

Eli Gaeta

Masters of Science Mechanical Engineering

Office: 1335 ERB

Email: egaeta2@wisc.edu Hometown: Bettendorf, IA

Project: Geometric Effect of Nozzles on Direct Contact

Condensation in a Laminar Flow Field

Advisors: Allison Mahvi & Arganthaël Berson

Sponsor: Hydro-Thermal Corporation

- Direct Contact Condensation is the process of heating a liquid phase by condensing superheated vapor (commonly steam) injected via a nozzle or series of nozzles
- It is used in several industries for process heating such as food production, pasteurization, brewing beer, paper mills, and nuclear energy
- The benefits of utilizing DCC instead of other methods are reduced complexity, smaller scale, and high heat transfer rates
- However, the waves of condensing steam are accompanied by significant pressure oscillations at high and low frequencies putting equipment and workers at risk.

Single-port Nozzle

Test Stand

Project Goals

- Understand the mechanisms in which certain nozzles result in unstable flows
- Optimize the design of a two-port steam injection nozzle for high heat transfer and low noise
- Directly compare the effects of a two-port nozzle to an equivalent area single port nozzle

Stable

Unstable

2-port Nozzle to Test

