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Abstract 
 

 

A solar electric generating system (SEGS) can be divided into two major subsystems 

(Lippke, 1995): a solar collector field and a conventional Clausius-Rankine cycle with a 

turbine-generator. For the 30 MWe SEGS VI Parabolic Trough Collector Plant, one task of a 

skilled plant operator is to maintain a specified set point of the collector outlet temperature 

by adjusting the volume flow rate of the heat transfer fluid circulating through the collectors. 

The collector outlet temperature is mainly affected by changes in the sun intensity, by the 

collector inlet temperature and by the volume flow rate of the heat transfer fluid. For the 

development of next generation SEGS plants and in order to obtain a control algorithm that 

approximates an operator’s behaviour, a linear model predictive controller is developed for 

use in a plant model. The plant model, which is discussed first in this work, consists of a 

model for the parabolic trough collector field and a model for the power plant. The plant 

model’s usefulness is evaluated through a comparison between predicted and measured data. 

The performance of the controller is evaluated on four different days in 1998. The influence 

of the control on the gross output of the plant is examined as well. 
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Chapter 1 

Introduction 
 

 

A solar electric generating system (SEGS), shown in Figure 1.1, refers to a class of solar 

energy systems that use parabolic troughs in order to produce electricity from sunlight 

(Pilkington, 1996). 

  

 

 

 

 

 

 

 

 

 

 

 
Figure 1.1: Areal View of a SEGS Plant 
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The parabolic troughs are long parallel rows of curved glass mirrors focusing the sun’s 

energy on an absorber pipe located along its focal line (Figure 1.2).  These collectors track 

the sun by rotating around a north-south axis.  

 

 

 

 

 

 

 

 
Figure 1.2: Parabolic Trough Collector of a SEGS Plant 
 

The heat transfer fluid (HTF), an oil, is circulated through the pipes. Under normal operation 

the heated HTF leaves the collectors with a specified collector outlet temperature and is 

pumped to a central power plant area. There, the HTF is passed through several heat 

exchangers where its energy is transferred to the power plant’s working fluid, which is water 

or steam (Figure 1.3). The heated steam is used in turn to drive a turbine generator to produce 

electricity. The facility discussed in this work is the 30 MWe SEGS VI plant, constructed in 

1988 by Luz International Ltd., and is located in the Mojave desert of southern California.  

   A skilled operator controls the parabolic trough collector outlet temperature. One of 

his tasks is to maintain a specified set point for the collector outlet temperature by adjusting 

the volume flow rate of the HTF within upper and lower bounds. The collector outlet 

temperature is mainly affected by changes in the sun intensity, by the collector inlet 
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temperature and by the volume flow rate of the HTF. The ambient temperature and the wind 

speed also influence the outlet temperature but their influence is small. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3: Flow Diagram of the 30 MWe SEGS VI Plant 

 

Knowledge of the sun’s daily path, observation of clouds and many years of experience and 

training give the operator the ability to accomplish his task. But there are limitations on the 

performance of a human controller. Thus, for the development of next generation SEGS 

plants, it is reasonable to look at automatic controls. In addition, a control algorithm that 

approximates an operator’s behavior can be included in simulation models of SEGS plants.   
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Automatic control of the HTF in a parabolic trough collector through proportional control 

has been previously addressed (Schindwolf, 1980). In this study, a linear model predictive 

controller is developed for the SEGS VI plant. The essential idea behind model predictive 

control (MPC) is to optimize forecasts of process behavior. The forecasting is accomplished 

with a process model. Therefore, the model is the essential element of a MPC controller 

(Rawlings, 2000). The control strategy considers constraints on both the collector outlet 

temperature and the volume flow rate of the HTF. 

In this work, the control performance is evaluated through simulations. Consequently 

it is very important to obtain an accurate model of the plant on which the controller can be 

tested.  

 The following three chapters deal with the modeling of the plant. From Figure 1.3, it 

can be seen that the plant consists of two cycles: the cycle of the HTF through the collector 

field, indicated by the orange color, and the power plant cycle, indicated by the blue colors. 

In Chapter 2, a trough collector field model is presented. In Chapter 3, a model for the power 

plant is proposed. Chapter 4 shows simulation results with the combined model and predicted 

and measured data are compared in order to evaluate the model. 

 Finally, in the last chapter, the model predictive control concept is introduced with a 

simplified plant model. The control performance is evaluated through simulations with the 

complex plant model from Chapter 4 and compared to the performance of a human 

controller. The influence of the control on the gross output of the plant is examined as well. 
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Chapter 2 

Trough Collector Field Model 
 

 

2.1 Introduction 
 
 
The 30 MWe SEGS VI plant is located in the Mojave desert of southern California. The 

layout of the plant is shown in Figure 2.1. 

 

 

  

 

 

 

 

 

 

 

 

Figure 2.1: Layout of the SEGS VI plant 
 

The Figure 2.1 shows the power plant with the solar trough collector field. The solar trough 

collector field can be divided into four quadrants. There are three quadrants with 12 solar 

trough collectors each and one quadrant with 14 solar trough collectors: for a total of 50 solar 
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trough collectors. One of these 50 collectors is formed by a loop of 16 solar collector 

assemblies (SCA). The cold heat transfer fluid (HTF) flows into the collector loop at one 

end, indicated by the blue color in the Figure, is heated up by the absorbed energy of the sun 

and leaves the collector at the other end, indicated by the red color. The hot HTF of every 

collector merges in a central header, which is connected to the power plant. In the power 

plant, the heat energy of the merged hot HTF is used to heat a working fluid, which is water 

or steam. After transferring its thermal energy to the power plant, the cold HTF leaves the 

power plant in a central header that feeds the 50 collectors in the field with the cold fluid. 

There are flow balance valves between the collector loops and the headers. The total length 

of one collector is two times 397.12 m. The collectors are single-axis tracking and aligned on 

a north-south line, thus tracking the sun from east to west.  

 

 

 

 

 

 

 

 

 
Figure 2.2: Solar Collector Assembly 

 

The structure of a part of one SCA is given in Figure 2.2 (Pilkington 1996). The entire SCA 

consists of six mirror panels. In Figure 2.2 only two of them are shown.  All the SCAs are 
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controlled by a main process computer, the Field Supervisory Controller (FSC). There is one 

drive pylon in the center of each SCA with the FSC controlled hydraulic drive system. The 

six mirror panels are held up either by the central drive pylon, intermediate pylons or by 

shared pylons between two SCAs or by an end pylon when it is the last SCA in a row. The 

length of an entire collector mirror is the length of one mirror panel times the number of 

mirror panels in a single collector. The collector mirror length is m6.753=Length . The 

low-iron glass parabolic mirrors reflect the solar radiation to the heat collection element 

(HCE) that is mounted on the SCA through arms.  

The HCE, shown in Figure 2.3, is a cermet-coated, stainless-steel absorber tube, 

surrounded by a partially evacuated glass envelope. The HTF flows in the absorber tube. 

 

 

 

 

 

 

Figure 2.3: Schematic of a Heat Collection Element 
 

Not shown in Figure 2.3 are bellows between different parts of the HCE to allow differential 

expansion between the glass and the stainless steel. There are flexible metallic hoses, 

between the SCAs themselves and between the collector loops and the headers.  
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Figure 2.4: Heat Transfer at the HCE 
 

The heat transfer between the different parts of the HCE is shown in Figure 2.4. The sun’s 

energy, reflected by the mirrors, falls on the absorber after passing through the glass 

envelope. This absorbed solar energy is not fully transmitted to the HTF. There are heat 

losses from the absorber to the glass envelope. The glass envelope in turn is loosing heat to 

the environment.  

These energy considerations lead to the development of the collector model. 

Differential equations for the temperatures of the HCE, the absorber and the glass envelope 

are established. The differential equations are coupled through relations for the heat transfer 

between the different parts of the HCE. Heat transfer between the absorber and the HTF, 

between the absorber and the envelope, and between the envelope and the environment is 

considered. Finally, the estimation of the absorbed solar energy from the direct normal solar 

radiation after optical losses is discussed. 
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2.2 Modeling of the Collector 

 
2.2.1 Partial Differential Equations for Temperatures 
 
The modeling of the collector, as shown in Figure 2.5, starts by an energy balance for the 

HTF, which leads to a partial differential equation for the HTF temperature. The distance 

along the collector is indicated by z . The equation for the HTF heat change over time t  on 

an element of length z∆ at position z is: 

( )( , ) ( , ) ( , ) ( , )HTF HTF HTF gainedQ z t Q z t Q z z t q z t z
t

∂
∆ = − + ∆ + ∆

∂
& & .                      (2.1) 

In equation (2.1), gainedq is the heat transfer per length between the absorber and the HTF. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5: Schemata of the HCE 
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From thermodynamics, it follows that 

,( , ) ( , )HTF HTF HTF ABSi HTFQ z t c A zT z tρ∆ = ∆                                     (2.2) 

with , ,HTF HTF HTFc Tρ  as the HTF density, specific heat and temperature where the first two 

depend on the latter. The cross-sectional area of the inside tube of the absorber is ,ABS iA . A 

list with all the collector dimensions is given in Appendix A. It also follows from 

thermodynamics 

( , )
( , )

( )
( , )

HTF
HTF

HTF
HTF HTF HTF

Collectors

dQ z t
Q z t

dt
V t

c T z t
n

ρ

=

=

&

&      .                                   (2.3) 

Notice the overall HTF volume flow rate, HTFV& , depends only on the time t  since the fluid is 

considered to be incompressible. The number of collectors is Collectorsn . From Figure 2.1 it is 

known that 50=Collectorsn . After inserting equation (2.2) and (2.3) into equation (2.1), it 

follows that                         

,
( , ) ( )

( , )

( )
( , )

( , ) .

HTF HTF
HTF HTF ABSi HTF HTF HTF

Collectors

HTF
HTF HTF HTF

Collectors

gained

T z t V t
c A z c T z t

t n

V t
c T z z t

n
q z t z

ρ ρ

ρ

∂
∆ =

∂

− + ∆

+ ∆

&

&
                  (2.4) 

From the definition of the derivative it follows 

0

( , ) ( , ) ( , )
limHTF HTF HTF

z

T z t T z t T z z t
z z∆ →

∂ − + ∆
=

∂ ∆
.                            (2.5) 
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Dividing equation (2.4) by z∆ , letting 0z∆ →  and considering equation (2.5), yields the 

following partial differential equation for the HTF temperature: 

),(
),()(),(

, tzq
z

tzT
n

tV
c

t
tzT

Ac gained
HTF

Collectors

HTF
HTFHTF

HTF
iABSHTFHTF +

∂
∂

−=
∂

∂ &
ρρ .                  (2.6) 

The boundary condition for equation (2.6) is 

 ,(0, ) ( )HTF HTFinletT t T t=                                                       (2.7) 

with ,HTFinletT  as the HTF collector field inlet temperature. The initial condition for equation 

(2.6) is 

)()0,( , zTzT initHTFHTF = .                                                     (2.8) 

In analogy to equation (2.1), the differential equation for the absorber temperature, ABST , is 

obtained       

( ) ( )( , ) ( ) ( , ) ( , )ABS absorbed internal gainedQ z t q t q z t q z t z
t

∂
∆ = − − ∆

∂
.                     (2.9) 

Here, internalq is the heat transfer per length between the absorber and the glass envelope. The 

absorbed solar energy is absorbedq . From thermodynamics it is known that 

( , ) ( , )ABS ABS ABS ABS ABSQ z t c A zT z tρ∆ = ∆                             (2.10) 

with , ,ABS ABS ABSc Tρ  as the absorber density, specific heat and temperature. The cross-

sectional area of the absorber is ABSA . Substituting equation (2.10) into equation (2.9) yields 

after a division by z∆  

),(),()(
),(

tzqtzqtq
t

tzT
Ac gainedinternalabsorbed

ABS
ABSABSABS −−=

∂
∂

ρ .                  (2.11) 
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The initial condition for equation (2.11) is               

)()0,( , zTzT initABSABS = .                                                 (2.12) 

The glass envelope is assumed to have no radial temperature gradients. The differential 

equation for the envelope temperature is gained through considerations similar to those used 

to obtain the differential equation for the absorber temperature (2.11): 

( , )
( , ) ( , )ENV

ENV ENV ENV internal external

T z t
c A q z t q z t

t
ρ

∂
= −

∂
                                   (2.13) 

with , ,ENV ENV ENVc Tρ  as the envelope density, specific heat and temperature. The heat 

transfer per length between the envelope and the environment is externalq . The initial condition 

for equation (2.13) is 

)()0,( , zTzT initENVENV = .                                                    (2.14) 

The interacting dynamic of the temperatures given through the differential equations (2.6), 

(2.11) and (2.13) is determined by the heat transfer between the HTF, the absorber and the 

envelope. It follows a discussion of equations to estimate the occurring heat transfer. 

 
 
 
2.2.2 Heat Transfer between the Absorber and the HTF 
 
Considering convection for internal flow, the heat transfer, gainedq , is calculated through the 

Dittus-Boelter equation for fully developed (hydrodynamically and thermally) turbulent flow 

in a smooth circular tube (Incropera & De Witt, 2002). Hence, the local Nusselt number, 

,A B S iDNu is given by                            

 
, ,

4 / 50.023
A B S i A B S i

n
D D HTFNu Re Pr=                                                         (2.15) 
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where n = 0.4 for heating ( ABS HTFT T> ) and 0.3 for cooling ( ABS HTFT T< ).  

The Reynolds number, 
,A B S iDRe , for flow in a circular tube, is given by 

CollectorsHTFiABS

HTFHTF
D nD

V
iABS µπ

ρ

,

4
Re

,

&
=                                                 (2.16) 

with HTFµ  as the viscosity of the HTF. The Prandtl number, HTFPr , is determined by 

HTF
HTF

HTF

Pr
ν
α

=                                                               (2.17) 

with the kinematic viscosity of the HTF, HTFν , defined by 

HTF
HTF

HTF

µ
ν

ρ
=                                                              (2.18) 

and the thermal diffusivity of the HTF, HTFα , which is given through 

    
HTFHTF

HTF
HTF c

k
ρ

α = .                                                      (2.19) 

Within equation (2.19), HTFk  is the thermal conductivity of the HTF. The heat transfer 

coefficient, ,ABSHTFh , is calculated by using the local Nusselt number, 
,A B S iDNu , through 

,

,
,

A B S iD HTF
ABSHTF

ABS i

Nu k
h

D
= ,                                                    (2.20) 

where ,A B S iD  is the inside diameter of the absorber tube and 066.0, =iABSD m. The HTF 

properties HTFc , HTFk , HTFµ  and HTFρ  are functions of the HTF temperature, HTFT . Finally 

the heat transfer between the absorber and the HTF, gainedq , is calculated as 

( ), , ,gained ABS HTF ABSsur f i ABS HTFq h A T T= −                                (2.21) 
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with the inner surface area per length of the absorber, , ,ABS surf iA , 

, , ,ABS surf i ABS iA Dπ= .                                                            (2.22) 

 

2.2.3 Heat Transfer between the Absorber and the Glass Envelope 
 
The heat transfer between the absorber and the glass envelope, internalq , is calculated from 

convection and radiation 

  , ,internal internalconvection internalradiat ionq q q= + .                                  (2.23) 

Assuming only partial evacuation of the annulus between the absorber and the glass 

envelope, the occurring free convection is estimated through relations for a free convection 

flow in the annular space between long, horizontal, concentric cylinders (Incropera & De 

Witt, 2002). Since the glass envelope is usually cooler than the absorber ( ABS ENVT T> ), the air 

ascends along the absorber and descends along the glass envelope. The convection heat 

transfer, ,internalconvectionq , may be expressed as 

eff,
,

, ,

2
( )

ln( / )
Air

internalconvection ABS ENV
ENV i A B S o

k
q T T

D D
π

= −                                   (2.24) 

where ,ENV iD  is the inside diameter of the glass envelope ( 112.0, =iENVD  m) and ,A B S oD  is 

the outside diameter of the absorber ( 07.0, =oABSD m). The effective thermal conductivity, 

eff ,Airk , is the thermal conductivity that the stationary air should have to transfer the same 

amount of heat as moving air. A suggested correlation for eff ,Airk  is 

1 /4

eff , * 1 /40.386 ( )
0.861

Air Air
c

Air Air

k Pr
Ra

k Pr
 

=  + 
                                  (2.25) 
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where 

4

, ,*
3 3/5 3/5 5

, ,

ln( / )

( )
ENV i ABS o

c L
ABS o ENV i

D D
Ra Ra

L D D− −

  =
+

.                                          (2.26) 

In equation (2.25), AirPr , is the Prandtl number of air in the annulus. The thermal 

conductivity of air is Airk . In equation (2.26), L , is the effective length and is given for the 

annulus through 

( ), ,0.5 E N V i A B S oL D D= − .                                                    (2.27) 

The Rayleigh Number of air, LRa , is defined as 

( )
AirAir

ENVABSAir
L

LTTg
Ra

να
β 3−

=                                                  (2.28) 

withg as the gravitational acceleration ( -2sm81.9=g ), the volumetric thermal expansion 

coefficient of air, Airβ , and the thermal diffusivity of air, Airα , calculated as 

AirpAir

Air
Air c

k

,ρ
α =  .                                                               (2.29) 

Here, Airρ  is the density of air in the annulus and Airpc ,  is the specific heat of air. The 

kinematic viscosity of air, Airν , is given by 

Air

Air
Air ρ

µ
ν =                                                                       (2.30) 

with the viscosity of air, Airµ . The properties of air in the annulus, Airα , Airβ , Airpc , , Airk , 

Airµ , Airν , AirPr  and Airρ  are dependent on the mean temperature in the annulus 

( )ENVABSAnnulus TTT += 5.0  .                                                (2.31) 
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In addition, the density Airρ  depends on the evacuation pressure in the annulus, evacp . A 

value of 7=evacp kPa is used in the model. This value was chosen such that the calculated 

collector outlet temperature fits the measured collector outlet temperature best. 

The heat transfer through radiation between long, concentric cylinders, ,internalradiationq , 

may be expressed as (Incropera & De Witt, 2002) 

( )4 4
, ,

,
,

,

11
ABSsur f o ABS ENV

internalradiation
ABS oENV

ABS ENV ENV i

A T T
q

D
D

σ

ε
ε ε

−
=

 −
+   

 

.                                       (2.32) 

In equation (2.32), σ is the Stefan-Boltzmann constant and has the numerical value 

                                         428 KW/m10670.5 ⋅×= −σ . 

The outer surface area per length of the absorber, , ,ABS surf oA , is given by 

, , ,ABS surf o ABS oA Dπ= .                                                      (2.33) 

The emissivity of the absorber is ABSε  and the emissivity of the glass envelope is ENVε  with 

9.0=ENVε as measured by SANDIA. The emissivity of the absorber, ABSε , increases with the 

absorber temperature, ABST . SANDIA provides a linear function for ABSε  from their 

measurements: 

065971.0000327.0 −⋅= ABSABS Tε .                                         (2.34) 

If ABSε < 0.05 then the value is set to ABSε = 0.05 (Figure 2.6). 
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Figure 2.6: Emissivity of the Absorber vs. Absorber Temperature 
 
 
 
2.2.4 Heat Transfer between the Glass Envelope and the Environment 
 
The heat transfer between the envelope and the environment is assumed to be due to 

convection and radiation 

, ,external externalconvection externalradiationq q q= + .                                   (2.35) 

The environmental air flows around the envelope with a wind speed, Windv . The fluid motion 

is assumed to be normal to the axis of the envelope’s circular cylinder. The heat transfer due 

to convection, ,externalconvectionq , is estimated through a correlation suggested for a circular 

cylinder in cross flow (Incropera & De Witt, 2002).  

Considering overall average conditions, the calculation starts by using the following 

correlation for the Nusselt Number, oENVDNu , : 

[ ]

5/48/5

4/13/2
,

3/1
,

2/1

000,282
1

)/4.0(1

62.0
3.0 ,,

,
























+

+
+= oENVoENV

oENV

D

ambAir

ambAirD
D

Re

Pr

PrRe
Nu                      (2.36) 
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For the circular glass envelope cylinder, the Reynolds Number, 
oENVDRe

,
, is defined as 

ambAir

oENVWindambAir
D

Dv
Re

oENV
,

,,
, µ

ρ
=                                                   (2.37) 

with ambAir,ρ as the density of the ambient air, oENVD ,  as the outside diameter of the glass 

envelope ( 115.0, =oENVD m) and ambAir,µ as the viscosity of the ambient air. The Prandtl 

number of the ambient air is ambAirPr , . The convection heat transfer coefficient, tEnvironmenENVh , , 

is then given through 

oENV

ambAirD
tEnvironmenENV

D
kNu

h oENV

,

,
,

,= .                                                      (2.38) 

The thermal conductivity of the ambient air, ambAirk , , and the other properties of the air, 

ambAir,µ , ambAirPr , and ambAir,ρ  are dependent on the mean ambient temperature 

( )ambENVamb TTT += 5.0 ,                                                 (2.39) 

where ambT is the ambient temperature of the environment. In addition, ambAir,ρ depends on the 

atmospheric pressure, atmp . Finally, the heat transfer to the environment due to convection is 

( ),, , ,ENVEnvironmentexternalconvection ENVsur f o ENV ambq h A T T= −                             (2.40) 

with the outer surface area per length of the glass envelope, , ,ENV s u r f oA , calculated through 

, , ,ENV surf o ENV oA Dπ= .                                                          (2.41) 

The heat transfer to the environment due to radiation, radiationexternalq , , may be expressed as 

(Incropera & De Witt, 2002) 

( )4 4
, , ,externalradiation ENV ENV surf o ENV ambq A T Tε σ= −                                  (2.42) 
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with ENVε as the emissivity of the glass envelope. This relationship describes the radiation of 

a small convex object, the glass envelope, in a large cavity, the environment. 

The sun’s energy is the energy source that acts on the absorber and induces the heat 

transfer discussed above. It governs the amount of energy finally transferred to the HTF and 

thus to the power plant for the generation of electricity. Thus, it is necessary to estimate the 

amount of absorbed solar energy, absorbedq . 

 
2.2.5 Absorbed Solar Energy  
 
The following discussion is based on (Duffie & Beckman, 1991) and (Iqbal, 1983). The sun 

is a completely gaseous body. Gravitational forces retain its constituent hot gases. The sun’s 

physical structure is complex and may be considered to be composed of several regions, 

where the innermost region, the core, is the hottest and densest part. Above the core is the 

interior, which contains practically all of the sun’s mass. The core and the interior are 

considered as a continuous fusion reactor, the source of almost all the sun’s energy.  This 

energy is propagated to the outer regions. The sun’s surface, the photosphere, is the source of 

most solar radiation arriving at the earth’s atmosphere. 

The intensity of solar radiation outside of the earth’s atmosphere is nearly fixed about 

1.37 kW/m2 for the mean distance between the earth and the sun of one astronomical unit, 1 

AU = 1110496.1 × m. It varies with the earth-sun distance over the year in the range of %3± . 

The earth is at its closest point to the sun (perihelion; ≈ 0.983 AU) on approximately 3 

January and at its farthest point (aphelion; ≈ 1.017 AU) on approximately 4 July. The mean 

distance is approached at approximately 4 April and 5 October. The amount of solar radiation 
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reaching the earth’s atmosphere is inversely proportional to the square of its distance from 

the sun. 

When solar radiation enters the earth’s atmosphere, a part of the incident energy is 

removed by scattering in the atmosphere due to interaction of the radiation with air 

molecules, water (vapor and droplets), and dust. Another part of the incident energy is 

removed in the earth’s atmosphere by absorption of radiation in the solar energy spectrum 

due to ozone in the ultraviolet and to water vapor and carbon dioxide in bands in the infrared. 

The scattered radiation is called diffuse radiation. A portion of this diffuse radiation goes 

back to space and a portion reaches the ground. The remaining part of the solar radiation that 

enters the earth’s atmosphere, the radiation arriving on the ground directly in line from the 

solar disk without having been scattered by the atmosphere or having been absorbed, is 

called beam radiation. Beam radiation incident on a plane normal to the radiation is called the 

direct normal radiation. The total solar radiation or global radiation, that is, the sum of the 

diffuse and beam solar radiation on a surface, is important for the design of flat-plate 

collectors or for the calculations of heating and cooling loads in architecture. For 

concentrating systems like the solar trough collector field only the beam radiation or direct 

normal radiation is used. 

The direct normal radiation, bnG , can be measured by using a Normal Incidence 

Pyrheliometer (NIP). The NIP is an instrument for measuring solar radiation from the sun 

and from a small portion of the sky around the sun at normal incidence.  
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Figure 2.7: Direct normal radiation vs. time for June 20, 1998 (left hand figure) and for December 16, 
1998 (right hand figure) 
 

Figure 2.7 shows the direct normal radiation vs. time for a day measured with a NIP at SEGS 

VI. The left hand figure shows the measurement for a clear (no clouds) spring/summer day, 

June 20, 1998 and the right hand figure shows the beam radiation during a clear fall/winter 

day, December 16, 1998. 

Notice the direct normal radiation is not constant between sunrise and sunset because 

the effects of the atmosphere in scattering and absorbing radiation are variable with time as 

atmospheric conditions and air mass change. 

In order to maximize the energy from the solar beam radiation through the 

concentrating trough collectors, the surface normal of a collector has to be collinear to the 

vector of the incoming solar beam radiation. The angle of incidence, θ , is the angle between 

the beam radiation on a surface and the normal to that surface. Throughout the sun’s daily 

path between sunrise and sunset, the sun changes its solar position in the sky. Consequently, 

during a day, the vector of the incoming solar beam radiation changes its direction as well. 

To minimize the angle of incidence, the solar collectors must track the sun by moving in 
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prescribed ways. The best way to track the sun is by rotating the collector’s surface about 

two axis. As can be seen in Figure 2.1, the solar collector troughs of SEGS VI are tracking 

the sun by rotating around a single axis, which is the horizontal north-south axis. Due to this 

constraint movability, only the component of the solar beam radiation vector, which is 

collinear to the normal of the single-axis-tracking collector surface, remains to heat the 

absorber, as shown in Figure 2.8. This component of the solar beam radiation vector may be 

found by multiplying the amount of solar beam radiation with the cosine of the angle of 

incidence. Therefore a relationship for the angle of incidence is needed, which is given by 

(Duffie & Beckman, 1991) 

( ) 2/1222 sincoscoscos ωδθθ += z .                                        (2.43) 

On the right hand side of this equation, there are three angles, δθ ,z  and ω , which describe 

the position of the sun for its daily path and will be explained in the following (Figure 2.9, 

(Iqbal, 1983)). 

 

 

 

 

 

 

 

 

 

Figure 2.8: North-South Tracking 
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In Figure 2.9, a celestial sphere is drawn with the earth as the center. In the celestial sphere, 

the celestial poles are the points at which the earth’s extended polar axis cuts the celestial 

sphere. Similarly, the celestial equator is an outward projection of the earth’s equatorial plane 

on the celestial sphere. At any given time, the collector on the earth’s surface has a 

corresponding position in the celestial sphere called the collector’s zenith: this is the point of 

intersection with the celestial sphere of a normal to the earth’s surface at the collector’s 

position. The collector’s horizon is a great circle in the celestial sphere described by a plane, 

which passes through the center of the earth normal to the line joining the center of the earth 

and the zenith. 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
Figure 2.9: Celestial sphere and sun’s coordinates relative to collector on earth at point C 
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The zenith angle, zθ , is the angle between the vertical (the local zenith) and the line to the 

sun, that is the angle of incidence of beam radiation, θ , on a horizontal surface. The angle is 

within a range of °≤≤° 900 zθ . Since the trough collectors are tracking surfaces, they are 

horizontal only at solar noon and thus the zenith angle is equal to the angle of incidence of 

beam radiation only at solar noon.                                                                    

The declination, δ , is the angular position of the sun at solar noon (i.e., when the sun 

is on the local meridian) with respect to the plane of the equator, north positive; the 

declination angle is within a range of °≤≤°− 45.2345.23 δ . It reaches its minimum value at 

the winter solstice (21/22 December) and its maximum value at the summer solstice (21/22 

June). The angle is zero at the vernal equinox (20/21 March) and at the autumnal equinox 

(22/23 September). In 24 h, the maximum change in declination (which occurs at the 

equinoxes) is less than °2
1 . See also Figure 2.10 where the solar declination is described by 

drawing a celestial sphere with the earth at the center and the sun revolving around the earth 

in a year. Several expressions giving the approximate value of solar declination have been 

suggested.  

Spencer presented the following expression for δ , in degrees (Spencer, as quoted by 

Iqbal, 1983): 

)./180))(3sin(00148.0)3cos(002697.0
)2sin(000907.0)2cos(006758.0

sin070257.0cos399912.0006918.0(

π

δ

Γ+Γ−
Γ+Γ−

Γ+Γ−=
                          (2.44) 

In this equation, Γ , in radiants, is called the day angle. It is represented by 

( ) 365/12 −=Γ ndπ ,                                                        (2.45) 
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where nd is the day number of the year, ranging from 1 on 1 January to 365 on 31 December. 

February is always assumed to have 28 days. Equation (44) estimates δ with a maximum 

error of 0.0006 rad (<3’) and is recommended for use in digital machines. 

Another equation obtained by Perrin de Brichambaut is, in degrees (Brichambaut, as quoted 

by Iqbal, 1983), 

( )[ ]{ }82sin4.0sin 365
3601 −= −

ndδ .                                              (2.46) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.10: Celestial Sphere showing sun’s declination angle 
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A further and simple equation found by Cooper is, in degrees (Cooper, as quoted by Iqbal 

1983), 

( )[ ].284sin45.23 365
360 += ndδ                                                    (2.47) 

A plot of the declination,δ , vs. month is shown in Figure 2.11. 

The hour angle, ω , is the angular displacement of the sun east or west of the local 

meridian due to rotation of the earth on its axis at 15° per hour, morning negative, afternoon 

positive. The hour angle, ω , is 0° at solar noon. 

 

 

Figure 2.11: Declination vs. Month 
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local clock time is measured with respect to the standard longitude, stL , of 120°W for the 

Pacific Standard Time. The sun takes 4 minutes to transverse 1° of longitude. A second 

correction is from the equation of time, which takes into account the perturbations in the 

earth’s rate of rotation, which affects the time the sun crosses the collector’s meridian. Thus, 

in minutes,  

( ) tlocst ELL +−⋅=  4 Time Standard-TimeSolar                               (2.48) 

where tE  is the equation of time, again from Spencer (Spencer, as quoted by Iqbal, 1983): 

(
))2sin(04089.0)2cos(014615.0

sin032077.0cos001868.0007500.018.229
Γ−Γ−

Γ−Γ+=tE
 .                                  (2.49) 

A plot of the equation of time, tE , vs. month is shown in Figure 2.12. 

 

Figure 2.12: Equation of Time vs. Month 
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A fourth angle in Figure 2.9 is the latitude, φ , and gives the position of the collector north or 

south from the earth’s equator. The SEGS VI plant is located at N35°=φ . 

There is a useful relationship among the four angles given in Figure 2.9. An equation relating 

the zenith angle, zθ , to the others is (Duffie & Beckman, 1991) 

δφωδφθ sinsincoscoscoscos +=z .                                   (2.51) 

This equation can be used to solve for the value of the hour angle, ω , at sunset. At sunset, 

the zenith angle, zθ , is 90° when the sun is at the horizon. Thus, the sunset hour angle, 

sunsetω , in degrees, is given by 

δφω tantancos −=sunset .                                            (2.52) 

The sunrise hour angel, sunriseω , is consequently 

sunsetsunrise ωω −= .                                                    (2.53) 

Assuming that the time for the solar noon calculated from equation (2.48) is converted from 

minutes into hours, the following equation gives the time at sunrise in hours from the fact 

that the sun rotates with 15° per hour: 

15/ Noon Solar  Hour  Sunrise sunriseω+= .                                     (2.54) 

Finally, an expression for the hour angle, ω , is given through 

15Hour) Sunrise - Time(Solar  ⋅+= sunriseωω .                              (2.55) 

Here, the solar time is calculated from equation (2.48) after converting the result from 

minutes into hours. 

The zenith angle, zθ , given by equation (2.51), the declination, δ , given by equation 

(2.44) and the hour angle, ω , equation (2.55), are inserted into equation (2.43) to calculate 
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the angle of incidence. Thus, multiplying the cosine of the angle of incidence with the 

magnitude of solar beam radiation gives the reduced beam radiation acting on an unshaded 

single-axis-tracking collector. 

In reality, however, there are additional losses due to the shading by the HCE arms 

and bellows (Figure 2.2) and end losses. The meaning of end losses is illustrated in Figure 

2.13. The sunrays that impinge on the outermost edge at the end of a trough collector are 

reflected and focused onto the HCE. For a nonzero angle of incidence, there is a part of the 

HCE at this end of the trough collector, which is not illuminated. To account for these 

additional optical losses, the cosine of the angle of incidence is modified through a function, 

the so-called incidence angle modifier. For the SEGS VI trough collectors, this function was 

found through measurements at a test facility at SANDIA.   

 

 

 

 

 

 

 

 

 

 

 
Figure 2.13: End Losses of a Trough Collector 
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The incidence modifier function depends on the value of the cosine of the angle of incidence; 

for 9.0cos >θ : 

2051114.584041cos9842855.3808006)(cos89884.10327122

)(cos279499.14912235)(cos903502.12093484

)(cos5393731.5222972)(cos84377331.938564)(cos

2

34

56

−+−

+−

+−=

θθ

θθ

θθθF

   (2.56) 

  else: 

      

12346610982.411cos542978969.4867)(cos730094871.25050

)(cos270566734.73211)(cos65779691.132938

)(cos39131907.153602)(cos75784952.110302

)(cos702352137.45016)(cos6488341455.7995)(cos

2

34

56

78

+−+

−+

−+

−=

θθ

θθ

θθ

θθθF

 

(2.57) 

In Figure 2.14, the incidence angle modifier (solid line) is plotted vs. θ . For a comparison, 

θcos  (dashed line) is plotted vs. θ  as well.  

 

Figure 2.14: Incidence Angle Modifier vs. Angle of Incidence 
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From the following discussion, the absorbed solar energy per length would be the magnitude 

of the incoming solar beam radiation times the incidence angel modifier as a function of the 

cosine of the angle of incidence times the width of the collector. This, however, is only true if 

there would be no mutual shading of the collectors. From the trough collector field layout in 

Figure 2.1, it can be seen, that the collectors are arranged in rows. The distance between the 

collector rows is m13=SpacingL . Hence, in the morning, at sunrise, when the first sunrays fall 

on the trough collector field, the first row may be unobstructed, but the following rows are 

shaded by the first. This is shown in the top figure in Figure 2.15. During the sun’s path in 

the morning, partial shading of the collectors occurs until a particular zenith angle is reached 

as demonstrated in the second figure from the top in Figure 2.15. The shading reduces the 

effective width of the collector and thus reduces the effective aperature area of the collector 

on which the solar beam radiation acts. Consequently, the absorbed solar energy is reduced 

as well. After a certain zenith angle is reached, there is no mutual shading of the collectors 

anymore, as shown in the last two figures from the top in Figure 2.15. The same phenomenon 

occurs, of course, in the evening during sunset. For a mathematical formulation of the optical 

loss from mutual collector shading, it is necessary to find an equation describing the effective 

width of the collector. Let W  be the width of the collector. The effective width of the 

collector, that is the non-shaded part of the collector width, may be written as (Figure 2.16) 

WxWeff ⋅= ,                                                               (2.58) 

where ]1;0[∈x . A value of 0 for x  means complete shading whereas a value of 1 for x  

means no shading of the collector. The projection of the incoming beam radiation onto a  
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Figure 2.15: Illustration of mutual shading in a multirow collector array 
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plane perpendicular to the collector’s rotational north-south axis yields a radiation, which 

direction is given by the profile angle pα  (Figure 2.16 and Figure 2.17).  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.16:  Mutual Collector Shading 

 

Trigonometric considerations (Figure 2.16) yield 
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The law of cosines for the spherical triangle O, Sun, P, Z in Figure 2.17 results in 
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Thus,  
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)sin(
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Figure 2.17: Geometric Considerations on the Collector  
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where it is necessary to restrict x  to be in the interval between 0 and 1: 
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The equation for the effective width, effW , is finally given through inserting equation (2.63) 

into equation (2.58), 
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After discussing the optical energy losses due to the tracking geometry and shading, 

additional optical energy losses due to radiation characteristics of the mirror, the envelope 

and the absorber have to be accounted. 

First, the incident solar beam radiation is reflected on the trough mirror and directed 

onto the HCE. Two cases of reflection occur, specular reflection and diffuse reflection 

(Duffie & Beckman, 1991). The diffuse reflection distributes the radiation in all directions 

and thus the part of the incident solar beam radiation that is reflected through diffuse 

reflection on the trough mirrors does not contribute noticeably to the beam radiation acting 

on the absorber. The specular reflected part of the incident solar beam radiation is the 

remaining source for absorbed solar energy. The specular reflectance, ρ , is defined as the 

fraction of the specular reflected beam radiation to the incident solar beam radiation on the 

trough mirror. Measurements of the specular reflectance, ρ , accomplished at a test facility at 

SANDIA, yield a value of 94.0=ρ . 

The remaining specular reflected solar beam radiation is transmitted through the glass 

envelope of the HCE before it is absorbed. When radiation passes from one medium with a 
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particular refractive index to a second medium with a different refractive index, there is 

reflection occurring at the interface between the two media (Duffie & Beckman, 1991). A 

part of the incoming radiation is reflected while the remaining part enters the second 

medium. The glass envelope of the HCE is a cover with two interfaces to cause reflection 

losses. A part of the incoming solar beam radiation is reflected at the first interface as 

discussed before. The remaining part is passed through the glass where it reaches the second 

interface. Of the remaining part, a portion passes through the second interface and the other 

portion is reflected back to the first interface, and so on. Summing up the parts of the solar 

beam radiation that passed through the second interface yields the amount of radiation that 

may be absorbed by the absorber when absorption of the glass envelope is neglected. If it is 

not neglected, then there is an additional absorption loss through the glass material and the 

remaining solar beam radiation acting on the absorber is even further reduced. The definition 

of the transmittance,τ , accounts for the radiation losses through reflection and absorption of 

the glass envelope. The transmittance, τ , is the fraction of the remaining solar beam 

radiation after transmission through the glass envelope to the incoming specular reflected 

solar beam radiation. The transmittance, τ , was measured to 915.0=τ .  

Finally, the reflected and transmitted solar beam radiation is absorbed by the surface 

of the absorber tube in the HCE. The absorptance, α , is defined as the fraction of the solar 

beam radiation absorbed by the surface over the incoming reflected and transmitted solar 

beam radiation.  SANDIA measured the absorptance, α , to be 94.0=α . 

In the annulus between the absorber tube and the glass envelope, the radiation, which 

is not absorbed by the absorber but instead reflected back to the glass envelope, is partially 

reflected at the glass envelope back to the absorber again where part of it may now be 
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absorbed.  That’s why there is a slight increase of the absorbed solar beam radiation 

compared to the radiation from single absorption, accounted through the definition of the 

transmittance-absorptance product )(τα  (Duffie & Beckman, 1991). For most practical solar 

collectors, a reasonable approximation is 

τατα 01.1)( ≅ .                                                             (2.65) 

Combining the results from above, the optical efficiency from radiation characteristics is 

)(ταρε =opt .                                                           (2.66) 

Finally, an expression for the absorbed solar energy is found: 

γεθ opteffbnabsorbed WFGq )(cos=  .                                     (2.67) 

In equation (2.67), γ is a factor varying from one day to the other. Different amount of dirt 

on the mirrors and the number of broken collectors in the field influence this factor.  

 
Figure 2.18: The way from Normal Incident Solar Energy to Absorbed Solar Energy considering Optical 
Losses for June 20, 1998 
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Figure 2.19: The way from Normal Incident Solar Energy to Absorbed Solar Energy considering Optical 
Losses for December 16, 1998 
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reduced energy due to a nonzero incident angle from single-axis tracking is plotted in the 

same graph as well. Additional energy reduction, accounted by the incident angle 

modification leads to a third plot. The influence of shading on the energy after incident angle 
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1998. The result is worse for December 16, 1998, shown in Figure 2.19, where the reduction 

is about 76% at solar noon. 

 
2.3 Model Implementation and Simulation Results 
 
 
The equations and expressions discussed above form a physical model for the trough 

collector field. This model can be used to predict the outlet temperature vs. time of the 

collector field when the inlet temperature of the collector field, the volume flow rate of the 

HTF and environmental data vs. time are known. The environmental data consist of normal 

incident solar radiation, ambient temperature and wind speed. Figure 2.20 shows the 

collector model as a block with inputs and the output. An accurate calculation of the collector 

field outlet temperature is necessary because the objective of the control problem is to hold 

this particular temperature at a constant value.  Solutions of the partial differential equations 

(PDEs), (2.6), (2.11) and (2.13), have to be found in order to calculate the collector field 

outlet temperature. Analytical solutions are not possible due to the nonlinearity and 

complexity of the PDEs. Therefore, numerical integration was chosen for the calculation 

strategy. Hence, the equations from above have to be prepared for an implementation in 

digital machines.     

 

 

 
 
 
 
 
Figure 2.20: The Collector Model as a Block with Inputs and Output 
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2.3.1 Implementation in Digital Machines 
 
The temperature of the HTF, HTFT , the temperature of the absorber, ABST , and the 

temperature of the envelope, ENVT , are functions of time and position on the HCE. Again, 

their values are determined by the PDEs (2.6), (2.11) and (2.13). Simulation software for 

digital machines usually provides integrators to solve nonlinear first order ordinary 

differential equations (ODEs). Consequently, it is useful to approximate the partial 

differential equations (PDEs) into a set of first order ODEs. 

The set of ODEs is obtained by dividing the HCE of length Length  into 0j  different 

parts of length z∆ (Figure 2.21), where 

0j
Length

z =∆ .                                                                 (2.68) 

The following approximation is made: 
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This approximation is inserted into equation (2.6). The result is a set of ODEs for the HTF 
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with the boundary condition 

)()( ,0, tTtT inletHTFHTF =                                                     (2.71) 
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Figure 2.21: Discretization of the HCE 
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with the initial condition 

, , 0(0) ( ), , 1,2,...,ENV j ENV i n i t j jT T z z j z j j= = ⋅ ∆ = .                      (2.76) 

The set of ODEs, consisting of equations (2.70), (2.73) and (2.75), and the related initial and 

boundary conditions were implemented in the EES (Engineering Equation Solver) simulation 

environment (Klein, 2001), together with the model equations for the heat transfer and the 

absorbed solar energy discussed above.  

 
2.3.2 Simulation Results and Model Validation 
 
The block diagram of the collector model in Figure 2.20 is useful to represent the model that 

is implemented in EES. The inputs for the implemented model, shown in Figure 2.20, are 

measured data from the real SEGS VI plant. Again, these inputs are the trough collector field 

inlet temperature (Figure 2.22), the volume flow rate (Figure 2.23), the direct normal beam 

radiation (Figure 2.24), the ambient temperature (Figure 2.25) and the wind speed (Figure 

2.26). The following figures show the input values vs. time for September 19, 1998, which is 

a clear day, and for December 14, 1998, which is a partly cloudy day.  

 

 

 

 

 

 
 
Figure 2.22: Measured Trough Collector Field Inlet Temperature for September 19, 1998  and for 
December 14, 1998. 
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Figure 2.23: Measured Volume Flow Rate for September 19, 1998 and for December 14, 1998. 

 

 

 

 

 

 

 
 
 
Figure 2.24: Measured Direct Normal Radiation for September 19, 1998 and for December 14, 1998. 

 

 

 

 

 

 
 
 
 
 
Figure 2.25: Measured Ambient Temperature for September 19, 1998 and for December 14, 1998. 
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Figure 2.26: Measured Wind Speed for September 19, 1998 and for December 14, 1998. 
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for December 16, 1998 (Figure 2.29).   
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differences between the calculated and the measured temperatures occur at points where the 
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outlet temperature is good and verifies that the implemented model is useful as a model for 
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Figure 2.27: Calculated Collector Outlet Temperature vs. Time (solid line) and Measured Collector 
Outlet Temperature vs. Time (dashed line) on June 20, 1998 

 

 
Figure 2.28: Calculated Collector Outlet Temperature vs. Time (solid line) and Measured Collector 
Outlet Temperature vs. Time (dashed line) on September 19, 1998 
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Figure 2.29: Calculated Collector Outlet Temperature vs. Time (solid line) and Measured Collector 
Outlet Temperature vs. Time (dashed line) on December 16, 1998 

 

Figure 2.30: Calculated Collector Outlet Temperature vs. Time (solid line) and Measured Collector 
Outlet Temperature vs. Time (dashed line) on December 14, 1998 
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Chapter 3 
 

Power Plant Model 
 

 
 
3.1 Introduction 
 
After the hot HTF leaves the trough collector field, it flows into the power plant. The part of 

the SEGS plant that represents the power plant is shown in Figure 3.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: The Power Plant Part of SEGS VI  
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Figure 3.1 shows the power plant in pure solar mode. Pure solar mode means that nothing 

other than solar energy is used to heat the power plant working fluid. At SEGS VI, an 

additional natural-gas-fired boiler is also used to heat the working fluid when no or 

insufficient solar energy is available. This combined cycle mode is not considered in this 

work and thus the gas-fired boiler is not included in the figure. 

The power plant’s working fluid is water or steam. The power plant cycle is a 

Clausius-Rankine cycle with feedwater heating, superheating and reheating: the working 

fluid leaves the condenser as a condensate and is pressurized by the condensate pump to a 

pressure sufficient to pass through the low-pressure feedwater heaters and the deaerator. 

Afterwards, the water is heated up in the three low-pressure feedwater heaters through hot 

steam extractions withdrawn from the low-pressure turbine. The water then enters the 

deaerator (open or direct-contact feedwater heater) where it is mixed with hot steam from the 

first extraction of the low-pressure turbine. Through the mixing with steam, the efficient 

removal of noncondensables as well as the heating of the water occurs. Since the pressure in 

the deaerator cannot exceed the extraction pressure from the first extraction of the low-

pressure turbine, a feedwater pump after the deaerator pumps the water to a higher pressure 

to allow the working fluid to pass through the following high-pressure feedwater heaters and 

enter the heat exchanger trains. The water is further warmed up in the two high-pressure 

feedwater heaters through steam extractions from the high-pressure turbine before it is split 

upon entering the two heat exchanger trains. A heat exchanger train consists of a preheater 

(economizer), a boiler (steam generator) and a superheater. The water that was warmed up 

through feedwater heating enters now the preheater, which is a counterflow heat exchanger, 

and is heated by heat exchange with the hot HTF. The working fluid that leaves the preheater 
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enters the steam generator and is essentially in the saturated liquid state. In the steam 

generator or boiler, the working fluid changes its state from liquid to vapor through the heat 

energy transmitted by the hot HTF. Leaving the steam generator, the saturated steam flows 

into the superheater. The superheater is also a counterflow heat exchanger and the steam is 

superheated through heat exchange with the hot HTF that is directly coming from the 

collector field.  The steam generated from both heat exchanger trains merges and is expanded 

in a high-pressure section of the turbine, after which it is split before entering two reheaters. 

Here, the incoming steam is reheated to a temperature near that of the superheated steam 

before the expansion. The reheated and merged steam now expands in the low-pressure 

section of the turbine to the condenser pressure. While the steam is expanding in the turbine, 

electricity is generated in a generator connected with the turbine. The completely expanded 

fluid is cooled down to saturated water by heat rejection to a cooling-water in the condenser.   

A conventional Clausius-Rankine cycle does not include superheating, reheating and 

feedwater heating. From the Carnot cycle it is known, that heat addition at a higher 

temperature improves a cycle’s thermal efficiency (as long as the condensate temperature 

remains the same). The heat addition for the Clausius-Rankine cycle in view takes place 

mainly in the two heat exchanger trains. Through feedwater heating, the temperature at 

which the water enters the heat exchanger trains is higher than it would be without feedwater 

heating. Thus the average temperature at which the heat is added is higher and the cycle 

efficiency goes up. The effect of superheating and reheating is not necessarily a higher cycle 

thermal efficiency because instead of using the heat for superheating, one could have used 

the same heat to generate saturated steam at a higher temperature. The beneficial effect of 



 50
superheating and reheating, however, is a drier steam at the turbine exhaust that leads to less 

erosion at the turbine blades. 

The Clausius-Rankine cycle of SEGS VI as described above was modeled in order to 

obtain a model of the entire plant. A steady-state model is presented, developed from 

measured power plant data and from a report by Lippke on the power plant design conditions 

(Lippke, 1995). With the exception of heat exchangers, steady-state models for the power 

plant devices seem to be reasonable for the entire plant model since the dynamics of these 

systems are much faster compared to the dynamic of the HTF mass circulating in the whole 

solar trough collector field. 

 
 
3.2 Modeling of the Power Plant 
 
 
3.2.1 Simplifications 
 
Before a steady-state model for each part of the power plant is discussed, the Clausius-

Rankine cycle is simplified as shown in Figure 3.2 for easier modeling. 

 First, the heat exchanger train is considered to be a single heat exchanger instead of 

being divided into preheater, steam generator and superheater. It is not assured that the 

working fluid’s state between preheater and steam generator and between steam generator 

and superheater is defined. This means that the working fluid is not necessarily leaving the 

preheater as saturated liquid or entering the superheater as saturated vapor. Treating the heat 

exchanger train as a single heat exchanger avoids dealing with this uncertainty. It is now 

assumed that pure water is entering the single heat exchanger and superheated steam is 

leaving it. But even this assumption may not be satisfied for the start-up period of the plant in 
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the early morning and in the late evening during the plant’s shut-down period when solar 

energy is low. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.2: Simplification in the Power Plant Structure 
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entering the single low-pressure feedwater heater must be comparable to its state in the non-

simplified system as well. 

The structure of the simplified power plant is presented again in Figure 3.3, together 

with numbers to define the different states in the power plant. 

 

      

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.3: Simplified Power Plant Structure  
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In order to obtain a better understanding of the process, a T-s diagram is plotted for June 20, 

1998 at 1.00pm. The temperatures and entropies in the diagram were calculated with the 

power plant model, which is presented in the next section. 

 
 

 
 
Figure 3.4: T-s diagram for the power plant Clausius-Rankine cycle 
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3.2.2 Modeling 
 
 
3.2.2.1 Condensate Pump CP and Feedwater Pump FP 
 
The pumps are assumed to be adiabatic, but not adiabatic reversible (El-Wakil, 1984). The 

internal irreversibility is primarily the result of fluid friction occurring in the pump. Thus the 

actual work in CP, 2 1h h− , is greater than the adiabatic reversible work, 2, 1revh h− , - the pump 

absorbs more work. The pump irreversibility is represented by a pump isentropic efficiency, 

,isCPη , which is given by the ratio of the ideal work to the actual work 

2, 1
,

2 1

rev
isCP

h h
h h

η
−

=
−

.                                             (3.1) 

The enthalpy, 2,revh , gained if the process would be adiabatic reversible, is calculated from 

fluid property functions as the enthalpy of water with the entropy 1s  at the pressure 2p : 

( )2, 1 2Water, ,rev hh f S s P p= = = .                                       (3.2) 

The entropy 1s  is known from equation (3.112) and the pressure 2p  is calculated through 

equation (3.63). The EES inbuilt fluid property functions (Klein, 2001) are used for the 

calculation of 2,revh . Since the isentropic efficiency, ,isCPη , is known from Lippke’s report 

, 0.7125isCPη = , and the enthalpy 1h  is known from equation (3.108), equation (3.1) is used to 

calculate the enthalpy 2h . The temperature 2T  is also calculated from EES fluid property 

functions as the temperature of water with the enthalpy 2h at the pressure 2p  

( )2 2 2Water, ,TT f H h P p= = = .                                  (3.3) 
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The entropy 2s  is calculated from EES fluid property functions as well. It is the entropy of 

water with the enthalpy 2h at the pressure 2p  

( )2 2 2Water, ,ss f H h p p= = = .                                (3.4) 

Equations (3.1) – (3.4) define the model for the condensate pump CP. The same calculations 

are made for the feedwater pump FP. From Lippke’s report, the isentropic efficiency, ,i s F Pη , 

is the same as for CP, , 0.7125i s F Pη = , and 

5, 4
,

5 4

rev
i sFP

h h
h h

η
−

=
−

                                                (3.5) 

where the enthalpy 4h is known from equation (3.76). Correspondingly to equation (3.2), 

( )5, 4 5Water, ,rev hh f S s P p= = =                                  (3.6) 

with the entropy 4s  from equation (3.80) and the pressure 5p  from equation (3.89). Thus 

equation (3.5) is used to calculate the enthalpy 5h . Like for CP, the temperature 5T  and the 

entropy 5s  are calculated from EES fluid property functions 

( )5 5 5Water, ,TT f H h P p= = = ,                              (3.7) 

( )5 5 5Water, ,ss f H h p p= = = .                              (3.8) 

A mass balance completes the model equations for FP 

4 5 0m m− =& & .                                                    (3.9) 

Through equation (3.9), the mass flow rate 4m& is determined since 5m&  is known from 

equation (3.85). Equations (3.5) – (3.9) define a model for FP. 

In this implementation, a mass balance is not part of the model equations for CP. 

Measurements of the mass flow rates in the heat exchanger trains HE A and HE B are 
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available. In order to use these measured flow rates as possible inputs to the power plant 

model, the mass flow rates in all the different elements of the plant are calculated from 

6m& through mass balances for the devices following or preceding the heat exchanger trains 

HE A and HE B.  Thus 2m&  is determined from 3m&  through a mass balance for the low-

pressure feedwater heater LPFH, equation (3.61), and 1m&  is calculated from 20m&  through the 

condenser model, equation (3.110). An additional mass balance for CP would have resulted 

in an over-determined equation system for the mass flow rates. 

 
 
3.2.2.2 High-Pressure Turbine HPT 1, HPT 2 and Low-Pressure Turbine LPT 1,     
LPT 2, LPT 3 
 
Like in pumps, internal irreversibility in turbines is very important. The expansion process is 

assumed to be adiabatic, but due to the irreversibility, it is not considered to be adiabatic 

reversible (El-Wakil, 1984). For both, the high-pressure section and the low-pressure section 

of the turbine, exhaust is to the two-phase region. Hence the entropy increase in the turbine 

does not result in a temperature increase but in an increase in enthalpy. Taking the first high-

pressure section of the turbine, HPT 1, as an example, the ideal work through expansion, if 

the turbine section were adiabatic reversible, is 7 8,revh h− , but the actual work is 7 8h h− . The 

irreversible losses in the turbine are represented by an isentropic efficiency, i.e. for the high-

pressure section, , 1isHPTη .  
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It is given by the ratio of the turbine’s actual work to the turbine’s ideal adiabatic reversible 

work 

7 8
, 1

7 8,
isHPT

rev

h h
h h

η
−

=
−

.                                                    (3.10) 

The enthalpy 8,revh  is calculated from EES fluid property functions as the enthalpy of steam 

with the entropy 7s  and the pressure 8p  

( )8, 7 8Steam, ,rev hh f S s P p= = = ,                                    (3.11) 

where the entropy 7s  is calculated from equation (3.176) and the pressure 8p  is determined 

from 7p and a constant pressure ratio, , 1p HPTR , 

8 7 , 1p HPTp p R= ⋅ .                                             (3.12) 

The pressure 7p in turn is known from equation (3.174). The enthalpy 7h is calculated from 

equation (3.173), hence equation (3.10) is used to determine the enthalpy 8h . The 

temperature 8T  and the entropy 8s are found through EES fluid property functions as the 

temperature and the entropy of steam with the enthalpy 8h  at the pressure 8p , 

( )8 8 8Steam, ,TT f H h P p= = = ,                                 (3.13) 

( )8 8 8Steam, ,ss f H h P p= = = .                                 (3.14) 

In order to calculate the mass flow rate 8m& , a mass balance has to be considered 

7 8 0m m− =& & .                                                 (3.15) 

The mass flow rate 7m& is known from equation (3.171). 
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Equations (3.10) – (3.15) form the model for the high-pressure section HPT 1 together with 

the assumed isentropic efficiency, , 1 0.84i sHPTη =  and the assumed constant pressure ratio, 

, 1 0.45p HPTR = .  

There is a turbine extraction withdrawn between the two high-pressure sections    

HPT 1 and HPT 2. This fluid splitting is primarily modeled through the following mass 

balance 

8 9 10 0m m m− − =& & & .                                              (3.16) 

It is assumed that the mass ratio between 9m& and 10m& is known, i.e. from the position of a 

splitting valve, and is given as a constant value 

9
, 1

10
mHPT

m
R

m
= &

&
& .                                                          (3.17) 

For June 20, 1998, the value of , 1mHPTR &  is , 1 0.1463mHPTR =& . This value changes for different 

days. The split streams are assumed to be in the mechanical and thermodynamic equilibrium: 

 8 9 10T T T= = ,                                                   (3.18) 

8 9 10p p p= = ,                                                  (3.19) 

8 9 10h h h= = ,                                                   (3.20) 

8 9 10s s s= = .                                                   (3.21) 

Equations (3.16) – (3.21) describe the model for the extraction splitter between the two high-

pressure turbine sections. 

 The equations for the turbine sections HPT 2, LPT 1, LPT 2 and LPT 3 are equivalent 

to equations (3.10) – (3.15) with the exception that the outlet pressure of the high-pressure 
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turbine part, 11p , and the outlet pressure of the low-pressure turbine part, 19p , are not 

calculated from a constant pressure ratio as in equation (3.12). They are rather calculated 

from a mass flow rate dependent overall pressure drop, HPp∆ , in the high-pressure part and in 

the low-pressure part, LPp∆  of the turbine, where 

7

2
7

0.190594967 0.00141797877

0.0000218417721
HPp m

m

∆ = + ⋅

− ⋅

&
&  ,                        (3.22) 

and 

12

2
12

0.00974136866 0.000321840787

0.00000548092767
LPp m

m

∆ = − ⋅

+ ⋅

&
&    .                (3.23) 

These polynomials are found from measurements of the turbine outlet pressures at different 

days. The mass flow rate 12m&  is known from equation (3.177). 

 Thus the set of equations for the turbine section HPT 2 is 

10 11
, 2

10 11,
isHPT

rev

h h
h h

η
−

=
−

 ,                                                      (3.24) 

            ( )11, 10 11Steam, ,revh f S s P p= = = ,                                  (3.25) 

10
11

, 1

HP

p HPT

p p
p

R
⋅ ∆

= ,                                                       (3.26) 

   ( )11 11 11Steam, ,TT f H h P p= = = ,                                 (3.27) 

( )11 11 11Steam, ,ss f H h P p= = = ,                                 (3.28) 

10 11 0m m− =& & .                                                       (3.29) 

The isentropic efficiency is assumed to be , 2 0.84isHPTη = . 
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There exists a similar set of equations for the first low-pressure turbine section LPT 1: 

12 13
, 1

12 13,
isLPT

rev

h h
h h

η
−

=
−

 ,                                                      (3.30) 

where the enthalpy 12h is known from equation (3.179). Similarly to equation (3.11), it is 

( )13, 12 13Steam, ,rev hh f S s P p= = = ,                             (3.31) 

with the entropy 12s  from equation (3.182).  

The pressure 13p  is determined from 

13 12 , 1pLPTp p R= ⋅ ,                                           (3.32) 

where the pressure 12p  is known from equation (3.180). The pressure ratio 1,LPTpR  is 

assumed to be constant with 47.01, =LPTpR . The remaining equations are 

( )13 13 13Steam, ,TT f H h P p= = = ,                                 (3.33) 

( )13 13 13Steam, ,ss f H h P p= = = ,                                 (3.34) 

12 13 0m m− =& & .                                                       (3.35) 

The isentropic efficiency is assumed to be , 1 0.8376isLPTη = . 

The turbine extraction between the first low-pressure section LPT 1 and the second 

low-pressure section LPT 2 can be modeled equivalently to equations (3.16) – (3.21): 

13 14 15 0m m m− − =& & & .                                              (3.36) 

14
, 1

15
mLPT

m
R

m
= &

&
& .                                                  (3.37) 

13 14 15T T T= = ,                                                   (3.38) 

13 14 15p p p= = ,                                                  (3.39) 



 61

13 14 15h h h= = ,                                                   (3.40) 

13 14 15s s s= = .                                                   (3.41) 

For June 20, 1998, the value of the mass ratio is , 1 0.02mLPTR =& . 

 The set of equations for the second low-pressure section of the turbine, LPT 2, is 

15 16
, 2

15 16,
isLPT

rev

h h
h h

η
−

=
−

 ,                                                      (3.42) 

            ( )16, 15 16Steam, ,rev hh f S s P p= = = ,                                  (3.43) 

16 15 , 2pLPTp p R= ⋅ ,                                                    (3.44) 

   ( )16 16 16Steam, ,TT f H h P p= = = ,                                 (3.45) 

( )16 16 16Steam, ,ss f H h P p= = = ,                                 (3.46) 

15 16 0m m− =& & .                                                       (3.47) 

The isentropic efficiency is assumed to be , 2 0.8623isLPTη =  and the assumed constant 

pressure ratio is , 2 0.1p LPTR = .  

The turbine extraction between the second low-pressure section LPT 2 and the third 

low-pressure section LPT 3 is similarly modeled as above: 

16 17 18 0m m m− − =& & & .                                              (3.48) 

17
, 2

18
mLPT

m
R

m
= &

&
& .                                                  (3.49) 

16 17 18T T T= = ,                                                   (3.50) 

16 17 18p p p= = ,                                                  (3.51) 

16 17 18h h h= = ,                                                   (3.52) 
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16 17 18s s s= = .                                                   (3.53) 

For June 20, 1998, the value of the mass ratio is , 2 0.2mLPTR =& . 

Finally, the model equations for the last low-pressure turbine section, LPT 3, is given 

through 

18 19
, 3

18 19,
isLPT

rev

h h
h h

η
−

=
−

 ,                                                      (3.54) 

            ( )19, 18 19Steam, ,rev hh f S s P p= = = ,                                  (3.55) 

18
19

, 1 , 2

LP

pLPT pLPT

p p
p

R R
⋅ ∆

=
⋅

,                                                       (3.56) 

   ( )19 19 19Steam, ,TT f H h P p= = = ,                                 (3.57) 

( )19 19 19Steam, ,ss f H h P p= = = ,                                 (3.58) 

18 19 0m m− =& & .                                                       (3.59) 

The isentropic efficiency is assumed to be , 3 0.7isLPTη = . 

 

3.2.2.3 Low-Pressure Feedwater Heater LPFH 
 
The low-pressure feedwater heater, LPFH, is a closed-type feedwater heater with a backward 

drain. Feedwater heaters are usually shell-and-tube heat exchangers (El-Wakil, 1984) and 

since no information on the LPFH at SEGS VI was available, it is assumed to be a shell-and-

tube heat exchanger as well. The feedwater passes through the tubes and the bled steam that 

comes from the turbine extraction between LPT 2 and LPT 3, is on the shell side and 

transfers its energy to the feedwater.  
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Thus an energy balance between the bled steam and the feedwater is the first equation for the 

LPFH model 

2 2 3 3 17 17 22 22 0m h m h m h m h− + − =& & & & .                                 (3.60) 

This equation determines the drain enthalpy 22h  since the enthalpy 2h is known from equation 

(3.1), the enthalpy 3h  is calculated with equation (3.82) and the enthalpy of the bled steam, 

17h , is known from equation (3.52). The steam mass flow rate, 17m& , is calculated from 

equation (3.48) and (3.49). The feedwater mass flow rate, 2m& , is determined from the 

following mass balance that is part of the LPFH model 

2 3 0m m− =& & .                                                    (3.61) 

The mass flow rate 3m&  comes from equation (3.81). The drain stream leaves the LPFH with 

the mass flow rate 22m&  from 

17 22 0m m− =& & .                                                   (3.62) 

Pressure drops of the feedwater in feedwater heaters are usually large because of the flow 

friction in long small-diameter tubes. For the LPFH in view, the pressure 2p  is given through 

3 2 LPFHp p p= ⋅ ∆                                                 (3.63)  

where 0.5LPFHp∆ =  is assumed to be constant. The pressure 3p  is known from equation 

(3.78). The temperature 3T  and the entropy 3s  are found through EES fluid property 

functions as the temperature and the entropy of water with the enthalpy 3h  at the pressure 3p , 

( )3 3 3Water, ,TT f H h P p= = = ,                                 (3.64) 

( )3 3 3Water, ,ss f H h P p= = = .                                 (3.65) 
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Equations (3.60) – (3.65) form the model for the low-pressure feedwater heater LPFH. 

 
 
 
3.2.2.4 Deaerator D and Throttle Valve TV 1 
 
The deaerator D is an open- or direct-contact feedwater heater where the extraction steam is 

mixed directly with the incoming feedwater to produce saturated water at the extraction 

steam pressure (El-Wakil, 1984). Before it enters D, the extraction steam that is withdrawn 

between LPT 1 and LPT 2, is mixed with the drain stream of the high-pressure feedwater 

heater HPFH. The higher pressured drain stream passes a throttle valve to reduce its pressure 

to the pressure of the turbine extraction steam before the two streams merge. The pressure of 

the turbine extraction steam, 14p , is calculated from equation (3.39) and thus 

24 14p p=                                                       (3.66) 

defines the outlet pressure of TV 1. No heat losses are assumed for TV 1, hence 

24 21h h=                                                       (3.67)  

and the temperature is assumed to stay constant: 

24 21T T= .                                                     (3.68) 

The drain enthalpy 21h  is calculated from equation (3.86) and the drain temperature 21T  is 

known from equation (3.93). A mass balance on TV 1 yields 

21 24 0m m− =& & ,                                               (3.69) 

where the drain mass flow rate, 21m& , comes from equation (3.84).  
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The outlet entropy of TV1, 24s , is calculated with EES fluid property functions as the 

entropy of steam with the enthalpy 24h  at the pressure 24p : 

( )242424 ,,Steam pPhHfs s === .                                 (3.70) 

Equations (3.66) – (3.70) are the TV 1 model equations.  

The throttle’s outlet stream merges with the extraction steam of the turbine. Thus the 

fluid that enters D at the steam side has the mass flow rate 23m&  from 

14 24 23 0m m m+ − =& & & .                                              (3.71) 

The extraction mass flow rate 14m&  is known from equations (3.36) and (3.37). The enthalpy 

of the steam entering D, 23h , is determined from the following energy balance 

14 14 24 24 23 23 0m h m h m h+ − =& & & ,                                        (3.72)   

where the extraction steam enthalpy, 14h , is known from equation (3.40). The merging 

streams are in a mechanical equilibrium and hence 

23 14p p= .                                                      (3.73)  

The steam-side inlet temperature, 23T , is calculated with EES fluid property functions as the 

temperature of steam with enthalpy 23h  at the pressure 23p : 

( )23 23 23Steam, ,TT f H h P p= = = .                                    (3.74) 

The steam-side inlet entropy, 23s , is also calculated with EES fluid property functions as the 

entropy of steam with the enthalpy 23h  at the pressure 23p : 

( )232323 ,,Steam pPhHfs s === .                                      (3.75) 
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Equations (3.71) – (3.75) form the model equations for the merging of the turbine extraction 

stream with the HPFH drain stream. 

 The deaerator is supposed to produce saturated feedwater at the extraction steam 

pressure. Thus the enthalpy of the saturated feedwater, 4h , is calculated from EES fluid 

property functions as the enthalpy of saturated water at the pressure 23p : 

( )4 23Steam, , 0hh f P p X= = = .                                    (3.76) 

This assumption includes that the feedwater outlet pressure of D, 4p , is the same as the 

steam inlet pressure 23p , 

4 23p p= .                                                  (3.77) 

In addition, no pressure drop in the feedwater is assumed 

3 4p p= .                                                  (3.78) 

Thus the feedwater outlet temperature, 4T , can be calculated from EES property functions as 

the temperature of steam with the enthalpy 4h  at the pressure 4p , 

( )4 4 4Steam, ,TT f H h P p= = = .                                  (3.79) 

Also the feedwater outlet entropy, 4s , is calculated from fluid property functions as the 

entropy of steam with the enthalpy 4h  at the pressure 4p , 

( )4 4 4Steam, ,ss f H h P p= = = .                                  (3.80) 

A mass balance on D has to account for the fact that the feedwater inlet stream and the steam 

inlet stream are mixed together and form the feedwater outlet stream. The feedwater inlet 

stream has the mass flow rate 3m&  from 

3 23 4 0m m m+ − =& & & ,                                              (3.81) 
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 where the mass flow rate 4m&  is known from equation (3.9) and the steam mass flow rate 23m&  

is determined from equation (3.71). The following energy balance is used to find a value for 

the feedwater inlet enthalpy, 3h ,  

3 3 23 23 4 4 0m h m h m h+ − =& & & .                                            (3.82) 

Equations (3.76) – (3.82) form the model equations for the deaerator D. 

 
 
3.2.2.5 High-Pressure Feedwater Heater HPFH 
 
The high-pressure feedwater heater HPFH is like the LPFH a closed-type feedwater heater 

with a backward drain. Assuming again a shell-and-tube heat exchanger (El-Wakil, 1984), an 

energy balance is established between the bled steam and the feedwater 

5 5 6 6 9 9 21 21 0m h m h m h m h− + − =& & & & .                                      (3.83) 

Through this equation, the feedwater outlet enthalpy, 6h , is calculated since the extraction 

enthalpy, 9h , is determined from equation (3.20) and the feedwater inlet enthalpy, 5h , is 

given through equation (3.5). The extraction mass flow rate, 9m& , is calculated from equations 

(3.16) and (3.17). The drain mass flow rate, 21m& , follows from  

9 21 0m m− =& & .                                                    (3.84) 

The feedwater mass flow rate, 5m& , is determined from the following mass balance for the 

feedwater  

5 6 0m m− =& &                                                     (3.85) 

where the mass flow rate 6m&  is an input of the power plant model.  
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The drain enthalpy, 21h , is calculated from an effectiveness equation for HPFH 

9 21

9 5
HPFH

h h
h h

ε
−

=
−

,                                                  (3.86) 

From measurements of the water inlet conditions and steam outlet conditions of the heat 

exchanger trains A and B (HE A and HE B), it seems that the effectiveness, HPFHε , is a 

function of the fraction of the two inlet mass flow rates, 9

5

m
m
&
& , and of the feedwater mass flow 

rate, 5m& , itself. From Lippke’s report, design values of the two mass flow rates are given. 

They are 50 38.969 kg/sm =&  and 90 5.7319 kg/sm =& . These design values are used to define 

the following variable 

9 5 5

90 50 50

/1
2 /

m m m
B

m m m
 

= + 
 

& & &
& & & ,                                             (3.87)  

that is used to estimate the effectiveness, HPFHε , from the following polynomial 

2 3

0.433509942 1.72903764

3.21718006 1.29319762
HPFH B

B B

ε = − ⋅

+ ⋅ − ⋅
.                              (3.88) 

This polynomial was found through fitting measured heat exchanger train inlet water data 

when measured heat exchanger train outlet steam data were used as model inputs.  

A constant pressure drop is considered in the feedwater and also at the steam side of 

the HPFH 

6 5 ,HPFH cp p p= ⋅ ∆ ,                                                (3.89) 

21 9 ,HPFH hp p p= ⋅ ∆ .                                                (3.90) 

Estimated from Lippke’s report, the values for the pressure ratios are , 0.8286HPFH cp∆ =  and 

, 0.236HPFH hp∆ = . Equation (3.89) gives a value for the feedwater inlet pressure 5p , since the 
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feedwater outlet pressure, 6p , is known from equation (3.126). Correspondingly, equation 

(3.90) yields a value for the drain pressure 21p , since the extraction pressure, 9p , is known 

from equation (3.19). The feedwater outlet temperature, 6T , and the feedwater outlet entropy, 

6s , are calculated from fluid property functions as the temperature and entropy of water with 

the enthalpy 6h  at the pressure 6p : 

( )6 6 6Water, ,TT f H h P p= = = ,                                       (3.91) 

( )6 6 6Water, ,ss f H h P p= = = .                                       (3.92) 

Likewise, the drain temperature, 21T , and the drain entropy, 21s , are calculated from fluid 

property functions as the temperature and entropy of steam with the enthalpy 21h  at the 

pressure 21p : 

( )21 21 21Steam, ,TT f H h P p= = = ,                                       (3.93) 

( )21 21 21Steam, ,ss f H h P p= = = .                                       (3.94) 

Equations (3.83) – (3.94) define the model for the high-pressure feedwater heater HPFH. 

 

3.2.2.6 Condenser C and Throttle Valve TV 2 
 
The condenser C is primarily a heat-transfer equipment with the purpose to condense the 

exhaust steam from the low-pressure part of the turbine and thus recover the high-quality 

feedwater for reuse in the cycle (El-Wakil, 1984). Before the turbine exhaust enters the 

condenser, it is mixed with the drain stream of the low-pressure feedwater heater LPFH. This 

drain stream passes a throttle valve TV 2 before it is mixed with the exhaust stream. Since 
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the mixing streams are in a mechanical equilibrium, the throttle valve’s outlet pressure, 25p , 

is the same as the exhaust pressure 

25 19p p= .                                                            (3.95) 

The turbine exhaust pressure, 19p , is determined by equation (3.56). The pressure drop 

induced by TV 2 is given through 

25 22 2TVp p p= ⋅ ∆ ,                                                 (3.96) 

where the pressure ratio is estimated to 2 0.57TVp∆ = . This equation is used to calculate the 

LPFH drain pressure, 22p . This pressure is used to calculate the LPFH drain temperature, 

22T , and the drain entropy, 22s , from fluid property functions as the temperature and entropy 

of steam with the enthalpy 22h  at the pressure 22p : 

( )22 22 22Steam, ,TT f H h P p= = = ,                                (3.97) 

( )22 22 22Steam, ,ss f H h P p= = = .                                 (3.98) 

The drain enthalpy, 22h , is known from equation (3.60). The enthalpy stays constant in the 

adiabatic throttle valve TV 2 

25 22h h= .                                                       (3.99) 

In addition, a constant temperature is assumed  

25 22T T= .                                                     (3.100) 

There is no loss of mass in TV 2, hence 

22 25 0m m− =& & .                                                  (3.101) 
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The mass flow rate 22m&  is calculated from equation (3.62). The entropy of the throttle valve’s 

outlet stream is calculated from fluid property functions as the entropy of steam with the 

enthalpy 25h  at the pressure 25p : 

( )25 25 25Steam, ,s f H h P p= = = .                                  (3.102) 

Equations (3.95) – (3.102) form the model equations for the throttle valve TV 2. 

 Before entering the condenser, the throttled drain stream is mixed with the low-

pressure turbine exhaust. This fact is described through the following mass balance 

19 25 20 0m m m+ − =& & & .                                               (3.103) 

This equation is used to calculate the mass flow rate 20m&  since the exhaust mass flow rate 

19m&  is known from equation (3.59). The fluid entering C is in a mechanical equilibrium with 

the merging streams and thus 

20 19p p= .                                                        (3.104) 

The enthalpy of the fluid that enters the condenser C, 20h , is determined from the following 

energy balance 

19 19 25 25 20 20 0m h m h m h+ − =& & & .                                          (3.105) 

The enthalpy of the exhaust, 19h , is known from equation (3.54). The temperature 20T  is 

calculated from fluid property functions as the temperature of steam with the enthalpy 20h  at 

the pressure 20p  

( )20 20 20Steam, ,TT f H h P p= = = .                                   (3.106) 
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The entropy 20s  is also calculated from fluid property functions as the entropy of steam with 

the enthalpy 20h  at the pressure 20p : 

( )20 20 20Steam, ,ss f H h P p= = = .                                 (3.107) 

Equations (3.103) – (3.107) define the model for the mixing of the turbine exhaust with the 

LPFH drain stream. 

 The mixed fluid enters the condenser and looses its energy to the circulating cooling 

water until it leaves the condenser as saturated liquid. Thus the enthalpy of the outlet flow, 

1h , is assumed to be the enthalpy of saturated water at the pressure 20p  and is calculated 

from fluid property functions: 

( )1 20Steam, , 0hh f P p X= = = .                                    (3.108) 

Hence the pressure is assumed to remain constant  

1 20p p= ,                                                    (3.109) 

and the mass flow rate stays constant as well 

20 1 0m m− =& & .                                                 (3.110) 

The outlet temperature 1T  and the entropy 1s  are calculated from EES fluid property 

functions as the temperature and the entropy of steam with the enthalpy 1h  at the pressure 

1p : 

 ( )1 1 1Steam, ,TT f H h P p= = = ,                                (3.111) 

( )1 1 1Steam, ,ss f H h P p= = = .                                 (3.112) 

The incoming cooling water temperature, ,C o o l iT , is one of the inputs to the power plant model 

but does not affect the enthalpy 1h  in this implementation due to the assumption of saturated 
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liquid outlet conditions in equation (3.108). The pressure of the incoming cooling water, 

,C o o l ip , is assumed to be the ambient pressure 

,Cooli atmp p= .                                                (3.113) 

From fluid property functions, the cooling water inlet enthalpy, ,C o o l ih , is calculated as the 

enthalpy of water with the temperature ,C o o l iT  at the pressure ,C o o l ip  

( ), , ,Water, ,Cool i Cool i C o o l ih f T T P p= = = .                       (3.114) 

There is no pressure drop assumed in the cooling water and the cooling water outlet pressure, 

,C o o l op , is 

, ,Cool o C o o l ip p= ,                                              (3.115) 

Also the mass flow rate of the cooling water remains constant 

, , 0Cool i C o o l om m− =& & ,                                        (3.116) 

where ,C o o l om&  is the cooling water outlet mass flow rate and ,C o o l im&  is the mass flow rate of 

the incoming cooling water and is estimated to be proportional to the heat exchanger train 

inlet mass flow rate, 6m& :   

 , 639.38C o o l im m= ⋅& & .                                         (3.117) 

The factor 39.38 was determined from measurements of the cooling water outlet temperature 

to satisfy the following energy balance 

( ) ( ), , , 20 20 1Cool i Coolo C o o l im h h m h h− = −& & .                                  (3.118) 
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From this equation, the cooling water outlet enthalpy ,C o o l oh  is calculated. From this enthalpy, 

the temperature of the outlet cooling water, ,C o o l oT , is determined from fluid property 

functions as the temperature of water with the enthalpy ,C o o l oh  at the pressure ,C o o l op : 

( ), , ,Water, ,Coolo T Coolo Cool oT f H h P p= = = .                               (3.119) 

Equations (3.108) – (3.119) define model for the condenser C. 

 
 
3.2.2.7 Heat Exchanger Train HE A and HE B and Reheater RH A and RH B 
 
The heat exchanger trains HE A and HE B and the reheaters RH A and RH B are very 

important parts of the power plant since they represent the interface between the HTF cycle 

and the power plant cycle. The heat transfer between the HTF and the working fluid of the 

power plant occurs in these heat exchangers.  

From the HTF side, the HTF is split into two streams where one stream flows into the 

heat exchanger trains and the other stream flows into the reheaters. From the pipe geometry, 

the amount of HTF that flows into the reheaters cannot exceed 25% of the entire HTF that 

leaves the expansion vessel. However, the splitting fraction that is not measured in the plant 

differs from operator to operator. As an approximate value for the splitting fraction, the 

design values from Lippke’s report are used in this approach (Lippke, 1995). The HTF splits 

evenly between the two heat exchanger trains HE A and HE B. The same is true for the two 

reheaters RH A and RH B. The HTF that leaves the expansion vessel is split into a stream of 

fraction Aa  that flows into HE A, into a stream of fraction Ba  that flows into HE B, into a 

stream of fraction Ab  that flows into RH A and finally into a stream of fraction Bb  that flows 
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into RH B. From Lippke’s report, the design values of these fractions are 0.4375A Ba a= =  

and 0.0625A Bb b= = .  

There is also splitting at the water or steam side. The feedwater of fraction H E AF  

enters HE A. The remaining part of the feedwater with fraction H E BF  enters HE B and 

1HEB H E AF F= − .                                                    (3.120) 

These fractions may differ from day to day. At June 20, 1998, the feedwater fraction for HE 

A is 0.49H E AF = . There is also splitting occurring in front of the reheaters. The expanded 

steam flows into RH A with fraction R H AF  and R H BF  is the fraction determining the steam 

that enters RH B.  

Correspondingly, 

1RHB R H AF F= − .                                                     (3.121) 

At June 20, 1998, the fraction for RH A is 0.53RHAF = . 

 From the definition of the flow fractions, it follows the mass flow rates  

6HEA H E Am F m= ⋅& & ,                                               (3.122) 

6HEB H E Bm F m= ⋅& & .                                              (3.123) 

Here, HEAm&  is the mass flow rate of the fluid that passes through HE A and HEBm&  is the mass 

flow rate of the fluid that passes through HE B. The mass flow rate of the feedwater that 

enters the heat exchanger trains, 6m& , is an input to the power plant model. Measurements 

from the real SEGS VI plant of that value are available. These measurements can be used as 

possible inputs for simulations with the power plant model. The pressures H E Ap  and H E Bp  



 76
that develop in the two heat exchanger trains HE A and HE B respectively, are functions of 

the mass flow rates HEAm&  and HEBm& . The polynomials were found from measurements of the 

mass flow rate and the pressure at SEGS VI: 

2

3 4

1373.83964 374.607738 128.736553

8.0075749 0.177361045
HEA HEA H E A

H E A HEA atm

p m m

m m p

= − ⋅ + ⋅

− ⋅ + ⋅ +

& &
& & ,               (3.124)   

2

683.996786 343.994696

4.56017193

HEB H E B

HEB atm

p m

m p

= + ⋅

+ ⋅ +

&
& .                                              (3.125) 

From these two pressures, the pressure of the feedwater that enters the two heat exchanger 

trains, 6p , is calculated as 

6 HEA HEA HEB H E Bp F p F p= ⋅ + ⋅ .                                   (3.126) 

The feedwater temperature 6T  is determined from equation (3.91). The temperatures of the 

two feedwater streams into HE A and HE B, ,Water H E AT  and ,Water H E BT , are assumed to be the 

same as 6T  

, 6WaterHEAT T= ,                                                       (3.127) 

, 6WaterHEBT T= .                                                       (3.128)    

Equations (3.122) – (3.128) model the splitting of the feedwater into the two heat exchanger 

train’s inlet flows. 

The exhaust steam from the high-pressure part of the turbine is also split two enter the 

two reheaters RH A and RH B. Thus similar equations can be found. The mass flow rates are 

                  11R H A R H Am F m= ⋅& & ,                                               (3.129) 

11R H B R H Bm F m= ⋅& & ,                                              (3.130) 
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where the exhaust mass flow rate, 11m& , is found from equation (3.29). From measurements on 

the real power plant, it can be seen that a pressure drop occurs in the steam on its way from 

the high-pressure turbine outlet to the two reheaters RH A and  RH B. Thus the two pressures 

R H Ap  and R H Bp  that develop in RH A and RH B respectively, are determined from the 

exhaust pressure 11p  as  

11R H A R H Ap p p= ⋅ ∆ ,                                         (3.131) 

11RHB R H Bp p p= ⋅ ∆ .                                         (3.132) 

The pressure 11p  is known from equation (3.26). The two pressure ratios R H Ap∆  and R H Bp∆  

are functions of the two mass flow rates R H Am&  and R H Bm& . These functions are polynomials 

found through a curve fit on the measured data from SEGS VI 

2

1.03315016 0.00615276988

0.000167339399

R H A R H A

R H A

p m

m

∆ = − ⋅

+ ⋅

&
& ,                      (3.133) 

2

1.01609492 0.00408501006

0.0000767853121

R H B R H B

R H B

p m

m

∆ = − ⋅

+ ⋅

&
& .                     (3.134) 

The temperature of the fluid that enters RH A, , ,S t e a m R H A iT , and the temperature of the fluid 

that enters RH B, , ,S t e a m R H B iT , is assumed to match the temperature of the high-pressure 

turbine exhaust 11T  and thus 

, , 11S t e a m R H A iT T=  ,                                              (3.135) 

, , 11S t e a m R H B iT T= .                                              (3.136)  

Equations (3.129) – (3.136) model the splitting of the high-pressure turbine exhaust into the 

two streams entering RH A and RH B. 
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The HTF that leaves the expansion vessel is split into the parts that enter HE A, HE B, RH A 

and RH B as explained above. The temperature of the four split HTF streams that enter the 

heat exchangers and reheaters are assumed to have the expansion vessel temperature, ExpT . 

The four streams leave the heat exchangers and reheaters, each with its own HTF outlet 

temperature, and merge to form the inlet flow of the solar trough collector field. The HTF 

outlet temperature for HE A is ,HTF H E AT , the HTF outlet temperature for HE B is ,HTF H E BT , the 

HTF outlet temperature for RH A is ,HTF R H AT  and the HTF outlet temperature for RH B is 

,HTF R H BT . Since no HTF mass is lost on its way through HE A, HE B, RH A and RH B, the 

HTF inlet temperature of the solar trough collector field, ,HTFinletT , is calculated from the flow 

fractions defined above: 

, , , , ,HTFinlet A HTF HEA B HTF HEB A HTF R H A B HTF R H BT a T a T b T b T= + + + .                  (3.137) 

Since the overall HTF volume flow rate, HTFV& , is available as measurement data from the real 

SEGS VI plant, it is used together with the flow fractions to calculated the heat that is 

transferred to the working fluid in the different heat exchangers and reheaters: 

( ),H E A A HTF HTF HTF Exp HTF HEAQ a c V T Tρ= −& & ,                        (3.138) 

( ),HEB B HTF HTF HTF Exp HTF HEBQ a c V T Tρ= −& & ,                        (3.139) 

( ),R H A A HTF HTF HTF Exp HTF R H AQ b c V T Tρ= −& & ,                        (3.140) 

( ),R H B B HTF HTF HTF Exp HTF R H BQ b c V T Tρ= −& & .                        (3.141) 

To predict the outlet temperatures of the HTF, the log mean temperature difference for 

counterflow with an overall heat transfer coefficient is applied as a common calculation 
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method for heat exchangers. From Incropera & DeWitt (2001), the heat in equations (3.138) 

– (3.141) is balanced with 

( )
,1 ,2

,1 ,2ln /
HEA H E A

H E A H E A
H E A H E A

T T
Q UA

T T

∆ − ∆
=

∆ ∆
& ,                         (3.142) 

( )
,1 ,2

,1 ,2ln /
HEB H E B

HEB H E B
HEB H E B

T T
Q UA

T T

∆ − ∆
=

∆ ∆
& ,                         (3.143) 

( )
,1 ,2

,1 ,2ln /
R H A R H A

R H A R H A
R H A R H A

T T
Q UA

T T

∆ − ∆
=

∆ ∆
& ,                         (3.144) 

( )
,1 ,2

,1 ,2ln /
RHB R H B

R H B R H B
R H B R H B

T T
Q UA

T T

∆ − ∆
=

∆ ∆
& .                          (3.145) 

In these equations, the temperature differences are 

,1 ,H E A Exp SteamHEAT T T∆ = − ,                                      (3.146) 

,2 , ,H E A HTF H E A Water H E AT T T∆ = − ,                               (3.147) 

,1 ,HEB Exp SteamHEBT T T∆ = − ,                                       (3.148)        

,2 , ,HEB HTF HEB Water H E BT T T∆ = − ,                                (3.149) 

,1 , ,R H A Exp S t e a m R H A oT T T∆ = −  ,                                    (3.150) 

,2 , , ,R H A HTF R H A Steam R H A iT T T∆ = − ,                              (3.151) 

,1 , ,R H B Exp S t e a m R H B oT T T∆ = − ,                                    (3.152) 

,2 , , ,R H B HTF R H B Steam R H B iT T T∆ = − ,                              (3.153) 

where  ,SteamHEAT  is the  working fluid outlet temperature of HE A, and ,SteamHEBT , , ,S t e a m R H A oT  

and , ,S t e a m R H B oT  are the working fluid outlet temperatures of HE B, RH A and RH B 
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respectively. The overall heat transfer coefficients are different from heat exchanger to heat 

exchanger. They depend on the mass flow rate of the HTF and the mass flow rate of the 

working fluid. Since the overall HTF volume flow rate, HTFV& , and the mass flow rate 6m&  of 

the working fluid are available as measured data, the following variable is defined that is 

equally dependent on the HTF volume flow rate and the mass flow rate: 

6

,0 6,0

1
2

HTF

HTF

mV
M

V m

 
= +  

 

& &
& & .                                              (3.154) 

Here, 3
0 0.624 m /sV =&  and 6,0 39.9 kg/sm =&  are the values of the HTF volume flow rate and 

the mass flow rate at solar noon on June 20, 1998. The variable M is used to find expressions 

for the different overall heat transfer coefficient-area products: 

2 3

792.404548 5631.66157

5732.19845 2201.04063
H E AUA M

M M

= − + ⋅

− ⋅ + ⋅
,                                    (3.155) 

2 3

1460.34016 8693.5446

10858.5127 4905.3059
HEBUA M

M M

= − + ⋅

− ⋅ + ⋅
,                                      (3.156) 

28217.68129 92925.7393 168323.253R H AUA M M= − + ⋅ + ⋅ ,                (3.157) 

213356.4707 68312.7678 348273.243R H BUA M M= − ⋅ + ⋅ .                   (3.158) 

These polynomials were found through a curve fit on overall heat transfer coefficients that 

were calculated from measurement data and plotted vs. M. From equations (3.138) – (3.158), 

the HTF outlet temperatures ,HTF H E AT , ,HTF H E BT , ,HTF R H AT and ,HTF R H BT  could be determined if 

the working fluid outlet temperatures, ,SteamHEAT , ,SteamHEBT , , ,S t e a m R H A oT  and , ,S t e a m R H B oT  were 

known. In order to calculate the working fluid outlet temperatures, an energy balance would 

be preferable, but since the flow fractions Aa , Ba , Ab  and Bb  are uncertain, a heat exchanger 
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effectiveness relation was chosen instead. From Incropera & De Witt (2001) it follows for 

each heat exchanger and reheater 

, ,

,

SteamHEA WaterHEA
H E A

Exp Water H E A

T T
T T

ε
−

=
−

,                                          (3.159) 

, ,

,

SteamHEB WaterHEB
HEB

Exp Water H E B

T T
T T

ε
−

=
−

,                                          (3.160) 

, , , ,

, ,

S t e a m R H A o S t e a m R H A i
R H A

Exp Steam R H A i

T T
T T

ε
−

=
−

,                                     (3.161) 

, , , ,

, ,

S t e a m R H B o S t e a m R H B i
R H B

Exp Steam R H B i

T T
T T

ε
−

=
−

.                                      (3.162) 

Each effectiveness, HEAε , HEBε , R H Aε  and R H Bε , is assumed to be dependent on both the 

HTF volume flow rate and the mass flow rate of the working fluid. Through a curve fit on 

effectiveness values that were calculated from measured data and plotted vs. M, the 

following equations for the effectiveness were found 

2

3 4

0.276005152 4.8581535 12.1350267

12.7277158 4.81249776
HEA M M

M M

ε = + ⋅ − ⋅

+ ⋅ − ⋅
,                   (3.163) 

2

0.960949494 0.0622394235

0.00829799829
HEB M

M

ε = − ⋅

+ ⋅
,                                           (3.164) 

2

3 4

1.55221859 15.7766242 35.5777164

34.4175845 12.1448263
R H A M M

M M

ε = − + ⋅ − ⋅

+ ⋅ − ⋅
,                 (3.165) 

 
2

3 4

1.28023253 13.429928 29.1850288

27.6156082 9.66507556
R H B M M

M M

ε = − + ⋅ − ⋅

+ ⋅ − ⋅
.                   (3.166) 
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The working fluid outlet enthalpies, ,S teamHEAh , ,SteamHEBh , , ,S t e a m R H A oh  and , ,S t e a m R H B oh  are 

calculated from fluid property functions as the enthalpies of steam at the related outlet 

temperatures and pressures 

( ), ,Steam, ,SteamHEA h SteamHEA H E Ah f T T P p= = = ,                           (3.167) 

( ), ,Steam, ,SteamHEB h SteamHEB H E Bh f T T P p= = = ,                           (3.168) 

( ), , , ,Steam, ,S teamRHAo h S t e a m R H A o R H Ah f T T P p= = = ,                          (3.169) 

( ), , , ,Steam, ,S teamRHBo h S t e a m R H B o R H Bh f T T P p= = = .                          (3.170) 

Note that this calculation might be inaccurate if the fluid that leaves the heat exchangers or 

reheaters is still in the two-phase region after it was heated up by the HTF energy. This may 

occur in the morning during the start-up of the plant or in the evening during the plant 

shutdown period when solar energy is low.  

 The two streams that leave HE A and HE B merge to a single stream with mass flow 

rate 7m& and thus 

7 0HEA HEBm m m+ − =& & & .                                        (3.171) 

The temperature 7T  and the enthalpy 7h  of the single stream that flows into the high-pressure 

part of the turbine are determined from the working fluid flow fractions 

7 , ,H E A SteamHEA HEB SteamHEBT F T F T= ⋅ + ⋅ ,                                      (3.172) 

7 , ,H E A SteamHEA HEB Steam H E Bh F h F h= ⋅ + ⋅ .                                      (3.173) 

The pressure 7p  is also calculated from the flow fractions 

7 `H E A HEA HEB HEB HEp F p F p p= ⋅ + ⋅ − ∆ ,                                     (3.174) 
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but from measurements on the real SEGS VI plant, it follows that a pressure drop occurs in 

the working fluid on its way from the heat exchanger trains to the high-pressure part of the 

turbine. This pressure drop is estimated as a function of the mass flow rate 7m& . The 

following polynomial was found from measured data 

2
7 79.81020595 2.7603402 0.278971331HEp m m∆ = − + ⋅ + ⋅& & .                      (3.175) 

The entropy 7s  is calculated from fluid property functions as the entropy of steam with the 

enthalpy 7h at the pressure 7p  

( )7 7 7Steam, ,ss f H h P p= = = .                                      (3.176) 

Equations (3.171) – (3.176) form a model for the mixing of the two streams that leave HE A 

and HE B. In a similar manner, the mixing of the two streams that leave RH A and RH B can 

be described. Thus the following equations are used to calculate the mass flow rate 12m& , the 

temperature 12T , the enthalpy 12h , the pressure 12p  and the entropy 12s  of the fluid that enters 

the low-pressure part of the turbine: 

12 0R H A R H Bm m m+ − =& & & ,                                                   (3.177) 

12 , , , ,R H A S t e a m R H A o R H B S t e a m R H B oT F T F T= ⋅ + ⋅ ,                                   (3.178) 

12 , , , ,R H A S t e a m R H A o R H B Steam R H B oh F h F h= ⋅ + ⋅ ,                                   (3.179) 

12 R H A R H A R H B R H B RHp F p F p p= ⋅ + ⋅ − ∆ ,                                       (3.180) 

2
12 12124.845039 5.63854205 0.0510125894RHp m m∆ = − + ⋅ − ⋅& & ,                       (3.181) 

( )121212 ,,Steam pPhHfs s === .                                        (3.182) 

These equations complete the model for HE A, HE B, RH A and RH B that is given through 

equations (3.120) – (3.182). 
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3.2.2.8 Calculation of the Gross Output 
 
In order to estimate the produced power of the plant, the gross output GrossP  is calculated as 

the summation of the turbine work 

7 7 8 8

10 10 11 11

12 12 13 13

15 15 16 16

18 18 19 19

GrossP m h m h

m h m h
m h m h
m h m h

m h m h

= −

+ −
+ −
+ −

+ −

& &
& &
& &
& &
& &

 .                                         (3.183) 

With this last equation, the entire power plant model is eventually defined.  

 
 
3.3 Model Implementation and Simulation Results 
 

The model discussed in the previous section can be used to predict the HTF inlet 

temperature, ,HTFinletT , of the collector field vs. time and the gross output, GrossP , vs. time. 

 

 

Figure 3.5: The Power Plant Model as a Block with Inputs and Outputs 
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The input values of the power plant model are the expansion vessel HTF temperature, ExpT , 

the HTF volume flow rate, HTFV& , the steam mass flow rate, 6m& , and the cooling water inlet 

temperature, ,C o o l iT , vs. time. In addition, valve adjustments have to be known that define the  

mass flow rates of the turbine extractions. Figure 3.5 shows the power plant model as a block 

with inputs and outputs.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.6: Measured Expansion Vessel Temperature for September 19, 1998 and for December 14, 1998 
 
 

 

 

 

 

 

 

 

 

 

Figure 3.7: Measured Steam Mass Flow Rate for September 19, 1998 and for December 14, 1998 
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Figure 3.8: Measured Cooling Water Inlet Temperature for September 19, 1998 and for December 14, 
1998 
 

The measured input values vs. time for September 19, 1998, which is a clear day, and for 

December 14, 1998, which is a partly cloudy day, are shown in Figure 3.6 to Figure 3.8. The 

measured HTF volume flow rate for these days is shown in Figure 2.23 in the previous 

chapter.  

 The HTF trough collector field inlet temperature and the gross output are calculated 

through simulations with the power plant model and compared with the corresponding 

measured data from SEGS VI (Figures 3.9 – 3.12). 

 

 

 

 

 

 

 
Figure 3.9: Calculated Collector Inlet Temperature vs. Time and Calculated Gross Output vs. Time 
(solid lines) and corresponding measurements (dashed lines) for June 20, 1998 
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Figure 3.10: Calculated Collector Inlet Temperature vs. Time and Calculated Gross Output vs. Time 
(solid lines) and corresponding measurements (dashed lines) for September 19, 1998 
 

 

 

 

 

 

 
Figure 3.11: Calculated Collector Inlet Temperature vs. Time and Calculated Gross Output vs. Time 
(solid lines) and corresponding measurements (dashed lines) for December 16, 1998 
 

 

 

 

 

 

 

Figure 3.12: Calculated Collector Inlet Temperature vs. Time and Calculated Gross Output vs. Time 
(solid lines) and corresponding measurements (dashed lines) for December 14, 1998 
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Figure 3.9 shows the calculated collector inlet temperature and the calculated gross output vs. 

measured data for June 20, 1998. The calculated values, given through the solid line, match 

the measured values, represented by the dashed line, sufficiently. The considered day, June 

20, 1998, is a day with good weather conditions. For other clear days, September 19, 1998 in 

Figure 3.10 and December 16, 1998 in Figure 3.11, the predicted values match the measured 

values similarly well.     

 For a partially cloudy day as December 14, 1998, depicted in Figure 3.12, the 

calculated collector inlet temperature and the measured one do not agree as well as for the 

clear days. However, the predicted values are still an adequate estimate of the measured 

values.  The same is true for the calculated gross output.  

 These results verify that the power plant model as explained above and implemented 

in EES is useful as a model for the real SEGS VI power plant. In order to obtain a model for 

the entire plant, that is, the trough collector field with the power plant, the trough collector 

field model and the power plant model are linked together as explained next. 
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Chapter 4 
 

Combined Plant Model 
 

 
 

The trough collector field model presented in Chapter 2 and the power plant model discussed 

in Chapter 3 are combined to form the entire plant model as shown in Figure 4.1.  
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Figure 4.1: Combination of Collector Model and Power Plant Model 
 
 
 
As can be seen from Figure 4.1, the expansion vessel model is the link between collector and 

power plant model.  

 



 90
The expansion vessel is assumed to be a fully mixed tank and thus can be described by a 

single differential equation for temperature obtained from an energy balance on the 

expansion vessel 

0,
Exp HTF HTF

Exp HTF j
Exp Exp

dT V V
T T

dt V V
= − +

& &
.                                  (4.1) 

Here, ExpT  is the expansion vessel temperature and ExpV  is the expansion vessel volume with 

3m7.287=ExpV .  

 The combined plant model can be considered as a single block with inputs and 

outputs as depicted in Figure 4.2. 

 

 

 

Figure 4.2: The Plant Model as a Block with Inputs and Outputs 
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Figure 4.3: With Plant Model calculated Collector Outlet Temperature vs. Time and Gross Output vs. 
Time (solid lines) and Measured Values (dashed lines) for June 20, 1998 
 

 

 

 

  

 

 
 
Figure 4.4: With Plant Model calculated Collector Outlet Temperature vs. Time and Gross Output vs. 
Time (solid lines) and Measured Values (dashed lines) for September 19, 1998 
 

 

 

 

 

 

 

Figure 4.5: With Plant Model calculated Collector Outlet Temperature vs. Time and Gross Output vs. 
Time (solid lines) and Measured Values (dashed lines) for December 16, 1998 
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Figure 4.6: With Plant Model calculated Collector Outlet Temperature vs. Time and Gross Output vs. 
Time (solid lines) and Measured Values (dashed lines) for December 14, 1998 
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flow rate at SEGS VI that was used as an input to the plant model for the simulation. June 20, 

1998 was a clear day and for the other clear days that are considered, September 19, 1998 in 

Figure 4.4 and December 16, 1998 in Figure 4.5, similar good results can be stated. 

Even for the partially cloudy day, December 14, 1998, the calculated collector outlet 

temperature and the calculated gross output match the measured values well as shown in 

Figure 4.6. 

 These results show that the plant model, as it was described in this and the previous 

chapters, is very useful to predict the collector outlet temperature and the produced power of 

the real SEGS VI plant. For this model, a control algorithm has to be found that obtains the 

ability to hold the collector outlet temperature at a constant set point through the adjustment 

of the HTF volume flow rate. The control algorithm that was chosen for this study is taken 

from the model predictive control framework as explained in Rawlings and Muske (1993). Its 

implementation and performance for the plant model is described in the next chapter.    
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Chapter 5 
 

Linear Model Predictive Control 
 

 
 
5.1 Introduction 
 
In Chapter 1, it was explained that a human controller in the SEGS VI plant tries to maintain 

a constant set point collector outlet temperature of the HTF by adjusting the volume flow rate 

of the HTF.  The objective of this work is to simulate the human controller’s behavior 

through automatic controls.  A linear model predictive controller is developed for the SEGS 

VI plant model as shown in Figure 5.1.  

 

Figure 5.1: The MPC controller for the plant model 
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The MPC controller measures the collector outlet temperature, the solar radiation, the 

ambient temperature, the wind speed, the steam mass flow rate in the power plant and the 

heat exchanger train water inlet temperature to calculate the HTF volume flow rate that 

drives the collector outlet temperature into the set point.  

 Linear model predictive control (MPC) is a linear optimal control strategy: the 

essence of MPC is to optimize, over the manipulable inputs, forecasts of process behavior 

(Rawlings, 2000). A feature of MPC is the incorporation of constraints on the manipulated 

and controlled variables into the optimization procedure.  

In the case of SEGS VI, forecasts of process behavior mean the prediction of how the 

collector field outlet temperature of the HTF will behave for a possible variation of the HTF 

volume flow rates from now to a point of time in the future. The difference between now and 

a future point in time is called the time horizon. If a forecast is made at successive points in 

time, there is at each of these points in time a prediction made along a time horizon of the 

same length. Thus it is thought of a horizon that moves with time from one prediction point 

of time to the next. This is why MPC belongs to a class of control algorithms also referred to 

as receding horizon control or moving horizon control.   

The optimization of forecasts of process behavior implies that there is a performance 

objective. What is the optimal forecasted process behavior? Since an optimization is usually 

formulated as a minimization, the performance objective is formulated as a minimization of a 

cost functional that is minimal for the optimal forecasted process behavior. The goal of the 

human controller at SEGS VI is to maintain the HTF collector field outlet temperature at a 

specified set point. Thus, the optimal forecasted process behavior is that the future HTF 

collector field outlet temperatures are at the set point and that no change in the HTF volume 
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flow rate occure from one point in time to the next point in time. The second criterion reflects 

the desire of not having rapid changes in the flow rate. This criterion may be useful for 

damping potential oscillations in the HTF collector field outlet temperature while 

approaching the set point. Consequently, the value of a cost function that is to be minimized 

must increase with an increasing difference between the forecasted HTF collector field outlet 

temperatures and the set point temperature. It also must increase with an increasing change in 

the HTF volume flow rate from one point in time to the next point in time. The aim is to find 

the optimal sequence of HTF volume flow rates among all possible flow rates, that 

minimizes the cost function, while keeping the HTF volume flow rates and also the 

dependent HTF collector field outlet temperatures between specified upper and lower 

bounds. A solution to this problem through MATLAB optimization procedures will be 

shown later. 

The MPC algorithms presented here are based on a theoretical framework taken from 

Rawlings and Muske (1993). In order to obtain a better understanding of the subject, a 

simplified model rather than the SEGS VI plant model is chosen to explain the control 

strategy. The simplified model is presented next. 

 

5.2 The Simplified Model 

The simplified model, shown in Figure 5.2, consists of four elements: a solar collector, an 

expansion vessel, a heat exchanger and a HTF pump. Differential equations for temperature 

are used to model the system. The simplified system can be described by a system of four 

nonlinear differential equations as explained in the following. 
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Figure 5.2: The Structure of the Simpl ified Model 
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& &
     (5.1) 

where ColV is the overall volume of the collector, given by 

2
,4Col ABS i ColV D Lπ= ⋅ ,                                                   (5.2) 

with the length of the collector 

Col CollectorsL Length n= ⋅ .                                             (5.3) 

HEV

mTWater &,

HEL

iABSD ,

HED

absorbedq ambientq

HTFV&

inT

inT

outT

ambT

HTF Pump

Heat Exchanger

Expansion Vessel

Solar Collector

SteamT

ColL

ExpV

ExpTHEV

mTWater &,

HEL

iABSD ,

HED

absorbedq ambientq

HTFV&

inT

inT

outT

ambT

HTF Pump

Heat Exchanger

Expansion Vessel

Solar Collector

SteamT

ColL

ExpV

ExpT



 99

The heat transfer to the environment, ambientq , is described by 

( ), ,( ) ( ) ( )ambient ambient ABSsurf i out ambq t h A T t T t= −                                 (5.4) 

with a heat transfer coefficient of -1-2KWm5.2=ambienth  and the surface area , ,ABS surf iA  from 

equation (2.22). The initial condition for equation (5.1) is 

initoutout TT ,)0( =   .                                                   (5.5) 

The expansion vessel temperature is determined through 

( ) ( ) ( )
( ) ( )Exp HTF HTF

Exp out
Exp Exp

dT t V t V t
T t T t

dt V V
= − +

& &
                                 (5.6) 

with the expansion vessel volume, 3287.7 mExpV = . The initial condition for equation (5.6) 

is 

,(0)Exp ExpinitT T= .                                                      (5.7) 

Finally, the loop is closed through an energy balance on the heat exchanger trains 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )in A B HTF A B HTF HE

in Exp transferred
HE HE HTF HTF HE

dT t a a V t a a V t L
T t T t q t

dt V V c Vρ
+ ⋅ + ⋅

= − + −
& &

 

(5.8) 

where Aa  and Ba  are the flow fractions from Chapter 3.2.3.7. The heat transfer in the heat 

exchanger is given by 

( ),( ) ( ) ( ) ( )transferred HE HEsurf h cq t h t A T t T t= −  ,                                   (5.9) 

where the temperature of the hot fluid, hT , is the mean temperature of the HTF in the heat 

exchanger 

( )1
2( ) ( ) ( )h Exp inT t T t T t= +                                                    (5.10) 
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and the temperature of the cold  working fluid, cT , is the mean temperature 

( ))()()( 2
1 tTtTtT WaterSteamc += .                                            (5.11) 

The heat transfer coefficient, HEh , is dependent on the two flow rates that are available as 

measurements from SEGS VI  

1-2-00, KWm
2

/)(/)(
74000)( 









 +
⋅=

mtmVtV
th HTFHTF

HE

&&&&
                    (5.12) 

where m& is the mass flow rate of the working fluid (water or steam). The reference flow rates 

are -13
0, sm624.0=HTFV&  for the HTF volume flow rate and -1

0 skg9.39=m&  for the mass 

flow rate of the working fluid. They are flow rates at solar noon measured at June 20, 1998. 

The surface area is determined from 

,HE surf HEA Dπ=                                                      (5.13) 

with an assumed diameter of m1=HED . The volume of the heat exchanger, HEV , is 

calculated from 

HEHEHE LDV 2
4
π=                                              (5.14) 

with an assumed length of m10=HEL . The initial condition for equation (5.8) is 

initinin TT ,)0( = .                                                   (5.15) 

The temperature of the Steam, SteamT , is calculated from a heat exchanger effectiveness 

equation 

( ) ( )
( )

( ) ( )
Steam Water

HE
Exp Water

T t T t
t

T t T t
ε

−
=

−
,                                            (5.16) 
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formulated as the following differential equation  

( ) ( )( )( )
0.01 ( ) ( ) ( ) ( ) ( )Steam

Steam HE Exp Water Water

dT t
T t t T t T t T t

dt
ε= ⋅ − + − +  .                 (5.17) 

The algebraic equation (5.16) is formulated as a differential equation (5.17) because the 

model predictive control framework as used in this work considers only differential equations 

as system equations. The factor 0.01 s-1 was introduced to adjust the time constant of this 

differential equation to the time constant range of the entire system in order to avoid a stiff 

differential equation system. The heat exchanger effectiveness is assumed to be flow rate 

dependent 

025.1
2

/)(/)(
)1.0()( 00, +









 +
⋅−=

mtmVtV
t HTFHTF

HE

&&&&
ε .                             (5.18) 

The initial condition for equation (5.17) is 

          initSteamSteam TT ,)0( = .                                                  (5.19) 

The validation of the simplified model is shown in Figure 5.3 for June 20, 1998, a clear day, 

and in Figure 5.4 for December 14, 1998, a partially cloudy day, where the measured input 

values for the simplified model are the direct normal solar radiation to calculate absorbedq , the 

ambient temperature, ambientT , the HTF volume flow rate, HTFV& , the working fluid mass flow 

rate, m& , and the water inlet temperature of the heat exchanger, WaterT . Calculated are the 

collector outlet temperature, outT , and the steam outlet temperature of the heat exchanger, 

SteamT . 

As seen from Figure 5.3 and Figure 5.4, the simplified model can be used to calculate 

acceptable HTF temperatures compared to the ones measured at SEGS VI.  
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Figure 5.3: The simplified model calculated collector outlet temperature (solid line) and measured 
collector outlet temperature (dashed line) are shown in the left hand figure and the calculated steam 
temperature (solid line) and measured steam temperature (dashed line) are shown in the right hand 
figure for June 20, 1998 
 

 

 

 

 

 

 

Figure 5.4: The simplified model calculated collector outlet temperature (solid line) and measured 
collector outlet temperature (dashed line) are shown in the left hand figure and the calculated steam 
temperature (solid line) and measured steam temperature (dashed line) are shown in the right hand 
figure for December 14, 1998 
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Rawlings and Muske (1993), linear equations are needed. In the next section, it is explained 

how the simplified model has to be transformed to obtain linear equations. 

 
 
5.3 Models for Linear MPC 
 
The models in linear MPC are discrete-time linear models in state-space form. First, the 

linear model in state-space form is explained, later the time discretization of this model.  

The state-space form of a linear model or better linear differential system is 

)()()()()( tutBtxtAtx +=& .                                               (5.20) 

Here t  is the time variable, )(tx  is a real n-dimensional time-varying column vector which 

denotes the state of the system, and )(tu  is a real m-dimensional column vector which 

indicates the input variable (Kwakernaak & Sivan, 1972). The time-varying matrix )(tA  is of 

dimension )( nn ×  and the time-varying matrix )(tB  is of dimension )( mn × . Let )(ty  be a 

real p-dimensional system variable that can be observed or measured or through which the 

system influences its environment.  

Such a variable is called an output variable of the system and is expressed through the 

output equation of the system 

)()()()()( tutDtxtCty +=                                               (5.21) 

with the time-varying matrix )(tC  of dimension )( np × and the time-varying matrix )(tD  of 

dimension )( mp × . There exists an initial condition for the system described by equation 

(5.20) 

initxx =)0( .                                                              (5.22) 
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If the matrices A, B, C, and D are constant, the system is time-invariant: 

)()()( tuBtxAtx +=&  ,                                                    (5.23) 

)()()( tuDtxCty += .                                                    (5.24) 

For linear MPC as it is considered in this work, it is necessary to obtain model equations in 

the form of equation (5.23) and (5.24) with an initial condition (5.22). Does the simplified 

model already obtain this form? If not, what has to be done to gain a system model of that 

form? 

 To answer the first question, the simplified model equations (5.1), (5.6), (5.8) and 

(5.17) are written down again with the introduction of some abbreviations. The time constant 

Colτ  for the collector is defined as 

Col

HTF

Col V
tV

t
)(

)(
1 &

=
τ

 .                                                      (5.25) 

The crosssectional area of the collector is ColA . An overall heat transfer coefficient-area 

product, ColUA , is introduced as  

 , ,Col ambient ABS surf iUA h A=   .                                              (5.26) 

With these definitions, the differential equation for the collector outlet temperature (5.1) may 

now be written as 

( ) ( )
( ) ( ))()(

)()()(
)()(

)(
1)(

tTctTA
tTtTUAtq

tTtT
tdt

tdT

outHTFoutHTFCol

amboutColabsorbed
outin

Col

out

ρτ
−−

+−= .            (5.27) 

There is a time constant for the expansion vessel, Expτ , given through 

Exp

HTF

Exp V
tV

t
)(

)(
1 &

=
τ

 .                                                        (5.28) 
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Thus the differential equation for the expansion vessel temperature (5.6) becomes 

( ))()(
)(

1)(
tTtT

tdt

tdT
Expout

Exp

Exp −=
τ

.                               (5.29) 

The heat exchanger time constant, HEτ , is calculated as 

HE

HTFBA

HE V
tVaa

t
)()(

)(
1 &⋅+

=
τ

.                                         (5.30) 

The cross-sectional area of the heat exchanger is HEA  and the time dependent overall heat 

transfer coefficient – area product, HEUA , is given by 

,( ) ( )HE HE HEsurfUA t h t A= .                                              (5.31) 

With these definitions, the differential equation for the collector inlet temperature (5.8) 

results in 

( ) ( )
( ) ( ))()(2

)()()()()(
)()(

)(
1)(

tTctTA

tTtTtTtTtUA
tTtT

tdt
tdT

inHTFinHTFHE

WaterSteaminExpHE
inExp

HE

in

ρτ ⋅

−−+
−−= .     (5.32) 

Remember, the differential equation for the steam outlet temperature of the heat exchanger 

(5.17) is  

 ( ) ( )( ))()()()()(01.0
)(

tTtTtTttT
dt

tdT
WaterWaterExpHESteam

Steam +−+−⋅= ε  .                 (5.33) 

The following considerations are based on the set of the four differential equations (5.27), 

(5.29), (5.32) and (5.33). For a comparison with the time-invariant linear state-space model 

(5.23), the following state vector is introduced 
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)(
)(
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)(
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Exp
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.                                                         (5.34) 
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The input vector is defined as 
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& ,                                                      (5.35) 

and the initial condition is given through 











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



=

initSteam

initin
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T
T
T
T

x
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,

,

)0( .                                                        (5.36) 

Considering the definition of these vectors, it can be seen that the set of differential equations 

(5.27), (5.29), (5.32) and (5.33) does not form a model of the type given by equation (5.23). 

Time-dependent factors like the inverse time constant )(/1 tColτ in equation (5.27) form a 

product with the temperatures of the incoming and outgoing HTF ( )(tTin  and )(tTout in 

equation (5.27)). Thus, a time-invariant matrix A  cannot exist. But not even a time-varying 

linear state-space model (equation (5.20)) is given since the temperature dependent HTF 

density and HTF specific heat are in the denominator of a fraction where the related HTF 

temperature is in the numerator as it is the case in equation (5.27) and (5.32). Therefore the 

model defined by the four differential equations (5.27), (5.29), (5.32) and (5.33) is not of the 

linear state-space form as defined above. Considering again the vector definitions made in 

(5.34), (5.35) and (5.36), the simplified model is of the very general form 

[ ]ttutxftx ),(),()( =& .                                                   (5.37) 
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Equation (5.37) stands for: 
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Exp
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 (5.38) 

 
Since the simplified model is not in the required form for implementation in the linear MPC 

algorithm, it is necessary to make approximations of the simplified model to convert the 

equations to the required form (5.23).  

 
 
5.3.1 Model Linearization 
 
The linearization procedure, taken from Kwakernaak and Sivan (1972), is first presented 

theoretically by starting with the general form of the system (5.37). Suppose that )(tunom  is a 

given input to system (5.37) and )(txnom  is a known solution of the state differential equation 

(5.37).  Then, )(txnom  satisfies 

[ ] ENDnomnomnom ttttutxftx ≤≤= 0,),(),()(& .                         (5.39) 
 
Note the time interval is finite with the upper bound ENDt  and the lower bound at zero 

(without losing generality). The goal is to find approximations to neighboring solutions, for 

small deviations from nomx  and for small deviations from nomu . It is referred to nomu  as a 

nominal input and to nomx  as a nominal trajectory. A common assumption is that the system 

is operated close to nominal conditions, which means that u and x deviate only slightly from 

nomu  and nomx .  
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Thus it can be written 

ENDnom tttututu ≤≤+= 0),(~)()( ,                    (5.40) 

),0(~)0()0( xxx nom +=                                                                 (5.41) 

where )(~ tu and )0(~x are small perturbations. Correspondingly, it is 

ENDnom tttxtxtx ≤≤+= 0),(~)()( .                   (5.42) 

After substituting equation (5.40) and equation (5.42) into the state differential equation 

(5.37), a Taylor expansion is made, yielding 

[ ] [ ]
[ ] ENDnomnomu

nomnomxnomnomnom

tthottuttutxJ
txttutxJttutxftxtx

≤≤++
+=+

0,)(~),(),(
)(~),(),(),(),()(~)( &&

.       (5.43) 

 Here xJ  and uJ  are the Jacobian matrices of  f  with respect to x and u. That is, xJ  is a 

matrix the (i,j)-th element of which is 

( ) ,,
j

i
jix

f
J

ξ∂
∂

=                                                       (5.44) 

where if is the i-th component of f and jξ is the j-th component of x. uJ is similarly defined. 

The higher order term, hot, is supposed to be “small” with respect to x~ and u~ and thus is 

neglected. Equation (5.43) can then be expressed as 

[ ] [ ] ,0),(~),(),()(~),(),()(~
ENDnomnomunomnomx tttuttutxJtxttutxJtx ≤≤+=&      (5.45) 

meaning that x~ and u~ approximately satisfy a linear equation of the form given in equation 

(5.20) if [ ]ttutxJtA nomnomx ),(),()( =  and [ ]ttutxJtB nomnomu ),(),()( = . Equation (5.45) is 

called linearized state differential equation, its initial condition is )0(~x  from equation (5.41).  



 109
This method is used to linearize equation (5.38). Thus it is necessary to determine the 

Jacobian matrices xJ  and uJ  for system (5.38). For a better understanding, equation (5.38) is 

now written as 
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  .                                   (5.46) 

 
 

Thus, the components of the vector on the right-hand side are 
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,                                                                  (5.48) 

        [ ] ( ) ( )
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(5.49) 

[ ] ( ) ( )( ))()()()()(01.0),(),(4 tTtTtTttTttutxf WaterWaterExpHESteam +−+−⋅= ε .                 (5.50) 
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From the definition of the Jacobian matrix in equation (5.44) and the state vector in (5.34), 

the Jacobian matrix xJ  for system (5.38) is 
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and regarding the input vector in (5.35),  the Jacobian matrix uJ  is 
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In the following, each derivative in the matrices xJ  and uJ  is listed and new variables for 

some of these derivatives are introduced for clarity: 
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∂
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If the Jacobian matrices xJ  from equation (5.51) and uJ  from equation (5.52) with their 

elements given through equations (5.53) – (5.88) are evaluated for a nominal input, )(tunom , 

and a nominal trajectory, )(txnom , then a time-varying linearized state differential equation of 

the form given in equation (5.45) is found. Next, the four linear differential equations are 

presented that are found after multiplying and simplifying the right-hand side of equation 

(5.45). For a small perturbation of the collector outlet temperature, )(
~

tTout , around a nominal 

solution, the approximate linear differential equation is 
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(5.89) 

with the initial condition 
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The linear differential equation for a small perturbation of the expansion vessel temperature, 
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, around a nominal solution is 
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For the collector inlet temperature, the linearized differential equation is 
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with the initial condition 

initinin TT ,
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= .                                                    (5.94) 

Finally, the linear differential equation for a small perturbation of the steam outlet 

temperature of the heat exchanger, SteamT
~

, around a nominal solution is 
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,                      (5.95) 

with the initial condition 

initSteamSteam TT ,
~

)0(
~

=  .                                               (5.96) 

To obtain a time-invariant linearized state differential equation from (5.45), a steady-state 

situation as nominal solution is considered, where all quantities are constant. A constant 

input to the system means that the absorbed solar energy, the ambient temperature, the HTF 

volume flow rate, the mass flow rate and the water temperature are held constant. For such a 

constant input, temperatures will evolve throughout the plant that stay constant with ongoing 
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time if no further change in the input variables occurs. The constant input together with the 

constant temperatures is called a steady-state situation. If the constant input is taken as 

nominal input, nomu , and the evolved constant temperatures as nominal trajectory, nomx , then 

the Jacobian matrices xJ  and uJ  have constant elements if evaluated for this nominal 

solution. In this case, the linearized state differential equation (5.45) is time-invariant and a 

model of the form (5.23) is found that can be applied to the MPC algorithm 

)(~)(~)(~ tuBtxAtx +=& .                                           (5.97) 

However, a slight variation of equation (5.97) is used here since a distinction is made 

between manipulable inputs and inputs that cannot be manipulated or that are not considered 

to be manipulated for the purpose of the collector outlet temperature control (as the steam 

mass flow rate )(tm&  in this study). In order to control the collector outlet temperature, only 

the HTF volume flow rate )(tVHTF
&  is adjusted and the following scalar is defined  

 )()( tVtu HTFm
&= .                                                   (5.98) 

The input variable )(tum  stands for manipulable input.  

In addition, the vector of non-manipulated inputs is defined as 
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d & .                                                   (5.99) 

Instead of using the input vector )(tu  from equation (5.35), the two input variables )(tum  

and )(tud are taken.  
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Thus, the time-invariant matrix B  is divided into the vector mB  and into the matrix dB  to 

express equation (5.97) as  

)(~)(~)(~)(~ tuBtuBtxAtx ddmm ++=& .                                (5.100) 

The measured output variable )(ty  of the system is the collector outlet temperature )(tTout , 

the variable that has to be controlled.  From equation (5.24) it follows then 

)(~)(~ txCty = ,                                               (5.101) 

with 

[ ]0001=C                                               (5.102)     

from the definition of )(tx  in equation (5.34). 

 The linear model given through equations (5.100) and (5.101) with the initial 

condition in equation (5.41) is compared to the nonlinear model from equation (5.38). Both 

models were implemented in EES to predict the collector outlet temperature )(tTout  and the 

steam temperature )(tTSteam  for a clear day, June 20, 1998 and a partially cloudy day, 

December 14, 1998.  

 

 

 

 

 

 

Figure 5.5: A comparison between the simplified nonlinear model (solid line) and its linearized model 
(dashed line) through the prediction of the collector outlet temperature and the steam temperature for 
June 20, 1998 

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
300

350

400

450

500

550

600

650

700

Time  [hr]

T
o

ut
  [

K
]

Nonlinear vs. Linear Model - Collector Outlet Temperature

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
400

450

500

550

600

650

700

Time  [hr]

T
S

te
am

  
[K

]

Nonlinear vs. Linear Model - Steam Temperature



 119

 
Figure 5.6: A comparison between the simplified nonlinear model (solid line) and its linearized model 
(dashed line) through a prediction of the collector outlet temperature and the steam temperature for 
December 14, 1998 
 

In Figure 5.5 the prediction of the nonlinear model indicated by the solid line and the 

prediction of the linear model indicated by the dashed line are plotted together in the same 

graph for June 20, 1998. A comparison yields that the calculation with the linear model 

matches the prediciton of the nonlinear model well for most of the daytime. Only at the end 

of the plant operation when solar energy decreases, the linear model predictions differ 

remarkably from the ones made with the nonlinear model. A nearly perfect match is achieved 

for the partially cloudy day, shown in Figure 5.6.     

 Since the objective of this work is to develop a controller for the complex plant model 

from Chapter 4, a linearized model for the complex plant model was obtained by applying 

the same linearization method as discussed for the simplified model above. The linearization 

of the complex model is not shown here since the resulting terms are large and it is tedious to 

obtain them. But a comparison between the complex nonlinear model predicted collector 

outlet temperature and the collector outlet temperature that was calculated with the linearized 

model is presented for four days in 1998, shown in Figure 5.7. 
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Figure 5.7: Predictions of the collector outlet temperature, calculated from the complex nonlinear model 
(solid line) and its linearized linear models (dashed line) for a comparison at four different days in 1998  
 

The predictions made with the linearized model for June 20, 1998 and September 19, 1998 

match the nonlinear model predictions well until the transient is reached. Then, the 

predictions differ strongly from each other. The linear model calculated collector outlet 

temperatures for the two days in December 1998 differ from the nonlinear model 

temperatures especially during solar noon. However, as will be seen later, the linear models 

are sufficiently accurate to achieve reasonable MPC control performance on the nonlinear 

plant model.  
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5.3.2 Discrete-Time Models 
 
The linear differential equation system (5.100), the output equation (5.101) and the initial 

condition in equation (5.41) form a continuous-time system. However, MPC deals with 

discrete-time systems.  Consequently, the linear time-invariant continuous-time system has to 

be transformed into an equivalent discrete-time system of the form                                

kdddkmdmkdk uBuBxAx ,,,,1
~~~~ ++=+ ,                                  (5.103) 

kdk xCy ~~ =                                                                        (5.104) 

where kx~ is the state and kmu ,
~  , kdu ,

~  the inputs at time instants ,...2,1,0, =ktk  The initial 

condition is 0
~x . The sampling period, ∆ , is the constant difference between two time instants 

ii tt −=∆ +1  .                                                  (5.105) 

A derivation of the following transformation for the discrete-time system can be found in 

Kwakernaak and Sivan (1972) and yields 

∆= A
dA e ,                                                     (5.106)   

1
, ( )m d d mB A I A B−= − ,                                     (5.107)   

1
, ( )d d d dB A I A B−= − ,                                     (5.108) 

CCd = .                                                       (5.109) 

Through these equations, the discrete-time equations that represent the continuous-time 

system are obtained. In the following only the discrete-time system is considered and the d-

index at the matrices is omitted, bearing in mind that the system matrices are the matrices of 

a discrete-time system. 
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Before the linear discrete-time model is used in the MPC algorithms, equation (5.103) is 

augmented by the input step disturbance kd . This results in  

( )1 , ,k k m m k k d d kx A x B u d B u+ = + + +% % % % .                           (5.110) 

The affine term kd  serves the purpose of adding integral control, what is explained later. 

 Constraints on the collector outlet temperature as the output and on the HTF volume 

flow rate as the manipulable input are considered 

, , ,outmin o u t k outmaxT T T≤ ≤% % % ,                                         (5.111) 

, , ,HTF min HTF k HTF maxV V V≤ ≤& & &% % % ,                                      (5.112) 

or equivalently 

min k maxy y y≤ ≤% % % ,                                                (5.113) 

, , ,mmin m k mmaxu u u≤ ≤% % % .                                            (5.114) 

The time-invariant linear discrete-time model given through (5.110) and (5.104) together 

with the constraints (5.113) and (5.114) is now ready for use in the MPC framework from 

Rawlings and Muske (1993) that is explained next. 

 
 
5.4 The Model Predictive Control Framework 
 
 
5.4.1 Receding Horizon Regulator Formulation 
 
As explained in the introduction Chapter 5.1, a cost function that is to be minimized for 

optimal control must increase with an increasing difference between the forecasted HTF 

collector field outlet temperatures and the set point temperature. In addition, it must increase 

with an increasing rate of change in the HTF volume flow rate. Thus the receding horizon 
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regulator is based on the minimization of the following infinite horizon open-loop quadratic 

objective function at time k (Rawlings & Muske, 1993): 

( )2 2
, , ,

0

1
2k o u t k j outset HTF k j

j

Q T T S V
∞

+ +
=

 Φ = − + ∆  ∑ &% % % ,                            (5.115) 

where Q is a penalty parameter on the difference between the collector outlet temperature 

and the set point temperature with 0Q > . The parameter S  with 0S >  is a penalty 

parameter on the rate of change of the HTF volume flow rate as the input in which  

                                                , , , 1HTFk j HTF k j HTF k jV V V+ + + −∆ = −& & &% % % .                               (5.116)     

For this input velocity, the following constraints are considered 

max,,min,
~~~

HTFkHTFHTF VVV &&& ≤∆≤∆ .                               (5.117)   

The parameters Q  and S  are the tuning parameters of the receding horizon regulator. A 

large value of Q  in comparison to S  may drive the collector outlet temperature quickly to its 

set point at the expense of large changes in the HTF volume flow rate. If S  is chosen large 

relatively to Q  the control action is reduced but the rate at which the collector outlet 

temperature approaches its set point is slowed down. Tuning the parameters is a non-trivial 

problem in MPC. The cost function in equation (5.115) is now written as 

( )2 2
,

0

1
2k k j set m k j

j

Q y y S u
∞

+ +
=

 Φ = − + ∆  ∑ % % % .                              (5.118) 

This follows from equation (5.98) and equation (5.101).  
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The set point of the outlet temperature, sety% , is the collector outlet temperature of the plant in 

a steady state satisfying (for discrete-time systems) 

( ), ,set set m m s e t k d d kx A x B u d B u= + + +% % % % ,                                     (5.119) 

set sety C x=% % .                                                                             (5.120) 

The following substitutions are made to simplify the formulation 

k j k j setz y Cx+ +← −% % ,                                                       (5.121) 

k j k j setw x x+ +← −% % ,                                                          (5.122) 

, , ,m k j m k j msetv u u+ +← −% % ,                                                     (5.123) 

, ,d k j d k jv u+ +← % ,                                                                (5.124) 

and the infinite horizon quadratic criterion, equation (5.118), yields 

2 2
,

0

1
2k k j m k j

j

Q z S v
∞

+ +
=

 Φ = + ∆ ∑ .                                      (5.125)  

The constraints, formulated in equation (5.113), (5.114) and (5.117), are in their substituted 
form 

min k maxz z z≤ ≤ ,                                                  (5.126) 

, , ,mmin m k mmaxv v v≤ ≤ ,                                               (5.127) 

, , ,mmin m k mmaxv v v∆ ≤ ∆ ≤ ∆ .                                            (5.128)    

The vector Nv  contains the N future open-loop control moves 

,

, 1

, 1

m k

m kN

m k N

v
v

v

v

+

+ −

 
 
 =
 
 
  

M .                                                       (5.129) 

For all times k j k N+ ≥ + , the input ,m k jv +  is set to zero. 
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The receding horizon regulator is the optimal control problem 

min
N k

v
Φ                                                       (5.130) 

subject to the constraints in equation (5.126), (5.127) and (5.128). From the first input value 

in Nv , ,m kv , the HTF volume flow rate ,HTF kV&  is recovered and then injected into the plant. 

This procedure is repeated at each successive control interval, following the feedback law 

( ),m k ku xρ=% %                                                       (5.131) 

by using the plant measurement of the collector outlet temperature to update the state vector 

at time k. 

 For an implementation of the optimal control problem (5.130) in digital machines, it 

is formulated as a quadratic program for Nv . In this work, the quadratic program is solved 

with MATLAB using the command quadprog (MathWorks, 2001). The derivation of the 

quadratic program from equation (5.130) is not shown here. It follows from tedious 

straightforward algebraic manipulations. The result is given in Rawlings and Muske (1993) 

and is presented below. The quadratic program that represents the optimization of the optimal 

control problem denoted in (5.130) is 

  ( )1

1
min ( )

2N

TN T N N
k k k

v
v H v G w F v v−Φ = + −                         (5.132) 

such that 

1

2

1

2

1

2

N

iI
iI
dD

v
dD
wW
wW

  
  −   
  

≤   
−   

  
  

−      

.                                              (5.133) 
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The matrix H and the vectors G  and F are computed as 

 

1

2

1 2

2

2

2

2

0
,

0

N

N

T T T T T
m m m m m m

T T T T
m m m m m m

T N T N T
m m m m m m

T
m

T
m

T N
m

B QB S B A QB S B A QB

B QAB S B QB S B A QBH

B QA B B QA B B QB S

SB QA
B QA

G F

B QA

−

−

− −

 + −
 
 − +=  
 
 + 

   
   
   = =
   
   
    

L
L

M M O M
L

MM

   .                    (5.134) 

 

For the stable plant model, Q  is the solution of the following discrete Lyapunov-equation 

T TQ C QC A QA= + .                                             (5.135) 

This can be solved with the MATLAB command dlyap.  

The matrices D  and W  from the inequality constraint (5.133) are computed as 

shown below with 

 

1 2

0 0
0 0

0
0

,
0
0 0

m

m m

N N
m m m

I
CIB

I I
CAB CIB

D W
I I

CA B CA B CIB
I

− −

 
   −   
   = =
   −       − 

LL LL M O O MM O O M LL L

.                     (5.136) 
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The values of the right-hand side vectors in equation (5.133) are the following: 

 

, ,

1 2

, ,

1 2

, , 1 , , 1

, ,
1 2

,

, ,

, ,

,

mmax mmin

mmax mmin

max k min k

N N
max k min k

mmax m k mmin m k

m m a x mmin

mmax

v v

i i
v v

z CAw z CAw
d d

z CA w z CA w

v v v v
v v

w w

v v

− −

   −
   = =   
   −   

− − +   
   = =   
   − − +   

∆ + ∆ − 
 ∆ ∆ = =
 
 ∆ ∆  

M M

M M

M M
,

.

mmin

 
 
 
 
 
  

              (5.137) 

 

The following restrictions are imposed on the constraints to ensure consistence and feasibility 

of the origin 

 

,

,

,

,

0
0
0
0
0
0

mmax

mmin

max

min

mmax

mmin

v
v
z
z

v
v

   
   −   
   

>   −   
   ∆
   
∆      

.                                               (5.138) 
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Figure 5.8 shows the receding horizon regulator as a block with inputs and outputs. 
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Figure 5.8: The receding horizon regulator as a block with inputs and outputs 
 
 
 
5.4.2 Target Calculation 

The target is the collector outlet temperature that the controller tries to maintain and was 

earlier called the collector outlet temperature set point. Since no external output disturbances 

are considered, the target is indeed identical with the temperature set point Targetset yy ~~ =  and 

stays constant throughout the entire control procedure. In addition, sety~  is dependent on the 

two equations (5.119) and (5.120). When changes in the non-manipulable inputs kdu ,
~  occur 

or in the input step disturbance kd , then the two equations (5.119) and (5.120) must still be 

satisfied for the constant target sety~ . Thus, for every change in these variables, a recalculation 

of the state set point, setx~ , and the input set point, setmu ,
~ , must guarantee that the equations 

(5.119) and (5.120) are fulfilled and sety~  remains the target value. The two equations are the 
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equality constraints of the following quadratic program from Rawlings and Muske (1993) 

that calculates the required setx~  and setmu ,
~  

[ ]
( ) ( )uuRuu setmset

T
setm

ux T
setmset

−−=Ψ ,,~~
~~

2
1

min
,

                           (5.139) 

subject to: 


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



 +
=















 −−

Target

ddm

setm

setm

y
uBdB

u
x

C
BAI

~
~

~
~

0 ,

,                           (5.140) 

m,maxsetmm,min uuu ~~~
, ≤≤ .                                      (5.141) 

In this quadratic program, u  is the desired value of the input vector at steady state and setR is 

a positive definite weighting matrix for the deviation of the input vector from u . 

 Figure 5.9 shows the target calculation as a block with inputs and outputs. 
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Figure 5.9: The Target Calculation as a block with inputs and outputs 
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5.4.3 State Estimator 
 
In the section about the regulator, it was assumed that the states kx~ are measured. In fact, 

from the states only the collector outlet temperature koutT ,  is measured. Thus a method is 

sought to estimate the entire state kx~  from the known collector outlet temperature.  In 

addition to the collector outlet temperature, both the manipulable and the non-manipulable 

inputs are known or measured. From these given information, the states are estimated 

through an optimal linear observer, called discrete Kalman filter, constructed for the system 

( ) ,...2,1,0,~~~~
,,1 =++++=+ kGuBduBxAx kkddkkmmkk ξξ             (5.142) 

kkk dd ω+=+1                                                                                             (5.143) 

kkk xCy ν+= ~~ .                                                                                         (5.144) 

In this representation, kξ , kω  and kν  are zero-mean, uncorrelated, normally distributed, 

stochastic variables with covariance matrices ξQ , ωQ  and νR  respectively. 

It was already mentioned that the input step disturbance kd  is used for integral 

action: in order to obtain offset-free control, it is assumed that the difference between the 

Kalman-filter-predicted output and the measured output is caused by an input step 

disturbance kd . The input step disturbance can be estimated by the Kalman filter as well if it 

is treated as an additional state of the system, accounted by equation (5.143). The estimated 

input step disturbance is then used in the target calculation to compensate the offset.  

   

 

 



 131
The system can be rewritten with the following augmented matrices 

[ ] 0
, , , 0 ,

0 1 0 0 0 1
m m d

m d

A B B B G
A B B C C G ξ

ξ
       

= = = = =       
       

% % %% %         (5.145) 

thus 
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1 ,                         (5.146) 
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x
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=

~~~  .                                                                (5.147) 

A full-order linear observer for the augmented system (5.146) and (5.147) is 
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,              (5.148) 

where kkx |1ˆ +  and kkd |1
ˆ

+  is the estimate of the states for time 1+k  given output and input 

measurements up to time k . The difference between the measured collector outlet 

temperature ky~  and the reconstructed output is multiplied by the observer gain L  and fed 

back to minimize the estimation error, that is, the difference between the real states and the 

estimated ones. The stability and the asymptotic behavior of the estimation error are 

determined by the choice of L . The observer gain L  that minimizes the mean square 

estimation error was first solved by Kalman and Bucy and is computed from the solution of 

the following discrete filterting steady-state Riccati equation 

( )[ ] TTTT GQGAPCRCPCCPPAP ξξξν

~~~~~~~~~ 1
++−=

−
,                    (5.149) 

( ) 1~~~~ −
+= νRCPCCPAL TT .                                     (5.150) 
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Here, the following augmented covariance matrix is used 









=

ω

ξ
ξ Q

Q
Q

0
0~

.                                                    (5.151) 

The derivation of equation (5.149) and (5.150) is not shown here, it can be found in 

Kwakernaak & Sivan (1972). Discrete steady-state Riccati equations can be solved with 

MATLAB using the command dare.  

 Figure 5.10 shows the estimator as a block with inputs and outputs 
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~
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~

kkx |1ˆ + kkd |1
ˆ
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Figure 5.10: The Estimator as a block with inputs and outputs 

 

5.5 Controller Implementation and Results 
      

The receding horizon regulator, the target calculation and the state estimator are 

appropriately linked together to form the MPC controller as shown in Figure 5.11.  The MPC 

controller was implemented in MATLAB following the structure of the flow chart in Figure 

5.11. MATLAB was chosen as the controller language since its control and optimization 

toolboxes provide the procedures (e.g. the quadratic program) needed to calculate the 

adjustment (MathWorks, 2001). The plant model, however, was implemented in EES using 
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its great feature of inbuilt thermodynamic fluid property functions. No defined interface 

exists between MATLAB and EES.  Thus a communication between these two programs was 

established through Dynamic Data Exchange (DDE) under the Windows operating system. 

MATLAB as the client initiates the DDE communication and requests EES, the server, to 

solve the plant model equations. The actual data (e.g. the collector outlet temperature) is 

transferred through data files between the two communicating processes.  

 
 
Figure 5.11: MPC controller for the plant model 
 

The performance of the controller is evaluated for four different days in 1998, shown in 

Figures 5.12, 5.13, 5.14 and 5.15. Figure 5.12 shows the collector outlet temperature, the 

HTF volume flow rate and the gross output for June 20, 1998. For the HTF volume flow rate, 

the dashed line represents the adjustment made by a human controller on that day.  
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Figure 5.12: Collector outlet temperature, HTF volume flow rate and gross output for June 20, 1998. The 
collector outlet temperature and the gross output are simulated. For the HTF volume flow rate, the 
dashed line represents the measured input for a human controller on that day and the solid line 
represents the input generated through MPC control. For the gross output, the long-dashed line shows 
the absorbed energy. 
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Figure 5.13: Collector outlet temperature, HTF volume flow rate and gross output for September 19, 
1998. The collector outlet temperature and the gross output are simulated. For the HTF volume flow 
rate, the dashed line represents the measured input for a human controller on that day and the solid line 
represents the input generated through MPC control. For the gross output, the long-dashed line shows 
the absorbed energy. 
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Figure 5.14: Collector outlet temperature, HTF volume flow rate and gross output for December 16, 
1998. The collector outlet temperature and the gross output are simulated. For the HTF volume flow 
rate, the dashed line represents the measured input for a human controller on that day and the solid line 
represents the input generated through MPC control. For the gross output, the long-dashed line shows 
the absorbed energy. 
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Figure 5.15: Collector outlet temperature, HTF volume flow rate and gross output for December 14, 
1998. The collector outlet temperature and the gross output are simulated. For the HTF volume flow 
rate, the dashed line represents the measured input for a human controller on that day and the solid line 
represents the input generated through MPC control. For the gross output, the long-dashed line shows 
the absorbed energy. 
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The related collector outlet temperature and the gross output, calculated through simulation 

with the complex plant model, are the dashed lines in the top figure and in the bottom figure 

respectively.  The HTF volume flow rate shown as solid line represents the input calculated 

through model predictive control. The solid lines in the top and the bottom figure are the 

corresponding collector outlet temperature and gross output. The automatic controller is 

turned on at 8.05 hr in the morning and turned off at 18.8 hr. The start up and shut down are 

assumed to be done by a human. The MPC controller obtains the ability to hold the collector 

outlet temperature at a constant set point (653.9 K) for a long time throughout the day. For a 

damping of oscillations, the regulator parameters are 20=N , 50=Q  and 1000=S  for a 

sample period of 100=∆ s. A noise free control is assumed and the variances of the 

stochastic variables in the estimator are chosen very small. The performance of the automatic 

controller is better than the performance of the human controller. However, oscillations occur 

when starting the automatic control and when the controlled plant reaches the transient. 

Although different regulator parameters were tested, it was not possible to reject these 

oscillations. The fact that the MPC controller shows a better performance than the human 

controller in generating a constant set point collector outlet temperature, does not improve 

the gross output remarkably, as can be seen from the bottom Figure. As an illustration of 

efficiency, the absorbed energy is plotted in the graph as well. 

 In Figure 5.13, the collector outlet temperature and the HTF volume flow rate are 

shown for September 19, 1998. Again, dashed lines represent human control and solid lines 

represent automatic control. The linear model used to control on that day is different from the 

linear model used to control on June 20, 1998 since it was linearized around a different 

steady-state solution of the nonlinear model. The MPC controller is turned on at 9.00 hr and 
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turned off at 17.8 hr. The regulator parameters are the same as for June 20, 1998. The set 

point temperature is 637.2 K. The MPC control action results in a collector outlet 

temperature that is held constantly in the set point. Slight oscillations occur before the 

automatic controller is turned off. Also in this case, there is no remarkable improvement in 

the gross output through automatic control. 

 In Figure 5.14, the results are shown for December 16, 1998. Again, a different linear 

model is applied for MPC control compared to the ones used for the control on a summer or 

early fall day. The automatic controller is turned on at 9.00 hr and turned off at 16.00 hr. The 

collector outlet temperature set point is 597.3 K, the regulator parameters are the same as 

above. The automatic control performance is much better than the human one. The controlled 

temperature slightly rises before the controller is turned off. The gross output doesn’t change 

much when either human or automatic control is applied. 

 Finally, a partially cloudy day is considered in Figure 5.15. Since December 14, 1998 

was two days before December 16, 1998, considered above in Figure 5.14, the same linear 

model and the same controller parameters and set point temperature are taken. The MPC 

controller is turned on at 9.00 hr and turned off at 16.00 hr. The automatic controlled 

collector outlet temperature is in the set point until the solar energy goes down. The 

automatic controller tries to compensate the occurring drop in the collector outlet temperature 

through the adjustment of the HTF volume flow rate while reaching its lower bound 

/sm0682.0 3
, =minHTFV& . Since the MPC controller is now constraint in its control action, it 

cannot hold the collector outlet temperature in its set point and the temperature decreases. 

However, the control action of the automatic controller results in a collector outlet 
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temperature much closer to the set point compared to the human controlled one. There is no 

remarkable improvement in the gross output due to automatic controls. 
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Chapter 6 
 

Conclusions and Recommendations  
 

 
 
6.1 Conclusions 
 
A nonlinear model of the 30 MWe SEGS VI parabolic trough plant has been established. The 

model consists of a dynamic model for the collector field and a steady-state model for the 

power plant.  

 First, the collector field model was presented as coupled partial differential equations 

for energy. For the implementation in digital machines, a set of ordinary differential 

equations was obtained through dicretization of the governing energy PDEs. The calculation 

of the absorbed solar energy from the direct normal solar radiation was presented. The 

performance of this model was evaluated through a comparison between predicted and 

measured data. The model calculations matched the measurement very well. 

 A steady-state model for the power plant Clausius-Rankine cycle was developed from 

measured power plant data and from a report by Lippke (1995) on the power plant design 

conditions. Good agreement between the power plant model predictions and measured data 

was achieved. 

 The collector field model and the power plant model were combined to an entire plant 

model that was implemented in EES. This plant model was also evaluated through a 

comparison between predicted and measured data. It proved to be a useful model for     

SEGS VI.  
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 A model predictive controller was developed for the SEGS VI plant model. Its task is to 

maintain a constant collector outlet temperature on different days of a year by adjusting the 

heat transfer fluid volume flow rate while solar radiation changes. The control algorithmic, 

which is based on Rawlings and Muske (1993), was introduced on the example of a 

simplified model. The automatic controller was implemented in MATLAB. The control 

performance was evaluated through simulations for four different days in 1998. The MPC 

controller showed the capability to hold the collector outlet temperature close around the 

specified set point for a long time during the day. The automatic controller demonstrated a 

better control of the collector outlet temperature than the human control. However, the 

improvement in the predicted gross output of the power plant due to the better control of the 

collector outlet temperature is small. 

 

6.2 Recommendations 

Further studies should include the model predictive control strategy with the objective to 

maximize the gross output. Controlling both, the HTF volume flow rate and the steam mass 

flow rate in the power plant could help improving the daily gross output of the parabolic 

trough plant. 
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Appendix A 
 

Collector Dimensions  
 

 
 
 
 
 
 

Length  = 753.6 m , collector mirror length 

iABSD ,  = 0.066 m , inside diameter of the absorber tube 

oABSD ,  = 0.07 m , outside diameter of the absorber tube 

iENVD ,  = 0.112 m , inside diameter of the glass envelope 

oENVD ,  = 0.115 m , outside diameter of the glass envelope 

iABSA ,  = 0.003421 2m  , crosssectional area inside the absorber tube 

ABSA  = 0.0004273 2m  , crosssectional area of the absorber material 

ENVA  = 0.0005349 2m  , crosssectional area of the glass envelope 

SpacingL  = 13 m , distance between two collector rows  

W  = 4.823 m , collector mirror width 

Collectorsn  = 50 , total number of collectors in the field 
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Appendix B 
 

Nomenclature  
 

 
 
A area, m if surface per length or 2m if cross-sectional; state-space model 

matrix  

Aa , Ba  HTF flow fraction for heat exchanger train A or B 
B state-space model matrix 

Ab , Bb  HTF flow fraction for reheater A or B 
C state-space model matrix 
c specific heat, J/kg  

pc  specific heat at constant pressure, J/kg·K 

D diameter, m; state-space model matrix; quadratic program constraint 
matrix 

d input step disturbance 

nd  day number 

tE  equation of time 
F flow fraction; quadratic program matrix 
G irradiance, W/m2; quadratic program matrix  

ξG  state noise dynamics matrix 

g gravitational acceleration, m/s2 
H quadratic program matrix 
h specific enthalpy, J/kg; convection heat transfer coefficient, W/m2·K 

ux JJ ,  Jacobian matrix 
k thermal conductivity, W/m·K 
L length, m; filter gain matrix 

locst LL ,  standard and local longitude, deg 
Length collector mirror length 
m&  mass flow rate, kg/s 
Nu Nusselt number 
n number 
P steady-state discrete filtering Riccati matrix 

GrossP  gross output, W 
Pr Prandtl number 
p Pressure, N/m2 
Q energy transfer, J; output penalty matrix 

ωξ QQ ,  convariance matrix of ξ  and ω  
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Q&  heat transfer rate, W 

q heat transfer rate per unit length, W/m 
Ra Rayleigh number 
Re Reynolds number 

mR &  mass ratio 

pR  pressure ratio 

νR  covariance matrix of ν  
S input rate of change penalty matrix 
s specific entropy, J/kg-K 
T temperature, K 
t time, s 
UA overall heat transfer coefficient and area product, W/K 
u input vector 
V volume , m3 
V&  volume flow rate, m3/s 
v input vector substitute 

Nv  vector of N  future input vectors 
W collector mirror width, m; quadratic program constraint matrix 
w state vector substitute 
x model state vector; shading 
y output vector 
z coordinate, m; output vector substitute 
 
 
Greek Letters 
 
 
α  thermal diffusivity, m2/s; absorptance 

pα  profile angle, deg 

β  volumetric thermal expansion coefficient, K-1 
γ  fudge factor 
∆  sampling period, s 

p∆  pressure drop ratio 

RHHE pp ∆∆ ,  pressure drop, N/m2 
Q∆  change in the energy transfer, J 

V&∆  rate of change in the volume flow rate 
z∆  length of discrete collector element, m 

δ  declination, deg 
ε  effectiveness, emissivity 
η  efficiency 
θ  angle of incidence, deg 
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zθ  zenith angle, deg 
µ  viscosity, kg/s·m 
ν  kinematic viscosity, m2/s; zero-mean, normal output noise vector 
ξ  zero-mean, normal state noise vector; component of state vector 
ρ  Mass density, kg/m3; specular reflectance; feedback  
σ  Stefan-Boltzmann constant 

kΦ  regulator objective function value at time k 
φ  latitude, deg 
Ψ  target tracking objective function value 
τ  time constant, s; transmittance 

)(τα  transmittance-absorptance product 
ω  hour angle, deg; zero-mean, normal state step disturbance noise vector 
 
 
Subscripts 
 
 
ABS absorber 
Air air 
Annulus in the annulus 
absorbed absorbed solar energy 
amb, ambient ambient, in the environment 
atm atmospheric 
bn direct normal beam 
Col collector 
Collectors number of collectors 
Cool cooling water 
CP condensate pump 
c cross-sectional; cold fluid 
convection convection heat transfer 
d non-manipulable input; discrete-time system matrix  
END end time 
ENV envelope 
Environment environmental 
Exp expansion vessel 
eff effective 
evac evacuated 
external heat transfer to environment 
FP feedwater pump 
gained gained energy 
Gross gross output 
HE heat exchanger 
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HE A, HE B heat exchanger trains A and B 
HP high pressure turbine part 
HPFH high pressure feedwater heater 
HPT 1,2 high pressure turbine section 1 and 2 
HTF heat transfer fluid 
h hot fluid 
i incoming; inside 
in inlet 
init initial condition 
inlet inlet of the trough collector field 
internal heat transfer between absorber and glass envelope 
is isentropic 
L effective length  
LP low pressure turbine part 
LPFH low pressure feedwater heater 
LPT 1,2,3 low pressure turbine section 1,2 and 3 
m manipulable input 
min minimum, lower bound 
max maximum, upper bound 
nom nominal solution 
o outside; outgoing 
opt optical 
out outlet 
RH A, RH B reheater A and B 
radiation radiation heat transfer 
rev reversible 
Spacing distance between two collector rows 
Steam steam condition 
set set point 
sunrise, sunset sunrise and sunset hour angle 
surf surface 
TV1, TV2 throttle valve 1 and 2 
Target target value 
Water water condition 
Wind wind speed 
z zenith 
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Overbar, Tilde and Hat 
 
 

 surface average conditions; desired value at steady state 

~ perturbation from nominal solution; augmented system matrix 
^ estimated value 
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