

Dongsheng Zhang

Ph.D., Mechanical Engineering (expected May, 2014)

THESIS:

"Modeling the ITER Cryogenic Fore Pump"

CONTACT:

E-mail: dzhang25@wisc.edu *Cell*: (608) 320-5298 1335 Engineering Research Building 1500 Engineering Drive Madison, WI, 53705

BACKGROUND & OBJECTIVE

BACKGROUND

- ✤ ITER
 - One of the largest scientific projects
 - Commercial use of fusion energy
 - Cryogenics extensively used
- ✤ The Cryogenic Fore Pump
 - First part in the roughing pump system
 - Collect and compress hydrogen
 - Cooled by supercritical/liquid helium

Fig. 2^* . The initial design of the cryogenic fore pump

Fig. 3^* . The simplified ITER fuel cycle flow diagram

OBJECTIVE

- Physics
 - Adsorption of hydrogen
 - Simultaneous transport process (species, momentum, and energy)
 - Hydrogen-helium gas mixture at cryogenic temperature
- ✤ Engineering
 - Explain experimental data
 - Identify key variables
 - Develop numerical models and solve highly coupled non-linear equations
 - Design and predict pump performance

Fig. 4*. The ITER cryogenic system

INVESTIGATION

INVESTIGATION

- \checkmark The adsorption
 - Deposition of hydrogen molecule
 - Adsorption energy & rate
- ✤ The transport phenomena
 - Gaseous mixture
 - Radial adsorption
 - Simultaneous transport process
- ✤ The numerical model
 - Five variables (Temperature, pressure, density, velocity, and composition)
 - Changing parameters (e.g. thermal conductivity)
 - Highly coupled non-linear equations

Fig. 5*. A illustration of Gas-surface interaction

Fig. 9. The interaction of H_2 and He with a cold surface

RESULTS & FUTURE PLAN

RESULTS

- Understood & modeled
 - Adsorption mechanism for cryopumps working in viscous regime
 - H₂ & He cryogenic properties
 - Simultaneous transport process with adsorption
- ✤ Developed
 - Numerical models to predict temperature, pressure, density, velocity, and composition profile for the ITER cryogenic fore pump without the assumptions of constant parameters
 - The "Group-Member" numerical technique to solve highly coupled equations

FUTURE PLAN

- Improve the models
 - To explain the time dependence of the experimental date
 - To provide guide for the cryogenic fore pump design

Fig. 14. H_2 molar fraction as a function of axial position