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Abstract

The transient heat transfer and fluid dynamic response from a heat source in two

different geometric enclosures is analyzed. The first configuration is a vertical flat plate

in a rectangular enclosure (a geometry arising in many electronic packaging configurations)

and the second configuration is a coiled tube heat exchanger immersed in a cylindrical

enclosure (a geometry that is found in many thermal storage strategies). The research is

a combination of numerical, analytical, and experimental work. The numerical aspects

consider solving the time dependent Navier-Stokes and energy equations by a finite element

method. Experiments are performed to assess the applicability of assumptions made in

the numerical models.

In the first geometric configuration, an adiabatic rectangular cavity encloses an

isothermal vertical flat plate heat source. The initial condition is an isothermal quiescent

flow field with a step change in plate temperature. As the initial step change in source

temperature begins to influence the flow field, the heat transfer from the plate progresses

through three distinct temporal regimes: pure conduction, quasi-steady, and decay. Heat

transfer during the first two regimes compare well with the limiting cases of pure

conduction and infinite medium solutions, respectively. Scale analysis techniques are used

to predict the temporal transition points separating the three heat transfer regimes as well

as identifying appropriate parameters to correlate the heat transfer during the decay period.

The result is a complete piecewise correlation of the transient heat transfer from a vertical

plate in an enclosure.

The second configuration is a cylindrical enclosure with an isothermal circular coil

heat source. The boundary conditions are similar to those considered for the rectangular
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cavity with a heated vertical flat plate. The temporal behavior of the heat transfer from

the circular coil is analogous to the vertical flat plate configuration. Scale analysis

techniques are again used to determine the transition points between the three heat transfer

regimes and identify the relevant parameters to correlate the decay period heat transfer.

An experimental apparatus was constructed in an effort to validate the numerical

computations performed on the cylindrical enclosure geometry. The apparatus consisted

of a borosilicate based glass cylinder with a toroid shaped heat source. The heat source

(powered with an electrical resistance heating element) is maintained at a constant

temperature by varying the power supplied heating element. The derived quantities

include: ambient temperature, energy supplied to the heat source, surface temperature of

heat source, average Nusselt number from heat source, and bulk temperature of fluid in

the enclosure. A unique method for "measuring" the enclosure bulk temperature has been

established.

The behavior of the transient heat transfer response observed in the experimental

apparatus was different from that in the numerical computations. The measured heat

transfer appeared to follow a single regime, decay (conduction regime data were not taken).

Applying the group of parameters identified by scale analysis to correlate the decay period

yielded agreement with the measured heat transfer response.
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I Introduction

By nature, convection heat transfer results from the transport of energy by fluid

flowing past an object of interest. The solution of convection problems require knowledge

of both the dynamics of fluid flow and energy transfer. Convective heat transfer processes

are usually subdivided into three regimes depending on the behavior of the fluid flow:

forced, natural, and mixed. Forced convection occurs when the fluid flow past a surface

is induced by external devices e.g., a pump. In this case, the inertia forces in the fluid flow

field dominate the buoyancy forces and the required fluid flow field can be solved

independent of and prior to solving the heat transfer problem (assuming constant fluid

properties); thereby, reducing the complexity of numerical or analytical solutions.

In natural convection, the fluid flow is driven by the imbalance of body forces which

result from the difference of hydrostatic pressure imposed on a fluid element and the weight

of the fluid element. As the temperature (or concentration) in the fluid changes, density

(and consequently the weight) of a fluid element changes. The resulting imbalance of

pressure and weight forces sets the fluid in motion. The mutual dependence of fluid flow

on temperature results in coupling the fluid flow with the energy transfer. Numerically,

this imbalance produces a strong coupling between the governing differential equations

for heat transfer and fluid flow and simultaneous solutions are necessary. In a mixed

convection regime, both buoyancy and inertia forces are important.

Natural convection heat transfer has received considerable attention in the literature

over the past years due to its importance in a number of physical processes. Some

applications in which natural convection is a dominant feature include solar energy

(collectors, ponds, and thermal storage), cooling of electronic equipment, building heat
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transfer, and environmental processes (weather dynamics, geothermal reservoirs, etc.).

The broad class of natural convection problems encompass both steady state and

time dependent configurations for bounded (enclosure) and unbounded (external) flows.

There exists a large body of literature investigating external natural convection problems.

Analysis of external flow problems have a distinct advantage over internal problems due

to assumptions (e.g., boundary layer) which can significantly simplify the governing

differential equations. For simple geometries and boundary conditions, similarity solutions

can be found. In the case of bounded or enclosure problems, solutions by traditional

boundary layer assumptions are not possible due to the absence of known matching

conditions outside the boundary layer. Thus, the full system of governing equations must

be solved simultaneously which greatly complicates the analysis.

1.1 Literature Survey

The following section summarizes previous investigations of natural convection in

enclosures. Both steady and transient configurations using numerical and experimental

techniques are considered.

1.1.1 Steady State Configurations

The simplest and one of the most comprehensively studied enclosure problems is a

two dimensional rectangular cavity with differentially heated side walls and adiabatic top

and bottom (also known as the double glazing problem) as depicted in Figure 1.1.

In one of the earliest studies of this problem, Batchelor (1954) considered cavities

with a large range of aspect ratios (A = HIW). The study showed that various flow regimes

exist depending on the magnitude of the Rayleigh number (Ra = buoyant forces / viscous

and thermal forces, g H3(Th - Tc)Ivxt). When Ra is small (Ra < 1708) or the cavity slender
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Figure 1.1: Differentially heated square cavity.

(W << H), the heat transfer across the cavity is dominated by pure conduction. For large

Ra, the near wall region was assumed to be boundary layer flow with the matching condition

outside the boundary layer obtained by assuming that the remaining core flow is isothermal

with a constant vorticity. Batchelor was unable to obtain solutions for the large Ra number

case (solutions were obtained later by Potts (1958). Expressions for Nusselt number Nu

(a dimensionless average heat flux) were approximated by a power series in Ra for both

limiting cases. Later experiments performed by Eckert and Carlson (1961) showed the

core to be stratified which negated the isothermal core assumption used by Batchelor. The

large deviations in comparing the Nu results of Batchelor to Eckert and Carlson may be

explained by the assumptions made regarding core behavior.

More recently, Han (1979) used a stream function - vorticity (SFV) formulation with

central differences on a uniform grid and successive over relaxation (SOR) to solve the

full set of governing equations for the enclosure problem shown in Figure 1.1. Solutions

3
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for Nusselt numbers were obtained over a wide range of aspect ratios 1 A 20, and

Prandtl numbers (0.5 < Pr < 10000) for Ra 10'. Temperature profiles were in good

qualitative agreement with the measurements of Eckert and Carlson. Nusselt number

results were within 25% of the experimental results.

Jones (1979a) used a SFV formulation to solve the cavity problem over a smaller

range of aspect ratios (1 < A 20) and a similar range of Rayleigh numbers

(1.94 x 10' < Ra < 2.3 x 105). Computed temperature profiles and streamlines were in

agreement with the experiments of Duxbury (1972). Comparison of average Nusselt

numbers were within 13% of the Duxbury experiments. Jones (1979b) suggested that the

differentially heated square problem would be suitable for validating and testing new

computer codes and numerical techniques prompting a large scale computational

comparison exercise by de Vahl Davis and Jones (1983a). Thirty contributors submitted

solutions to the cavity problem with a unity aspect ratio and 10' < Ra 106. Various

calculated and derived quantities, such as maximum stream function, velocity components,

etc., were selected to be included in the comparison. An attempt to determine the "right"

solution was performed by de Vahl Davis (1983b) solving a SFV formulation using refined

grids (11 x 11 -- 81 x 81 uniform meshes) and Richardson extrapolation. The solution

was considered a benchmark solution and all other results submitted in the exercise were

compared with this benchmark. Significant differences existed between solutions

submitted and the benchmark solution. For example at Ra = 106, variations in the average

Nusselt number ranged from -6.9 to +20% when compared to the benchmark. The

differences in average Nusselt numbers were smaller at lower Rayleigh numbers. The



primary reason is because accurate solutions to the governing equations can be obtained

on relatively coarse meshes at low Rayleigh numbers since the problem is largely

conduction dominated throughout the entire transient.

Betts and Haroutunian (1983) used high order triangular finite elements to solve a

SFV formulation to the square cavity problem. Average Nusselt number results compared

within 1.5% of the benchmark solution obtained by de Vahl Davis. Several other finite

difference solutions using stream function - vorticity formulations have been published

(Ozoe, et al. 1985; Lin and Nansteel, 1987; and Chen, et al. 1987). Fewer primitive variable

formulations to the cavity problem have been published 1. (The primitive variables are u,

v, P, and T.) Markatos and Pericleous (1984) use an upwind difference scheme to solve

the governing equations in primitive variable form. A version of the semi-implicit pressure

linked equation (SIMPLE) algorithm, Patankar (1972), is used to obtain a pressure field

such that the corresponding velocities satisfy mass conservation. Turbulent calculations

were also performed using a (k-s) model when Ra > 106. Good agreement with the

benchmark solution was obtained for the laminar case (Nu results are within 2.5% of

benchmark). Correlations were established for both the laminar and turbulent cases.

Marshall, et al. (1978) used a primitive variable penalty function approach to solve the

steady problem for Ra up to 107. Over the same range as de Vahl Davis, the Nu compared

within 7% of the benchmark. The relatively large difference may be attributed to a relatively

coarse mesh (64 quadratic quadrilateral elements).

1 The advantages and disadvantages of the stream function - vorticity versus the
primitive variable formulation will be discussed in Section 2.2.
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All of the work discussed thus far exclusively considered steady state solutions. The

number of studies dealing with transient natural convection in similar geometries is much

more limited. In some cases (e.g. Newell and Schmidt, 1970), time dependent formulations

of the governing equations are solved when only steady state solutions are desired. Thus,

no attempt is made to achieve temporal accuracy and features unique to the transient heat

transfer and fluid flow are not observed.

1.1.2 Transient Configurations

One of the first studies to consider the transient behavior of the differentially heated

cavity is that of Wilkes and Churchill (1966). The boundary conditions are identical to

those shown in Figure 1.1; in addition they considered a linear temperature variation for

the horizontal surfaces. The initial condition is a quiescent flow field at a temperature

equal to the average of the hot and cold vertical surfaces. An alternating direction implicit

(ADI) technique was used to solve the parabolic vorticity and energy equations while the

SOR technique is used to solve the Poisson equation for stream function. Deviations in

the average Nusselt numbers at steady state are as high as 43% when compared to the de

Vahl Davis (1983b) benchmark. The most likely source of this large deviation from the

benchmark solution is a lack of appropriate grid refinement. (The finest mesh size used

is a 20x20.) Qualitatively, the transient response of Nu follows a pure conduction solution

at early times then reaches a local minimum before leveling off at its steady state value.

No attempt was made to correlate the transient Nu results.

Patterson and Imberger (1980) used scale analysis to describe the transient behavior

for small aspect ratio cavities (A :5 1). Heat transfer regimes were classified as conductive,

convective, or transitional depending the magnitude of Ra relative to unity and a critical
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Rayleigh number. The critical Rayleigh number, Rae, is determined completely from order

of magnitude or scale analysis of the governing equations (Raec= max(Pr2 ,A- 12)). When

Ra < 1, the transient response is dominated by pure conduction. When Ra > Rae, the

dominant mode of heat transfer is by convection (the early transient is always conductive)

and when 1 < Ra < Rac, the heat transfer is termed transitional in which both conduction

and convection are important features. The case of A < 1 and Pr > 1 was considered and

six different transient responses were identified depending on values of Ra, Pr, and A. An

oscillatory response of the flow field was identified when Ra > Pr4A-4. In other words,

velocities and temperatures in the flow field were found to oscillate as the solution

proceeded to steady state. The authors attributed the oscillatory behavior to fluid "piling

up" on the horizontal walls while waiting to be entrained by the vertical boundary layer

flow on the opposite vertical walls. Oscillations in Nu were demonstrated numerically

when Ra > Pr4A-4.

In an effort to determine if the oscillations predicted by Patterson and Imberger

actually exist, Yewell, et al. (1982) performed experiments for low aspect ratio (A = 0.0625,

0.112) enclosures at high Rayleigh numbers (109 < Ra 1010). Two experiments with the

parameter values exceeding the criterion established by Patterson and Imberger

(Ra > Pr4A -4) were performed. In each case, the expected fluctuations in measured

temperatures were not detected and Yewell, et al. were unable to confirm the wave motion

predicted by Patterson and Imberger. Subsequent to the findings of Yewell, et al., Patterson

(1984) imposed new limits for the generation of wave motion as Ra, > max(Pr4A-4,A 1
2 ).

The new limit placed the experiments of Yewell, et al. into the waveless regime (both



experiments were for Ra <A- 2 ). Patterson argues that in the extreme case of low aspect

ratio enclosures the horizontal layer of fluid flow loses significant energy by conduction

to the core prior to reaching the opposite wall and the fluid "pile up" does not occur.

Ivey (1984) also performed experiments in an attempt to confirm the existence of

the wave motion predicted by Patterson and Imrerger. The parameter values were within

the range of oscillation behavior (RaPr-4A4 = 8.6,3.6 x 105 ;A = 1) as predicted by

Patterson and Imberger. For the case RaPr-4A 4 = 8.6, no evidence of oscillating behavior

was observed based on temperature measurements. For the case RaPr-A4 = 3.6 x 10',

transient temperatures were highly oscillatory but apparently stochastic which suggested

that the fluctuations are not produced by a regular interval wave like fluid structure. Flow

visualizations revealed the existence of small eddies near the outflow comers of the cavity

vertical boundary layers causing the oscillating temperatures. The eddies (as well as the

temperature fluctuations) were attenuated quickly as the distance from the outflow source

increased i.e. as the fluid reached the entraining boundary layer on the opposite side of the

cavity. Ivey attributes this behavior to inertial effects of the flow in the discharge comer

regions of the vertical walls and a case of internal hydraulic jump as discussed by Turner

(1973). It is clear that regimes in transient behavior for this simple geometry are very

complex and further work is required in this area.

Another configuration of the square cavity problem is shown in Figure 1.2. In this

case, one vertical isothermal wall is heated or cooled at a temperature T, with respect to

the initially quiescent interior fluid at a temperature T, and the remaining three walls are

adiabatic. An advantage to this configuration is the unambiguous initial and ending fluid

state in the cavity.
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Figure 1.2: Adiabatic cavity with one sidewall heated/cooled.

Nicolette and Yang (1985) considered the configuration shown in Figure 1.2 with

the sidewall cooled and the remaining walls adiabatic. They used a primitive variable

formulation (based on SIMPLE) to solve the time dependent governing equations for 105

< RalPr 107. Experiments were also performed. Since the initial condition of a step

change in wall temperature could not be achieved experimentally, the wall temperatures

measured during experiments were used as boundary conditions in the numerical

computations. Calculated isotherms in the cavity compared well with interferogram

measurements obtained from the experimental apparatus. Numerical computations

showed the transient behavior of Nu is dominated by pure conduction in early times before

reaching a local minimum and leveling off for a short period of time then slowly decaying

to zero. The authors mentioned the existence of "ripples" in the behavior of Nu during

the final decaying period. No measurements were made which would allow Nu to be

determined and no attempt was made to determine the source of the "ripple" behavior.

v
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Although the boundary conditions make this problem quite unlike the differentially heated

cavity, the "ripple" behavior in Nu could be attributed to the wave phenomena reported

by Patterson and Imberger (1980) and Ivey (1984).

Hall, et al. (1988) used scaling analysis similar to that used by Patterson and Imberger

(1980) as well as numerical computations to solve the transient cavity problem shown in

Figure 1.2. Scale analysis yields order-of-magnitude estimates of quantities such as Nu,

effectiveness (defined as the internal energy change fraction), time duration of the

conduction dominated transient, etc. From the scaling analysis, two distinct periods were

identified. As expected, the first is an early period dominated by pure conduction and the

second period is predominantly convective. The predictions of Nu and effectiveness from

scale analysis compared well with the numerical computations. Numerical results are

obtained by a SFV formulation with ADI method to solve the vorticity and energy

equations. Successive over relaxation is used to solve the stream function equation.

Interestingly, the computations of Nu over time do not show the same features as that of

Nicolette, et al. (1985). Figures 1.3 and 1.4 show the transient response of Nu as given

by the respective authors.

Although the scales in the above two figures are different, the solution of Hall, et al.

does not appear to reach a local minimum followed by a brief plateau before decaying to

zero. Also, neither paper discusses the potential existence (or lack thereof) of the wave

motion predicted by Patterson and Imberger (1980). Thus, it is not clear that wave or

oscillating motions will be generated in the absence of a second wall "driving" the fluid

flow.
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Figure 1.3: Transient response of Nu from Figure 1.4: Transient response of Nu from
Nicolette, et al. (1985). Hall, et al. (1988).

The previous studies focused on transient natural convection in an enclosure with

bounding walls being responsible for "driving" the flow. A number of relevant applications

contain sources within an enclosure which are responsible for driving the natural

convection flow. For example, printed circuit boards with electronic devices generating

heat are responsible for driving the flows in many electronic packaging configurations.

Another example is found in solar thermal storage tanks with immersed coil heat

exchangers. In this case, hot fluid circulating through a heat exchanger within the tank

will drive the natural convection heat transfer process during charge and discharge. These

applications dictate the need for analyzing natural convection in enclosures that contain

sources. One of the simplest transient enclosure problems containing a source is an

insulated rectangular cavity with a heated vertical isothermal flat plate on the interior as

shown in Figure 1.5.

Khalilollahi and Sammakia (1986) considered the problem of a vertical flat plate (of

height H/3) centered in an adiabatic cavity. The overall aspect ratio (HIW) of the cavity

was 0.25 and the Rayleigh number was fixed at Ra =3.35 x 106. The authors noted the

lik T- -

I %0.%o

I ;I,
- 1-4



12

jT -0
an

T

L H

T(O) =T

r w7

Figure 1.5: Adiabatic cavity with a heated vertical plate source.

existence of three temporal regimes. Initially, the behavior is dominated by pure conduction

followed by a brief convective regime which closely agrees with the behavior of a flat

plate in an infinite medium. At later times, the flow field decays as the bulk temperature

in the cavity rises. The authors reported oscillations in the velocity and temperature fields

similar to that predicted by Patterson and Imberger (1980) or Ivey (1984) but the study

leaves several unanswered questions. When does the enclosure have a significant impact

on the heat transfer from the plate or source inside the enclosure compared to a flat plate

in an infinite medium? How is the behavior of the heat transfer altered with vertical and

lateral positioning of the source from the centerline of the enclosure (dependence on source

location)? How do the heat transfer results change with Rayleigh numbers? Can the

transient heat transfer results be correlated?
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Some of these questions were addressed by Charmchi and Sparrow (1982)

considering the geometry of concentric vertical isothermal cylinders at steady state as

shown in Figure 1.6. The cylinders have a unity aspect ratio (height/diameter) with the

inner cylinder diameter (di) size varying between 0.1 and 0.3 times the size of the outer

enclosure diameter (do). The vertical position of the inner cylinder, z , was varied from

bottom to top along the centerline of the outer cylinder. The Rayleigh number (based on

the inner cylinder diameter) was varied from 0 to 10. The governing differential equations

are solved using a primitive variable formulation (SIMPLE). Contrary to what one would

expect, the authors found that the vertical position of the smaller inner cylinder (di = 0.1

do) had little influence on Nu. Similar independence was found for the larger diameter

cylinder (di = 0.3 do). Also, the Nu results were compared with a correlation given by

Kuehn (1976) for a vertical cylinder in a large domain. In the worst case (di = 0.3 d0), the

calculated Nu by Charmchi and Sparrow was 18% less than that given by Kuehn. Thus,

it appears that the inner to outer cylinder diameter ratio should be greater than 0.3 in order

for the bounding outer enclosure to have a significant effect.

In a companion study, Sparrow and Charmchi (1983) constructed an experimental

apparatus to observe the effect of radial eccentricity of the inner cylinder. The results

showed that the eccentricity of the inner cylinder had little influence on the average Nusselt

number; consequently, Nu was correlated as a function of Ra only and the inner cylinder

height and eccentricity was disregarded. Experimental results for 1600 Ra 105 were

compared with the numerical computations of the same geometry. The experimental data,

in terms of an average Nusselt number, were higher than the predicted numerical results
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Figure 1.6: Isometric view and cross-section views of the concentric vertical
isothermal cylinders used by Charmchi and Sparrow (1982); D, = H, di
- hi.

for low Rayleigh number cases (Ra- 1600). At high Rayleigh numbers, the experimentally

determined average Nusselt numbers were lower than the numerically predicted Nusselt

numbers. The maximum reported deviations were within ±3%.

These studies still leave unanswered questions. Will the transient heat transfer be

insensitive to the source location? The size of the inner cylinder was not increased to the

point where a significant effect of the enclosure was influencing the heat transfer results.

How large must the inner cylinder (or other source) be in order for the enclosure to have

a significant influence on heat transfer? Do the results of vertical plate and vertical cylinders

extend to other geometric configurations?

1.2 Research Objectives

In an effort to complete and extend some of the previously reported results of natural

convection from sources in enclosures, two configurations will be considered in this
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investigation. The first configuration is an insulated rectangular enclosure with an

isothermal vertical flat plate source as given in Figure 1.5. The configuration is similar

to that of Khalilollahi and Sammakia (1986) and has applications in cooling of electronic

equipment. The purpose of this portion of the investigation is to address the unanswered

questions from the previous study of Khalilollahi and Sammakia such as: determining

when the enclosure has a significant impact on the heat transfer from the plate or source

inside the enclosure compared to a flat plate in an infinite medium; observing how the heat

transfer is altered with vertical positioning of the source from the centerline of the enclosure

(dependence on source location); influence of Rayleigh number on the transient heat

transfer; and attempting to correlate the transient heat transfer results. Results from the

rectangular enclosure geometry also provide a basis for comparison with the second

configuration.

The second configuration is an insulated cylindrical enclosure with a single loop

coiled tube source as shown in Figure 1.7. This configuration has applications in thermal

storage tanks that contain immersed heat exchangers. To the best of the author's

knowledge, this configuration has not been previously studied numerically.

The specific goals of this research include:

1.) Gain insight into the fundamental physics of transient fluid flow and heat transfer

from sources within an enclosure.

2.) Identify when the bounding enclosure walls have an effect on the heat transfer

from the source. Also, determine the influence of source position on the heat

transfer and fluid flow field.

3.) Identify relevant parameters to correlate the transient heat transfer results (this
may include the use of scaling analysis).

4.) Validate numerical results by physical experiments.
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Figure 1.7: Single coil tube in cylindrical enclosure configuration.

For the rectangular enclosure with the heated vertical flat plate as given in Figure

1.5, the following parameters will be varied, Rayleigh number (based on plate length),

relative vertical plate position (ri = ypIH), and relative plate size (0 = L/H). Varying the

lateral plate position will not be considered because the symmetry assumption would

clearly be invalid thereby greatly increasing the computational effort.
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2 Vertical Flat Plate In A Rectangular Enclosure

The first geometric configuration studied is the vertical flat plate in a rectangular

enclosure. There are several benefits to beginning with this geometry. First, it is one of

the simplest source driven transient natural convection enclosure problems that can be

devised. Second, the body of literature is rich with numerical and experimental results for

a flat plate in an infinite medium to allow comparisons to be made between the finite and

infinite medium. Finally, because this type of configuration arises in various applications

such as cooling of electronic equipment, it is of practical importance.

2.1 Governing Equations for Rectangular Enclosure

The rectangular enclosure contains a vertical flat plate which is infinitely thin and

located in the center of the cavity i.e. at x=W12. Symmetry can be used to reduce the

computational domain by a factor of two. The computational domain for the rectangular

enclosure is shown in Figure 2.1.

Y

H
LTo

F 2a d W / 2 --- ew.
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The governing equations that describe the heat transfer and fluid flow for this

configuration include the conservation of mass (continuity), momentum (Navier-Stokes),

and energy. The equations are derived based on the following assumptions: incompressible

(p f(P)), Newtonian fluid, low speed flow (viscous dissipation neglected), laminar,

isotropic thermal conductivity, Boussinesq approximation, and fluid obeys Joule's law

(enthalpy i = f(T)). In natural convection, the only driving force for fluid flow is due to

density differences caused by temperature differences in the flow field. The driving force

appears as a body force term in the y-momentum equation. An approximation to relate

the body force term (buoyancy force) to temperature is called the Boussinesq

approximation. The use of this approximation dates back to Oberbeck (1879); however,

the approximation is named after Boussinesq (1903). Gray and Giorgini (1976) develop

and investigate the valid regions of the approximation for both liquids and gases. The

essence of the approximation consists of the following: density is assumed constant except

in the momentum body force term, all other properties are assumed constant, and viscous

dissipation is negligible.

It is convenient to non-dimensionalize the governing system of equations with the

variables given in Table 2.1.

x=xIL y =y/L

u=U/U v =v/U

T" = (T - T)I(Tw - T) = P/p U2

t W=tU/L U = [(Tw- To)L

Table 2.1: Rectangular geometry variable non-dimensionalization.
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Based on the above assumptions, the dimensionless governing equations (dropping the *

superscript) and boundary conditions are:

Conservation Of Mass:

au av
ax a(2.1)

x - Momentum:

au au au 3P fPra 2u a2U 1
a+%+"/XVa+ Y x

- NIa X2~ +)Y2J (2.2)

- Momentum:

3v av av P P V
at a ay R L ax J (2.3)

Energy:

(2.4)aT aT T 1 a 2 T a2Tl

at a + U x y =RaPr L_ x ' y

Boundary Conditions:

@x=0
@ x=0
@x=0
@ x= W/2L
@y= 0

@ y-H/L

0 y < (H-L)/2L
(H+L)/2L < y HIL

(H-L)/2L y (H+L)/2L
0 y< HIL

0 < x W/2L
0 x < W/2L

u = 0,v/ax 0
u = 0, vlax =0

U=v=0

u=v=0

u=v=0
u v=0

Initial Conditions:

for all x and y u = v=

aT/dx =0
aTlx =0
T=T= 1
aTlx =0
dT/dy =0
aT/ay =0

T(O) =-o
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A quantity of primary interest in this study is the average Nusselt number (average

dimensionless heat flux) Nu over the heated wall. The average Nusselt number is the

integral of the local heat flux over the length of the vertical plate as given by

q =kylw (2.5)

q =h(Tw"-T°) (2.6)

hy
NU Y =k (2.7)

where h is the heat transfer coefficient. From Equations 2.5-2.7, the local Nusselt number

can be expressed as,

Nuy y T- TJ ,(2.8)

Applying the dimensionless variables given in Table 2.1 (dropping the * superscripts) and

integrating over the length of the surface of interest (vertical plate) yields the average

Nusselt number.

Nu=J' x Iw dy (2.9)

0

The average Nusselt number defined by Equation 2.9 is based on the instantaneous

heat flux (given in Equation 2.5) determined from the initial temperature difference (T-To).

The average Nusselt number is commonly defined based on an instantaneous temperature

difference (Tw,- T); where the mean temperature T is determined by volume (area for
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two-dimensional domains) weighting the temperature in a neighborhood near the plate.

The average Nusselt number based on mean temperature Num is given by the following

expression.

Nu (-To) TW dy (2.10)

0

where T is the mean or bulk temperature in the domain of interest Q.

T = A{TdQ (2.11)

In the context of transient enclosure problems, the definition of average Nusselt

number given by Equation 2.10 is less useful than the definition given by Equation 2.9.

In both cases, the average Nusselt number is dependent on the heat flux (which is a function

of time) at the wall surface but Equation 2.10 requires additional knowledge of the

instantaneous bulk temperature. Such a definition creates an implicit relationship between

the average Nusselt number and the entire temperature field. Because the definition of

Nu based on the initial temperature difference eliminates the additional uncertainty

introduced by the bulk temperature, this definition will be applied throughout the current

investigation.

2.2 Solution Technique

The governing differential equations represent the behavior of the dependent

variables in the region of interest (which is a continuum) over time. An analytical solution

to the strongly coupled system of differential equations provides values of the dependent

variables at any location within the region considered at any point in time. Since an
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analytical solution is not currently possible and approximate analytical solutions are of

unknown accuracy, numerical methods are required to make the system tractable. A

common approach is to use finite difference methods (FDM). Finite difference techniques

are attractive because derivation of difference equations and analysis (error and stability)

is relatively easy. One major disadvantage of the FDM is the difficulty in modelling

domains with arbitrary shaped boundaries. Another method gaining popularity is the finite

element method (FEM). The FEM is superior in its ability to model arbitrary shaped

domains; however, analysis of FEM becomes rather complicated quickly. The flexibility

of the FEM in modelling arbitrary shaped geometries is important when considering

potential enclosure configurations that contain sources such as the immersed coil heat

exchanger. Thus, the FEM will be employed in this investigation.

Once the numerical method is selected, the next step is to decide on a variable

formulation. The literature search indicates a preference toward the stream function -

vorticity (or alternate variable formulations) as compared to primitive variable (i.e. u-v-P)

formulations. The SFV formulation is derived by defining the stream function, Ni, as

u = Oaxj/y and v = --aWl/x. When the definition of stream function is substituted into the

continuity equation, mass conservation will be identically satisfied. Next the two

momentum equations are cross differentiated and subtracted; thereby, eliminating pressure

and producing a single equation which can be further simplified by applying the definition

of vorticity, G- - . The resulting system yields a Poisson equation for stream

function and two parabolic equations for vorticity and energy respectively. An obvious

question at this point is: why use these auxiliary variables? The advantage of a SFV
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formulation is the elimination of pressure and satisfying mass conservation. Determining

the pressure field to satisfy mass conservation (the divergence of the velocity) poses one

of the greatest difficulties with primitive variable formulations.

There are several disadvantages in using alternative variable formulations. First, the

alternate variable formulations tend to obscure the physics of the problem at hand.

Associated with this is the difficulty of determining the correct boundary conditions in the

alternate variables. Third, the alternate variable approach is difficult to extend to three

dimensional computational domains (probably the biggest disadvantage). Thus, it is

advantageous to implement a primitive variable formulation.

As previously mentioned, a key advantage of the FEM is the ability to easily model

arbitrary complex shaped domains. This flexibility makes the method extremely attractive

in modelling enclosures with sources. Since the development of the FEM is rather abstract

and lengthy, only the essential results will be presented. For details of the FEM, the reader

is referred to one of several sources including: Zienkiewicz (1977), Becker, et al. (1981),

Carey and Oden (1986), and Burnett (1988). For brevity, the derivation of the FEM will

be illustrated using the dimensionless energy equation.

Consider the energy equation Equation 2.4 and general boundary conditions applied

to a two-dimensional domain, K2, with boundary, F, as shown in Figure 2.2.
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y
A

Figure 2.2: General computational domain.

Energy Equation:

TT + v 3 2 T a2Tl
---- i I-a=R(x,y,t) (.2

Boundary Conditions:

T= T(x, y,t) on F

(aT XIaT Y q(,y )on Fq
anx +y q(x,y,t)

where R(xy,t) is a residual, a =- 1/RaPr, and the first and second boundary conditions

represent Dirichlet and Neumann boundary conditions respectively. In cases where the

differential equation and geometry permit an exact solution by separation of variables, the

dependent variable is assumed to satisfy a product solution such as T = e(x, y)W(t) to

separate the space and time variables. In a spirit similar to separation of variables, let the

I

4
I
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independent variable, T, in Equation 2.12 be approximated by the following expansion

M
T(xy, t) - X Oe(Xy)Tm(t)

m=1

or in vector notation

T(x, y, t) = OT(x)T(t) (2.13)

where OT is the vector transpose of the spatial interpolation (often referred to as the trial

or basis) function and T is a vector of M nodal point unknown temperatures. The result

is an expression with the space and time variables "separated". The Galerkin weighted

residual method forces the residual in Equation 2.12 to be zero over the domain in a

weighted sense.

fwRd =O (2.14)

where w is a weight function to be specified. Substituting the residual Equation 2.12 along

with Equation 2.13 into the weighted integral Equation 2.14 results in the following:

jw L (Or+u-x(kr)+v-y(T)-(yx ) - )y2( JJ d = 0 (2.15)

The weight function for the Galerkin method is the same as the basis function i.e. w =0.

Thus, the weighted integral in Equation 2.15 becomes

S T  aT 1 a2 T a2oT 1
JO dQ7-+T --+v. 1T dQ T -ju[; + d Q T =0 (2.16)f t I ax Y fa 2a

From the chain rule,
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2T a( a0T a0'0
Oax2 O-X a -ax ax

a2T a( a aoa0T

ay = - a ayay-

Substituting the above expressions into Equation 2.16 and applying the divergence theorem

yields

fCOOT dQaT+ aOT  0T] ( O eT ao 6T1
I { u-dQ T+ a- +-1y dQ T= Oq dF (2.17)

t x ayj JLax a j a

The last term in Equation 2.17 has been simplified from the Neumann boundary condition

given above. Of course, the velocities in Equation 2.17 must also be discretized with

another basis function. Equation 2.17 is known as the "weak form" of the energy equation.

The nomenclature describes the relaxed or weakened conditions that the original

differential equation must now satisfy. In other words, the continuous problem with an

infinite number of degrees of freedom has been reduced to a discrete problem with a finite

number of degrees of freedom which consists of a system of ordinary differential equations

(for steady state problems, it would be just a system of nonlinear algebraic equations). For

the current investigation the integrals in Equation 2.17 are carried out using Gaussian

quadrature.

Upon applying the finite element approximations (Galerkin optimizing criteria, basis

function selection, etc.), the system of partial differential equations (2.1-2.4) are

transformed into a discrete set of ordinary differential equations as given by

-dV --M- + K(V)V=-F (2.18)
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where M is a combined mass and capacitance matrix, K is a combined momentum and

thermal diffusion matrix, V is a vector of unknown nodal velocities and temperatures, and

F is the vector of forcing functions. Equation 2.18 represents a system of initial value

problems for each of the nodal unknowns.

A second order implicit trapezoid rule multi-step scheme is used to integrate this

system of ordinary differential equations. The first step (a predictor) is based on the

Adams-Bashforth method with variable time increment as given by

k Vt2T-t V- (2.19)
2I 6 tk. ' +tk -I

where Vk 1 is the predicted vector of unknowns at time k+ 1, Vk is the time rate change of

the unknowns at time k, and ?tk is the time increment at step k. The second step (a corrector)

is the trapezoid rule with a variable time increment. When applied to Equation 2.18, the

trapezoid rule yields

V+l-Vk 1 1
M t + K(Vk)V +K(Vk)Vk} =-{Fk+Fk} (2.20)

The acceleration vectors V in Equation 2.19 are computed recursively from the definition

of the trapezoid rule by
2

Vk+1l= -{Vk+l- Vk}- Vk (2.21)

where Vk is found from the previous use of Equation 2.21.

The above two step time integration scheme is able to accommodate a variable step

size time increment. If a fixed time increment is specified, further simplifications are

possible. Although a fixed time increment would allow the use of Richardson extrapolation
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at each time step, the exorbitant computational resources required to carry out the time

integration for the system of equations considered here precludes this approach. The

adaptive scheme allows the time step to increase or decrease depending on the magnitude

of the local time truncation error. The local time truncation error for the Adams-Bashforth

method is

V1-Vt2+5tk -1  34
11 tk-,j tkVk+I+O(6tk) (2.22)vk +I- v(t+,) =-- 2+ 38t

Similarly, the local time truncation error for the trapezoid rule is given by

Ek+, -Vk+, - V(tk + ) =- 2 }k,+0(t)(2.23)
12

Combining Equations 2.22 and 2.23 yields

Vk+I - V=+ O 4) (2.24)
Ek+I - 3 1 +- -tk- 1 + 0 (8t4) (.4

The result in Equation 2.24 can be used to estimate the size of the next time step by requiring

the relative norm of the error for the next step to be less than a specified tolerance

(il Ek +211 <-y). From Equation 2.24, the following relationship for time truncation error

results.

Ek+ 2 _ (tk+ 1 3 Vk+ 2  (2.25)

Ek+l I tk ) Vk+l

By taking norms and using the fact Vk+ 2 = Vk+l +O(8t) as well as 1i Ek+ 211 -y, Equation

2.25 results in an expression to determine the relative size of the next time increment.

8tk+l ( 1/ 3 (2.26)

8tk Ek+I 2.6
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where higher order terms have been omitted. The norm I Ek. J+ (j = u, v, T) is defined

based on the truncation error as given by Equation 2.24.

( 3 1 (2.27)

Since the order of magnitude for each variable may differ considerably, the error is

approximated by defining a relative norm.

Nu i 2 v. )2 T(ET.) 1/

IEk+II1 FN(+E'+l. 2  Ek+l T2I+ E[ l 2}I2
Nu+N+NT=l Iv+ IT+I (2.28)

where N., N., NT are the respective number of free u-velocity, v-velocity, and temperature

components.

By allowing a variable step size, time integration can be accomplished very

efficiently. The time integration scheme results in a system of nonlinear algebraic equations

to be solved at each time step. The system of nonlinear equations is solved by a

quasi-Newton method.

Thus far, no mention has been made of "elements". In practice, the computational

domain is divided into a number of simply shaped elements i.e. triangles, quadrilaterals,

bricks, wedges, etc. These elements are defined by the basis functions as given in Equation

2.13. The network of individual elements are connected yielding a larger system of

equations and the solution of the resulting system of equations provide functions which

approximate values of the dependent variables over each element. The elements selected

for this work are nine node quadrilaterals with a linear discontinuous pressure

approximation (details of the pressure approximations will be given following discussion

of element selection). The basis or trial functions are identical for both velocity and
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temperature. To simplify numerical quadrature, the isoparametric approach is used. In

this case, the integrations are performed on a "master" element defined over -1 < r,s <_ 1

and the results are then mapped back to the computational domain as shown in Figure 2.3.

(0,1)

(-1,1)

(-1,0)

UL

y
4

3(1,1)

(1,0)

1 5 2
(-1,-i) (0,-i) (1,-i)

Master Element Actual Element

Figure 2.3: Master element and actual element in computational domain.

The basis or trial functions for the nine node quadrilateral are

94

(0,0)

w - I

i opop
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0=

-rs(1 -r)(1-s)

-lrs(1 +r)(1 -s)
4

-rs(1 +r)(I +s)

-- rs(1 -r) (1 +s)
4
1-s(1 -s)(1 -r 2 )
2

-r(1 +r)(1 -s')

-s(1 +s)(1 -r 2)

-r(l -r)(1 -s 2 )
2

(1 -r 2)(1 -S2)

(2.29)

The basis functions in Equation 2.29 provide a quadratic approximation for both velocity

and temperature. They also have the property that allow the functions to be unity at the

current node and zero at all other nodes. For example, the first function in Equation 2.29

is unity at node 1 and zero at all other nodes. In this sense, the functions are considered

interpolatory. The map between the master element and the physical element is given by

x =Tx; Y - 0Ty (2.30)

where eT(r, s) is the vector transpose of basis functions as given in Equation 2.29.

As mentioned previously, pressure and its relation to satisfying the divergence of

velocity presents unique difficulties in solving the Navier-Stokes equations. The penalty

function approach is an attempt to alleviate problems caused by the presence of the pressure

terms. The penalty method relaxes the strict continuity requirement by letting

a3u avDu .. P (2.31)ax +ay
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where e is a penalty parameter. Typically, the value of the penalty parameter ranges from

105 to 10-9.A value of = =10 used for the penalty parameter in this investigation. Solving

Equation 2.31 for pressure and substituting the result into the Navier-Stokes equations

eliminates pressure. The pressure can be obtained subsequently by post-processing

P = -ls[auiax+ Jvly].

The development of a finite element code was considered for this project; however,

after considering all of the implementation details involved to achieve the required

flexibility and efficiency, the development was abandoned. A search for commercial finite

element codes led to FIDAP. FIDAP is a general purpose finite element computer program

that has the ability to model a variety of incompressible fluid flow problems. FIDAP can

simulate steady and transient flows with heat and/or mass transport in two-dimensional,

axis symmetric, and three-dimensional geometries. It offers several choices of elements,

system solution techniques, and time integration schemes such as those previously

discussed.

2.3 Results

This section presents the results of computations performed on the rectangular cavity

with a heated vertical flat plate shown in Figure 2.1. The relative plate size, 4, and Rayleigh

number are varied to observe the effects of heat transfer from the plate. In general, the

heat transfer results are presented in terms of the average Nusselt number, Nu, as calculated

from Equation 2.9.

A typical mesh used to compute the solution for this configuration is shown below

in Figure 2.4.
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Figure 2.4: Typical mesh for square cavity with a heated vertical flat plate.

To arrive at the above mesh, considerable effort has been expended to assure that a solution

independent of the mesh size is achieved by applying spatial and temporal refinement.

Several indicators to track the solution convergence during mesh refinement were used

including; temporal behavior of the average Nusselt number and the peak values along

with the spatial location of each velocity component and stream function over all time.

The mesh was refined spatially and temporally until there was little or no change in the

above quantities (a technique is used in the development of a proposed transient benchmark

problem by Reindl, et al. 1991).

One of the initial objectives was to determine the conditions under which the bounding

walls have a significant impact on the heat transfer from the enclosure sources. To

accomplish this objective, several relative plate sizes (0 = LIH) were investigated while

observing the transient response of the average Nusselt number.

For a range of relative plate sizes from 0.2 5 < 1 and Ra = 106, the transient response

of Nu is shown in Figure 2.5. In each case, the transient Nu is characterized by three

regimes. Initially, the flow field is isothermal and quiescent as the plate undergoes the

step change in temperature. The mode of heat transfer is by pure conduction since no fluid
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Figure 2.5: Transient Nu for a range of relative plate sizes at Ra = 106 and rl = 0.5.

motion exists initially. The conduction heat transfer from the plate starts to establish a

thermal boundary layer which grows with time. The average Nusselt number reaches a

local minimum and subsequently begins to increase before reaching a value that is

maintained during a quasi-steady period. The local minimum in Nu corresponds to a

maximum in the thermal boundary layer thickness which quickly decreases as significant

fluid motion begins. As fluid motion develops, the Nu increases to its quasi-steady value.

During this quasi-steady period, thermal and momentum boundary layers are fully
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established and the plate appears to behave as if it were immersed in an infinite medium.

The solid line is an approximation to the heat transfer correlation for a vertical flat plate

in an infinite medium (Churchill and Chu, 1975). Agreement with the correlation for a

flat plate in an infinite medium confirms this behavior (for large enclosures). After some

period of time, the heat input from the plate causes the bulk temperature in the cavity to

rise significantly. The increase in bulk cavity temperature reduces the driving force

(temperature difference across the plate) for heat transfer; consequently, the average

Nusselt number begins to decay. The fluid velocities also begin to diminish.

Thus, there are three distinct regimes: conduction, quasi-steady, and a decay period.

Given a sufficient period of time, the bounding enclosure will always have an effect on

the transient heat transfer and fluid flow. The smaller the relative plate size, the longer

the quasi-steady period can be maintained but there will be some instant in time in which

the cavity temperature begins to rise and heat transfer decays. There is also a maximum

relative plate size such that the quasi-steady period approaches the solution for a flat plate

in an infinite medium. Based on observing the heat transfer behavior in Figure 2.5, the

enclosure must be at least 1.5 times larger than the plate (0 = 2/3) in order for the heat

transfer to approach the infinite medium case (based on a unit aspect ratio enclosure).

Enclosures that are near this threshold size have very short quasi-steady periods.

The heat transfer results in Figure 2.5 represent a dimensionless heat flux or Nusselt

number based on the initial temperature difference (Tw-To). Figure 2.6 illustrates the

difference between the average Nusselt numbers based on the initial temperature difference

and the local or (T,,- T) temperature difference. The average Nusselt number based on

mean temperature Num closely follows the average Nusselt number based on initial

temperature Nu during the conduction dominated regime. Over the quasi-steady regime,
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Figure 2.6: Transient Nu and Nu. for Ra = 106 and a relative plate size of 4 = 0.5 and
relative plate position r" = 1/2.

Nu., rises slightly because the mean temperature in the cavity is increasing while the heat

input into the cavity remains relatively constant. The decay periods are quite different.

The average Nusselt number Nu. does not go to zero because the heat flux and (T - T)

temperature difference are both simultaneously approaching zero and their ratio

NumocNuI(T - T) approaches a constant value.
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Figure 2.7 shows a typical response of the average temperature in the cavity as a

function of time. In comparing Figures 2.6 and 2.7, it is clear that the cavity bulk

temperature only begins to rise significantly at the end of the quasi-steady period and

continues to increase during the decay period.
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Figure 2.7: Mean cavity temperature for Ra = 106 and a relative plate size of 4 = 0.5
and relative plate position i = 1/2.

The limiting case of = = 1 is nearly identical to the configuration studied by Nicolette

and Yang (1985) and Hall, et al. (1988). Comparing Figure 2.5 with Figures 1.3 and 1.4,

the qualitative behavior of Nu in the current case shows trends similar to that of Nicolette
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and Yang. The agreement with Hall, et al. is poor. Two factors cast the accuracy of the

Hall, et al. solution into doubt. First, a relatively coarse (41x41) and uniform grid was

used in the cavity. Second, no indication is given to judge the time accuracy of the solution.

The results in Figure 2.5 showed the effect of various relative plate sizes on the

transient heat transfer from the plate with Ra = 106. Figure 2.8 illustrates the transient

behavior of Nu for four different values of Ra for a fixed relative plate size 4 = 1/2 and

plate position i" = 1/2 while letting the Rayleigh number vary from 10 to 106.
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Figure 2.8: Transient Nu (including pure conduction solutions) over a range of
Rayleigh numbers for a relative plate size of 0 = 0.5 and relative plate position fl = 1/2.
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The respective transient pure conduction solutions are also shown by the solid lines.

Agreement witl the viscous flow solution confirms the earlier conjecture that the initial

heat transfer is by pure conduction. At low Rayleigh numbers (Ra 103), the heat transfer

process closely follows the pure conduction case which indicates that the low Rayleigh

number cases are very weakly convective throughout the entire process. The respective

solutions at higher Rayleigh numbers show the three regimes previously discussed.

Figure 2.9 includes the same computed solutions as in Figure 2.8 as well as the steady

state infinite medium solutions. Reasonable agreement of the quasi-steady regimes in each

case is obtained with the limit for an infinite medium.

The temporal behavior of the heat transfer during the conduction and quasi-steady

regimes is well characterized by the solid lines shown in Figures 2.6-2.7. Scale analysis

can be used to predict the time duration of the conduction, quasi-steady, and complete

transient periods. Scale analysis is a technique which considers the governing equations

only in an order-of-magnitude sense. Patterson and Imberger (1980) used scale analysis

extensively in their study of the differentially heated cavity. Interestingly, the scale

estimates for the geometry considered here are similar to those which arise for the

differentially heated cavity. Bejan (1984) maintains that scale analysis yields more

information per intellectual effort than any other type of analysis. Bejan also offers a

concise summary of rules applicable for scale analysis.

Scale analysis uses the governing equations of fluid flow and heat transfer to produce

order-of-magnitude estimates of the quantities of interest. The technique typically requires

the use of several of the governing equations in a series of intermediate results to arrive

at the final quantity of interest. The following sequence of estimates attempts to predict

the duration of the conduction dominated regime.
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Figure 2.9: Transient Nu (including infinite medium solutions) over the range of

Rayleigh numbers for a relative plate size of 0 = 0.5 and relative plate position q = 1/2.

Initially, the velocities in the neighborhood of the heated plate are zero and the only

possible mode of heat transfer into the cavity is by conduction. As heat is conducted into

the cavity, a thermal boundary layer of thickness 6 T forms adjacent to the plate. Considering

the individual terms in Equation 2.4 in an order of magnitude sense gives

AT AT AT AT AT
U--V L- -- I--- O(2.32)At' 8T L 82T L 2 (.2
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where - implies that the terms on the left side of the equation are of the same order of

magnitude as the terms on the right side. The u and v velocities are small and the thermal

boundary layer thickness is much smaller than the plate length (T << L). The remaining

terms balance to give an estimate of the thermal boundary layer thickness which is identical

to Patterson and Imberger (1984).

5T ( A t)1/2(2.33)

As energy is conducted into the thermal boundary layer, buoyancy forces will accelerate

the fluid over the entire thickness 8T. Considering the y-momentum equation

v v v IP v v
-t u-, v- -- v-, v-, gfAT (2.34)At' L pL 2 ' ' L 2 '

For Pr>l, the viscous force term vv/6 will dominate over the unsteady inertia force term

v/At and balance the buoyancy term g f3AT to arrive at an estimate for the developing

v-velocity.

gAT At (2.35)v - Pr

Considering the energy flows within the thermal boundary layer, a balance results which

requires that the energy conducted away from the plate equals the energy convected from

the boundary layer yielding the following

AT ATv ---- (2.36)

Combining the previous expressions for the v-velocity and thermal boundary layer

thickness 6
T results in an estimate for the duration of the conduction dominated period.
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Atc  - (2.37)
ocRa12

The above estimate is identical to that obtained by Patterson and Imberger (1980) with the

exception that L is the plate length rather than the overall enclosure height. The above

estimate is independent of the enclosure size relative to the plate size. The only restrictions

on the above estimate are Pr> 1 and T<< L. The conduction limit duration estimates given

by Equation 2.37 superimposed on the transient Nusselt number results are shown below

in Figure 2.10. The scale analysis estimates of the conduction limits are in good agreement

with the observed time duration of conduction dominated behavior.

The estimate of the duration of the quasi-steady period estimate is considerably more

difficult to obtain due to the complex transient behavior of the fluid flow and energy

transfers throughout the cavity during the transition to and duration of the quasi-steady

period. At the end of the conduction regime, Ar,- L2IcxRa"1/2 and the v-velocity becomes
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Figure 2.10: Scale analysis estimates for the conduction dominated regime with = 0.5
and il = 0.5.

g PAT
v -AtPr

g PAT L2

Pr oRa 1/2

Ra 1/2 c

L (2.38)

and the thermal boundary layer thickness is

6T ' LRa 1/ (2.39)

Assuming the volume flow rate is constant through the thermal boundary layer during the

quasi-steady period, the volume flow rate Q is given by
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0 - V 6 T  -- (cRa 1/4  ( .0v6,. 1/4(2.40)

The end of the quasi-steady regime is characterized by significant heating of the fluid in

the enclosure causing the driving force for heat transfer (temperature difference across the

plate) to diminish. Since the enclosure fluid is predominantly stratified throughout the

transient, the driving force will diminish when the volume of fluid above the plate is heated.

If the volume of fluid above the plate is circulated through the thermal boundary layer,

the enclosure will experience a significant temperature rise and the driving force for heat

transfer will diminish indicating the ending of the quasi-steady regime. The estimated

time for fluid to move from the bottom of the vertical plate to the top is given by

L L 8Tr

t ~ -- - 8(2.41)v cta 1/

The quantity L68 can be viewed as the volume of fluid heated through one pass by the

plate. A volume of fluid equivalent to that above the plate will pass through the thermal

boundary layer prior to the end of the quasi-steady period. Thus, the estimate for the

quasi-steady period duration is given by

Atqs '-- ~L1/4 [1 - (i"1 + 0/2)] (2.42)

where L is the plate length, rl is the relative plate position, and 0 is the relative plate size.

(The quasi-steady estimate Equation 2.42 breaks down for the special case when 0 = 0.5

and 11 = 0.75 since the plate would be positioned at the cavity top.) The quasi-steady period

duration estimates given by Equation 2.42 superimposed on the transient Nusselt number

results are shown below in Figure 2.11. The estimates agree well with the observed end
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of the quasi-steady period.
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Figure 2.11: Scale analysis estimates for the quasi-steady regime with 4 = 0.5 and
= -0.5.

The characteristics of the transient heat transfer process for the conduction and

quasi-steady regimes have been determined along with time estimates predicting the

duration of the regimes. Now the dominant characteristics of the decay period will be

identified. The analysis of the decay period begins by considering the heat transfer from

the plate as given by Equation 2.43.
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ST (T, - T) Nuk
q -k-x k - (T-TO) (2.43)

where T is the bulk cavity temperature found from Equation 2.10.

Because the thermal and viscous boundary layers will grow as the bulk temperature

in the cavity rises, 8r will not be constant during the decay period. The expression for the

thermal boundary layer thickness 8T-~ LIRa" 4 can be modified to account for this increase

in thickness. Thus, defining a modified thermal boundary layer thickness expression as

follows

L L
8T -(2.44)

T a 1/
14 [g 1L3(Tw -T)IvcL] 1/4

where Ra is the Rayleigh number based on the difference (Tw - T) similar to that used by

Hall, et al. (1988). The Rayleigh number Ra based on the difference between the plate

and bulk cavity temperatures will become smaller as the bulk temperature increases;

consequently, the thermal boundary layer thickness increases. Therefore, the energy

balance becomes

k(Tw - T)Ra1 4  Nu k
L L ___( To) (2.45)

L L

and the resulting expression for the average Nusselt number

- (Tw-T) -1/41,5/41/4
Nu Ra 4 = (1-) 4 = (I - T) Ra (2.46)(Tw -To )
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where T* = (- To)l(Tw - To) which is proportional to the fraction (J) of the cavity heated

to temperature T,. The above expression for the average Nusselt number is not useful in

its current form because the bulk cavity temperature is not known a priori. The overall

energy balance on the enclosure is

(Tw -T) dT _ Cdf
kA -c- mc(Tw- T)(2.47)

8T dtT dt

Substituting in the above expression for thermal boundary layer thickness and rearranging

yields,

kARa114  f5/4 df (2.48)mc- (1 - - 2.8
incL dt

where (1 -f) = (Tw - T)/
6 T.

Solving the ordinary differential equation with the initial condition f-0 @ t =0 results in

an expression forf.

f[I(+-T) 1+ 14 2H- - (2.49)
2HWJ

When combined with the above expression for the average Nusselt number gives

-- n 1R /4t -

1 + 14 Ra1/4  (2.50)

N -2HW

Equation 2.50 is the resulting scale estimate of the heat transfer during the decay period.

The estimate given by Equation 2.50 differs from that obtained by Hall, et al. (1988) for

the differentially heated cavity.
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The heat transfer during the decay period is assumed to be proportional to Equation

2.50.

Nu=C 1 1+ a/lRa 1/4 (2.51)

2HW

The constant C, in Equation 2.51 is determined by least squares from the decay period

results for each Rayleigh number. The results are shown in Table 2.2.

Ra C r2 (%) I

101 0.7634 96.5
10 4  0.8207 98.8

101 0.7975 99.0
106 0.8035 99.1

Composite 0.7936 99.5

Table 2.2: Constant for Equation 2.51 for 0 = 0.5 and r = 0.5.

where r2 represents the percent of variation in the response (Nu) explained by the

dimensionless predictor group. Table 2.2 shows that the worst case is at Ra=103. As

mentioned previously, this case is largely conduction dominated throughout the entire

transient. Excellent agreement is obtained at the higher Rayleigh numbers. A composite

slope is obtained by fitting the results for all Rayleigh numbers. Figure 2.12 shows the

resulting fit of the decay regime based on Equation 2.51 (and composite constant value of

CI) as well as the conduction and quasi-steady estimates compared to the actual transient

computations. The agreement between the actual and predicted heat transfer over the

decay period is excellent. Overall, the actual transient heat transfer process is characterized

very well by the piecewise approximation over each regime.
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Figure 2.12: Piecewise approximation and the actual transient heat transfer for 103 < Ra
< 106 for 0= 0.5 and rj =0.5; C1=0.7936.

To complete the analysis of this geometric configuration, flow field and temperature

field results are presented. A common feature in the velocity flow field is a clockwise

rotating vortex. The location of the vortex hub depends on the magnitude of the Rayleigh

number and the instant in time during the transient. The temperature field is characterized

by a heated plume which rises above the plate eventually penetrating across the top and

down to the bottom of the enclosure. A relatively high degree of thermal stratification is

d l dl%
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maintained throughout the transient. Field results for each order of Rayleigh number will

be given in terms of stream function 2 and temperature contours at two times during the

transient. The first sequence of plots considers a period in the transient (t=5.5) where

peak velocities are occurring. Figure 2.13 shows the stream function results for four

different Rayleigh numbers.

In each case, there is a single clockwise rotating vortex. At low Rayleigh numbers,

the hub of the vortex is in the center of the cavity. As the Rayleigh number increases, the

strength or circulation of the vortex increases and its center moves closer to the boundary

layer exiting from the heated plate. In general, a boundary layer of upward moving fluid

is established near the heated plate (supply side). The fluid continues to accelerate above

the plate and peak velocities are typically reached at a point approximately midway between

the plate and enclosure top. As the fluid moves across the top, a horizontal boundary layer

is established. The fluid quickly loses its momentum and thermal energy to the relatively

cooler surrounding fluid; subsequently, the fluid falls (return side) and eventually becomes

entrained in the supply side boundary layer adjacent to the heated plate.

Figure 2.14 shows the corresponding temperature results at t*=5.5. The isotherms

for low Rayleigh numbers (Ra 10) show minimal distortion validating the previous

assertion that the heat transfer is conduction dominated throughout the entire transient.

As the Rayleigh number increases, the thermal plume rising above the plate becomes more

distinct and distorted due to the stronger circulation of the vortex.

2 The stream function wi p is defined by u htju Iy, v = --rhmffx. This definition
generates a contour which is everywhere tangent to the local velocity vector. The
change in stream function is an exact differential given by AV = J(V, n )df where

V is the velocity vector and F is a general path of integration.
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(a) (b)

(c) (d)

Figure 2.13: Stream function contours at (t*=5.5): (a) Ra= 103, t=4.22 sec;
XVrni = -0.0342,A I = 0.0036,4fm, = -0.0018 i.e. -0.0342(0.0036)-0.0018;
(b) Ra=10 4, t=6.20 sec, -0.0665(0.007)-0.0035; (c) Ra=10 5, t=9.09 sec,
-0.0684(0.0072)-0.0036; (d)Ra= 106 t=-13.33 sec,-0.0532(0.0056)-0.0028.

The sequence of plots in Figures 2.15 and 2.16 show stream function and isotherms

at a point in time which corresponds to the end of the quasi-steady period (as predicted by

Equation 2.51). (Note, results for Ra= 10' are omitted since they do not differ significantly

from those shown in Figures 2.13 and 2.14.) Figure 2.15 shows the stream function results

at the end of the respective quasi-steady regimes.
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(a)

Figure 2.14:

(b)

(c) - (d)

Temperature contours at (t(=5.5): (a) Ra=10 3, t=4.22 sec; T = 0.1,
AT=O.1,Tmax = 1.0 i.e. 0.1(0.1)1.0; (b) Ra=104, t=6.20 sec,O0.1(0.1)1.0; (c)
Ra=10 5, t=-9.09 sec, 0.1(0.1)1.0; (d) Ra=106 t=13.33 sec, 0.1(0.1)1.0.

By the end of the quasi-steady period, the magnitude of the velocities in the cavity are

beginning to diminish. At low Rayleigh numbers (Ra<104), a single re-circulation zone

is maintained in the central portion of the enclosure. At higher Rayleigh numbers (Ra>104),

the center of the re-circulating vortex has become elongated and streamlines opposite the

plate have buckled. The fluid moving across the enclosure top in the horizontal boundary

layer maintains more of its momentum and thermal character since the surrounding fluid

i Ii
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' )I ]

(a) (b) (c)

Figure 2.15: Stream function contours at the end of quasi-steady regime: (a) Ra=i04,
t=10.64 sec; W'min - -0.057, ANI = 0.006, Ngmx = -0.003 i.e.

-0.0570.006)-0.003; (b) Ra= 105, t=27.77 sec, -0.0314(0.0033)-0.0017; (c)
Ra= 10 t=72.47 sec, -0.020(0.0021)-0.00105.

is much warmer at this time. When the fluid reaches the right vertical wall, it is reflected

back toward the cavity center. The depth of this return penetrating layer of fluid is

determined by the strength of the re-circulation zone adjacent to the heated plate relative

to the strength of the penetrating layer. For the Ra=105 case, the return side fluid in the

re-circulating zone adjacent to the plate entrains a significant amount of the weaker

penetrating layer. In the Ra= 106 case, the return side fluid in the re-circulating zone adjacent

to the plate is not able to completely entrain the fluid flowing from the penetrating layer.

Thus, a portion of this penetrating layer is reflected back before it loses its momentum and

thermal energy to the relatively cooler fluid in the lower portion of the enclosure. It is

subsequently entrained into the supply side boundary layer at the base of the plate.

Figure 2.16 shows the corresponding temperature results at the end of the quasi-steady

regime. The isotherms at the end of the quasi-steady period indicate that the bulk

temperature in the cavity is beginning to increase significantly. The local temperature

difference across the plate is beginning to decrease from the top down. The reduction in
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driving force coincides with the start of heat transfer to decay from the steady infinite

medium solution. A relatively high degree of thermal stratification in the enclosure is

maintained.

\u)

(a) (b) (c)

Figure 2.16: Temperature contours at the end of quasi-steady regime: (a) Ra=104,

t=10.64 sec; Tmin--0.1, AT=0.1, Tm=1.0 i.e. 0.1(0.1)1.0; (b) Ra=10 5,
t=27.77 sec, 0.1(0.1)1.0; (c) Ra=l0%'t=72.47 sec, 0.1(0.1)1.0.

The results presented for the two periods considered were intended to show behavior

during times when the velocity field is a maximum and when the temperature field is

changing significantly. Although the geometry and magnitude of the Rayleigh number is

different in this study, the results presented here show qualitative agreement with those of

Khalilollahi and Sammakia.

The results thus far have focused on a relative plate position of 11 =0.5. It is also of

interest to observe the effect of altering the vertical plate position. The vertical plate

position was moved to a lower and higher relative position (i = 0.25,0.75). The behavior

of the heat transfer/fluid flow process during the initial transient is identical to the centered

plate case. The pure conduction limit scale estimate given by Equation 2.37 is valid

regardless of the vertical plate position. The effects of the vertical plate position are not

apparent until the quasi-steady regime is well underway. When the plate is positioned

I
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high in the cavity (q = 0.75), the duration of the quasi-steady regime decreases and when

the plate is low in the cavity (1 =0.75) the duration of the quasi-steady regime increases

as illustrated in Figure 2.17.
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Figure 2.17: Effect of the vertical plate position on the Average Nusselt number for
Ra= 106 and 0 = 0.5.
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Similar to the centered plate case, the heat transfer characteristics of the decay period

are correlated to be of the form given in Equation 2.51. The constant for Equation 2.51

determined by least squares over the range of Rayleigh numbers 10 4 <- Ra 106 is given

in Table 2.3 for each vertical plate position.

n . C1  _r__

0.25 0.9690 98.8

0.50 0.7936 99.5

0.75 0.6396 98.3

Table 2.3: Average constants for Equation 2.51 for 4 = 0.5 and 10 4  Ra < 106.

It is clear from Figure 2.17 and the constants given in Table 2.3 that the heat transfer during

the decay period depends on the vertical plate position (of course the starting time of the

decay period also depends on the plate position). There is a strong correlation between

the constants obtained for each relative plate position and the plate position but the gross

nature of scale analysis does not allow this effect to be predicted a priori.
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By observing the magnitude of the constants in Table 2.3, it is clear that the heat

transfer for the upper plate position is smaller than that of the mid and lower plate positions

due to the flow impedance caused by the cavity top on the exiting boundary layer from

the plate. The influence of the cavity top becomes less important as the plate position

moves lower in the cavity; consequently, the magnitude of the heat transfer increases. This

is shown by considering the peak velocities in the direction parallel to the plate. Table 2.4

gives the temporal maximum values of the v-velocity and the time in which they occur for

Ra=10
6.

t V

0.25 5.91 0.694

0.50 5.03 0.537

0.75 4.51 0.308

Table 2.4: Maximum v-velocities for Ra= 106 and the three vertical plate positions.

When the plate is situated at the base of the cavity (r =0.25), higher velocities can

be achieved and maintained due to the longer vertical distance for the flow to accelerate,

consequently; the heat transfer is higher than that for the upper plate positions. Also when

the plate is at the base of the cavity, there is little interruption or "choking" of the flow due

to the presence of the cavity base because the majority of fluid entrained by the plate

boundary layer originates from the "side" of the plate and not below the plate. The inflow

of fluid to the boundary layer from the side is illustrated by Figure 2.18.

The fluid near the plate accelerates upward due to the energy input from the heated

plate. After the fluid exits from the heated plate, thermal energy is no longer added to the

fluid stream; however, the velocity reaches a peak above the plate due to a minimal loss
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Figure 2.18: Velocity vectors at t*=5.0 for 4 = 0.50, ril =0.25, and Ra= 106.

of thermal energy and the lack of significant viscous shear caused by the absence of the

solid plate surface. The fluid begins to decelerate and begin to move right due to the

presence of the enclosure top. As the fluid moves along the enclosure top, it quickly looses

momentum and thermal energy to the cooler stagnant fluid in the far right side of the cavity.

As the fluid stream cools, it begins to descend and a portion of the descending fluid stream

becomes entrained by the vertical boundary layer established by the heated plate. The side

entrainment results in the formation of a clockwise vortex identical to that shown in Figures

2.13 and 2.15.

z z

1 4 1
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Figure 2.19 shows the resulting velocity vector field at t*=5.0. The flow structure is

similar to that shown in Figure 2.18. In this case, the fluid is not free to accelerate along

the complete length of the plate. A clockwise rotating vortex is maintained adjacent to

the upper portion of the plate.

Y

Figure 2.19: Velocity vectors at t=5.0 for -0.50, ril = 0.75, and Ra= 106.

Sources positioned low in the cavity result in higher velocities in the neighborhood

of the plate and higher heat transfer rates. When the base of the plate is in contact with

the cavity bottom, there is no significant degradation of the boundary layer flow because

the majority of the fluid entering the boundary layer is entrained from the side of the plate

and not the bottom.

............
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2.4 Conclusions

The transient natural convection heat transfer/fluid flow characteristics from an

isothermal vertical flat plate in an adiabatic square enclosure have been considered. The

strongly coupled system of governing partial differential equations have been solved by

a finite element method. The transient heat transfer response can be characterized by three

distinct regimes: pure conduction, quasi-steady, and decay. The complete transient can

be characterized by three piecewise curves representing a pure conduction solution, infinite

medium solution, and a correlation for the decaying period. Scale analysis is used to

develop order-of-magnitude estimates for the time duration of each regime. In addition,

scale analysis is used to identify the relevant parameters to correlate the decay period. For

low Rayleigh numbers (Ra 10) the heat transfer process is conduction dominated

throughout the complete transient.

The relative size of the enclosure was varied to observe the effects of the bounding

walls on the heat transfer from the vertical flat plate source. It is clear that the bounding

walls will eventually influence the heat transfer process. Large enclosures are able to

maintain the quasi-steady period for longer periods of time but eventually the heat transfer

process decays as the fluid in the enclosure is significantly heated. The enclosure must

be at least 1.5 times the size of the plate in order for the heat transfer to approach the infinite

medium case (enclosures of this size order have very short quasi-steady periods).

The relative vertical position of the plate in the cavity has a definite effect on the

transient heat transfer characteristics from the plate. When the plate is high in the cavity,

the rate of heat transfer from the plate is reduced due to lower flow rates through the
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boundary layer caused by the cavity top impeding the outlet of the plate boundary layer.

Also, the cavity is stratified, therefore; a higher positioned plate will "see" a reduction in

the driving force for heat transfer.
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3 Coiled Tube In a Cylindrical Enclosure

A crucial element in an active thermal solar energy system is storage. Since the loads

on a system do not coincide with the resource availability, a means to store the energy for

later use is essential. Many techniques and configurations have been devised to store

thermal energy but detailed analysis of the techniques are limited. Two common sensible

storage techniques are direct and indirect contact storage tanks. In a direct contact system,

the storage tank is charged and discharged by hot and cold fluid streams flowing directly

in and out of the storage volume. An advantage of the direct contact scheme is that no

heat exchanger is required to charge or discharge energy from the storage tank. In contrast

to direct contact storage schemes, indirect storage requires the use of heat exchangers.

Often times indirect storage designs utilize heat exchangers immersed in the storage volume

to charge and discharge energy from the tank.

The vast majority of research activity on thermal storage in the literature have focused

on analyzing direct contact thermal storage tanks (Lavan and Thompson 1977, Sliwinski

1978, Cabelli 1977, Young and Baughn 1981, Chan, et al. 1983, Guo 1985, and Lightstone,

et al. 1989) while the studies for indirect storage tanks are sparse (Feiereisen 1983, and

Farrington 1986). (For a summary of thermal storage research see Radosevich and Wyman

1983.) The primary reason for this imbalance in research efforts lies in the fact that direct

contact storage strategies are usually more efficient; however, some system configurations

dictate the need for indirect contact storage. For example, if the collector loop fluid is not

compatible with the store fluid, a heat exchanger is required to physically separate the two

mediums.
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Feiereisen, et al. (1983) experimentally studied four immersed heat exchanger coil

configurations. The storage tank performance was observed while varying heat exchanger

location, orientation, and flow rates. Correlations of heat exchanger performance, in the

form of Nusselt number as a function of Rayleigh number, were presented. The Nusselt

and Rayleigh numbers were defined based on a log-mean temperature difference between

the heat exchanger and tank temperatures. Since this definition is not possible in the current

investigation, the current results can not be compared with Feiereisen, et al.

Farrington, et al. (1986) built on the work of Feiereisen by performing experiments

to determine overall loss coefficients and heat transfer performance from immersed coils

in two commercial thermal storage tanks. Again general conclusions are drawn regarding

observed performance of the tanks and the immersed coil heat exchangers. Farrington

also found that reduced heat exchanger flow rates enhanced charging performance.

These studies do not permit detailed investigation of the transient fluid flow and heat

transfer processes within the enclosures. The conclusions drawn in these two studies rely

on observing "bulk" quantities (i.e., measuring heat exchanger inlet/outlet temperatures

and flow rates). This approach limits the depth of understanding that can be achieved in

studying the heat transfer and fluid flow from an immersed coil heat exchanger. The focus

of the current work is to gain a fundamental understanding into the physics of the heat

transfer and fluid flow of a single immersed coil heat exchanger in an enclosure. By

understanding the transient heat transfer and fluid flow from the immersed coil, more

accurate simplified models to predict storage behavior in solar system simulations can be

sought. In addition, techniques to minimize charge time and promote stratification may

be identified.
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The objective of this chapter is to gain insight into the fundamental physics of fluid

flow and heat transfer from an immersed coil heat exchanger in an enclosure and identify

relevant parameters to correlate the transient heat transfer results. The geometric

configuration is shown in Figure 1.7. Although, the heat exchanger/tank configuration

considered here is less complex than the configurations considered by Feiereisen and

Farrington, the same methodology of analysis used here can be applied to more complex

tank configurations. To accomplish the objectives, the governing time dependent

Navier-Stokes and energy equations are solved by the same method considered in Chapter

2. Solutions are obtained over a range of Rayleigh numbers (10' < RaD < 106) for a fixed

enclosure size and heat exchanger location. The range of Rayleigh numbers is selected to

include behavior from conduction dominated (RaD < 103) to the higher end of the laminar

regime (RaD 106). The author is not aware of any numerical computations or experiments

performed on the geometry considered here.

3.1 Governing Equations for Cylindrical Enclosure

Similar to the rectangular cavity, the computational domain for the cylindrical cavity

is shown in Figure 3.1. The water filled enclosure is initially quiescent at a uniform

temperature T,. At time zero, a step change in the wall temperature of the immersed heat

exchanger to Tw begins to influence the fluid in the enclosure. The final state is a quiescent

flow field at a temperature equal to the heat exchanger coil temperature. These boundary

conditions permit axi-symmetric assumptions which greatly reduces the computations

necessary to solve the problem. (In a real thermal storage tank, the flow is inherently three

dimensional because there is an azimuthal variation in temperature as the fluid moves

through the interior of the heat exchanger.)
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zT 0 (all outer surfaces)t--10.r a n

-R-T---

Figure 3.1: Computational domain for the cylindrical enclosure.

The tank radius, RT is half the tank height HT (a unit aspect ratio enclosure). The

tank height is six times larger than the exchanger tube diameter D and twice the coil

diameter R,. The heat exchanger is elevated to a position H, equal to 0. 3HT and has a

radius R, equal to 0. 2 5HT. Thus, the complete geometric problem is scaled based on the

magnitude of the Rayleigh number. The primary quantities of interest are average heat

flux from the exchanger and bulk tank temperature. The Boussinesq working fluid (water)

has a Prandtl number of 5.42.

Similar to the rectangular coordinate case, the governing equations can be

non-dimensionalized using the variables shown in Table 3.1.

I
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r*=rD z* = zID

v; =vr/u Vz = vz/U

T*=(T-To)I(T - TO) P* = P/pU2

t*-tUID U = gf(Tw - To)D

Table 3.1: Cylindrical coordinate variable Non-dimensionalization.

After dropping the * superscripts, the governing dimensionless differential equations for

this configuration are

Conservation of Mass:

1 - (r vr) +
r ar

az (3.1)

Radial Momentum:

aVr - 3 Vr
at rar

(3.2)aVr ap Pr FI a Vr a 2Vr Vrl
1 - r - 1+---

aZ ar RaD [La ya ja 2 rj

Axial Momentum:

avz + avzat- r1 r 4
avz aPv a-z ---z Pr 1a(zr a 2 vz

TRaD [ r ar ar} aZ2 jT

Energy:

aT 1 [1a(aTDT)aT]
zaz -\FRaDPr Lr-ar-r) 'az2

Boundary Conditions:

0 < z < H/D vr o 0, v/r = 0
0<z<H/D Vr =Vz =0

aT/an = 0
aT/an = 0

(3.3)

aT
r

@ r=O

@ r=R,/D

(3.4)
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@ z = 0 0:< r!5 R71D Vr = VZ =0 aT/an =0
@ z = H7/D 0 <,r <R1 D Vr = VZ=O 0 T/n = 0
@ the surface of heat exchanger Vr = VZ = 0 T 1

Initial Conditions:

allir all z Vr = Vz = 0 T=0

The average Nusselt number is the integral of the local flux over the circumference

of the heat exchanger boundary as given by

2n , (3.5)
~dO

0

where 0 is the angular coordinate around the tube. The definition of the average Nusselt

number is based on the initial temperature difference (Tw-To) and not the temperature

difference (T - T) were T is the bulk temperature in the enclosure.

FIDAP is used to solve the governing differential equations in a primitive variable

formulation using a Galerkin finite element approximation. The elements are nine node

quadrilaterals with the quadratic bases for both the velocity and temperature components.

The resulting system of ordinary differential equations solved by an adaptive second order

implicit trapezoid rule.

3.2 Results

The following section presents the results for the cylindrical enclosure computations.

A significant effort has been expended to assure that the final solutions are independent

of the spatial and temporal computational meshes. The mesh refinement techniques used

here are identical to those given by Reindl, et al. (1991). The spatial mesh employed in

the present computations is shown in Figure 3.2.
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Figure 3.2: Axis symmetric mesh for cylindrical enclosure.

All computations are carried out on a Cray Y-MP8/864 computer. For the above mesh,

the CPU time required to obtain transient results depends on the magnitude of the Rayleigh

number. Typical run times ranged from three hours (RaD=103) to more than twenty hours

(RaD= 106). Computations at higher Rayleigh numbers were not attempted due to resource

limitations.

A typical response for the transient heat transfer from the immersed coil is shown in

Figure 3.3. Qualitatively, the transient heat transfer looks identical to that from the flat

plate in a rectangular enclosure. Again there are three distinct heat transfer regimes:

conduction, quasi-steady, and decay.
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Figure 3.3: Transient heat transfer response for RaD= 10.

3.2.1 Limiting Cases

There are two limiting cases to validate the pure conduction and quasi-steady regimes.

Figure 3.4 shows the transient heat transfer response and pure conduction solutions for a

range of Rayleigh numbers. It is clear that the early transient is conduction dominated

(which is independent of the interior heat exchanger location).
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Figure 3.4: Transient heat transfer including pure conduction solutions for
103<__RaD<10 6.
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The nearest analogy to compare the heat transfer during the quasi-steady regime is

the long horizontal cylinder in an infinite medium. The Morgan (1975) review included

experiments and analysis by several investigators. Unfortunately, Morgan reports a wide

disparity in the reported values of the average Nusselt as a function of Rayleigh number

for the horizontal cylinder in an infinite medium. Considering the cases compiled by

Morgan with working fluids and Rayleigh number ranges similar to those considered here,

a wide range of average Nusselt number results are reported. Table 3.2 shows the range

of average Nusselt numbers along with a recommended average Nusselt number given by

Morgan for each order of Rayleigh number.

RaD Nu mm Numax NUMorgan

103 2.64 3.50 3.11
104 4.70 5.87 4.80
05 8.12 10.22 8.54

106 14.45 18.17 15.20

Table 3.2: Range of average Nusselt numbers (Nu m' Numa) from investigators

compiled by Morgan and the recommended value by Morgan (Nu Mo)rga.
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Morgan attributed deviations in the reported results to differences in experimental

designs and measurements. More recently, Churchill and Chu (1975) have studied heat

transfer from the horizontal cylinder. Table 3.3 shows the computed average Nusselt

numbers along with those of Morgan and Churchill and Chu.

RaD Nu NU Morgan Nu c&c

101 2.96 3.11 3.02
04 5.14 4.80 5.15

105 9.08 8.54 9.31
106 15.67 15.20 17.62

Table 3.3: Average Nusselt number results of current computations (Nu) compared
with correlations from Morgan (NuMOrg2A) and Churchill and Chu (Nuc c).

The present computations compare well with Churchill and Chu at Rayleigh numbers

up to 105 and with Morgan at 106. Considering the variation in the previously published

results reported by Morgan, the current quasi-steady results compare well with either

Churchill and Chu or with Morgan. Figure 3.5 illustrates the transient computations along

with the infinite medium correlation of Morgan.

The limiting cases of pure conduction and infinite medium convection provide an

independent basis for comparing the behavior and accuracy of the current results during

the first two regimes. The behavior of the heat transfer and fluid flow during the decay

period is rather complex as the bulk temperature in the enclosure begins to rise and fluid

velocities diminish. There are no simple limiting cases to represent the heat transfer during

the decay period.
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Figure 3.5: Transient heat transfer including the Morgan correlation for a long
horizontal cylinder in an infinite medium for 103 RaD.<106.

3.2.2 Scale Analysis

The temporal behavior of the pure conduction and quasi-steady regimes are well

characterized by the limiting cases shown in Figures 3.4-3.5. It would be useful to have

the ability to predict the time duration of the conduction and quasi-steady regimes as well

as determine the appropriate parameters to correlate the decay period. These objectives

can be achieved by using scale analysis techniques. The scale analysis estimates derived

here are analogous to the estimates found for the flat plate in the rectangular enclosure.
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The following sequence of estimates are used to predict the time duration of the

conduction dominated regime. Considering the dimensional form of the energy equation

(Equation 3.4) in an order of magnitude sense

AT AT AT atAT AT AT (3.6)
r 'r ,T D2 2---- 8T -D r 8T'T2 "D2

where AT = (Tw - T0), At is the time duration, 8T is a characteristic thermal boundary layer

thickness, and D is the heat exchanger tube diameter. Assuming that the velocity

components are small during the early transient and the boundary layer thickness is much

smaller than the tube diameter (T < D), the remaining terms balance providing an estimate

for the thermal boundary layer thickness identical to that of Patterson and Imberger (1980).

8iT (ocAt) 1/2 (3.7)

Considering the dimensional form of axial momentum (Equation 3.3), the buoyancy force

g P3AT accelerates fluid within the boundary layer 6
T and for a Prandtl number greater than

unity, the viscous force term vv,/2 dominates the inertia force vz/At term. The resulting

balance between the buoyancy and viscous force terms yields an estimate of the vertical

velocity component.

gV93AT At  (3.8)
vz "Pr

An energy balance on the thermal boundary layer imposes a balance between the conducted

energy from the heat exchanger and that convected away.

AT AT (3.9)
VZD a62
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The above expression can be simplified by Equations 3.7-3.8 which results in an estimate

for the time duration of the conduction dominated regime.

AtcD21/ (3.10)

cLRaN2

Conduction limit time estimates from Equation 3.10 are shown in Figure 3.6. The scale

estimates accurately predict the duration of the conduction dominated regime.
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Figure 3.6: Scale estimates for the duration of the conduction dominated regime.

At the end of the conduction dominated regime, the vertical component of velocity

v, becomes

10 0-
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Ra "'(x (3.11)
S DV,.

D

and the boundary layer thickness is 6T D/RaN a. Assuming that the volume flow of fluid

through the boundary layer is constant during the quasi-steady period, the flow rate Q is

given by

S VzT . . aD-- 1/4(3.12)

The time required for a fluid element to traverse the cylinder circumference from bottom

to top is

L D rtDT (3.13)
V L 22DJ?a 4

The end of the quasi-steady regime occurs when the temperature in the tank begins to rise

significantly. A significant bulk temperature rise is observed when the volume of fluid

equivalent to that above the heat exchanger is circulated through the coil thermal boundary

layer. The time required to circulate the volume of fluid above the heat exchanger through

the thermal boundary layer around the heated coil yields the quasi-steady period duration

estimate.

r>[1-(l+ )] (3.14)
2 a 42 RaN14

where rx = D/2, y = RTIHT, if = HxIHT, and = rJHT. The quasi-steady time duration scale

estimates are shown in Figure 3.7. The quasi-steady time duration estimates agree well

with the apparent end of the quasi-steady period identified by position where the computed

heat transfer diverges from the infinite medium solution.
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Figure 3.7: Scale estimates for the duration of the conduction dominated regime.

Finally, we use scale analysis techniques to identify parameters to correlate the decay

period. An energy balance on the heat exchanger relates the conducted energy to the

convected energy.

k( Tw - T ) N-"ufk T -TO (3.15)
k D -- (Tw-To)

(8T) D

Since 6 r is not constant as the decay period progresses, the expression for the characteristic

thermal boundary thickness must be modified.
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D D (3.16)
8T RaN14  8T 1/

D RaD

where Ra /4 is based on the temperature difference (Tw - T) similar to that used by Hall,

et al. (1988). Substituting the above expression in Equation 3.15 results in an estimate for

the average Nusselt number from the coil.

-} 5/4 4  (3.17)Nu -(I - T ) taD

with (1 - T) (T, - T)/(Tw - T,) and T is proportional to the fractionfof the cavity heated

to temperature T,. In general, Equation 3.17 is not a useful expression for correlating the

Nusselt number since the bulk cavity temperature or heated fraction f are required. An

expression for the heated fraction can found by considering an overall energy balance on

the enclosure for the differentially heated fraction as

df - qdt (3.18)

mc(T-T')

Integrating the above equation and applying the condition at t=O the heated fraction f=-O

results in an expression for the heated fraction which can be substituted into Equation 3.17

to yield
1t-5 (3.19)

Nu 0.5686[1 + c DZ /(3.1a9)

where ox is the thermal diffusivity, Ki = RxIHT, 4 = rx/HT, y = RTIHT, and RaD is defined based

on the initial temperature difference. The coefficient 0.5686 is determined from a least

squares fit of the computed decay period results for all orders of Rayleigh number. The

correlation given by Equation 3.19 explains 99.86% of the variation in the average Nusselt
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number over the decay period. The agreement between the correlated decay periods and

the actual computed decay periods is demonstrated in Figure 3.8 for RaD=10 5. Plots for

other orders of Rayleigh numbers are similar.
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Figure 3.8: Computed heat transfer response and piecewise heat transfer response
composed of pure conduction, infinite medium, and the correlated decay period for

Ra,=105.

For thermal storage, an important consideration is the time required to charge the

tank (which is found from the transient bulk temperature response). Figure 3.9 shows the
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typical response of the bulk temperature in the enclosure. It is clear that the majority of

overall energy transfer into the tank occurs during the decay period as evidenced by the

greatest bulk temperature rise.
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Figure 3.9: Transient bulk temperature response that occurs during the respective
regimes for RaD= 104.

3.2.3 Flow Field Results

The transient evolution of the temperature and fluid flow fields in the present

geometry are very complex. Farrington and Bingham (1986) used dye injection techniques

and noted the complex behavior of the flow fields from the various heat exchanger
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configurations. In the case of a smooth coil heat exchanger, the authors noted unstable

and swirling convection currents. Similar behavior is observed in the computations

performed during this study. It is difficult to present comprehensive flow field results

from a transient processes as complex as the one considered here. The temperature and

velocity flow fields are presented for the case of RaD= 105 in order to illustrate and identify

key features of the flow.

Figures 3.10a and 3.10b show temperature and stream function contours respectively

at the time corresponding to the early quasi-steady period.

(p

(a) (b)
Figure 3.10: Contour maps at t*=61 (t=140 sec), RaD=l10 5: (a) Isotherms, Ti,,=O.1,

AT=0.1, T,,m= 1.0 i.e, 0.1 (0.1) 1.0; (b) Stream function, min = -3.391, AN!
= 0.452,V max =0.673 i.e., -3.391(0.452)0.673.

By this time in the quasi-steady regime, the velocity flow field near the cylinder is fully

developed and the thermal plume above the cylinder is reaching the top of the enclosure.

Two vortices circulate in opposite directions on either side of the cylinder with a large

component of flow proceeding down the center of the enclosure. Figure 3.11 shows the

results at a later time in the quasi-steady period. At this time, clockwise rotating eddies

i



87

have formed above the cylinder and the core flow near the cylinder source in the center

of the enclosure has reversed. The core of the enclosure above the cylinder is relatively

warmer than fluid near the enclosure walls and significant stratification does not occur.

Figure 3.11:
(a) (b)

Contour maps at t*=101 (t=232 sec), RaD=105: (a) Isotherms, 0.1(0.1)1.0;
(b) Stream function, -1.88(0.20)-0.07735.

Figure 3.12 show the flow and temperature fields at a time corresponding to the end

of the quasi-steady regime. The end of the quasi-steady period is caused by the weakly

stratified temperature field moving warmer fluid down in a neighborhood near the cylinder

source; reducing the temperature difference across the source. Core flow near the cylinder

source has resumed its upward flow direction and several clockwise and counter-clockwise

eddies have formed.
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(a) (b)
Figure 3.12: Contour maps at =141 (t=323), RaD=10 5: (a) Isotherms, 0.1(0.1)1.0; (b)

Stream function, -2.554(0.304)0.0955.

3.3 Conclusions

The temporal behavior of the flow field in the cylindrical enclosure is quite different

than in the square cavity. The square cavity flow field was characterized by the existence

of a single clockwise rotating vortex. The location of this vortex hub was a function of

the Rayleigh number and time into the transient. In the cylindrical enclosure, the flow

field is significantly more complex. The structure cannot be characterized by a single

vortex rotating exclusively in one direction. During the transient, several vortices form

and dissipate. There is a predominant bulk "core" flow that moves from top to bottom in

the center of the enclosure for much of the transient; however, this core flow does reverse

direction during the transient.

The isotherms in the square cavity configuration show that a strong degree of

stratification is maintained throughout the entire transient. In the cylindrical enclosure,

the stratification behavior is quite different. The stratification is quite weak due to mixing

caused by eddies forming and dissipating combined with a reversing core flow.
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Although the qualitative behavior of the temperature and flow fields in these two

geometric configurations are quite different, the character of the transient heat transfer is

similar. In each case, the heat transfer is characterized by three distinct regimes:

conduction, quasi-steady, and decay. The conduction and quasi-steady regimes compare

well with limiting cases. Scale analysis successfully predicts duration of the regimes as

well as identifying appropriate parameters to correlate the decay period. The scale analysis

techniques used in this geometric configuration are entirely analogous to those used in the

square cavity with a heated vertical flat plate.
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4 Experimental Analysis

Experimental techniques have been used for centuries as a means to understand the

behavior of physical processes. Experiments provided the basis for relations such as

Fourier's law of conduction and Newton's law of cooling. In addition, many of the

correlations in convection heat transfer are based on empirical results. The advent of

computers and numerical techniques have changed the role of experiments in research.

With the proliferation of fast processors and parallel computing architectures, numerical

analyses are increasingly replacing physical experiments as a research and development

tool.

There are advantages and disadvantages in using numerical techniques in lieu of

physical experiments. Among the benefits are cost, flexibility (in geometry and

parameters), complete capture of flow field information (V and T) without intrusion, and

derivation of integral quantities (e.g., Nu and T). The disadvantages include accuracy and

applicability of assumptions applied in the numerical technique. Far too often, numerical

computations of real processes are reported without any evidence of "accuracy". Little or

no attempt is made to assure that the codes/methods being used are an accurate

representation of the real process being simulated. Within the context of numerical

computations, the validity of the results in Chapters 2 and 3 relied on convergence

properties of the numerical method and comparing the results with independent limiting

cases. Since the applicability of all assumptions can not be addressed in a numerical

environment, experiments are needed.

The cylindrical enclosure with a single coil heat exchanger shown in Figure 4.1 will

be focus of the experimental investigation. The range of parameters to be explored
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experimentally will be restricted due to limited resources; however, the experimental

apparatus is designed to operate in parameter ranges where the numerical solutions are

"strained". Agreement between the experimental data and numerical results under these

conditions suggests confidence in the numerical solutions for other parameter ranges. The

goal of the experiments is to validate the numerical computations by "measuring" two key

variables: average Nusselt number from the heat exchanger and the enclosure bulk fluid

temperature.

Acrylic Top

Coil heat exchanger

/
L.

Duran Cylinder

7 Acrylic Base

Figure 4.1: Experimental enclosure layout.

4.1 Determining Average Nusselt Number and Bulk Temperature

Two variables have been selected to compare the "accuracy" of the numerical

computations with the actual performance of a physical experiment. Since the quantities

are not directly measurable, they must be derived by observing other variables. This section

discusses the methodologies involved with determining the average Nusselt number and

bulk temperature in the experimental configuration.
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The average Nusselt number can be determined by three different methods. The first

two methods involves measuring the electrical power supplied to a resistance heating

element housed in the heat exchanger. Consider the following energy balance on the tank

and heat exchanger.

Tank dU (4.1)
pwr-L --dt

Exchanger qpwr - qconvect = 0 (4.2)

where qpwr is the electrical power supplied to the heat exchanger, qL is the heat loss to the

surroundings, U is the internal energy of fluid in the tank, qconvect is the energy convected

from the heat exchanger. (Note, the heat exchanger energy balance neglects the initial

transient required to "step" the heat exchanger to its specified temperature.) The numerical

computations imposed an adiabatic boundary condition on all walls of the enclosure. The

above energy balances can be used to "correct" the experimental results with heat losses

so that direct comparisons with the adiabatic enclosure assumed in the computations are

possible. The corrected energy balance yields a relationship for the average heat transfer

coefficient as given by

hxA (Tw - T0 ) = I(t)2 R + hLAO(T - TO) (4.3)

where hx is the average heat transfer coefficient from the heat exchanger, A is the external

area of the heat exchanger, hL is the average heat loss coefficient from the insulated

enclosure, and AO is the external area of the insulated enclosure. Rearranging Equation

4.3 results in the expression for the average Nusselt number for the heat exchanger as a

function of other measured variables.
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NI(t21 +hLAO(T(t)- TO) (4.4)Nu()=- It) +V

21tckwRx(Tw - TO) 2ntkwRx(Tw - To)

The variables which are continuous functions of time are the current supplied to the heating

element and the fluid bulk temperature. The resistance R of the heating element is assumed

constant due to its stability over the temperature range considered. The measured current

represents an root mean squared (RMS) value of the chopped alternating current (AC)

power supplied to the heating element from the phase angle fired relay.

A second method for computing the average Nusselt number is based on calculating

the power to the heat exchanger by the product of current through and voltage across the

heating element.

Nu W= (t)V(t) + hLAO(T(t) - TO) (4.5)

27r2kwRx(Tw - TO) 27c2kwRx(Tw - T,)

The disadvantage with this method is the requirement to monitor an additional time

dependent quantity, voltage V(t).

The last method for computing the average Nusselt number relies on measuring the

bulk temperature rather than the power supplied to the heat exchanger. The expression

for the average Nusselt as a function of the bulk temperature is given by

(mc ),ak dT - LAO(T(t) - T) (4.6)

Nu(t) = 27C2kwR(T w - TO) dt + 2t 2kwRx(Tw - TO)

Equations 4.4-4.6 represent the data reduction equations for the average Nusselt number.

The accuracy of each data reduction equation will be explored by detailed uncertainty

analysis in Section 4.3.
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A unique method to "measure" the bulk temperature of fluid in the enclosure has

been established. By definition, the bulk temperature is the average temperature of fluid

in the enclosure.

f T(r, 0, z)d V (4.7)

T - fd
fdv

Past experimental methods employed to determine bulk temperature have relied on placing

temperature transducers (typically thermocouples) at various spatial points throughout the

enclosure and averaging the resulting readings. It is clear that bulk temperature results

based on this methodology would be difficult to reproduce and prone to a high degree of

inaccuracy in stratified enclosures. In the present investigation, an isobaric condition is

imposed by allowing the working fluid to expand upon heating. By allowing the fluid to

expand into a vertical column, the change in specific volume can be determined by

measuring the differential change in total fluid volume. The temperature corresponding

to this changed volume represents the bulk temperature of fluid in the enclosure.

The viability of the bulk temperature measurement method requires some

limitations/assumptions to be investigated. First, the method requires the working fluid

to retain a linear relationship between the temperature and specific volume. Without this

linearity, the bulk temperature for strongly stratified and semi-stratified enclosures cannot

be accurately derived from the volume expansion of the heated working fluid. Figure 4.2

illustrates the temperature-specific volume behavior for water (data from Keenan, et al.

1978). In the range of temperatures being considered in the experiments (-20-40C), the

temperature-specific volume relationship is reasonably linear. A least squares linear fit

to the property data explains 98.8% of the actual variation.
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Figure 4.2: Temperature-specific volume behavior for water.

Another assumption in the method for experimentally determining the fluid bulk

temperature concerns the heat and mass transfer of the working fluid in the expansion

column. Heat loss in the column could potentially result in contraction of fluid and result

in an erroneous bulk temperature measurement. Since the maximum volume of the fluid

in the expansion column is only 1.5% of the total volume of fluid in the enclosure, the

effect of heat loss and fluid contraction outside the enclosure is negligible. Mass transfer
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of fluid from the expansion column to the ambient environment must also be minimized.

Since the area of the free surface of fluid expanding in the column is very small (- 1.8 cm 2),

mass transfer to the ambient is assumed negligible.

A potentially significant factor which may influence the observed bulk temperature

is thermal expansion of the enclosure. Because of the relatively large volume of the

enclosure compared to the expansion column, any changes in enclosure volume by thermal

expansion will cause the true bulk temperature to be underpredicted. Further details related

to assessing the accuracy of the bulk temperature measurements are given in Sections 4.2.3

and 4.3.

4.2 Experiment Configuration

The computations presented in Chapter 3 considered the cylindrical enclosure with

the following geometric configuration: 4 = 0.167, y= 0.5, K = 0.5, and fl= 0.333. The

relative tube size 4 =0.167 was chosen for the numerical computations due to limitations

on computational resources. Performing computations over the entire range of Rayleigh

numbers with a smaller relative tube size would have required a significant computational

resource increase. Unfortunately, constructing an experimental apparatus that matches

the above parameters is not realistic; therefore, the following parameters will be used in

the experiments: 4 =0.03068,7y=0.5, K 0.3834, and fi =free. The experimental results

will be compared with a numerical computation performed using these parameters.

4.2.1 Design

In any experimental analysis, there are trade-offs associated with the physical design

of the apparatus. The goal is to design and construct an apparatus that resembles, as close
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as possible, the geometric configuration and boundary conditions used in the computations.

A significant attempt was made to make the apparatus as simple as practical. The

experimental tank is shown in Figure 4.3.

Fluid expansion tube

Coil heat exchanger

Enclosure tie rods

Figure 4.3a: Experimental enclosure (isometric view).

The requirements of the enclosure include: low thermal conductivity, capable of

being insulated easily, compatibility with working fluid (water), low thermal expansion,

and transparent. An enclosure with low thermal conductivity will reduce heat loss and

minimize any de-stratification of the interior fluid by conduction down the side walls of

the enclosure. The enclosure must be well insulated so that the experimental boundaries

approach the adiabatic conditions imposed in the numerical computations. The accuracy

of the bulk temperature measurement technique relies on determining the volume

expansion of the fluid only; therefore, the enclosure must have a very low thermal expansion

coefficient to avoid confounding the fluid volume expansion with the enclosure volume

expansion. A transparent enclosure will allow the use of flow visualization techniques.
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Fluid Expansion Tube

Capacitance probe

Polypropylene or silicone seal
(top and bottom)

Heat exchanger

Compression fitting

Coil power, thermocouple, and ground wires

Figure 4.3b: Experimental enclosure (cross-section).

Two different materials, Acrylic and Duran®, were used in the main enclosure body

(cylindrical portion of enclosure) to achieve these requirements. The acrylic is a polymer

and the Duran® is a borosilicate based glass. Table 4.1 lists the relevant properties of the

materials used in the enclosure construction.
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Material Property Value Units

Acrylic Thermal conductivity 1.25 W/m-C

Specific heat 1.19 kJ/kg-C

Density 2,676 kg/m3

Max. cont. temp. 82 C

Linear expansion coeff. 7.56E-6 1/K

Duran® Thermal conductivity 1.14 W/m-C

Specific heat 0.711 KJ/kg-C

Density 2,230 kg/m 3

Max. cont. temp. 500 C

Linear expansion coeff. 3.25E-6 1/K

Table 4.1: Enclosure properties (at 33 C).

The enclosure consists of either an acrylic or Duran® cylinder sandwiched between

an acrylic sheet base and top. A water-tight seal is made by a silicone seal placed at the

top and bottom of the cylinder. The coil heat exchanger is supported in the enclosure by

a polycarbonate tube which penetrates the enclosure base through a compression fitting.

The tube serves as a physical support for the heat exchanger as well as being a conduit for

routing the coil power, ground, and thermocouple cables out of the enclosure. A "vent"

tube positioned on the top of the enclosure serves as a standpipe which allows the heated

fluid in the enclosure to expand.

The performance requirements of the circular coil heat exchanger are among the most

demanding of any component/subsystem in this experiment. The heat exchanger must

have high thermal conductivity, low thermal capacitance, a smooth surface finish,

compatible with the working fluid (water), and house thermocouple and heating elements.

High thermal conductivity along with a low capacitance will yield a heat exchanger that
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approaches the step change in wall temperature and isothermal surface conditions assumed

in the numerical computations. A smooth surface finish will eliminate any wall induced

disturbances in the buoyant flow field. The construction of the heat exchanger is illustrated

in Figure 4.4.

Coil cross-section

-Polypropylene guide tube

Heater element

Lead Wires
3,

MgO

Nichrome resistance wire

Figure 4.4: Circular heat exchanger design.

i
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The main body of the heat exchanger consists of a 12.7 mm o.d. (0.5 in) copper tube

formed in a circular shape. A single resistive heating element 3 is routed around the interior

of the copper tube approximately six times as well as two T-type thermocouple probes and

a ground wire. To enhance the heat transfer characteristics from the internal resistance

element to the copper tube wall, thermal grease 4 is "pumped" into the coil. The grease

enhances the thermal communication between the heating element and the coil by purging

the air void fraction in the coil interior. The exterior surface of the copper tube is polished

and coated with a very thin layer of clear protective acrylic sealant to minimize surface

oxidation. The copper coil is "sealed" by sweating a custom formed tee section to the open

ends of the tube. The thermocouple and power wires are routed down through this

perpendicular tee. Parasitic conduction losses through the coil support are minimized by

using a polycarbonate stand-off couple with an polycarbonate guide tube.

4.2.2 Data Acquisition and Control Systems

The data sought in the experiments include temporal values of ambient temperature,

coil temperature, coil power, and fluid bulk temperature. All data is logged to a personal

computer (IBM AT) via an analog-digital (A/D) converter board 5. The A/D board used

has sixteen channel capability with sixteen bit conversion resolution. A schematic of the

data acquisition layout is shown in Figure 4.5

3 Model 125CH93A1X with stainless steel overbraid from Watlow; St. Louis, MO.

4 Omegatherm model 201 Thermal grease from Omega Engineering, Inc.; Stamford,
CT.

5 Model WB-AAI High Resolution interface card from Omega Engineering, Inc.;
Stamford, CT.



104

il Power

Figure 4.5: Data acquisition system.

Thermocouples are used to monitor the ambient and coil temperatures. The

thermocouples are 36 AWG (0.005in, 0.127mm conductor diameter) copper/constantan

(type T) construction with Teflon insulation6. The type T thermocouple was selected

because it provides acceptable error characteristics (0.5 C, 0.9 F) for temperature

6 Model TT-T-36 T-type thermocouple from Omega Engineering, Inc.; Stamford, CT.
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measurement in the range under consideration. The small gage wire results in a very fast

response to changes in the local temperature. All thermocouples are baseline calibrated

in an ice bath. The thermocouple calibration is verified at higher temperatures by

comparing measurements with a independently calibrated mercury bulb thermometer.

The power control system will modulate the electrical energy supplied to the heat

exchanger such that a constant coil temperature is maintained. The coil power is determined

by measuring the current supplied to the coil. Since the load (the heating element) is purely

resistive, the power can be determined directly by applying ohms law. The resistance of

the Nichrome heating element is insensitive to temperature (over the relevant range of

temperatures considered); therefore, the power supplied to the coil is

p(t)=lI(t)2 R (4.8)

where P is the power, I is root mean square current, and R is the coil resistance. The coil

current is measured by using a hall effect transducer7 along with a signal conditioner8 . The

signal conditioner reportedly provides a 0-1OVdc output proportional to the RMS value

of the coil current. The advantages of this configuration include elimination of insertion

losses (by the hall effect transducer), fast response (< 50 ps), and ability to handle the

chopped waveforms from the phase angle fired relay. The disadvantage with the hall effect

transducer is the null drift.

Determining the enclosure bulk temperature relies on determining the fluid specific

volume by measuring the change in height of fluid expanding in a column from the

enclosure. A difficulty in applying this method arises when we consider techniques to

7 Model CTL-50 from Dalec Distributors; Chicago, IL.

8 Model CTA2 13 from Dalec Distributors; Chicago, IL.
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monitor the continuous fluid height in the expansion column as a function of time. To be

consistent with using the personal computer as a central data acquisition device, it is

necessary to employ a transducer which monitors the continuous fluid level height and

has an output compatible with the analog/digital converter. Several techniques were

investigated on the basis of accuracy, cost, and complexity. The method selected utilizes

radio frequency technology. The unit consists of a "capacitance" probe 9 (level transmitter)

inserted into the expansion column coupled with an appropriate signal amplifier10 . The

probe represents one plate of a capacitor with the fluid as the other plate. The capacitance

sensed by the probe varies as a linear function of fluid level. As fluid expands into the

column, the capacitance increases providing a measurement system with an analog output

signal directly proportional to the height of fluid in the expansion column.

The capacitance probe unit is calibrated by adding a fixed incremental volumes of

fluid in the column and monitoring the response. (The addition of a fixed incremental

volume of fluid to the column is controlled by using a 10 ml syringe.) The initial attempts

at calibrating the transducer yielded a response from the probe as shown in Figure 4.6.

Since the transducer output is quoted to be linear by the manufacturer, the behavior

exhibited in Figure 4.6 is disturbing. The nonlinear output shown in Figure 4.6 is caused

by a faulty transducer ground. The radio frequency technique requires a good ground in

the same plane as the probe. A ground plane parallel to the capacitance probe is added to

the expansion column and the resulting probe response over five separate runs is shown

9 Model 700-1-22 sensor from Drexeibrook Engineering; Horsham, PA.

10 Model 408-2200 two-wire transmitter from Drexelbrook Engineering; Horsham, PA.
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in Figure 4.7. The results shown in Figure 4.7 indicate that the capacitance probe response

is extremely linear and repeatable. The solid line is a least squares fit of all data and

explains 99.996% of the variation in the probe response.

12.0

S8.0

0

0~

.&°

0 40 80 120
Volume (ml)

Figure 4.6: Capacitance probe with improper response.

To maintain the heat exchanger coil at a constant temperature, it is necessary to vary

the amount of energy supplied to the coil. Initially, a simple feedback control system was

engaged to accomplish this task. The feedback control system initially consisted of a PD
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Figure 4.7: Acceptable capacitance probe response.

(proportional-integral-differential) controller' 1, coil temperature thermocouple, zero-cross

fired SSR 12 (solid state relay), and a 240 VAC supply. The power supply in conjunction

with the control system provides a time-proportioning output of power supplied to the

heating element. A typical response of current as a function of time under this control

scheme is shown in Figure 4.8.

11 Model CN4401TR-D Micro-controller from Omega Engineering, Inc.; Stamford, CT.

12 Model SSR240AC25: Solid state relay Omega Engineering, Inc.; Stamford, CT.

I
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Figure 4.8: Response from time-proportional control strategy.

The simple time-proportioning control strategy proved to be too crude to allow

accurate determination of the time dependent average Nusselt number (which is a function

of the measured current). Various techniques were employed in an attempt to "clean-up"

the signal from the current transducer including: Fourier transform filtering, time

averaging, and control parameter modulation. None of these techniques were able to

satisfactorily resolve the power signal; therefore, a more sophisticated control scheme was

sought.



110

The second control strategy implemented uses a PID controller' 3 with an analog

proportioning output which is coupled with a phase angle fired solid state relay 14 (SSR).

The SSR then modulates the power supplied to the coil depending on the magnitude of

the temperature controller's output signal resulting in a much cleaner coil current signal

as shown in Figure 4.9. The control signal begins to deteriorate at small magnitudes of

current (when the enclosure bulk temperature has significantly increased) as indicated by

the fluctuating current signal. The fluctuating signal can be smoothed by time-averaging

the signal during the late transient.

13 Model 965A-lFAO-0000 Temperature Controller from Watlow Controls; Winona,
Minnesota.

14 Model VO1-240-10-AT Solid state relay power controller from Watlow Controls;
Winona, Minnesota.
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Figure 4.9: Typical response from analog-proportional control strategy.

4.2.3 Assumptions

There were several assumptions made in the course of the numerical computations

and some of these assumptions need to be re-evaluated in the context of a physical

experiment. One key assumption that needs to be examined is the Boussinesq

approximation. The temperature change (T - T) required to achieve the desired order of

Rayleigh numbers is --20 C (36 F). A temperature difference this large well out of the

range of the strict Boussinesq approximation (-.2 C, 3.6 F) implying that the property

variation as a function of temperature may be significant. The two properties that show
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the largest temperature dependence are viscosity (both dynamic v and kinematic jt

viscosities) and the volume expansion coefficient P. As the temperature increases, viscosity

decreases while the volume expansion coefficient increases. The net effect of these two

properties changing with temperature is compounded when we consider the definition of

the Rayleigh number (RaD = g 3D 3AT/vcL). Figure 4.10 shows the change in the property

group (g3I/vc) with temperature. The property variations with temperature effectively

causes the driving force (Rayleigh number) to vary with temperature. Figure 4.11 shows

the variation of Rayleigh number due to temperature effects on the fluid properties.
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Figure 4.10: Temperature effect on combined fluid properties.
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Figure 4.11: Temperature dependent fluid properties effects on RaD (D=12.7mm, 0.5in;
AT = 20C, 36F).

It may be possible to compensate for the property variations by selecting a suitable

temperature for evaluating fluid properties. To study the influence of property variation,

computations are performed using the square cavity geometry as discussed in Chapter 2

(since it is less intensive from a computational standpoint). The use of this geometry

should not be considered a loss of generality in studying property variation effects since

property variations are independent of geometry. A set of five computations are performed

for a fixed geometry (H= W= 2L, yp=H12). The computations are performed in dimensional

I I

I I

A--% r-
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form with the properties evaluated and maintained constant based on three different

temperatures. The constant property cases are compared with two variable property

computations. The first allowed only the dynamic viscosity to vary as a polynomial

function of temperature. The second allowed both the dynamic viscosity and thermal

expansion coefficient to vary as a polynomial function of temperature. The sequence of

computations are summarized below and the average Nusselt number results for the cases

are shown in Figure 4.12.

Case 1: Constant properties evaluated at To=20 C (68 F).

Case 2: Constant properties evaluated at T,,ej=(To+T,)I2=30 C (86 F).

Case 3: Constant properties evaluated at Tw=T=40 C (104 F).

Case 4: Variable dynamic viscosity (v = f(T)) ahd all other properties constant
and evaluated at T,,,,,=(To+T)/2=30 C (86 F).

Case 5: Variable dynamic viscosity (v =f(T)), variable volume expansion
coefficient (3 =f(T)) and all other properties constant and evaluated
at Tmewi=(To+Tw)/2=30 C(86 F).

It is clear that if properties are evaluated at the mean temperature the average Nusselt

number results approach the variable property results. Table 4.2 shows time, magnitude,

and location of peak velocity components for each of the five cases. The peak velocity

results support the assumption that property variations can be accounted for by using fixed

properties evaluated at a suitable temperature. Thus, the experimental results

("non-Boussinesq") with properties evaluated at the mean temperature (Tm,={ To+T }/2)

should compare well with the computational results ("Boussinesq").
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Figure 4.12: Effect of property variations on the average Nusselt number.

Case U,, t X V,, t X

1 6.130 3.74 2.479 24.11 9.381 3.43 0.0 21.60

2 9.132 2.88 2.187 24.25 13.063 2.59 0.0 21.92

3 12.01 2.40 2.187 24.40 16.169 2.12 0.0 22.20

4 8.721 2.87 2.187 24.25 12.987 2.58 0.0 21.92

5 8.514 2.82 2.187 24.25 13.089 2.54 0.0 21.92

Table 4.2: Peak velocity results; velocities in mm/sec and x-y in mm.

The numerical computations neglect all radiative heat transfer from the heat source

to the fluid medium or enclosure. It is necessary to examine the effects of radiative transfer

in the actual experimental apparatus. In this case, the working fluid represents a

participating medium and the intensity of radiation leaving the source will diminish due

- Const. Props. at T..a
- Variable M;

Variable M.1,
- Const. Prop.. at T=20 C

Const. Props..at T=40 C

I I 1 5 1 1 1 1 1 1 1 . I I , , , I I I , v , I , , I I . I I I
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to both absorption and scattering. Considering a medium of thickness S, the monochromatic

directional intensity varies according to Bouguer' s law (as discussed by Siegel and Howell,

1981). S
ix(S) = i(O) exPL Kj(S)dS(

where i; is a directional monochromatic intensity, Kx is a monochromatic extinction

coefficient and S is the path length through the medium. The extinction coefficient consists

of two components

Kx = a. +a sx (4.10)

where ax is an absorption coefficient and as% is a scattering coefficient. Assuming that the

scattering component is negligible (sx - 0) and the absorption coefficient is not a function

of position, Bouguer's law can be integrated to give

ix(S) = i,(O) exp(-a S) (4.11)

Thus, the initial intensity ix(O) decreases exponentially with increasing path length and

absorption coefficient.

To estimate the radiative transfer using Equation 4.11, we assume the heat source is

ideal and seek estimates of the spectral absorption coefficient. The spectral intensity

distribution of the assumed black heat exchanger source at an upper temperature limit is

shown in Figure 4.13. Hale and Querry (1973) report spectral properties of water over a

large wavelength range. The spectral absorption coefficients for water are shown in Figure

4.14. By Wien's displacement law, the peak intensity occurs at a wavelength of 9.26m.

The spectral absorption is very strong about the wavelengths of maximum intensity.
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Because of the large magnitude in the spectral absorption coefficient in this range, the

entire initial intensity will be diminished in a very short distance (<< mm). With such a

short radiative pathlength, the temperature differences are very small; therefore, the net

radiation heat transfer from the heat exchanger is negligible.

0 4PWI
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Figure 4.13: Ideal (black) body spectral intensity at T=313K.

The numerical computations assume the enclosure is adiabatic. Of course from an

experimental standpoint, a perfectly insulated enclosure is not possible. Two steps can be

taken to account for the imperfect enclosure boundary condition. First, the enclosure can

be carefully insulated to minimize heat loss. Second, the computed heat flux/Nusselt
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Figure 4.14: Spectral absorption coefficients for water.

number results can be corrected if the heat loss can be characterized. It should be noted

that the actual flow field in the experimental configuration will differ slightly compared

to the numerical computations due to the heat loss. The enclosure is insulated with a dual

foil faced bubble type plastic insulation1 5. The insulation has a low thermal conductivity

15 Model "Astro-Foil" from Ratech Industries, Inc.; Crown Point, Indiana.

(a strong baxjid at N=3.0, -
a=11400 cm is not shown)
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(-0.0228 W/m-C) and a high reflectivity (-0.9). The insulation is applied to the enclosure

in two layers: first, a loose fitting inner layer to break up the air gap that exists between

the enclosure and the outer layer of insulation and second, the outer layer of insulation.

The heat loss from the enclosure is characterized by performing "cool down"

experiments. The first step in a cool down experiment is to heat the working fluid in the

enclosure to some target temperature. After removing the power supplied to the heat

exchanger, bulk and ambient temperatures are monitored over time as the enclosure looses

its internal energy to the relatively cooler surroundings. A simple energy balance on the

enclosure during cool down gives

dT (4.12)h LA(T(t) - T._) =(me~tk dt

where: h L is the average overall heat loss coefficient, A, is the external area of the insulated

enclosure, T is the enclosure bulk temperature, 7 is the ambient temperature, (mc) ,,k is

a mass capacitance of the composite enclosure and working fluid, and t is time. The goal

is to determine the average heat loss coefficient, hL-

Two approaches are used to characterize the heat loss; the first assumes the average

heat loss coefficient is constant during the cool down and he second method assumes that

the loss coefficient (in terms of an average Nusselt number) is a function of the Rayleigh

number as given by Equation 4.13.

- -nuL = (4.13)
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where CO is a correlating constant, and n a correlating exponent The Rayleigh number

RaH is based on a characteristic dimension, H, which represents the total insulated enclosure

height and a characteristic temperature difference, (T - T.). Assuming the average heat

loss during cool down is constant, Equation 4.12 can be integrated resulting in the following

T (t) - T. + (T 0 - T.)exp - (m C)a---(4.14)

A heat loss coefficient of 0.59 W/m2-C (0.104 Btu/hr-ft2-F) provided a best fit to the

experimental cool down data resulting in a standard error of 0.033 with Equation 4.14

explaining 99.85% of the variation in the actual cool down data.

When the heat loss is assumed to be a function of the Rayleigh number according to

Equation 4.13, the bulk temperature is given by

g n-11(4.15)

T(t) =T, + H k(mac g)tk vH ir t + (To-T)

The subscript air denotes an air property. All properties are evaluated at the mean film

temperature ((T, + T/,)I2). The results from three cool-down runs are averaged and

coefficients of n= 1/4 and Co=0.0928 result in a standard error of 0.0027 and explain 99.99%

of the variation in the experimental cool down results. The cool down data including the

best fit loss coefficient are shown in Figure 4.15. For the remainder of the experimental

analysis, the heat loss will be estimated using the loss coefficient based on the Rayleigh

number as given in Equation 4.16.

-1/4 (4.16)

qL=0.0928RaH Aokair (T - T.)
H
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Figure 4.15: Experimental data characterizing heat loss during cool down from the
insulated experimental enclosure.

Section 4.1 discussed the necessity of a linear temperature-specific volume

relationship of the working fluid for allowing bulk temperature to be determined by

measuring the volume expansion. Figure 4.1 showed the temperature - specific volume

relationship while Figure 4.6 showed the probe output as a function of the volume added

to the expansion column. The desired relationship gives bulk temperature as a function

of the change in the capacitance probe output. The relationship is determined by combining

the probe response in Figure 4.6 along with the property data in Figure 4.1. The resulting

Measured
00000 Predicted

NUL = 0.0928 RaH

K s.
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relationship between bulk temperature and the change in capacitance probe output is shown

in Figure 4.16. The bulk temperature data are straight line fitted with a standard error of

0.79 C (1.42 F) and explains 99.2% of the deviation in the actual data.

130
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54.4

43.3

32.2 E-

21.1

Figure 4.16: Bulk temperature as a function of change in capacitance probe output,
Ama = (mafinal -fjmaij jaj) (T,=23.9 C, 75 F).

4.3 Uncertainty Analysis

An integral constituent of experimentation is uncertainty analysis. Uncertainty

analysis is a formal method for assessing the accuracy of derived quantities while taking

into account all of the elemental accuracies of the measured variables involved in
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determining the desired quantity of interest. The methods of uncertainty analysis used in

this research are based on those given by ANSIASME Standard on Measurement

Uncertainty which is also documented by Coleman and Steele, (1989).

A measurement error can be decomposed into two components: bias and precision

errors. A bias error can be thought of as a fixed deviation of the mean measured value

from the true value. Precision errors are more stochastic in nature. In general, precision

errors are treated statistically. In this research, all precision errors are assumed to be

normally distributed and a 95% level of confidence is used in all associated confidence

intervals.

The formulation of error analysis equations is essentially the same when considering

both bias and precision error elements; however, details in quantifying the specific error

behavior in each case differ. First, general uncertainty relationships are derived for each

quantity of interest. Then specific bias and precision error estimates are sought. The

formulation of the uncertainty estimates is based on considering a first order Taylor series

expansion in n-dimensions. The uncertainties are then expressed in a root sum of squares.

Uncertainty in Nu: Method 1

The data reduction equation for the average Nusselt number in terms of the measured

current supplied to the heat exchanger and a fixed heating element resistance is given by

Equation 4.4. The expression for the root sum of square error associated with this

formulation of Nu is given by
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-----2 _ )2 ( _ )2-N-'u N u a Nu " N u k
= rK* 811 + (- ~6R? + I 6kw +

I1 R + kw (4.17)

2NU -RX ) + 2 2+6To)0

3RX aTw To

aggu -L Ou A°  + a + a S
A 8h)+ + D(A0+40 o+ 8T + 2 PTW'T Ow 6TW6To

~hL ) aA aT )T T 0 T

Where 6 represents a general error (bias or precision error) in a particular quantity and

PTTo is the correlation coefficient between two variables (wall and initial temperatures in

this case). After computing the appropriate derivatives and substituting into the above

equation, the general error equation becomes

-Nu - {(2RI I++(IR+ CpJ+ C2  j+ (1 RC2k )+C. (4.18)

C2-- + (hLAO(T- Tw)+I2R)--- + (AOAT~hL) + (-LATAo)2 +
SAT } ( O ) AT j

(hLAO6T) 2 - 2 pTToC2(12 R +hLAO(T - Tw)) T--T }

0 ~AT 2

where C, = 2n2kwRAT, C2 =hLAoAT +12R, AT = (Tw - TO), and AT = (T- TO).

Uncertainty in Nu: Method 2

The second method for estimating the average Nusselt number relies on computing

the power supplied to the heat exchanger by measuring the current and the voltage from

the phase fired relay. The voltage and current must both be monitored continuously during
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the experiment and the output from each must represent the RMS of the chopped wave

signal. The uncertainty expression for method 2 using the respective data reduction

equation (Equation 4.5) is similar to that for method 1 and is given by

8N -C--f{(V6I)2+ (IV)2 + tC2-k 2 +f(C28Xj + (4.19)

( T )T 8T-2 -26T

C2 - + (hLAO(T - )+1 2R)- + (AoAThL) + (hLAT&4o +
SAT T) AT

2 2 86TW 6To
(hLAO 6T)2

-
2pTTC 2(IR +h LAO(T - Tw)) AT 2

Uncertainty in Nu: Method 3

The last method for approximating the average Nusselt number considers the time

rate of change in the enclosure bulk temperature. The data reduction equation for the

average Nusselt number in terms of the enclosure bulk temperature is given by Equation

4.6. After simplifying the expression for the root sum of square error associated with Nu

the following general error expression results

Of = -{f" (mC)takJ + C3-w + C3'R +1C3"AT + (4.20)

(MC),TT+hLAO -) h-- + (Ao AT6hL) + (mC)ank6(L-f +

2 2dT -8 STo 8 Tw
(hLAO6T) 2+ (hLAT6Ao)2+ 2pTw,4C (mc)- + h LAO(T - Tw) }0 ~dt )A

where C3 = hLAoAT + (mc )tlkdT/dt.
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Uncertainty in T

The data reduction equation for the enclosure bulk temperature as a function of the

column fluid height is a simple linear function of the change in capacitance probe output

(T = a + b (Ama)). A general expression for the error associated with the bulk temperature

is given by

(6-)2 = (8a)2+ {(Amna)8b} 2+ {b6(Ama)} 2  (4.21)

where a and b are coefficients obtained from the bulk temperature - capacitance probe

curve fit, A(ma) is the corrected change in capacitance probe output (ma - ma0 ), and 8a

and 6b include the standard error of the coefficients from the curve fit.

Uncertainty in hL

The uncertainty in the heat loss is required by the expressions for the uncertainty in

the average Nusselt number. Since the heat loss varies as a function of time, the uncertainty

in the heat loss as a function of time will also vary; consequently, we seek a detailed

expression for the uncertainty in the heat loss coefficient. The heat loss is characterized

by lumping all the loss transport phenomena into a single coefficient and correlating an

expression for heat loss based on a bulk temperature and ambient temperature difference.

An expression for the combined heat loss is found by rearranging Equation 4.13.

Cogn"I. a rH4 3n - '1(T - T)nkair(4.22)

hL-HVr n
air OXair

where the air subscript denotes properties of air evaluated at a mean temperature of

Tmea = (T, + T)/2, C,=0.0928, n=l/4, H is the insulated enclosure height, and T.. is the

ambient temperature. The general error equation for the heat loss coefficient is
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n Q=.g +(- 1/0 -+ = + -= + +T
( 9+(H (T) AT ) a) V)

Uncertainty in dTldt

The uncertainty in the time rate of change in bulk temperature is determined by

considering a discretized approximation to the derivative.

dT (T T' ) (4.24)
dt 2At

where the superscript i denotes the timestep. Equation 4.24 represents a second order

central difference approximation to the continuous quantity, dTdt. The general error

equation for the time rate of change in bulk temperature, using Equation 4.24 as the data

reduction equation, is given by

(8dT/dt -2 ( 6Ti +12 (Ti-1 ) 2 {8 t>)267T,' 
1 6F-I(4.25)

S+1 -- + 2r -ri I A
d dTldt )- AT j) ,AT j At ) 2  T ATh

The general error equation can be simplified for both the bias and precision error

components. For the bias error, the bulk temperature at all times is measured by the same

instrument; therefore, the correlation coefficient pr+,7_, is unity. The general data

reduction equation simplifies to give the bias error estimate as

(T (i+1 -'') 8t(4.26)
B t - 2At 2

For the precision error component, we assume the errors (precision) in the time dependent

bulk temperature quantities Tare independent and uncorrelated which yields

PdTIdt (PT-+ PT' P(4.27)
d'Tl/dt A'T IJT1 A
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In a detailed uncertainty analysis, the errors are separated into bias and precision

components. In the analysis that follows, all precision errors are computed at a 95% level

of confidence. Table 4.3 provides a summary of the bias and precision error values used

in the uncertainty analysis.

Variable Est. Bias Nominal % Bias (Est/Nominal)

Value

I, (amps) ±0.1 time dep. time dep.

R, (ohms) ±1.3 59.7 ±2.2

V, (volts) ±6.8 240 ±2.8

ma, (milli-amps) - - ±1
rx, (cm) ±0.0127 1.27 ±1

Rx, (cm) ±0.25 7.94 ±3

RT, (cm) ±0.21 10.35 ±2

HT, (cm) ±0.40 20.7 ±2

H, (cm) ±0.61 40.64 +1.5
g, (m/s 2) +0.29 9.81 ±3

k (air and water) - ±5

ax (air and water) - +5

v (air and water) - ±5

f3 (air and water) - ±5
t (sec) _+__±0.5

To (C, F) +1.41,+2.54 23.9, 75 ±6

Tw (C, F) +1.41,±2.54 -

T (C, F) +1.41,±2.54 23.9, 75 ±6

Ao (m2 , ft2) +0.00691, +0.0744 0.6911, 7.44 ±10

(mC)tak (J/C) ±4700 47,000 ±10

T (F){Tre=71 } +{1.09 +0.0126(Ama)21 1 /2

Table 4.3a: Compilation of the magnitude of individual bias errors
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Variable Est. std. Error 95% level Est.

I, (amps) ±0.002 ±0.004

R, (ohms) +0.01 ±0.02

rx, (cm) ±0.04 +0.08

Rx, (cm) +0.0794 ±0.159

RT, (cm) +0.0794 ±0.159

HT, (cm) +0.0794 ±0.159

H, (cm) +0.159 ±0.318

A0 ,(m 2) ±0.00691 ±0.0138

T, (C, F) +0.022, ±0.04 ±0.044, ±0.08

Tw (C, F) -0.022, +0.04 -0.044, +0.08

ma, (milli-amps) +0.00584 ±0.0117

T (F) ±0.06 ±0.12

t (sec) ±0.5 ±1.0

Table 4.3b: Compilation of the magnitude of individual precision errors

The relevant individual bias and precision errors above are used in the general

uncertainty equations to compute the respective bias and precision uncertainty for the

quantity of interest. After the bias and precision errors are computed, they can be combined

to estimate the overall uncertainty by the following

Uf = [{Bf 2 +Pf2} (4.28)

where Uf is the overall uncertainty in the quantity f, Bf is the bias error component of f,

and Pfis the precision error component off. Equation 4.27 is known as the root sum square

formulation of uncertainty.

Computing the uncertainty in the average Nusselt number requires characterizing

the uncertainty in the heat loss coefficient. The fractional uncertainty in the heat loss

coefficient is computed by considering bias and precision error components individually.
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The bias error component of the heat loss coefficient is found by substituting the bias error

values given Table 4.3a into Equation 4.23. The precision error estimate for the heat loss

coefficient is found in the same manner; however, the property values are assumed to be

"frozen" values obtained from either thermodynamic correlations or appropriate tables.

Thus, there is no precision error associated with obtaining the values. The uncertainty of

the heat loss is a function of the bulk temperature and the error is higher at low values of

bulk temperature. The behavior of the uncertainty over a bulk temperature range

encountered in the experiments is shown in Figure 4.17. The fractional uncertainty in the

heat loss coefficient ranges from 20% at low values of bulk temperature to approximately

2% at high values of bulk temperature.
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Figure 4.17: Heat loss coefficient dependence on bulk temperature including error bars.

4.4 Results

In the course of the experiments, two boundary conditions were imposed on the heat

exchanger: constant heat flux and constant temperature. The results of the constant heat

flux boundary condition are presented first followed by the constant temperature results.

4.4.1 Constant Heat Flux Source

The performance of the experimental apparatus under the transient conditions present

with an isothermal heat source is difficult to assess; therefore, a simpler case of a constant
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flux heat source is considered. The primary objective is to examine the performance of

the bulk temperature measurement system. The heat exchanger is powered with a direct

current power supply' 6 which reduces the uncertainty in the transient accuracy of the current

control and measurement systems.

The efficacy of the bulk temperature measurement system is determined by

comparing the measured bulk temperature with the bulk temperature computed by an

energy balance. Initially, the entire enclosure was constructed from acrylic. A typical

energy balance obtained from the constant flux source using the acrylic enclosure is shown

in Figure 4.18. The computed bulk temperature curve by an energy balance (including

heat losses) and "measured" bulk temperature from the capacitance probe are significantly

different in both magnitude and shape. Also included in Figure 4.18 is the limiting case

of a perfectly insulated enclosure (energy balance with no losses).

Additional constant flux runs were made with the acrylic enclosure uninsulated.

Figure 4.19 shows the response in measured bulk temperature by the capacitance probe.

The resulting temperature profiles are completely unexpected. The uninsulated enclosure

case apparently experiences a sharper rise in bulk temperature as indicated by the

capacitance probe response. Since this behavior makes no sense, physically, alternative

explanations were sought.

16 Model LPS 152 DC Tracking Power Supply; Leader Electronics Corporation.



133

35

_ 33

-.o 31

- 29

27

25
0.0 1.0 2.0 3.0 4.0 5.0 6.U

Time (hr)

Figure 4.18: Energy balance with a constant heat flux source and acrylic enclosure.

The bulk temperature measurement system relies on monitoring the volume of fluid

expanding into a column above the enclosure. Additional apparatus debugging suggested

that the acrylic enclosure is experiencing thermal expansion upon heating the working

fluid. Because the enclosure is significantly larger than the expansion column, small

changes in the enclosure volume by thermal expansion can have a significant influence

on the amount of fluid moving up the column during heating. Enclosure thermal expansion

explains the behavior observed in Figure 4.19. If the enclosure is uninsulated, the surface

temperature of the enclosure is lower. The lower enclosure surface temperature reduces
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Figure 4.19: Apparent bulk temperature for acrylic enclosure with and without
insulation and a constant flux heat source.

the thermal expansion which allows a higher level of working fluid to move up the column.

(The net effect of enclosure thermal expansion is an underprediction of the true bulk

temperature.)

The impact of enclosure thermal expansion can be illustrated by performing a simple

test. The enclosure is insulated and subjected to the constant heat flux source for several

hours. The power is then turned off and the enclosure insulation removed allowing

relatively cooler ambient air to reach the enclosure surface. From the second law, the bulk

I
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temperature must decrease; however, the fluid in the expansion column continues to rise

as shown by the response of the capacitance probe output in Figure 4.20. The explanation

for this behavior is that the cooler ambient air is causing the enclosure to contract; thereby,

pushing the working fluid higher in the column and making the apparent bulk temperature

rise. To minimize the effects of enclosure expansion, a new enclosure body was sought.

The new enclosure body is made from a glass (Duran®) which has an order of magnitude

lower thermal expansion coefficient compared to the acrylic. Figure 4.20 illustrates the

action of the reduced enclosure expansion characteristics of Duran® compared with the

acrylic.

It is clear from Figure 4.20 that the Duran® enclosure still experiences thermal

expansion. Although the expansion is small, a first order correction is applied to

compensate for the error incurred by expansion. The estimate assumes linear expansion

in both the circumferential and vertical directions. The temperature difference used in

computing the linear expansion is approximated by using the bulk temperature from the

actual capacitance probe output (as given in Figure 4.16). The change in capacitance probe

output due to enclosure expansion is given by Equation 4.29.
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Figure 4.20: Capacitance probe response during initial enclosure cool-down after
removing insulation.

r D oHo(e xPA[ 3  AT2A 2l (4.29)
A )corr= 31.435 +3(1O+"expT)-+(exp/J

where Ama)corr is the correction due to enclosure expansion, Do and Ho are the enclosure

diameter and height respectively, oXexp is the linear expansion coefficient for Duran®, and

AT = (T(t) - T(0)). The correction factor given by Equation 4.29 is added to the observed

change in capacitance probe output resulting in a corrected probe output for use in

computing corrected bulk temperature estimate with a relationship as given in Figure 4.15.
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The resulting energy balance derived based on the constant heat flux condition in

the Duran® enclosure is shown in Figure 4.21. The "measured" bulk temperature (corrected

for enclosure expansion) compares well with the bulk temperature found by integrating

the energy supplied to the heat exchanger. Figure 4.21 also shows the limiting case of a

perfectly insulated enclosure.
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Figure 4.21: Bulk temperature by measurements and energy balance with constant flux
heat source (Duran® enclosure).

The bulk temperature found by an energy balance is within the bounds of error (based

on the uncertainty analysis) for the bulk temperature throughout the entire transient.
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Agreement of the measured bulk temperature with the bulk temperature derived by an

energy balance based on an independently measured quantity provides an increased level

of confidence that the bulk temperature measurement technique is working properly. The

error bars in Figure 4.21 are symmetric deviations about the measured bulk temperature.

The maximum error in the bulk temperature is estimated to be 0.67 C (1.2 F). The maximum

deviation of the bulk temperature based on an energy balance compared with the measured

bulk temperature is 0.6 C (1.08 F). In general, the estimated error in bulk temperature is

expected to be within 2% over the entire range of bulk temperatures.

4.4.2 Constant Temperature Source

Imposing a constant heat flux boundary condition is relatively simple both

mathematically and physically. The constant temperature boundary condition with a step

change in temperature is much more difficult to impose both mathematically and

physically. An infinite heat transfer rate is required to achieve the step change initial

condition. While this is possible in an mathematical setting, physically it is impossible

due to the finite capacitance of the heat exchanger. The actual response of the heat

exchanger is determined by the behavior of the control system employed. In this case, a

PID (proportional-integral-differential) feedback control system is used to maintain the

heat exchanger at the desired set temperature. A typical heat exchanger surface temperature

response is shown in Figure 4.22. The heat exchanger surface temperature initially reaches

the setpoint quickly but overshoots and eventually falls back to the steady set temperature.

Computations:

Due to resource constraints, the computational results given in Chapter 3 were based

on an enclosure which is smaller than the experimental configuration. Thus, a numerical
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Figure 4.22: Typical, measured heat exchanger surface temperature.

solution of a geometry identical to the experimental configuration must be found. The

computations also assumed an ideal step change in surface temperature. Since this

condition was not experimentally possible, a typical wall temperature profile was imposed

as a time dependent boundary condition for a final computation based on the experimental

geometry. The finite element mesh used in the computation is shown in Figure 4.23.

Computations were performed using the mesh in Figure 4.23. Unfortunately, after

approximately 21 CPU days (running on a DECStation 5000/240) the computation

progressed only as far as the end of the quasi-steady regime. The magnitude of the average
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Figure 4.23: Finite element mesh for experimental geometry.

Nusselt number obtained from the computation was in agreement with the correlation for

the long horizontal cylinder in an infinite medium given by Morgan (1975) during this

time period.

Experimental Results:

Several sequences of experimental runs were made to assure that the data taken is

repeatable. Figure 4.24 shows the bulk temperature response of three runs with the heat

exchanger subjected to the isothermal boundary condition. The dashed line represents the

three run average. All data are within the error limits determined by the uncertainty analysis

presented in Section 4.3.

The time dependent average Nusselt number is determined from two techniques:

measured current (Equation 4.4) and measured bulk temperature (Equation 4.6). The

expected magnitude of heat transfer during the quasi-steady regime is given by a correlation

(Morgan, 1975) for a long horizontal cylinder in an infinite medium. The duration of the

quasi-steady regime is predicted by scale analysis (Equation 3.14). The results for the



141

102

92

.)

,. 82

38.9

r,.)

33.3 5

F,-,

27.8 ,.

22.2

0 5000 10000 15000

Time (sec)

Figure 4.24: Repeatability of the bulk temperature response.

temporal heat transfer response, expressed in terms of an average Nusselt number, are

shown in Figure 4.25. Included in Figure 4.25 is the expected magnitude and duration of

the "quasi-steady" regime.

Several observations from Figure 4.25 are in order. First, neither the heat transfer

results based on measured current nor the results based on bulk temperature compare with

the expected quasi-steady regime. The heat transfer never appears to behave as if it were

in an infinite medium (as would be indicated by a plateau in the temporal heat transfer

response). Second, the difference between the heat transfer predicted by measured current
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Figure 4.25: Experimental results for average Nusselt number by measured current and
time rate change in bulk temperature (one minute time average results over three runs).

and bulk temperature are significant. The author believes that the measured current results

are incorrect. The current measurements suffer from the inherent difficulty in evaluating

the RMS current of a chopped alternating current waveform whose average value is

continuously changing (a result of the phase angle fired solid state relay coupled with the

PID controller). The author believes the heat transfer results based on the time rate change

in bulk temperature are correct. This conclusion is based on the results given in Section

4.4.1 for the constant current boundary condition. Under the constant current conditions,
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the energy supplied to the heat exchanger is easily and accurately measured. Furthermore,

Figure 4.21 showed good agreement between the measured bulk temperature and the bulk

temperature derived from an energy balance based on the measured current. The agreement

lends a high level of confidence in the bulk measurement technique. Thus, the average

Nusselt number results based on measured current will be disregarded in the remaining

analysis.

The question still remains: why is there a significant difference between the measured

and numerical (based on two-dimensional) computations? An unexplored area at this point

in the experimental analysis is actual fluid flow field measurements. In an effort to gain

a better understanding of the fluid flow field, a simple flow visualization technique is

engaged. A shadowgraph technique is used to observe the behavior of bulk flow patterns

ascending from the heated coil. Because of the enclosure's cylindrical configuration, the

flexibility of the viewing angles are limited to those in the plane of the major coil axis.

Figure 4.26 shows the arrangement used to obtain the shadowgraph results. The light

source is oriented perpendicular to the enclosure surface and projected such that the shadow

of the coil appears on a screen behind the enclosure. Density differences in the flow field

cause changes in fluid's index of refraction which result in producing shadows on the

screen behind the enclosure. The movement of the shadows is used to qualitatively study

the structure of the velocity flow field.

The transient begins by supplying full power to the heat source in an attempt to

achieve the sharp change in wall temperature. After the initial supply of power to the

source, no fluid movement is noticed for approximately six seconds. The behavior of the

observed delay in flow is consistent with the prediction of an initial pure conduction regime.

The time period of the delay agrees with the predicted duration of the conduction dominated
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Figure 4.26: Shadowgraph setup.

regime by scale analysis. After the initial delay, a front of warm fluid rises above the coil.

Immediately, the warm front of fluid begins to buckle into a mushroom shaped plume

formation and fluid cells begin to appear. (The computations showed plumes forming in

the plane of the minor axis as well suggesting that the plumes are truly conical or mushroom

shaped in three dimensions.) The centers of each plume continue to rise as their shape

becomes distorted until finally moving out of the shadowgraph control volume. As the

flow continues to develop, distinct cells of fluid exist above the source.

Upon startup, the temperature of the coil eventually overshoots the setpoint and the

energy supplied to the source is cut-off by the controller. As the coil temperature decreases,

the controller begins proportioning the necessary energy to the coil to maintain its

i
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temperature. Unfortunately, the coil temperature is not constant but fluctuates about the

setpoint because of the varying power supplied by the controller-relay setup. The

fluctuation of power supplied to the coil has an adverse impact on the flow from the coil.

Each time the coil is powered on by the controller, a new front/wave of warm fluid rises

above the source. The effect of the controller pulsing the coil power on and off is a greater

mixing action of the fluid in the enclosure that would otherwise not occur. On a large

scale, the time average (15 second) power supplied to the heat source appears to be smooth;

however, on a smaller scale the pulsing source fundamentally changes the coil boundary

condition compared to that used in the computations. The net effect is the boundary

condition on the coil in the experiment not consistent with the boundary condition imposed

in the numerical computations.

Figure 4.27 shows a sequence of photographs taken just when a new front or wave

of fluid is building above the coil tube heat source. Figure 4.27a shows that the warm

front of fluid above the coil is composed of cell like structures with the mushroom shaped

plumes forming at the apex of the wave cells. As the front ascends, some of the plume

cells coagulate while others narrow. As the front continues to move up, the mushroom

shape of the plumes become distorted and eventually unrecognizable. Eventually, the

entire front is ejected from the immediate neighborhood above the coil and moves to the

top of the enclosure. This occurs when the temperature of the coil is moving down during

its cycle about the setpoint. The entire cycle time between front ejections is approximately

20 seconds (this cycle time is observed relatively early in the transient i.e. within 30 minutes

from the start).
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Figure 4.27: Sequence of shadow graphs approximately 2 seconds apart.
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The measured heat transfer response appears to be continuously diminishing

throughout the entire transient. It is indicative of the behavior experienced during the

decay period in the numerical computations. In Chapter 3, scale analysis is used to identify

a group of parameters to correlate the decay period (Equation 3.19). The grouping of

parameters in Equation 3.19 assumed the mass-capacitance product included only the

working fluid (numerically, the enclosure did not have mass); however, the experimental

enclosure has significant thermal mass. Generalizing Equation 3.19 to include a

mass-capacitance product of the entire enclosure (working fluid + tank) results in the

following relationship

F 2kRRa4t 5  (4.30)
Nu- C + xDIR 1/4

[ 
4 (mC)ankj

where k is the thermal conductivity of water (evaluated at { Tw+To }/2), Rx is the major radius

of the heat exchanger, and (mc)tk is a mass-capacitance product including working fluid

and enclosure structure.

The dimensional grouping identified in Equation 4.30 was compared with the

measured transient average Nusselt number. Obtaining the single constant (C1= 1.407) by

least squares comparison with the measured data yields a single correlation that describes

the transient response of the actual heat exchanger. The agreement between Equation 4.31

and the measured average Nusselt number over the entire transient is excellent as shown

by Figure 4.28.

2i tkRRa1/4t -5  (4.31)
Nu -1.407 1 +47(mR )D tRa14

[_ 4 (MC ).~k j
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Figure 4.28: Measured and correlated (Equation 4.3 1) average Nusselt numbers (one
minute time average results over three runs).

It is also of interest to determine the ability of the correlation given by Equation 4.31

to predict the bulk temperature response. The resulting bulk temperature response, found

by integrating Equation 4.31, is compared with the measured bulk temperature in Figure

4.29. The agreement between the measured and predicted bulk temperature is excellent

and well within the uncertainty of the bulk temperature measurements (given by the

horizontal bars in the figure).
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4.5 Conclusions

An experimental apparatus has been constructed to study the transient heat transfer

from a single loop coil tube heat exchanger immersed in water. The source is a copper

coil tube with an integral resistance heating element. The enclosure consists of a

borosilicate based glass cylinder with acrylic head and base plates. The entire enclosure

is insulated to minimize heat loss. Any resultant heat losses are characterized by a power

law relationship fitted from cool-down data. The variables monitored during the
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experiment include: source temperature, ambient temperature, enclosure bulk temperature,

and electrical power supplied to the coil. A new technique for measuring the bulk

temperature of fluid in the enclosure has been developed.

The first boundary condition considered is a constant heat flux source. Direct current

power is supplied to the heat source and the transient response of enclosure bulk

temperature observed. The bulk temperature, based on an energy balance, is also computed.

Both the measured and energy balance based bulk temperatures agree within 0.6 C (1.08

F) after six hours of heating. The difference throughout the entire transient is within the

error bounds predicted by uncertainty analysis (0.67 C, 1.2 F). The results of the constant

current boundary conditions lend confidence in the measurement technique developed to

predict the enclosure bulk temperature.

A constant temperature boundary condition is imposed in an effort to validate the

two-dimensional numerical computations. A feedback control system is used to maintain

the source at "constant" temperature. Both bulk temperature and average Nusselt number

(based on measured power and time rate change in bulk temperature) are observed. The

measured temporal response of the average Nusselt number is quite different than the

response predicted by numerical computations.

A simple shadowgraph flow visualization technique is used to gain a better

understanding of the flow field. The visualization technique confirms the existence and

time duration of the pure conduction regime as predicted numerically and by scale analysis.

The shadowgraphs also showed the influence of a source temperature that is not constant.

(The scheme used to control the power to the heat source maintains the source temperature

in a range of-1.1 C, 2 F about the setpoint while the actual temperature of the source

oscillates about the setpoint.) The shadowgraphs show a dramatic impact of the oscillating
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temperature boundary condition on the flow field. The oscillating temperature boundary

condition causes a higher degree of mixing in the flow field. The mixing results in a heat

transfer profile that appears to decay throughout the entire transient. The parameters

identified by scale analysis to correlate the decay period are applied to the observed

temporal response of the average Nusselt number. After modifying the single coefficient,

excellent agreement is obtained between the observed heat transfer and that predicted by

scale analysis.
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5 Conclusions and Recommendations

This chapter draws conclusions on the work performed during the course of this

research effort. In addition, recommendations are made for directions and areas of focus

in future research related to this topic.

5.1 Conclusions

A primitive variable formulation of the finite element method is used to simulate two

transient source driven enclosure problems: a vertical flat plate in a rectangular enclosure

and a coil tube heat exchanger in an cylindrical enclosure. Although the geometries are

quite different, the temporal response of heat transfer from the sources are similar. The

temporal heat transfer is characterized by three distinct regimes: pure conduction,

quasi-steady, and decay. In each geometry scale analysis techniques are used to predict

the time duration of the pure conduction and quasi-steady regimes. Scale analysis is also

used to identify parameters to correlate the decay period.

In addition to the numerical computations, physical experiments were undertaken to

validate the results obtained from simulation of the cylindrical enclosure geometry.

Measured quantities include: heat exchanger surface temperature, ambient temperature,

enclosure bulk temperature, and average Nusselt number.

5.1.1 Vertical Flat Plate In A Rectangular Enclosure

The temperature field in the rectangular enclosure with a vertical flat plate maintained

a strong level of stratification throughout the entire transient. Early in the transient, a

plume of heated fluid rises above the vertical plate and eventually reaches the top of the

enclosure. After reaching the enclosure top, the plume drives across the cavity to the
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sidewalls. The remainder of the charging transient is characterized by a front of warm

fluid spanning the width of the enclosure and moving from the top of the enclosure to the

bottom.

The temporal behavior of the velocity field is relatively acquiescent. The velocity

field is characterized by a single clockwise rotating vortex which initially forms just above

the heated plate. The structure of the flow field remains essentially unchanged with only

the center of the vortex moving near the plate as the velocities peak and then away from

the plate as the velocities decay.

The heat flux results are characterized by three distinct regimes: pure conduction,

quasi-steady, and decay periods. Scale analysis techniques successfully predict the time

duration of the pure conduction and quasi-steady regimes. The viscous flow solutions

compare well with the limiting cases of pure conduction and infinite medium solutions at

early and middle portions of the transient, respectively. Scale analysis techniques are also

used to identify a grouping of parameters that allow the decay period to be correlated with

a single constant for the entire range of Rayleigh numbers considered.

The length of the heated plate relative to the enclosure size has an influence on the

heat transfer results. The enclosure must be at least one and one half times as large as the

plate length in order for a quasi-steady regime to be established. As the enclosure size

becomes larger, relative to the heated plate, the quasi-steady regime is maintained for a

longer period; however, all enclosures eventually reach the end of the quasi-steady regime

as the temperature in the enclosure begins to rise significantly and the heat transfer begins

to decay.
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5.1.2 Coil Tube In A Cylindrical Enclosure

The temperature field in the cylindrical enclosure geometry is much more

complicated than in the rectangular enclosure geometry. The temperature field develops

with a mushroom shaped plume rising above the coil tube source. The plume tends to

oscillate back and forth above the heat source with therms of warm fluid occasionally

being ejected from the sides of the mushroomed plume. Very little stratification is induced

in the enclosure throughout the transient. The enclosure temperature distribution could

be described as somewhere between fully mixed and fully stratified.

The velocities in the cylindrical enclosure are also much more complex than in the

case of the rectangular enclosure. Initially, counter-rotating vortices form on either side

above the coil tube source. There is a relatively strong zone of fluid flow down the core

of the enclosure. The core flow penetrates to the base of the enclosure early in the transient;

however, the flow in the core flow also reverses direction and moves upward. This is

believed to be caused by inertial effects coupled with oscillating behavior of the heated

plume rising above the coil tube source. In the region above the heat exchanger, there are

both clockwise and counter-clockwise eddies being formed and dissipated throughout the

transient.

Interestingly, the heat flux response is analogous to the rectangular enclosure case.

Although the two geometries are drastically different, the same heat transfer regimes exist

and the same analysis techniques apply. The heat transfer results early in the transient

compare well with pure conduction solutions. The quasi-steady regime is in good

agreement with the heat transfer from a long horizontal cylinder in an infinite medium.

Scale analysis techniques are used to identify a group of parameters to correlate the decay
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period with a single constant for all ranges of Rayleigh numbers considered.

5.1.3 Experimental Analysis

An experimental apparatus is developed to study the transient natural convection

from a single coil tube heat source in a cylindrical enclosure. Measured variables include:

source surface temperature, ambient temperature, enclosure bulk temperature, and average

Nusselt number from the source. Both constant heat flux and constant temperature source

boundary conditions are considered.

The primary purpose for using the constant heat flux source boundary condition is

to validate the bulk temperature measurement technique. A constant direct current supply

of energy is provided to the heat source and the temporal response of bulk temperature is

observed. The bulk temperature measured and bulk temperature based on an energy

balance compare within 1.08 F (0.6 C) after a six hour heating period. The measured and

energy balance based bulk temperatures are in good agreement throughout the entire

transient. The constant heat flux results lend confidence in this new bulk temperature

measurement technique.

The motivation in considering the constant temperature source boundary condition

is validation of the numerical computations. The numerical computations consider the

same cylindrical geometry in a two dimensional axi-symmetric configuration. The

measured temporal response of the average Nusselt number does not agree with the

numerically predicted response. Flow visualization techniques lend insight into explaining

the differences between the measured and computed heat transfer response. The author

believes the primary reason for the difference in the heat transfer responses is due to

fluctuations in the source temperature about the set point and the three dimensional
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character of the experimental flow. The fluctuations in the source temperature causes a

greater degree of mixing in the enclosure. The higher degree of mixing prevents the heat

transfer response from maintaining the plateau indicative of the quasi-steady regime;

therefore, the measured heat transfer response appears to decay from the initial condition.

A grouping of parameters identified to correlate the decay period is applied to the measured

heat transfer response. After modifying the single coefficient in the parameter grouping,

excellent agreement is found with the measured temporal response of the heat transfer.

The agreement with the predicted bulk temperature (found by integrating the correlated

heat transfer) and the measured bulk temperature is excellent as well.

5.2 Recommendations

After completing the investigation of transient heat transfer from sources in enclosure,

the author would like to make recommendations for future both numerical and experimental

work.

5.2.1 Vertical Flat Plate In A Rectangular Enclosure

The computational domain in the rectangular enclosure with a heated vertical flat

plate geometry assumed a line of symmetry coincident with the plane of the plate. The

symmetry assumption reduces the computational domain in half; however, there are

potential problems arising from the symmetry assumption. First, the flat plate source

position is limited to the center of the cavity (in the horizontal direction). Second, the line

of symmetry will not allow the computations to capture any oscillating phenomena of the

heated plume rising above the plate. Finally, the computational domain neglects all end

effects (in the depth direction) by assuming two-dimensional behavior.
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The first recommendation in addressing the limitations of the symmetric geometry

is to extend the domain to include the entire two-dimensional enclosure. Forgoing the

symmetry assumption will allow investigation into the existence of oscillating behavior

in the rising thermal plume above the plate. Simulating the entire enclosure will also allow

the source position to be varied to off-center positions. The plate could be located near a

sidewall to observe the effect of the bounding near wall on the heat transfer and fluid flow

from the plate. Does the region between the plate and sidewall become stagnant when the

plate is positioned very close to the wall? What is the penalty in the overall heat transfer?

Do the same temporal heat transfer regimes exist?

5.2.2 Coil Tube In A Cylindrical Enclosure

In considering the location and configuration of the heat source, flow stability

questions arise. The numerical computations performed for this geometry assumed axis

symmetric fluid flow and heat transfer. The basis for this assumption arises from the

boundary conditions on the enclosure (adiabatic) and the source (isothermal). A logical

extension of this dissertation is to extend the computations to include the third dimension.

With the same boundary conditions, do convection cells form above the heat source in a

three-dimensional domain (similar to the cells which form in the classic B6nard stability

problem)? If cellular patterns form, how do they influence the heat transfer from the

source? Do the cells have an adverse or auspicious impact on the level of stratification in

the enclosure during charging?

The parametric studies considered in this investigation should be extended to consider

optimizing the heat transfer from the heat exchanger source. The objective is to minimize

the time required to charge the enclosure. It is apparent from first principles and the scale



159

analysis estimates, the coil diameter should be as large as possible and the coil positioned

as low as possible in the enclosure. What is not as apparent is the impact on the heat

transfer of the near wall on the fluid flow around the source. Does the sidewall or base of

the enclosure impede or choke the natural circulation flow around the heat exchanger? Is

there a perceivable penalty on the magnitude of the heat flux from the source?

Most thermal storage applications rely on charging the storage volume through

fluid-fluid heat exchangers immersed in the enclosure (tank). With this type of storage

strategy, there is a significant azimuthal temperature variation on the surface of the heat

exchanger due to fluid on the heat exchanger interior losing its energy as it moves through

the coil. In this case, the heat transfer and fluid flow from the immerse coil is fully three

dimensional. What influence do flow rates on the interior of the heat exchanger have on

the heat transfer and fluid dynamic behavior'? Can the heat exchanger position be moved

to mitigate the effect of the azimuthal temperature variation. For example, can the heat

exchanger be tilted such that the 'cool" end of the exchanger be positioned lower in the

cavity to maintain a maximum temperature difference throughout the transient?

With a three-dimensional domain, it is possible to study the influence of heat

exchanger geometry. It would be of interest to investigate the performance of various heat

exchanger geometries in charging the storage tank. Does the coil tube heat exchanger

perform better than a bayonet type heat exchanger? Are other geometries better suited to

charging the storage tank or inducing stratification in the enclosure? What is the effect of

tilting the source in the enclosure?

In the context of solar thermal storage, it is desirable to maintain a high degree of

temperature stratification in the storage tank. The simulation results indicate that

temperature stratification is not being induced in the enclosure; rather, the fluid in the
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enclosure is somewhere between a fully mixed and a stratified state. It would prove useful

to pursue methods to induce stratification. Inducing stratification may be accomplished

by using physical barriers appropriately positioned within the enclosure. For example, a

fine mesh screen positioned above and parallel to the coil tube heat exchanger would help

to reduce the momentum of upward and downward directed convective currents; thereby,

reducing participation of the entire enclosure in the mixing process during charging. The

mixing process may also be squelched by positioning a solid barrier in the path of the

plume which rises above the heat exchanger. These techniques are expected to induce

stratification. A consequence of the stronger stratification is a reduced time to charge the

enclosure.

In the current investigation, only an energy charging mode is considered. In actual

applications, we are often just as interested in the discharge or simultaneous

charge/discharge problem. How long does it take to stratify the tank when charging is

"turned off'? What happens when charging resumes'? What do the flow and temperature

fields look like when we have a second coil to discharge the energy simultaneously when

charging? If the energy being discharged = energy charging, what does the "steady" flow

and temperature field look like?

The computations were limited to the high end of the laminar regime. In working

thermal storage tanks, higher Rayleigh numbers are often encountered which raises

questions about turbulent flows. What closure techniques are appropriate to simulate the

transient turbulent flow in this geometry? What are the constants in the closure models?

These questions should be answered in conjunction with experiments performed in the

turbulent range of Rayleigh numbers.
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5.2.3 Experimental Analysis

A critical component in the experimental analysis is the heat exchanger source. The

mathematical boundary conditions imposed on the heat exchanger is a step change in

temperature, initially, and a uniform isothermal temperature at all other times. Both

conditions are difficult to impose in an experimental setting. The observed initial response

of the heat exchanger is a ramped change in source temperature followed by a mildly

non-uniform isothermal boundary condition at later times. Steps should be taken to

minimize the temperature non-uniformity of the source and accurately measure the average

temperature of the source.

The heat exchanger contains a small diameter heating element coiled inside the copper

tube by approximately five turns. The non-uniformity of the heat source is due to overlap

of the heating element coiled inside copper heat tube housing. The overlap can be reduced

by special ordering a slightly shorter length heating element. Temperature non-uniformity

may also be minimized by using a different type of heating element. For example, a larger

diameter heating element with a single turn could be positioned inside the copper tube and

fastened with low temperature solder. The solder will not only fix the heating element

position but also increase the thermal communication with the copper tube by eliminating

the air void fraction on the tube interior. Another approach to address the temperature

non-uniformity is to use a different heating element. If a heating element can be constructed

from ferromagnetic material, it is possible to use a magnetic field in conjunction with the

ferromagnetic heat source to achieve a constant uniform temperature source. This

technique would eliminate blockage effects caused by the support structure associated

with the current heat exchanger design.
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Precise measurements of the source temperature (heat exchanger) are required to

accurately estimate the average Nusselt number. If the heat exchanger temperature is

completely uniform, a single point temperature measurement is acceptable; however, if

the heat exchanger is not entirely uniform in temperature, an average temperature of the

source is desired. In the current configuration, only two thermocouples are used to estimate

the surface temperature. A possible method to obtain a true average heat exchanger surface

temperature is based on the principles of thermocouples. The heat exchanger surface is

copper. If the heat exchanger is plated with a thin layer of dissimilar metal, a thermocouple

junction over the entire heat exchanger surface is created. If a T-type of thermocouple is

sought, constantan (55% Cu - 45% Ni) would have to be applied to the copper heat

exchanger surface. The application of this alloy would probably require a sputtering

process; consequently, the cost associated with this approach may be prohibitive. The

most cost effective would be a plating process; however, only pure metals can be applied

in plating processes. Temperature - voltage relationships for the new "thermocouple"

would have to be determined.

Another important factor related to determining the average Nusselt number from

the heat exchanger is the electrical power measurement technique. The difficulty arises

in trying to measure the true RMS current of the chopped alternating current waveform

such that the true power can be found. Measuring the true RMS current of a continuously

changing chopped waveform is very difficult. An alternative is to employ direct current

as the power source for the heat exchanger. Advantages include: relatively easy and

accurate current measurements and reduced electromagnetic noise. The primary

disadvantage is the cost of a direct current power supply needed to supply the required

voltage (minimum of 240 VDC) to the heat exchanger.
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The two largest sources of error in measuring the bulk temperature of fluid in the

enclosure are: expansion of the enclosure and non-linearity in the fluid temperature-specific

volume relationship. Expansion of the enclosure may be mitigated by selecting materials

with extremely low expansion properties. The cylindrical portion of the enclosure was

made of Duran®. Duran® is a borosilicate based glass with moderately low expansion

properties. Selecting a glass with a fused silica base will provide extremely low expansion

properties. Another source of expansion in the current enclosure construction is the acrylic

top and base plates. Thermal expansion in these two components was larger than desirable.

Minimum enclosure expansion will be achieved by selecting both the cylinder portion and

upper and lower plates with glass having a fused silica base.

Enclosure expansion represents the greatest source of uncertainty in measuring the

bulk temperature. Expansion will exist even when employing low expansion fused silica

glasses; therefore, identifying techniques to correct the results for enclosure expansion

will improve the bulk temperature measurements. A possible method for determining the

enclosure expansion is to measure the expansion directly by using strain gages. Assuming

the cylinder portion of the enclosure is the largest source of enclosure volume,

two-dimensional rosette strain gages can be applied to determine both the vertical and

circumferential expansion of the glass. With a direct measurement of the enclosure

expansion, the observed fluid volume expansion can be corrected to arrive at corrected

bulk temperature estimates.

Two methods are available which would minimize the error associated with a

non-linear temperature-specific volume relationship. The first method is to select a

working fluid with a linear temperature-specific volume relationship. The second method

is to maintain water as the working fluid but limit its use to a narrower temperature range.
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Interestingly, the author could not locate any prior investigations on the natural

convection heat transfer from a toroid body, similar to the heat exchanger employed here.

It would be useful to investigate the heat transfer from the toroid in an "infinite" medium

for various radius ratios (rJR,). Aside from being an interesting fundamental heat transfer

problem, the infinite medium results from the toroid would be the appropriate quantity to

compare with the quasi-steady regime heat transfer for the toroid in an enclosure.


