

Analysis and Performance of Refractory Insulation for Regenerative Heat Exchangers in s-CO2 Brayton Cycles

Javier J. Martinez-Santos

Graduate Research Assistant

University of Wisconsin - Madison Department of Mechanical Engineering Solar Energy Laboratory Room: 1337

E: martinezsant@wisc.edu

Hometown: Ponce, Puerto Rico

"Practice does not make perfect, only perfect practice does"

-Vince Lombardi

Project Overview and Goals

- A refractory materials are defined as non-metallic materials have chemical and physical properties that make them applicable to environments above 538°C
- The refractories studied were characterized by low thermal conductivity, low heat capacity, high mechanical strength and low porosity
- The utility of the refractory insulation in this regard is to maintain the outer wall of a regenerative heat exchanger below 350°C
- The recommended refractories by the U.S. Department of Energy (DoE) Apollo Sunshot initiative were:
 - Ziralcast95
 - Grefcon98
 - Extress27

Component \ Refractory	Ziralcast95	Grefcon98	Express27
Water (H ₂ O)	16 %	5.7 %	8 %
Alumina (Al ₂ O ₃)	95.3 %	98.1 %	49.6 %
Lime (CaO)	3.7 %	1.4 %	4.2 %
Silica (SiO ₂)	0.4 %	0.1 %	42.2 %

Preliminary Results

- First stage involved pressure fluctuation of refractory insulation in direct contact with gas flow and encapsulated from gas
- All refractories demonstrated good performance under encapsulated approach with no visible deformation on protective metal liner

Empty Vessel

Express 27

Ziralcast95

Grefcon98

- Under direct contact with gas flow Express27 demonstrated no crack propagation and zero weight loss
 - Ziralcast95 had a total of ~4% and Express had a total of ~0.1% after being pressurized to 1100psi and 1800psi respectively

After

Grefcon98

Before

×C.

3

After

Wisconsin Louis Stokes Alliance for Minority Participation

Schematic of Experimental Setup

Wisconsin Louis Stokes Alliance for Minority Participation

Future Work

- Test and analyze gas diffusion into ceramic matrix of insulation through extended times (12 to 24 hours) at 500 psi, 1100 psi and 1800 psi
- Thermal cycle between 560°C and 225°C with 45 seconds switching time (in a furnace)
 - This is the temperature operation and switching time for the large scale regenerative heat exchangers
- Re-test for gas diffusion and analyze effect of thermal expansion and porosity
- Evaluate thermal conductivity under pressurized environment and possible variance in axial direction

