2 degrees of freedom. If the calculated F-statistic exceeds the F-distribution value,

the null hypothesis is rejected. This indicates that the null hypothesis is not true i.e. all

parameters are not zero. If the calculated F-statistic is less than the F-distribution

value, the null hypothesis is not rejected. Large F-statistics are desired because it

removes the doubt of significance.

The test for overall significance does not discern if particular parameters are

zero. Testing individual parameters (or groups of parameters) for significance is

accomplished by performing a partial F-test. The partial F-test is presented by way of

an example.
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Assume the following model:

y = 3o + 1 X1 "" il XI2 " (full model)

Suppose we want to test if the parameter, 3, is significant. To test this parameter, a

partial F-statistic is formed. The first step is to generate a reduced model which omits

the parameter being tested.

Y = PO + 0 X, + (reduced model)

The null hypothesis and partial F-statistic are given by,

HO: 0

(S - S2)/d.f. (S, - S 2)/d.f.
Fv V 2 S 2  

MSesid

where: S1 is the regression sum square from the full model, S2 is the regression sum

square from the reduced model, d.f. is the degrees of freedom in the null hypothesis

(d.f. = 1 in this case), and S2 is the residual mean square from the full model. The

difference (Si - S) is commonly referred to as the extra sum squares (ESS). Similar to

the tests previously described, the computed F-statistic is compared to the F-distribu-

tion to determine significance. If the tested variable is important, the F-statistic will

be large and the null hypothesis would be rejected.
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When testing a single parameter, the following relationship can be used,

t2 F
v2 - Fvv2

For the t- and F-tests to be valid, the errors (residuals) are required to be

independent and normally distributed with zero mean and constant variance, a2

These assumptions are either confirmed or denied by performing the appropriate

residual analysis. Various residual plots can be constructed to determine if the above

assumption applies to the given data set and fitted equation. However, the following

procedures are valid or unaffected by the above distributional assumptions.

Without Distributional Assumptions:

1. Estimates of parameters are the estimates that minimize the error sum of

squares.

2. Variance of each parameter can be calculated by,

V, = (Lx )-W

3. ANOVA can be constructed.

4. The multiple correlation coefficient, R , can be calculated.

5. Fitted values can be obtained by,
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Y=Xb

With Distributional Assumptions:

1. All distribution related tests (t-test and F-tests) can be performed and are

valid.

B.3 Selection Procedure

A useful tool in regression model building is a selection procedure. When

several possible variables are proposed to predict a response, a procedure is helpful to

select the best set of predictor variables to "explain" the deviations of the response.

The goal is to obtain a fitted equation with a minimum number of variables but that

provides reliable estimates of the response. The specific goal in this research is to

minimize the overall standard error while maintaining a reasonable number of

predictors in the final regression equation.

The selection procedure used in this research is stepwise regression. The

stepwise procedure is introduced by an example.

Given a set of three predictor variables, Z1, Z2 , Z3, the goal is to find the model

which minimizes the overall standard error using the least number of predictor

variables. The stepwise procedure begins with the following base model,

(base model)
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To determine the best variable to add to the base model, partial F-statistics are

computed for each by the following,

(S, - S2)/d.f. (ESS)/d.f.

S2 MSresid

(Sx - S2)/d.f. (ESS)/d.f.
F 2 = s 2  = MS 7 e

(SF - S2)/d.f . (ESS)/df.
z3= s 2  = MS,,si

In each case, the extra sum squares is computed by the difference in regression sum

squares from a proposed model which includes the respective Z1, Z2, and Z3 predictors

and the base model regression sum square. The MS rsid is the residual mean square

from the larger model (proposed model). The variable with the highest F-statistic will

be considered for addition to the base model. Assume the variable Z2 produced the

highest F-statistic. The Z2 F-statistic is compared with the F-distribution. If the

F-statistic is not significant, the variable is not added to the base model and the

stepwise procedure stops (no variables are significant) and the base model is adopted.

If the Z2 F-statistic is significant, the variable is added to the base model to produce a
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new base model for the next step in the regression procedure. Assuming Z2 (actually

N parameter) is significant, the second step in the stepwise procedure begins with the

following base model,

Y = 3o + [32 Z2 +e (base model)

The next best variable to enter into the model is determined by computing the

following partial F-statistics,

(ESS)/d.f.IFZ2=MS,

(ESS)/d.f.FZ2=MSr,.,d

where: Fz 1 ; is the partial F for Z1 given Z2 is already in the equation similarly, FzI is

the partial F for Z3 given Z2. The largest partial F-statistic is compared with the

F-distribution for significance. If it is not significant, stepwise regression is halted and

the base model which includes Z2 is adopted. If it is significant, the variable is added

to the model. Assume Z, has the highest F-statistic and is significant. At this point,

the initial variable entered in the first step, Z 2, is also tested to assure it is still

significant since the new variable, Z3, has entered the model. This procedure is

continued until no variables can enter or all predictors are exhausted. The best

equation (based on the criteria used in this thesis) will have the smallest overall
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standard error with a reasonable number of predictor variables.

Although slight variations in the described stepwise regression procedure exist,

the underlying principle is the same.

B.4 Residual Analysis

After the selection procedure ends and a fitted regression equation is obtained,

the appropriate residual analysis must be performed to assure the distributional

assumptions are satisfied and no obvious errors or model deficiencies exist. The

following residual plots are typically used in the course of model diagnostics:

1. Histogram or overall plot of residuals.

2. Normal probability plot.

3. Time sequence plot (if time order is known).

4. Plot against predictor variables.

5. Plot against predicted values.

The histogram and normal probability plots help to determine if the assumption of

normality in the residuals is valid. The overall plot of the residuals should look like a

normal distribution centered at zero. When the residuals are plotted in a normal

probability plot, they should form a straight line.

The remaining plots should produce residuals centered at zero and appear as a

band of noise, Figure B.1. Three common faults uncovered in residual plots are
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shown in Figures B.2-B.4. The first plot shows the behavior of residuals that have

non-constant variance. The second plot shows that a linear effect has not been

removed or an error has been made in analysis (such as omitting the constant term b).

The last plot identifies that a quadratic term may be missing. For further information

on residuals and their use in diagnostic analysis see Draper and Smith [40] and Belsely

et al. [41].



Acceptable residual plot

Residuals with non-constant variance

Figure B.1:

Figure B.2:



Figure B.3: Residuals with linear effect not removed

Figure B.4: Residuals with quadratic effect not removed



Appendix C: Plots
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Time Series Plot of Hourly Residual vs. Day of Year
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Time Series Plot of Hourly Residual vs. Hour of Day
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Time Series Plot of Hourly Residual vs. Hour of Day
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Appendix D. Ad Hoc Location Results

Four additional sites with less than one year of data from each location

comprise the "ad hoc" dataset. Table C.1 indicates the locations and site

information available and Table C.2 details the radiation and climatic information

monitored at the ad hoc sites. All the data measurement information is common to

the four sites.

Table C. 1: Ad Hoc Site Information

Location: Osage City, Kansas Latitude: 38.60 north

Data Period: 12/1/86 - 6/30/87 Longitude: 95.80 west

Interval: Integrated hourly Standard Meridian: 90.00 west

Location: Albuquerque, New Mexi- Latitude: 35.05) north

co Longitude: 106.50 west

Data Period: 11/1/86 - 6/30/87 Standard Meridian: 105.00 west

Interval: Integrated hourly

Location: El Monte, California Latitude: 34.05' north

Data Period: 12/1/86 - 6/30/87 Longitude: 118.00 west

Interval: Integrated hourly Standard Meridian: 120.00 west

Location: Phoenix, Arizona Latitude: 33.430 north

Data Period: 12/1/86 - 6/30/87 Longitude: ,112.0' west

Interval: Integrated hourly Standard Meridian: 105.00 west



Table C.2: Ad Hoc Site Measurements

Instrument Description Inst. Type Interval Units

1 Ambient Temp. unknown hourly OK

2 Wet bulb unknown " "

3 Global, horizontal of W/m2

4 Direct normal " " "

5 45 south ......

6 90 north ......

7 90 south ......

8 90 east ......

9 90 west ......

The NRMSD and NMBD statistics were calculated for the above locations

for each measured surface orientation and a range of critical levels. Table C.3

shows the surface slopes and range of critical levels used to generate the above

statistics.



Table C.3: Tilted Surface Model Parameters (Ad Hoc locations)

Location/Year Slope/Azimuth I, (increment), kJ/m2

Osage, KS 430s 0 - 2500 (500)
90°s 0 - 1000 (500)
900w 0
90'e 0 - 500 (500)
90'n 0

Phoenix, AZ 43's 0 - 2500 (500)
90's 0 - 1000 (500)

900w 0
900e 0
90*n 0

Albuq., NM 43's 0 - 2500 (500)
90°s 0 - 1000 (500)
900 w 0
90'e 0
90'n 0

El Monte, CA 43's 0 - 2500 (500)
90°s 0 - 1000 (500)
90°w 0
90'e 0
90'n 0

Figure C.1 provides the NRMSD and NMBD results for each location, all

surface orientations, and critical radiation levels. Figure C.2 provides the results

for south facing surfaces. On an overall basis, the results from the ad hoc data set

support the conclusions regarding tilted surface models.
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Appendix E. Computer Programs
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This subroutine will calculate the basic radiation components and angles associated
with the sun's position.

subroutine radiat (in, out, info, mode)
implicit none
integer j, n, dferr, Ibgtlo, throw, ss
integer highkt, kterrl, kterr2, kterr3,info(10)
real dfract, in(10), out(1 1), beta, gamma, DTR, phi
real I, Id, Idn, day, theta, thetaz, lat, kt, altit, erbs
real hr, hour, pi, G, wi, w2, ws, wm, declin, Ta, Tdp
real Io, coefl, coef2, coef3, coef4, coef5, p 1, p2

real al, a2, a3, a4, psydat(9)
character*4 mode
parameter (pi= 3.141529, G = 1353.)

c
c this subroutine performs basic radiation and geometric calculations
c
c-----------------------------------
c radiation calculations
c----------------------------------------------------

c day =day of the year
c hour = hour of the day
c

lat = in(l)
day = in(2)
hour =in(3)
I =in(4)
Idn =in(5)
Id =in(6)
beta = in(7)
gamma = in(8)
Ta =in(9)
Tdp = in(10)

c initialize error or info array
do 90 j=l,10

info(j) = 0
90 continue
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c calculating declination (all angles in degees)
declin = 23.45 * sind( 360. * (284. + day) / 365.)

c sunset hr angle
ws = acosd(-tand(lat) * tand(declin))

c find hour angles for start and end of timestep
c if sunrise or sunset is inclusive, skip calcs

if (hour - 12.) 94, 95, 96
94 w2 = (hour - 12.) * 15.
95 w2 = 0.0
96 w2 = (hour - 12.) * 15.

wl = w2 - 15.
if (w2.le.-ws.or.wl.ge.ws) then

info(9) = 1
go to 100 ! end if hr includes sr or ss

else
info(9) = 0

endif
wm = (wl + w2) * 0.5
pl = cosd(declin) * cosd(lat) * cosd(wm)
p2 = sind(decin) * sind(lat)
thetaz = acosd(p1 + p2)
altit = 90. - thetaz ! solar altitude angle
al = sind(declin) * sind(lat) * cosd(beta) - sind(declin) *

& cosd(lat) * sind(beta) * cosd(gamma)
a2 = cosd(declin) * cosd(lat) * cosd(beta) * cosd(wm)
a3 = cosd(declin)*sind(lat)*sind(beta)*cosd(gamma)*cosd(wm)
a4 = cosd(declin) * sind(beta) * sind(gamma) * sind(wm)
theta = acosd(al + a2 + a3 + a4)

c calc extraterrestrial radiation.
c finding largest hr angle

if (wl.ge.w2) then
coef3 = sind(wl)-sind(w2)
coef4 = wl - w2

else
coef3 = sind(w2)-sind(wl)
coef4 =w2- wl

endif
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coefl = 12.*3600./pi * 1353.*(1.+ 0.033 * cosd(360.*day/365.))
coef2 = cosd(lat) * cosd(declin)
coef5 = 2.* pi * coef4/360. * sind(lat) * sind(declin)
Io = ( coefi * (coef2 * coef3 + coef5) ) * 0.001 ! kJ/mA2
if (Io.le.0.0) then

info(9) = 1
go to 100

else
info(9) = 0

endif
c computing kt

kt = I/Io
c

c checking what mode is for calculating diffuse fraction
if (mode.eq.'meas') then ! using measured data

if (Id.le.0) Id = I - Idn * cosd(thetaz)
if (Idn.le.0) Idn = (I - Id) / cosd(thetaz)
dfract = Id /I ! measured diffuse fraction

endif
c
c if Orgill and Hollands is to be used to estimate Id
c

if (mode.eq.'OH') then
if(kt.ge.0.0.and.kt.le.0.35)

& dfract = 1.0 - 0.249 * kt
if(kt.gt.0.35.and.kt.lt.0.75)

& dfract = 1.557 - 1.84 * kt
if(kt.ge.0.75)

& dfract = 0.177
Id = dfract * I
Idn = (I - Id) / cosd(thetaz)

endif
c
c DTR reduced correlation

if (mode.eq.'dtrl') then
if(kt.le.0.3) then

dfract = 1.02 - 0.254 * kt - 0.0123 * sind(altit)
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if (dfract.gt. 1.0) dfract = 1.0
endif
if(kt.gt.0.3.and.kt.lt.0.78) then

dfract = 1.3995 - 1.7489 * kt + 0.1772 * sind(altit)
if (dfract.gt.0.97) dfract = 0.97
if (dfract.lt.0.1) dfract = 0.1

endif
if(kt.ge.0.78) then

dfract = 0.486 * kt - 0.182 * sind(altit)
if (dfract.lt.0. 1) dfract = 0.1

endif
Id = dfract * I
Idn = (I - Id) / cosd(thetaz)

endif
c using full dtr correlation
c if (mode.eq.'dtr') then

if(Ta.ge.99990.and.Tdp.ge.99990) go to 100 ! if Temps bad
psydat(1) = 1.0 ! ambient temp. (atm) assume cons
psydat(2) - Ta ! dry bulb temp (deg C)
psydat(5) = Tdp ! dew point temp (deg C)
call psych(l, 3, 1, psydat)
phi = psydat(4)
Ta = psydat(2)
Tdp= psydat(5)

c compute dfract by DTR correlation
if(kt.ge.0.0.and.kt.le.0.3) then

dfract = 1.0 - 0.232 * kt + 0.0239 * sind(altit) - 0.000682
& * Ta + 0.0195*phi

if(dfract.gt.1.0) dfract = 1.0
endif
if(kt.gt.0.3.and.kt.lt.0.78) then

dfract = 1.329 - 1.716 * kt + 0.267 * sind(altit) - 0.00357
& * Ta + 0.106 * phi

if(dfract.gt.0.97) dfract = 0.97
if(dfract.lt.0. 1) dfract = 0.1

endif
if(kt.ge.0.78) then
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dfract = -0.0312 + 0.426 * kt - 0.256 * sind(altit) - 0.00349
& *Ta + 0.0734 * phi

if(dfract.lt.0. 1) dfract = 0.1
endif
Id = dfract * I
Idn = (I - Id) / cosd(thetaz)

c

c checking if beam is greater than extraterrestrial
c if beam is greater, use extraterrestrial

if (Idn*cosd(thetaz).gt.Io) then
info(2) = 1
Idn = lo

else
info(2) = 0

endif
c checking if kt > 1.1 if so reject data

if (kt.gt. 1.1) then
info(3) = 1
go to 100

else
info(3) = 0

endif
c checking for reasonable diffuse fraction for a given kt

if (dfract.gt.0.80.and.kt.gt.0.60) then
info(4) = 1
go to 100

else
info(4) = 0

endif
if (dfract.lt.0.90.and.kt.lt.0.20) then

info(5) = 1
goto 100

else
info(5) = 0

endif
if (thetaz.gt.80.0) then

info(6) = 1
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go to 100
else

info(6) =0
endif

c

c
c

c
output data-

out(l) = hour
out(2) = I
out(3) = Idn
out(4) = Id
out(5) = altit
out(6) = kt
out(7) = dfract
out(8) = DTR
out(9) = theta
out(10) = thetaz
out(11) = Io

C

info(1) = dferr
info(2) = IbgtIo
info(3) = highkt
info(4) = kterrl
info(5) = kterr2
info(6) = kterr3
info(7) = throw
info(9) = ss

c return if all values are ok
return

100 continue
c report back all O's if value(s) are bad

do 110 j=l, 10
out(j) = 0.0

110 continue
return
end
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This subroutine calculates the tilted surface radiation by isotropic, Hay, Perez, and

new model methods. The only difference in the tilted surface radiation calculated is

the diffuse radiation on a tilted surface.

Subroutine TYPE 1 6(TIME,XIN,OUT,T,DTDT,PAR,INFO)
c
c This subroutine will calculate the radiation on a tilted surface
c using the isotropic, Hay, Perez, and new models.

integer bin, j, n, s
real I, Ib, Id, Idn, Jo, Ion, IdtH, ItH, IdtP, ItP
real Ibt, Igt, Inmax, ItlIt3, IdtH1, IdtH3, ItH3
real theta, thetaz, alpha, beta, AI, cir, iso
real delta, epsilon, m, pi, rho, Idtiso, Itiso
real alfi, alfh, psi, psiz, b, cf, Rb, hon, hori2, f
real F11(8), F12(8), F13(8), F21(8), F22(8), F23(8), F1, F2
real TIME, XIN(1 1), OUT(33), T, DTDT, PAR, INFO(20)
parameter (pi=3.141529)

c
data F11/-0.011, -0.038,0.166,0.419,0.71,0.857,0.734,0.421/
data F12 /0.748,1.115,0.909,0.646,0.025,-0.37,-0.073,-0.661/
data F13 /-0.08,-0.109,-0.179,-0.262,-0.29,-0.279,-0.228,0.097/
data F21 /-0.048,-0.023,0.062,0.14,0.243,0.267,0.231,0.119/
data F22 /0.073,0.106,-0.021,-0.167,-0.511,-0.792,-1.18,-2.125/
data F23 /-0.024,-0.037,-0.05,-0.042,-0.004,0.076,0. 199,0.446/

c
c
c Nomenclature: *

c *
c----------
c AI = Anisotropy index for Hay model *

c alpha = circumsolar solid half angle (degrees) *

c b = a/c ratio coefficient in Perez correlation *

c beta = surface slope angle (degrees) *
c bin = epsilon bin # for determining Fl, F2 coefficients *

c delta = sky brightness parameter *

c epsilon = sky clearness parameter *
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c F## = corr. coeff's for calculating tilted surface diffuse *

c I = global radiation on a horizontal surface *

c Ib = beam radiation on a horizontal surface *

c Id = diffuse radiation on a horizontal surface *
c In = direct normal radiation *

c Ibt = beam radiation on a tilted surface *

c IdtH = diffuse radiation on a tilted surface by Hay corr. *

c Idtp =diffuse radiation on a tilted surface by PEREZ *
c Igt = ground reflected radiation on a tilted surface *

c ItH = total radiation on a tilted surface by Hay correlation *

c Itp =total radiation on a tilted surface by PEREZ *

c Io = extraterresterial radiation on a horizontal surface *
c Ion = direct component of extra-terr. radiation *

c m =air mass *
c n =case number used to calculate "b" *
c Rb = ratio of beam rad on tilt to that on horizontal *

c Rd = ratio of diffuse radiation on a tilt to that on hor. *

c theta = radiation angle of incidence (degrees) *
c thetaz= solar zenith angle (degrees) *

c rho = ground reflectance *

c identifying the appropriate inputs and outputs------
c

Id = XIN(1) ! diffuse on a horizontal
I = XIN(2) ! global on a horizontal
Io = XIN(3) ! extraterrestrial radiation
thetaz = XIN(4) ! zenith angle (degrees)
theta = XIN(5) ! radiation angle of incidence
beta = XIN(6) ! surface slope (degrees)
alpha = XIN(7) ! circumsolar half angle (Perez)
rho = XIN(8) ! surface ground reflectance
Idn = XIN(9) ! measured direct normal radiation

c checking if radiation exists and if it is valid.
c if not skip all calculations and set the
c outputs = 0.0 and end subroutine

if (Io.le.0.or.I.le.0.or.thetaz.gt.80)
& go to1000
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Ion = Io / cosd(thetaz) ! direct component of extraterr.
c Horizontal surface component relationships
c (do not calculate if In is given as an input)
c use the direct normal to calculate the diffuse
c radiation on a horizontal surface

if (Idn.eq.0.0) then
Ib =I - Id
Idn = (I - Id) / cosd(thetaz)

else
Ib = Idn * cosd(thetaz)
Id=I- Ib

endif
if (Ib.le.0) go to 1000

c calculating air mass
if (thetaz.gt. 10.and.thetaz.le.70.) m = 1. / cosd(thetaz)
if (thetaz.lt. 10.or.thetaz.gt.70.) m = 1./(cosd(thetaz)+0.15*
1 (thetaz + 3.885)** -1.253)

c Tilted Surface Calculations *

c --------------------
c- PEREZ MODEL. -

c ---------------
c Let the coefficient ratio a/c = b. alfl and alfh represent the
c limits (in degrees) for determining the ratio a/c.
c

alfl = 90. - alpha ! degrees
alfh = 90. + alpha !degrees
psi = 90. - theta + alpha
psiz = 90. - thetaz + alpha

c
c 5 cases for calculating a/c = b
c case i

if (theta.lt.alfl.and.thetaz.lt.alfl) then
b = cosd(theta) / cosd(thetaz)
n=1
endif
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c case ii
if (theta.gt.alfl.and.theta.lt. alfh. and. thetaz.lt.,alfl)
- then
b = (psi * sind(psi/2.) / (2.* alpha * cosd(thetaz)))
n=2

endif
c case iii

if (theta.gt.alfh) then
b =0.0

n=3
endif

c case vi
if (theta.lt.alfl.and.thetaz.gt.alfl) then

b = cosd(theta) I sind(psiz/2.)
n=4

endif
c case v

if (theta.gt.alfl.and.theta.lt.alfh.and.thetaz.gt.alfl) then
b = (psi * sind(psi/2.) )/(2.* alpha * sind(psiz/2.))
n=5

endif
c calculating epsilon and delta parameters

if (Id.lt.00001) then
epsilon = 99999.

else
epsilon = (Id + Idn) / Id

endif
delta = Id /Ilo

c finding the appropriate bin number to determine the brightness
c coefficients, F1 and F2.

if (epsilon.gt.0.0.and.epsilon.le.1.056) bin = 1
if (epsilon.gt.1.056.and.epsilon.le.1.253) bin = 2
if (epsilon.gt.1.253.and.epsilon.le.1.586) bin = 3
if (epsilon.gt.1.586.and.epsilon.le.2.134) bin = 4
if (epsilon.gt.2.134.and.epsilon.le.3.230) bin = 5
if (epsilon.gt.3.230.and.epsilon.le.5.980) bin = 6
if (epsilon.gt.5.980.and.epsilon.le. 10.08) bin = 7
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if (epsilon.gt.10.08) bin = 8
c Calculating the brightness coefficients

F1 = F1 l(bin) + F12(bin)*delta + F13(bin)*thetaz *pi/180.
F2 = F21 (bin) + F22(bin)*delta + F23(bin)*thetaz *pi/180.

c Calculating the components on the tilted surface
Ibt = Idn * cosd(theta)
if (Ibt.lt.0.0) Ibt = 0.0

c Diffuse component
IdtP = Id * ( 0.5 * (1. + cosd(beta)) * (1. - F1)+F1 *b
& + F2 * sind(beta) )
if (IdtP.lt.0.0) IdtP = 0.0

c Ground reflected component
Igt =I * rho * 0.5 * ( 1. - cosd(beta))

c Total on a tilted surface
ItP = Ibt + IdtP + Igt

c
c -----------------
c - Hay Model
c----------------------

AI = Ib / Io
c to avoid numerical problems with rb at sunrise and sunset hours
c the zenith angle is limited to 80 degrees

if(theta.lt.80.0) then
cir = (AI * cosd(theta)) / cosd(thetaz)

else
cir = 0.0

endif
iso = (1. - AI) * 0.5 * (1. + cosd(beta))
hori = 1. + f * (sind(beta/2.)**3)
IdtH =Id*(cir+ iso)

c
c addition of horizon term to hay model representing new model
c

hori2 = 1. + sqrt(Ib/I) * sind(beta/2.)**3 !horizon term
IdtH3 = Id * (cir + hori2 * iso) !new model

c
c total on a tilted surface due to Hay and new models
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c

ItH =Ibt + IdtH + Igt thay
ItH3 = Ibt + IdtH3 + Igt ! new model

c

c---------------------

c Isotropic Model -

c---------------------

Idtiso = Id * 0.5 * (1. + cosd(beta))
Itiso = Ibt + Idtiso + Igt

c----------------------
c - OUTPUT OF DATA -

c------------------------

OUT(1) = Io
OUT(2) = I
OUT(3) = Id
OUT(4) = Idn
OUT(5) = Ibt
OUT(6) = Igt
OUT(7) = Idtiso
OUT(8) = IdtP ! diffuse on tilt surface by Perez
OUT(9) = IdtH ! diffuse on tilt surface by Hay
OUT(10) = Itiso ! total rad on a tilt by isotropic
OUT(1 1) = ItP ! total rad on a tilt by Perez
OUT(12) = ItH ! total rad on a tilt by Hay
OUT(19) = ItH3 ! total rad on tilt by new model
return

1000 continue
c if calcs are in error or no radiation exists set outputs
c equal to 0

do 20 j= 1, 33
out(j) = 0.0

20 continue
Return
End
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This TRNSYS subroutine was used to calculate the pschrometric properties for input

to the diffuse fraction correlation.

SUBROUTINE PSYCH(IUNITSMODE,WBMD,PSYDAT)
INTEGER WBMD,WBMODE
DIMENSION PSYDAT(9)
DATA RA/287.055/, LIMIT/100/, IWARNS/0/,PATMOLD/0./

C
C MODES 1-5:
C THESE MODES TAKE AS INPUT PATM (IN ATMOSPHERES), A DRY BULB
C TEMP., AND ONE OTHER PROPERTY: WET BULB TEMP., REL.HUMIDI-
TY(FRACTION),
C DEW PT.TEMP.,HUMIDITY RATIO, OR ENTHALPY, DEPENDING ON
MODE.
C OUTPUTS ARE HUMIDITY RATIO (OR REL.HUMIDITY IN MODE 4), WET
BULB TEMP.,
C ENTHALPY (OR REL.HUMIDITY IN MODE 5), MIXTURE DENSITY, AND
DRY
C AIR DENSITY.
C
C MODE 6:
C MODE 6 TAKES AS AN INPUT PATM, HUMIDITY RATIO AND EN-
THALPY, AND
C RETURNS ALL OF THE OTHER PROPERTIES.
C
C THE WET BULB TEMPERATURE IS ONLY CALCULATED IF WBMODE
EQUALS ONE.
C
C TEMPERATURES ARE IN CELSIUS (IUNITS=1) OR FAHRENHEIT (IU-
NITS=2).
C ENTHALPY IS IN KJ/KG (IUNITS=1) OR BTU/LBM (IUNITS=2), AND
C DENSITY IS IN KG/M**3 (IUNITS=1) OR LBM/FT**3 (IUNITS=2).
C THE REFERENCE STATES FOR ENTHALPIES ARE:
C HAIR--O.0 AT 0. DEG C AND 0. DEG F
C HW(LIQUID)--0.0 AT 0. DEG C AND 32. DEG F
C THE PSYDAT ARRAY CONTAINS THE MOIST AIR PROPERTIES.
C ASSIGN LOCAL VARIABLES:
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WBMODE = WBMD
PATM = PSYDAT(1)
TDB = PSYDAT(2)
TWB = PSYDAT(3)
TWBOLD=-9.999E20
RH = PSYDAT(4)
TDP = PSYDAT(5)
W= PSYDAT(6)
H = PSYDAT(7)

C UNIT CONVERSIONS
IF(IUNITS .EQ. 2) THEN

TDB = (TDB - 32.)/1.8
TWB = (TWB - 32.)/1.8
TDP = (TDP - 32.)/1.8
H = (H - 7.687)/0.43002

ENDIF
C-- CHECK THAT THE TOTAL PRESSURE IS WITHIN THE IDEAL GAS
RANGE.

IF (PATM .GT. 5.0) THEN
WRITE(*,500)
IWARNS = IWARNS + 1

END IF
IF (PATM .LE. 0.0) THEN

WRITE(*,250)
STOP

END IF
C FOR MODE 6, CHECK THAT THE ENTHALPY IS GREATER THAN THE
C SATURATION ENTHALPY (MINIMUM) FOR THE GIVEN HUMIDITY
RATIO
C AND THAT THE HUMIDITY RATIO IS GREATER THAN 0.

IF (MODE .EQ. 6) THEN
IF (W .LT. 0.) THEN

WRITE(*, 1500)
IWARNS = IWARNS + 1
W =0.
GO TO 99

ELSE IF (W .EQ. 0.) THEN
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GO TO 99
END IF

CALL DEWPT(PATM,W,TDP,IWARNS)
HDP = TDP + W*(2501. + 1.805*TDP)
HMIN = HDP

IF (H .LT. HMIN) THEN
WRITE(*, 1000)
IWARNS = IWARNS + 1
H = HMIN

END IF
99 TDB = (H - 2501.*W)/(1. + 1.805*W)

END IF
C
C FIND SATURATION PRESSURE OF WATER AT WET BULB, DRY BULB,
OR
C DEW POINT TEMPERATURE.
C

CALL SAT(TDB,PSATDB,IWARNS)
GOTO (1,2,3,2,2,2) ,MODE

C-- CHECK FOR IMPOSSIBLE WET BULB TEMPERATURES AND CORRECT
THEM
C IF POSSIBLE.
1 IF (TWB .GT. TDB .AND. PSATDB .GE. PATM) THEN

WRITE(*, 1750)
STOP

ELSE IF (TWB .GT. TDB) THEN
WRITE(*,2000)
IWARNS = IWARNS + 1
TWB =TDB

PSAT = PSATDB
GOTO 5

END IF
CALL SAT (TWB,PSAT,IWARNS)

C-- ERROR: IF PSATWB IS GREATER THAN PATM.
IF (PSAT .GE. PATM) THEN

WRJTE(*, 1750)
STOP
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END IF
GOTO 5

2 PSAT = PSATDB
GOTO 5

C-- CHECK FOR IMPOSSIBLE DEW POINT TEMPERATURES AND
C CORRECT THEM IF POSSIBLE.
3 IF (TDP .GT. TDB .AND. PSATDB .GE. PATM) THEN

WRITE(*,2250)
STOP

ELSE IF (TDP .GT. TDB) THEN
WRITE(*,2500)
IWARNS = IWARNS + 1
TDP=TDB

END IF
CALL SAT(TDP,PSAT,IWARNS)

C-- ERROR: IF PSATDP IS GREATER THAN PATM.
IF (PSAT .GE. PATM) THEN

WRITE(*,2250)
STOP

END IF
5 CONTINUE
C CALCULATE HUMIDITY RATIO AND WET BULB TEMPERATURE

GO TO (10,20,30,40,50,60), MODE
C MODE 1 -- DRY BULB AND WET BULB SUPPLIED
10 IF (TWB.LE.0.) THEN

P = PSAT - 5.704E-4*(TDB-TWB)*PATM
W =.62198 * P/(PATM-P)

ELSE
WSAT = .62198 * PSAT/(PATM-PSAT)
W = WSAT - (TDB-TWB)*(0.24 + .441*WSAT)/(597.31

S+0.441*TDB - TWB)
ENDIF
IF (W .LT. 0.0) THEN

WRITE(*,3000)
IWARNS = IWARNS + 1
W = 0.0
H =TDB
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TWBOLD = TWB
WBMODE = 1
PSAT = PSATDB
GO TO 60

END IF
H = TDB + W*(2501. + 1.805*TDB)
GO TO 100

C MODE 2 -- DRY BULB AND RELATIVE HUMIDITY SUPPLIED
20 IF (RH .LT. 0.) THEN

WRITE(*,3500)
IWARNS = IWARNS + 1
RH=0.0

ELSE IF (PSAT .GE. PATM) THEN
RHMAX = PATM/PSAT
IF (RH .GE. (.99*RJMAX)) THEN

WRITE(*,3750)
STOP

END IF
ELSE IF (RH .GT. 1.) THEN

WRITE(*,4000)
IWARNS = IWARNS + 1
RH=1.0

END IF
W- .62198 * PSAT*RH/(PATM-PSAT*RH)
GO TO 40

C MODE 3 -- DRY BULB AND DEW POINT SUPPLIED
30 W =.62198 * PSAT/(PATM-PSAT)
C FIND ENTHALPY FOR MODES 2 - 4
40 IF (PSATDB .LT. PATM) THEN

WMAX = .62198 * PSATDB/(PATM-PSATDB)
IF (W .GT. WMAX) THEN

WRITE(*,4500)
IWARNS = IWARNS + 1
W = WMAX

ENDIF
END IF
IF (W .LT. 0.0) THEN
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WRITE(*,1500)
IWARNS = IWARNS + 1
W=o.

END IF
H = TDB + W*(2501. + 1.805*TDB)
GO TO 60

C MODE 5 -- DRY BULB AND ENTHALPY SUPPLIED
50 IF (PSATDB .LT. PATM) THEN

WMAX = .62198 * PSAT/(PATM-PSAT)
HMAX = TDB + WMAX*(2501. + 1.805*TDB)
IF (H .GT. HMAX) THEN

WRITE(*,5000)
IWARNS = IWARNS + 1
H =HMAX

END IF
END IF
HMIN = TDB
IF (H .LT. HMIN) THEN

WRITE(*,5500)
IWARNS = IWARNS + 1
H=- HMIN

END IF
W = (H-TDB)/(2501.+1.805*TDB)

C FIND WET BULB TEMPERATURE FOR MODES 2 - 6 IF WBMODE EQUALS
1.
60 IF (WBMODE .NE. 1) THEN

TWB-TDB
GO TO 100

END IF
DPRESS = ABS(1.-PATM)

C THE FOLLOWING CORRELATION IS FOR 1 ATMOSPHERES TOTAL
PRESSURE.
C IF OUTSIDE THE CORRELATION RANGE, THE CORRELATION IS USED
FOR
C THE INITIAL GUESS IN THE ITERATIVE METHOD.

IF (H .GT. 0..AND. H .LT. 2000.) THEN
Y = ALOG(H*.43002+7.687)
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IF (H .LE. 9.473) THEN
TWB=- 17.4422+1.9356*Y+.7556*Y**2+.5406*Y**3

ELSE IF (H.GT. 9.473) THEN
TWB=-.6008-22.04556*Y+l 1.4356*Y**2-.97667*Y**3

END IF
ELSE

TWB = 9.99999E25
END IF

C USE A NEWTON'S ITERATIVE METHOD TO FIND THE WET BULB
C TEMPERATURE.

IF (DPRESS.GT..001 .OR. H.LE.0..OR. H.GT.275.) THEN
ITEST=0
IF (ABS(PATM-PATMOLD) .GT. 1.OE-10) THEN
CALL BOIL(PATM,TBOIL)
PATMOLD = PATM
END IF

C-- INITIAL GUESS
TWBNEW=AMIN1 (TWB,(TBOIL-0.1),TDB)

70 IF (TWBNEW .GE. (TBOIL-0.09)) TWBNEW=TBOIL-0.1
CALL SAT(TWBNEWPSATIWARNS)
WSSTAR=.62198*PSAT/(PATM-PSAT)
IF(MODE .EQ. 5) THEN
W = (H-TDB)/(2501.+1.805*TDB)

END IF
WNEW=((2501.-2.381 *TWBNEW)*WSSTAR-(TDB-TWBNEW))/

(2501.+1.805*TDB-4.186*TWBNEW)
ERR = W - WNEW
IF (ABS(ERR).LE. (.01*W)) GO TO 75
IF (W .EQ. 0.) THEN

IF (ABS(ERR).LE..0001) GO TO 75
END IF
ITEST = ITEST + 1
IF (ITEST .GE. 25) GO TO 75

C--FIND THE SLOPE OF THE ERROR FUNCTION
TSLOPE = 0.999*TWBNEW
IF (TWBNEW .EQ. 0.) TSLOPE = -.005
CALL SAT(TSLOPE,PSLOPE,IWARNS)
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WS SLP=.62198 *PSLOPE/(PATM-PS LOPE)
WSLOPE=((2501.-2.381 *TSLOPE)*WSSLP-.(TDB-TSLOPE))/

. (2501.+1.805*TDB-4.186*TSLOPE)
ERRSLP = W - WSLOPE
DERRDT = (ERRSLP - ERR)/(TSLOPE - TWBNEW)
TWBNEW = TWBNEW - ERR/DERRDT
GO TO 70

75 TWB =TWBNEW
END IF
IF (TWB .LT. TWBOLD) TWB = TWBOLD

100 CONTINUE
C FIND RELATIVE HUMIDITY, DEW POINT, MIXTURE DENSITY,
C AND DRY AIR DENSITY

PV = PATM*W/(.62198+W)
IF(MODE .NE. 2) RH = PV/PSATDB
IF(MODE .NE. 3 .AND. PV .GT. 0.) THEN

CALL DEWPT(PATM,W,TDP,IWARNS)
ELSE IF (MODE .NE. 3 .AND. PV .LE. 0) THEN

C FOR DRY AIR, THERE IS NO DEW POINT TEMPERATURE
TDP=-9.99999E25

ENDIF
SPCVOL = RA*(TDB+273.15)/(PATM* 101325)*(1+1.6078*W)
RHOWA = 1/SPCVOL
RHOWM = RHOWA*(1+W)

C CONVERT OUTPUTS TO APPROPRIATE UNITS
IF(IUNITS .EQ. 2) THEN

H = H*0.43002+7.68
TDB = 1.8*TDB + 32.
TWB = 1.8*TWB + 32.
IF (TDP .GT. -9.99999E24) THEN
TDP = 1.8*TDP + 32.

END IF
RHOWM = RHOWM/16.02
RHOWA = RHOWA/16.02

ENDIF
C SET OUTPUTS

IF(MODE .EQ. 6) PSYDAT(2) = TDB
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PSYDAT(3) = TWB
PSYDAT(4) = RH
PSYDAT(5) = TDP
PSYDAT(6) = W
PSYDAT(7) = H
PSYDAT(8) = RHOWM
PSYDAT(9) = RHOWA
IF (IWARNS .GE. LIMIT) THEN

WRITE(*,6000) IWARNS
STOP

END IF
RETURN

250 FORMAT(/20X,'*** ERROR ***',/6X,'THE PSYCHROMETRICS
. SUBROUTINE WAS CALLED WITH AN ATMOSPHERIC PRESSURE',/6X,
.'LESS THAN OR EQUAL TO 0.')

500 FORMAT(/20X,'*** WARNING ***',/6X,"THE PSYCHROMETRICS
" SUBROUTINE WAS CALLED
" WITH A TOTAL PRESSURE',/6X,'GREATER THAN 5 ATMOSPHERES.
" BEWARE THAT THE IDEAL GAS RELATIONS USED',/6X,'IN THE
" PSYCHROMETRICS ARE NOT ACCURATE AT HIGHER PRESSURES.')

1000 FORMAT(/20X,'*** WARNING ***',f6X,'THE PSYCHROMETRICS
" SUBROUTINE WAS CALLED
" WITH AN ENTHALPY LESS',76X,'THAN POSSIBLE FOR THE GIVEN
" HUMIDITY RATIO. THE AIR WAS ASSUMED TO',16X,'BE
" SATURATED AT THE GIVEN HUMIDITY RATIO AND THE ENTHALPY
" SET FOR'J6X, 'THIS CONDITION.')

1500 FORMAT(/20X,'"*** WARNING ***',/6X,'THE PSYCHROMETRICS
" SUBROUTINE WAS CALLED
" WITH A HUMIDITY RATIO LESS',/6X,'THAN 0.0. DRY AIR WAS
" ASSUMED AND THE HUMIDITY RATIO SET TO 0.0.')

1750 FORMAT(/20X,' *** ERROR ***',/6X,'THE PSYCHROMETRICS
. SUBROUTINE WAS CALLED WITH A WET BULB TEMPERATURE',6X,
,'ABOVE THE MAXIMUM FOR THE GIVEN ATMOSPHERIC PRESSURE.')

2000 FORMAT(/20X,'*** WARNING ***',16X,'THE PSYCHROMETRICS
. SUBROUTINE WAS CALLED WITH A WET BULB TEMPERATURE',/6X,
.'GREATER THAN THE DRY BULB TEMPERATURE. SATURATED AIR
•WAS ASSUMED',/6X,'AND THE WET BULB TEMPERATURE SET TO THE
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. DRY BULB TEMPERATURE.')
2250 FORMAT(/20X,' *** ERROR ***',/6X,'THE PSYCHROMETRICS

. SUBROUTINE WAS CALLED WITH A DEW POINT TEMPERATURE',/6X,

.'ABOVE THE MAXIMUM FOR THE GIVEN ATMOSPHERIC PRESSURE.')
2500 FORMAT(/20X,'*** WARNING ***',/6X,'THE PSYCHROMETRICS

" SUBROUTINE WAS CALLED
" WITH A DEW POINT TEMPERATURE'J6X,
.'GREATER THEN THE DRY BULB TEMPERATURE. THE DEW
. POINT WAS SET EQUAL',/6X,'TO THE DRY BULB TEMPERATURE.')

3000 FORMAT(/20X,'*** WARNING ***'6X,'THE PSYCHROMETRICS
. SUBROUTINE WAS CALLED WITH A WET BULB TEMPERATURE?,/6X,
.'BELOW THAT FOR DRY AIR AT THE GIVEN DRY BULB TEMPERA-

TURE.
" DRY AIR',/6X,'WAS ASSUMED AND A NEW WET BULB TEMPERATURE
" FOUND.')

3500 FORMAT(/20X,"*** WARNING ***',/6X,'THE PSYCHROMETRICS
. SUBROUTINE WAS CALLED WITH A RELATIVE HUMIDITY',j6X,
.'LESS THAN 0. THE RELATIVE HUMIDITY WAS SET TO 0.0.')

3750 FORMAT(/20X,'*** ERROR ***',/6X,'THE PSYCHROMETRICS
. SUBROUTINE WAS CALLED WITH A RELATIVE HUMIDITY',/6X,
.'GREATER THAN POSSIBLE AT THE GIVEN DRY BULB TEMPERA-

TURE.')
4000 FORMAT(/20X,'*** WARNING ***',/6X,'THE PSYCHROMETRICS

. SUBROUTINE WAS CALLED WITH A RELATIVE HUMIDITY'J6X,

.'GREATER THEN 1.0. THE RELATIVE HUMIDITY WAS SET TO 1.0.')
4500 FORMAT(/20X,'*** WARNING ***',/6X,'THE PSYCHROMETRICS

" SUBROUTINE WAS CALLED WITH A HUMIDITY RATIO ABOVE',/6X,
.'THE SATURATION HUMIDITY RATIO FOR THE GIVEN DRY BULB
" TEMPERATURE.',/6X,'THE AIR WAS ASSUMED SATURATED AT THE
" GIVEN DRY BULB TEMPERATURE',6X,' AND THE HUMIDITY RATIO
" SET FOR THIS CONDITION.')

5000 FORMAT(/20X,'*** WARNING ***',/6X,'THE PSYCHROMETERICS
" SUBROUTINE WAS CALLED
" WITH AN ENTHALPY GREATER',16X,'THEN THAT FOR SATURATED
" AIR AT THE GIVEN DRY BULB TEMPERATURE. THE',/6X,'AIR
" WAS ASSUMED SATURATED AND THE ENTHALPY SET FOR THIS
CONDITION.')
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5500 FORMAT(/20X,'*** WARNING ***',/6X,'THE PSYCHROMETERICS
" SUBROUTINE WAS CALLED
" WITH AN ENTHALPY LESS'J6X,'THEN THAT FOR DRY
" AIR AT THE GIVEN DRY BULB TEMPERATURE. DRY',/6X,'AIR
" WAS ASSUMED AND THE ENTHALPY SET FOR THIS CONDITION.')

6000 FORMAT(/30X,'*** ERROR ***',/6X,'THE SIMULATION WAS HALTED
. BECAUSE THERE WERE',IX,I3,1X,'WARNINGS FROM THE',/6X,
.'PSYCHROMETRICS SUBROUTINE. CHECK FOR PROPER USE OF
* THIS SUBROUTINE.')
END

C SUBROUTINE FOR FINDING SATURATION PRESSURE OF WATER AT A
GIVEN
C TEMPERATURE

SUBROUTINE SAT(TIN,PSAT,IWARNS)
C THE FOLLOWING CORRELATION FOR THE SATURATION PRESSURE OF
C WATER VAPOR (IN PASCALS) AS A FUNCTION OF TEMPERATURE IS
C TAKEN FROM THE 1985 ASHRAE FUNDAMENTALS HANDBOOK (SI).

DATA C1/-5674.5359/,C2/6.3925247/,C3/-0.9677843E-2/
DATA C4/0.62215701E-6/,C5/0.20747825E-8/,C6/-0.9484024E- 12/
DATA C7/4.1635019/,C8/-5800.2206/,C9/1.3914993/
DATA C 10/-0.048640239/,C1 1/0.41764768E-4/,C 12/-0.14452093E-7/
DATA C13/6.5459673/
T =TIN + 273.15
IF (T .LE. 0.) THEN

WRITE(*,200)
STOP

END IF
C SATURATION PRESSURE OVER ICE (-100 C TO 0 C)

IF (T .LT. 273.15) THEN
PSAT=EXP(C1/T+C2+C3*T+C4*T**2+C5*T**3+C6*T**4+C 7*ALOG(T))

C SATURATION PRESSURE OVER LIQUID WATER (0 C TO 200 C)
ELSE IF (T .GE. 273.15) THEN

PSAT=EXP(C8/T+C9+C1O*T+C1 1 *T**2+C 12*T**3+C1 3*ALOG(T))
END IF

C TEMPERATURE OUT OF THE RANGE USED FOR THE CORRELATION
IF (T .LT. 173.15 .OR. T .GT. 473.15) THEN
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WRITE(*, 100)
IWARNS = IWARNS + 1

END IF
C CONVERT PRESSURE FROM PASCALS TO ATMOSPHERES

PSAT = PSAT/101325
RETURN

100 FORMAT(/20X,'*** WARNING ***',6X,'THE CORRELATION, FROM
THE

* 1985 ASHRAE FUNDAMENTALS HANDBOOK, USED',/6X,'TO CALCU-
LATE

. THE WATER VAPOR SATURATION PRESSURE WAS INTENDED FOR',

./6X,'THE TEMPERATURE RANGE OF -100 C TO 200 C. THE
* PSYCHROMETRICS',/6X,'SUBROUTINE WAS CALLED WITH CONDI-

TIONS
. OUTSIDE THIS RANGE.')

200 FORMAT(/20X,'*** ERROR ***',/6X,'THE "SAT" SUBROUTINE OF THE
" PSYCHROMETRICS
" SUBROUTINE WAS CALLED',6X,'WITH A TEMPERATURE BELOW -273

C.')
END

C SUBROUTINE FOR FINDING THE DEW POINT TEMPERATURE GIVEN
C THE HUMIDITY RATIO. THE CORRELATION IS FROM THE 1981
C ASHRAE FUNDAMETALS HANDBOOK. THE DEW POINT TEMPERATURE
C IS IN DEGREES C AND ATMOSPHERIC PRESSURE IN PASCALS.
C

SUBROUTINE DEWPT(PATM,W,TDP,IWARNS)
PV = PATM*W/(.62198+W)
Y = ALOG(1.013E05*PV)
TDP = -35.957 - 1.8726*Y + 1.1689*Y*Y
IF(TDP .LT. 0.) TDP = -60.45 + 7.0322*Y + 0.3700*Y*Y
IF (TDP.GT.70..OR. TDP.LT.-60.) THEN

WRITE(*, 100)
IWARNS = IWARNS + 1

END IF
RETURN

100 FORMAT(/20X,'*** WARNING ***',16X,'THE CORRELATION, FROM
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THE
. 1981 ASHRAE FUNDAMENTALS HANDBOOK, USED',/6X,'TO CALCU-

LATE
. THE DEW POINT TEMPERATURE, IS INTENDED FOR THE',
./6X,'TEMPERATURE RANGE OF -60 C TO 70 C. THE PSYCHROMETRICS
" SUBROUTINE',]6X,'WAS CALLED WITH CONDITIONS OUTSIDE THIS
" RANGE.')
END

C SUBROUTINE FOR FINDING THE BOILING TEMPERATURE OF WATER
GIVEN
C THE TOTAL PRESSURE. A NEWTON'S METHOD IS USED WITH THE
C SATURATED WATER VAPOR PRESSURE CORRELATION FROM THE 1985
ASHRAE
C FUNDAMENTALS HANDBOOK.
C

SUBROUTINE BOIL(PATM,TBOIL)
DATA C1/-5674.5359/,C2/6.3925247/,C3/-0.9677843E-2/
DATA C4/0.62215701E-6/,C5/0.20747825E-8/,C6/-0.9484024E- 12/
DATA C7/4.1635019/,C8/-5800.2206/,C9/1.3914993/
DATA C10/-0.048640239/,C1 1/0.41764768E-4/,C 12/-0.14452093E-7/
DATA C 13/6.5459673/

C
PBOIL = PATM* 101325
ITEST =0
IF (PBOIL .LT. 611.21) GO TO 100

C--USING AHRAE CORRELATION FOR 0 C TO 200 C.
C FIRST GUESS TBOIL EQUALS 100 C.

Ti = 100 + 273.15
10 ZZ=C8/T1+C9+C1O*T1+C11*T1**2+C12*T1**3+C13*ALOG(T1)

P1=EXP(ZZ)
ERR = PBOIL - P1
IF (ABS(ERR) .LE. (.01*PBOIL)) THEN

TBOIL = Ti - 273.15
RETURN

END IF
ITEST = ITEST + 1
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IF (ITEST .GT. 100) STOP
DERRDT=-(P1)*(-C8/T**2+C10+2*C 11*T1+3*C12*T1**2+C13fr1)
TOLD = T1
Ti = Ti - ERR/DERRDT
GO TO 10

100 CONTINUE
C--USING AHRAE CORRELATION FOR -100 C TO 0 C.
C FIRST GUESS TBOIL EQUALS 0 C.

Ti = 273.15
110 ZZ=ClrlT+C2+C3*T1 +C4*TI**2+C5*TI**3+C6*T1 **4+C7*ALOG(T1)

PI=EXP(ZZ)
ERR =PBOIL - P1
IF (ABS(ERR).LE. (.01*PBOIL)) THEN

TBOIL = Ti - 273.15
RETURN

END IF
ITEST = ITEST +1
DERRDT=-P1*(-C1/T1**2+C3+2*C4*T1+3*C5*T1**2+4*C6*T1**3+C7/T1)
TOLD = Ti
Ti = Ti - ERR/DERRDT
GO TO 110
END



203

REFERENCES

[1] Klein, S. A., et al., "TRNSYS - A Transient Simulation Program", University of
Wisconsin - Madison, Engineering Experiment Station Report 38-12, Version
12.2, (1988).

[2] SOLMET, Volume I - User's Manual, "Hourly Solar Radiation Surface
Meteorological Observations", #TD-9724 (1978).

[3] Watt, A. D., "Circumsolar Radiation", Sandia National Laboratories, Report #

SAND 80-7009, pp. 9, (1980).

[4] Temps, R. C., Coulson, K. L., "Solar Radiation Incident Upon Slopes of
Different Orientations", Solar Energy, 19 pp. 179-184, (1977).

[5] Duffle, J. A., Beckman, W. A., Solar Engineering of Thermal Processes, New

York, Wiley-Interscience Publication, pp.1, 72 (1980).

[6] Fritz, S., "Transmission of Solar Energy Through The Earth's Clear and Cloudy
Atmosphere", Transactions of the 1955 International Conference on the Use of

Solar Energy-The Scientific Basis, Volume I, pp. 18, (1958).

[7] McKay, D. C., et al., As Noted in Final Report IEA Task IX "Validations of
Models For Estimating Solar Radiation On Horizontal Surfaces", Data requests

referred to Dr. D. C. McKay, Canada Climate Centre, The Atmospheric
Environment Service, 4905 Dufferin Street, Downsview, Ontario, M3H5T4,

Canada.

[8] Hay, J. E., McKay, D. C., "Estimating Solar Irradiance on Inclined Surfaces: A
Review and Assessment of Methodologies", International Journal of Solar

Energy, Volume 3, pp. 204, (1985).

[9] Orgill, J. F., Hollands, K. G. T., "Correlation Equation for Hourly Diffuse
Radiation on a Horizontal Surface", Solar Energy, 19, pp. 357, (1977).



204

[10] Erbs, D. G., "Methods for Estimating The Diffuse Fraction of Hourly, Daily,

and Monthly-Average Global Solar Radiation", Masters Thesis in Mechanical

Engineering, University of Wisconsin-Madison, (1980).

[11] Iqbal, M., "Prediction of Hourly Diffuse Solar Radiation From Measured

Hourly Global Radiation on a Horizontal Surface", Solar Energy, 24, pp.

491-503, (1980).

[12] Bugler, J. M., "The Determination of Hourly Insolation on an Inclined Plane

Using a Diffuse Irradiance Model Based on Hourly Measured Global Horizon-

tal Insolation", Solar Energy, 19, pp. 477-491, (1977).

[13] Davies, J. A., McKay, D. C., Luciani, G., Abdel-Wahab, M., DRAFT Final

Report IEA Task IX, "Validation of Models For Estimating Solar Radiation on

Horizontal Surfaces", pp.3, 26, (1987).

[14] Hottel, H. C., Woertz, B. B., "Performance of Flat-Plate Solar-Heat Collec-

tors", Transactions of American Society of Mechanical Engineers, 64, pp. 91,

(1942).

[15] Dave, J. V., "Validity of The Isotropic-Distribution Approximation In Solar

Energy Estimations", Solar Energy, 19, pp.3 3 1-333, (1977).

[16] Klucher, T. M., "Evaluation of Models To Predict Insolation on Tilted

Surfaces", Solar Energy, 23, pp. 111-114, (1979).

[17] Ma, C. C. Y., Iqbal, M., "Statistical Comparison of Models For Estimating

Solar Radiation On Inclined Surfaces", Solar Energy, 31, pp.313-317, (1983).

[18] van den Brink, G. J., "Validation of Solar Radiation Models and Recommen-

dation of The Model For Dutch Climatological Circumstances", technisch

physische dienst, #314.226-3, (1987).

[19] Hay, J. E., McKay, D. C., "Calculation of Solar Irradiances for Inclined

Surfaces: Verification of Models Which Use Hourly and Daily Data", DRAFT,

1988.



205

[20] Perez, R., Seals, R., Ineichen, P., Stewart, R., Menicucci, D., "A New

Simplified Version of The Perez Diffuse Irradiance Model For Tilted Surfaces",

Solar Energy, 39, pp. 221-231, (1987).

[21] Hay, J. E., Davies, J. A., "Calculation of The Solar Radiation Incident On An

Inclined Surface", Proceedings First Canadian Solar Radiation Data Work-

shop, pp., 59-72, (1980).

[22] Mohr, A. J., Dahlberg, D. A., Dirmhirn, I., "Experiences With Tests and

Calibration of Pyranometers For A Mesoscale Solar-Irradiance Network",

Solar Energy, 22, pp. 197-203, (1979).

[23] Nast, P. M., "Measurements on The Accuracy of Pyranometers", Solar Energy,

31, pp. 279-282, (1983).

[24] World Meteorological Organization, Guide to Meteorological Instruments and

Observing Practices, 5t Edition, WMO-No. 8, Geneva, Switzerland, (1983).

[25] Balaras, C. A., "An Investigation of The Relationship Between Beam and

Global Irradiation With The Development of Numerical Solar Radiation

Models", Ph.D. Thesis, School of Mechanical Engineering, Georgia Institute of

Technology, pp. 49, June, 1988.

[26] Solar Energy Meteorological Research and Training Site Program (SE-

MERTS), operated for U.S. Department of Energy by Meteorological Research

Institute under contract No. EG-77-C-01-4042.

[27] Research Cooperator Format, Solar Energy Research Institute, (1980).

[28] Anscombe, F. J., "Rejection of Outliers", Technometrics, Volume 2, pp.

123-125, (May, 1960).

[29] Goody, R. M., Atmospheric Radiation I: Theoretical Basis, pp. 18-65,

232-248, Oxford University Press, (1964).



206

[30] Paltridge, G. W., Platt, C.M.R., Radiative Process in Meteorology and
Climatology, pp. 69-81, 97-127, Elsevier Scientific Publishing Company,

(1976).

[31] Liu, B.Y.H., Jordan, R.C., "The Interrelationship and Characteristic Distribu-

tion of Direct, Diffuse, and Total Solar Radiation", Solar Energy, 4, pp. 1-19,

(1960).

[32] Hollands, K.G.T., Crha, S.J., "A Probability Density Function For The Diffuse

Fraction, With Applications", Solar Energy, 38, pp. 237-245, (1987).

[33] Garrison, J. D., "A Study of The Division of Global Irradiance Into Direct And

Diffuse Irradiance at Thirty Three U.S. Sites", Solar Energy, 35, pp.341-351,

(1985).

[34] Skartveit, A., Olseth, J. A., "A Model For The Diffuse Fraction of Hourly

Global Radiation", Solar Energy, 38, pp. 271-274, (1987).

[35] Ineichen, P., Gremand, J.M., Guisan, 0., Mermond, A., "Study of The

Corrective Factor Involved When Measuring The Diffuse Solar Radiation By

Use of The Ring Method", Solar Energy, 32, pp.585-590, (1984).

[36] Hogan, W.D., Loxsom, F.M., "Preliminary Validation of Models Predicting

Insolation on Tilted Surfaces", Proceedings of the 1981 Annual Meeting of the

American Solar Energy Society in Philadelphia, Pennsylvania, Volume 42, pp.

1521-1525, (1981).

[37] Huang, S., "An Algorithm For The Estimation of Diffuse Insolation on A

Tilted Surface", Masters Thesis in Engineering Science, Trinity University,

San Antonio, Texas, (1984).

[38] Wetz, J.M., "Criteria For Judging Adequacy of Estimation by An Approximat-

ing Response Function", Ph.D. Thesis, University of Wisconsin, (1964).

[39] Minitab Release 5.1.3, Minitab, Inc. (1985).



207

[40] Draper, N. R., Smith, H., Applied Regression Analysis, John Wiley and Sons,

(1981).

[41] Belsely, D.A., Kuh, E., Welsch, R.E., Regression Diagnostics: Identifying

Influential Data And Sources of Collinearity, New York: Wiley, (1980).

[42] Gardner, C. L., Nadeau, C. A., "Estimating South Slope Irradiance In The

Arctic - A Comparison of Experimental and Modeled Values", Solar Energy,

41, pp. 227-240, (1988).

[43] Gueymard, C., "An Anisotropic Solar Irradiance Model for Tilted Surfaces and

Its Comparison With Selected Engineering Algorithms", Solar Energy, 38, pp.

367-386, (1987).

[44] Liu, B.Y.H., Jordan, R. C., "The Long Term Average Performance of

Flat-Plate Solar Energy Collectors", Solar Energy, 7, pp 53-74 (1963).

[45] Hunn, B. D., Calafell, D. 0., "Determination of Average Ground Reflectivity

for Solar Collectors", Solar Energy, 19, pp. 87-89, (1977).

[46] Draper, N. R., Stat 333, Applied Regression Analysis, University of Wiscon-

sin-Madison, Spring 1988.



208

Index

ANOVA, 65

Broadband
See Wavelength

Diffuse fraction correlations, existing
Erbs, 36
Liu and Jordan, 35
Orgill and Hollands, 35

Diffuse fraction correlations, new
full correlation, 76
performance, 78
reduced correlation, 76

Energy, Utilizable, 7

FSEC, 17

Instruments
pyranometer, 11
pyrheliometer, 13

Lambert's Law, 25

NMBD, 104
NOAA, 2
NRMSD, 104

Objectives, Research, 8
Optical Depth, 26

Predictors, diffuse fraction, 47

Radiation
Beam, 2
Circumsolar, 2
critical level, 7
Diffuse, 2
Estimating Diffuse, 24
Horizon Brightening, 3
Sky, 3
tilted surface, 2Radiation Databases
Albany, New York, 15
Cape Canaveral, Florida (Cape), 17
European, 19
San Antonio, Texas (Trinity), 16



209

SOLMET, 2

Tilted surface
beam, 87
diffuse, 88
ground reflected, 99
model evaluation, 100

Tilted surface model, new, 97
Tilted surface models, existing

Hay, 89
isotropic, 88
Perez, 91

Transfer Equation, 27
TRNSYS, 1

Wavelength
Broadband, 3
Solar Systems, 3


