SUBROUTINE TYPE59 (TIME,XIN,OUT,T,DTDT,PAR,INFO,ICNTRL,*) C************************************************************************ C* Copyright ASHRAE A Toolkit for Primary HVAC System Energy C* Calculation C*********************************************************************** C* SUBROUTINE: TYPE59 (ENGIPLSI) C* C* LANGUAGE: FORTRAN 77 C* C* PURPOSE: Deals with the part-load operation of a C* gas engine. C*********************************************************************** C* INPUT VARIABLES: C* Fratio Fuel/air ratio (-) C* xin(1) (-) C* Ta Air temperature (K) C* xin(2) (øC) C* MfrW Water mass flow rate (kg/s) C* xin(3) (kg/hr) C* Twsu Supply water temperature (K) C* xin(4) (øC) C* pa Air pressure (Pa) C* xin(5) (atm) C* N Rotation speed (1/s) C* xin(6) (rpm) C* WshSET Set point shaft power (W) C* xin(7) (kJ/hr) C* C* OUTPUT VARIABLES C* CPgas Mean specific heat of the combustion (J/kg/K) C* products C* out(1) (J/kg/øC) C* Twex Exhaust water temperature (K) C* out(2) (øC) C* Tgex Flue gas temperature at the exhaust of the (K) C* gas-water heat exchanger C* out(3) (øC) C* Wsh Shaft power (W) C* out(4) (kJ/hr) C* MfrFuel Gas mass flow rate (kg/s) C* out(5) (kg/hr) C* MfrGas Flue gas mass flow rate (kg/s) C* out(6) (kg/hr) C* Effic Gas engine efficiency (-) C* out(7) (-) C* Pos The value of Pos indicates the gas engine (-) C* operating mode in order to reach the set point C* shaft power C* Pos=1: Full-load C* =2: Part-load C* =3: Stand-by C* out(8) (-) C* ThrotRate Ratio of the pressure after the control thottling (-) C* to the air pressure C* out(9) (-) C* ErrDetec = 1: the ratio of water capacity flow rate to (-) C* flue gas capacity flow rate is too small ( <1 ) C* = 2: the rotation speed for specified working C* conditions is lower than the minimum rotation C* speed (Nmin) C* = 3: the rotation speed for specified working C* conditions is greater than the maximum C* rotation speed (Nmax) C* = 4: the routine does not converge C* In these cases, the routine stops running; C* otherwise this variable is equal to 0. C* out(10) (-) C* C* PARAMETERS C* i Intermittency factor (-) C* par(1) (-) C* Vs Swept volume corresponding to all the (m**3) C* cylinders C* par(2) (m**3) C* Athroat Nozzle throat area (m**2) C* par(3) (m**2) C* EffiInt Internal efficiency (-) C* par(4) (-) C* Tlo Torque associated with the mechanical losses (N*m) C* and the auxiliary consumptions C* par(5) (N*m) C* AUgwNoEng Gas-water heat transfer coefficient in nominal (W/K) C* conditions C* par(6) (kJ/hr/øC) C* MfrGasNom Flue gas mass flow rate in nominal conditions (kg/s) C* par(7) (kg/hr) C* AUwenvEng Water-environment heat transfer coefficient (W/K) C* par(8) (kJ/hr/øC) C* Nstandby Rotation speed in stand-by regime (1/s) C* par(9) (1/s) C* C* AIR PROPERTIES C* CpAir Air specific heat (J/kg/K) C* RAir Air constant (J/kg/K) C* GammaAir Air isentropic coefficient (-) C* C* WATER PROPERTIES C* CpWat Specific heat of liquid water (J/kg/K) C* C* FUEL PROPERTIES C* Cweight Weight of carbon in 1kg of fuel (kg) C* FLHV Fuel lower heating value (J/kg) C* Tr Reference temperature at which the FLHV is C* evaluated (K) C* Cfuel Fuel specific heat (J/kg/K) C*********************************************************************** C MAJOR RESTRICTIONS: It is assumed that the water-environment C heat transfer coefficient as well as the C nozzle throat area, the internal efficiency C ,the fuel/air ratio and the torque C associated with the mechanical losses and C the auxiliary consumptions are constant. C Air-fuel mixing properties are the same as C for pure air. C The gas-water heat transfer coefficient is C function of the flue gas mass flow rate. C C DEVELOPER: Jean Lebrun C Marc Grodent C Jean-Pascal Bourdouxhe C Mark Nott C University of LiŠge, Belgium C C DATE: March 1, 1995 C C SUBROUTINES CALLED: TYPE99 (COMBCH) C ENTHALP C TYPE66 (ENGIFLSI) C FUEL C LINKCK C*********************************************************************** C INTERNAL VARIABLES C Nmin Minimum rotation speed (1/s) C Nmax Maximum rotation speed (1/s) C Nact Actual rotation speed (either N or Nstandby) (1/s) C vCyl Specific volume at the cylinder supply (m**3/kg) C p3 Pressure at the cylinder supply (Pa) C pcritic Critical pressure (Pa) C p2 Pressure at nozzle throat (Pa) C p1 Pressure after the fuel-air mixing (Pa) C Wlo Power associated with the mechanical losses (W) C and the auxiliary consumptions C hg0f Flue gas enthalpy at the exhaust of the (J/kg gas) C adiabatic combustion chamber C hg0 Flue gas enthalpy at the exhaust of (J/kg flue gas) C the adiabatic combustion chamber C hgsu Flue gas enthalpy at the supply of (J/kg flue gas) C the gas-water heat exchanger C Tg0 Flue gas temperature at the exhaust of the (K) C adiabatic combustion chamber C Tgsu Flue gas temperature at the supply of the (K) C gas-water heat exchanger C Twexs Water temperature at the flue gas-water heat (K) C exchanger exhaust C TolRel Relative error tolerance (-) C Crgas Capacity flow rate of the combustion products (W/K) C Crw Water capacity flow rate (W/K) C Fct Value of the function to be nullified (K) C Dfct Value of the first derivative (-) C Effgw Effectiveness of the gas-water heat exchanger (-) C ErrRel Relative error (-) C hgex Gas enthalpy at the exhaust of the (J/kg flue gas) C flue gas-water heat exchanger C Qgw Flue gas-water heat transfer (W) C Qwenv Water-environment heat transfer (W) C AUgwEng Gas-water heat transfer coefficient (W/K) C C G,alpha,Fct,DFct,p1p,Sum1,Sum2,Jm1,Dhgex,DCPgas,Dcrgas,Deffgw, C hgcal1,hgcal,Tgsup,hgex1 and Tgexp are variables used in the C Newton-Raphson methods. C*********************************************************************** INTEGER*4 INFO,INFO99,INFO66 DOUBLE PRECISION XIN,OUT,XIN99,OUT99,XIN66,OUT66 REAL Kmolp(5),i,MfrGasNom,Nstandby REAL Ifuel,MfrW,MfrFuel,MfrGas,N,Nmin,Nmax,Nact DIMENSION PAR(9),XIN(7),OUT(10),INFO(15), & XIN99(5),OUT99(7),INFO99(15), & PAR66(8),XIN66(6),OUT66(8),INFO66(15) COMMON /LUNITS/ LUR,LUW,IFORM,LUK COMMON /SIM/ TIME0,TFINAL,DELT,IWARN COMMON /STORE/ NSTORE,IAV,S(5000) COMMON /CONFIG/ TRNEDT,PERCOM,HEADER,PRTLAB,LNKCHK,PRUNIT,IOCHEK, & PRWARN COMMON/COMCP/PFCP(5,10) INFO(6)=10 INFO99(6)=7 INFO66(6)=8 DATA TolRel,Nmin,Nmax,CpWat,Pi/1E-05,8,85,4187,3.14159265359/ DATA CpAir,RAir,GammaAir/1005,287.06,1.4/ C*** INPUTS 7 (converted in SI units) C************ Fratio=SNGL(xin(1)) Ta=SNGL(xin(2)+273.15) Mfrw=SNGL(xin(3)/3600.) Twsu=SNGL(xin(4)+273.15) pa=SNGL(xin(5)*101325) N=SNGL(xin(6)/60) WshSET=(xin(7)/3.6) C*** PARAMETERS 9 (converted in SI units) C**************** i=par(1) Vs=par(2) Athroat=par(3) EffiInt=par(4) Tlo=par(5) AUgwNoEng=par(6)/3.6 MfrGasNom=par(7)/3600. AUwenvEng=par(8)/3.6 Nstandby=par(9)/60 C2*** The gaseous fuel used is methane Ifuel=4 CALL FUEL (Ifuel,Cweight,FLHV,Tr,Cfuel,*1) CALL LINKCK('TYPE59','FUEL',1,99) 1 CONTINUE C1*** Test on the value of the rotation speed IF ((N.LT.Nmin).OR.(Nstandby.LT.Nmin)) THEN ErrDetec=2 GOTO 90 ELSE IF ((N.GT.Nmax).OR.(Nstandby.GT.Nmax)) THEN ErrDetec=3 GOTO 90 ENDIF ENDIF C1*** Test on the value of WshSET IF (WshSET.EQ.0) THEN Nact=Nstandby ELSE Nact=N ENDIF C1*** Calculate the shaft power when the gas engine is running in C1*** full-load regime xin66(1)=DBLE(Fratio) xin66(2)=DBLE(Ta-273.15) xin66(3)=DBLE(Mfrw*3600.) xin66(4)=DBLE(Twsu-273.15) xin66(5)=DBLE(pa/101325) xin66(6)=DBLE(Nact*60) par66(1)=i par66(2)=Vs par66(3)=Athroat par66(4)=EffiInt par66(5)=Tlo par66(6)=AUgwNoEng*3.6 par66(7)=MfrGasNom*3600. par66(8)=AUwenvEng*3.6 CALL TYPE66 (TIME,XIN66,OUT66,T,DTDT,PAR66,INFO66,ICNTRL,*2) CALL LINKCK('TYPE59','TYPE66 ',1,99) 2 CONTINUE CPgas=SNGL(out66(1)) Twex=SNGL(out66(2)+273.15) Tgex=SNGL(out66(3)+273.15) Wsh=SNGL(out66(4)/3.6) MfrFuel=SNGL(out66(5)/3600.) MfrGas=SNGL(out66(6)/3600.) Effic=SNGL(out66(7)) ErrDetec=SNGL(out66(8)) IF (ErrDetec.GT.0) GOTO 90 IF (Wsh.LE.WshSET) THEN Pos=1 ThrotRate=1 ELSE C1*** Throttling control C2*** Test on the value of WshSET IF (WshSET.EQ.0) THEN Pos=3 ELSE Pos=2 ENDIF Wsh=WshSET C1*** Calculate the losses corresponding to the mechanical losses C1*** and to the auxiliary consumptions Wlo=2*Pi*Tlo*Nact C1*** Calculate the pressure at the cylinder supply p3=(WshSET+i*Nact*Vs*pa+Wlo)/(i*Nact*Vs*(1+EffiInt* & Fratio/(1+Fratio)*FLHV/(RAir*Ta))) C2*** Calculate the flue gas mass flow rate VfrCyl=i*Nact*Vs vCyl=RAir*Ta/p3 MfrGas=VfrCyl/vCyl C2*** Calculate the ratio of the pressure after the air-fuel mixing to the C2*** air pressure (Newton-Raphson method) p1=pa G=GammaAir alpha=(2/(G+1))**(G/(G-1)) 5 pcritic=p1*alpha p2=MAX(p3,pcritic) C2*** Calculation of the function to be nullified Fct=2*CpAir*Athroat**2*p1**2*((p2/p1)**(2/G)-(p2/p1)** & ((G+1)/G))/(RAir**2*Ta)-MfrGas**2 C2*** Calculation of the first derivative IF (p2.EQ.p3) THEN DFct=2*CpAir*Athroat**2*p1/(RAir**2*Ta)* & ((G-1)/G)*(2*(p3/p1)**(2/G)-(p3/p1)**((G+1)/G)) ELSE DFct=4*CpAir*Athroat**2*p1/(RAir**2*Ta)* & (alpha**(2/G)-alpha**((G+1)/G)) ENDIF p1p=p1 p1=p1-Fct/DFct ErrRel=ABS((p1-p1p)/p1p) C2*** If converged, leave loop IF (ErrRel.GT.TolRel) GOTO 5 ThrotRate=p1/pa C1*** Calculate the fuel mass flow rate MfrFuel=MfrGas*(Fratio/(1+Fratio)) C1*** Calculate the gas-water heat transfer coefficient AUgwEng=AUgwNoEng*(MfrGas/MfrGasNom)**0.65 C1*** Calculate the adiabatic temperature, the fuel/air ratio as well as C1*** the enthalpy (expressed in J/kg fuel) and composition of the C1*** combustion products xin99(1)=DBLE(Ifuel) xin99(2)=1 xin99(3)=DBLE(Fratio) xin99(4)=DBLE(Ta-273.15) xin99(5)=DBLE(Ta-273.15) CALL TYPE99 (TIME,XIN99,OUT99,T,DTDT,PAR99,INFO99,ICNTRL,*8) CALL LINKCK('TYPE59','TYPE99 ',1,99) 8 CONTINUE Fratio=SNGL(out99(1)) Tg0=SNGL(out99(2)+273.15) Kmolp(2)=SNGL(out99(3)) Kmolp(3)=SNGL(out99(4)) Kmolp(4)=SNGL(out99(5)) Kmolp(5)=SNGL(out99(6)) hg0f=SNGL(out99(7)) C2*** The flue gas enthalpy at the exhaust of the adiabatic C2*** combustion chamber is expressed in J/kg (flue gas) hg0=hg0f/(1+1/Fratio) C1*** Calculate the flue gas enthalpy at the supply of the gas-water C1*** heat exchanger hgsu=hg0-Wsh/MfrGas C1*** Calculate the flue gas temperature at the supply of the C1*** gas-water heat exchanger C2*** First guess of the flue gas temperature at the heat exchanger C2*** supply Tgsu=Tg0/2 10 hgcal1=0 DO 20 J=2,5 CALL ENTHALP(Tgsu,J,hpi,*11) CALL LINKCK('TYPE59','ENTHALP',1,99) 11 CONTINUE hgcal1=hgcal1+Kmolp(J)*hpi 20 CONTINUE hgcal=hgcal1/(1+1/Fratio) C2*** Calculate the function to nullify Fct=hgcal-hgsu C2*** Calculate the value of the first derivative Sum1=0 DO 30 K=1,5 Sum2=0 DO 40 J=1,10 Sum2=Sum2+PFCP(K,J)*Tgsu**(J-1) 40 CONTINUE Sum1=Sum1+Kmolp(K)*Sum2 30 CONTINUE DFct=Sum1/(1+1/Fratio) C2*** A new estimated value is calculated Tgsup=Tgsu Tgsu=Tgsu-Fct/DFct ErrRel=ABS((Tgsu-Tgsup)/Tgsup) C2*** If converged, then leave the loop IF (ErrRel.GT.TolRel) GOTO 10 C2*** First guess of the exhaust flue gas temperature Tgex=Tgsu/2 C1*** Calculate the exhaust flue gas enthalpy (expressed in J/kg fuel) 50 hgex1=0 DO 60 J=2,5 CALL ENTHALP (Tgex,J,hpi,*51) CALL LINKCK('TYPE59','ENTHALP',1,99) 51 CONTINUE hgex1=hgex1+Kmolp(J)*hpi 60 CONTINUE C2*** The exhaust flue gas enthalpy is expressed in J/kg gas hgex=hgex1/(1+1/Fratio) C1*** Calculate the flue gas mean specific heat CPgas=(hgsu-hgex)/(Tgsu-Tgex) C1*** Calculate a new estimated value of the exhaust flue gas C1*** temperature by using the Newton-Raphson method C2*** Calculate the value of the function to be nullified Crgas=MfrGas*CPgas Crw=MfrW*CpWat C1*** Determine the value of ErrDetec IF (Crgas.GT.Crw) THEN ErrDetec=1 GOTO 90 ELSE ErrDetec=0 ENDIF par1=EXP(-AUgwEng*(1/Crgas-1/Crw)) Effgw=(1-par1)/(1-Crgas*par1/Crw) Fct=Effgw*(Tgsu-Twsu)-Tgsu+Tgex C2*** Calculate the value of the first derivative Sum1=0 DO 70 K=2,5 Sum2=0 DO 80 J=1,10 Jm1=J-1 Sum2=Sum2+PFCP(K,J)*Tgex**Jm1 80 CONTINUE Sum1=Sum1+Sum2*Kmolp(K) 70 CONTINUE Dhgex=Sum1/(1+1/Fratio) DCPgas=(hgsu-hgex-Dhgex*(Tgsu-Tgex))/(Tgsu-Tgex)**2 DCrgas=MfrGas*DCPgas DEffgw=(AUgwEng*DCrgas*par1*(1/Crw-1/Crgas)/Crgas+DCrgas*par1* & (1-par1)/Crw)/(1-(Crgas/Crw)*par1)**2 Dfct=(Tgsu-Twsu)*DEffgw+1 Tgexp=Tgex C2*** The new estimated value is calculated Tgex=Tgex-Fct/Dfct ErrRel=ABS((Tgex-Tgexp)/Tgexp) C2*** If converged, leave loop IF (ErrRel.GT.TolRel) GO TO 50 C1*** Calculate the gas-water heat transfer Qgw=MfrGas*(hgsu-hgex) C1*** Calculate the exhaust water temperature Twexs=Twsu+Qgw/(MfrW*CpWat) Twex=Ta+(Twexs-Ta)/EXP(AUwenvEng/(MfrW*CpWat)) C1*** Calculate the water-environment heat transfer Qwenv=MfrW*CpWat*(Twexs-Twex) C1*** Calculate the gas engine efficiency Effic=Wsh/(MfrFuel*FLHV) ENDIF 90 CONTINUE C*** OUTPUTS 10 (converted in TRNSYS units) C************** out(1)=DBLE(CPgas) out(2)=DBLE(Twex-273.15) out(3)=DBLE(Tgex-273.15) out(4)=DBLE(Wsh*3.6) out(5)=DBLE(MfrFuel*3600.) out(6)=DBLE(MfrGas*3600.) out(7)=DBLE(Effic) out(8)=DBLE(Pos) out(9)=DBLE(ThrotRate) out(10)=DBLE(ErrDetec) RETURN 1 END SUBROUTINE TYPE66 (TIME,XIN,OUT,T,DTDT,PAR,INFO,ICNTRL,*) C************************************************************************ C* Copyright ASHRAE A Toolkit for Primary HVAC System Energy C* Calculation C*********************************************************************** C* SUBROUTINE: TYPE66 (ENGIFLSI) C* C* LANGUAGE: FORTRAN 77 C* C* PURPOSE: Calculates the shaft power when the gas C* engine is running in steady-state regime. C*********************************************************************** C* INPUT VARIABLES: C* Fratio Fuel/air ratio (-) C* xin(1) (-) C* Ta Air temperature (K) C* xin(2) (øC) C* MfrW Water mass flow rate (kg/s) C* xin(3) (kg/hr) C* Twsu Supply water temperature (K) C* xin(4) (øC) C* pa Air pressure (Pa) C* xin(5) (atm) C* N Rotation speed (1/s) C* xin(6) (rpm) C* C* OUTPUT VARIABLES C* CPgas Mean specific heat of the combustion (J/kg/K) C* products C* out(1) (J/kg/øC) C* Twex Exhaust water temperature (K) C* out(2) (øC) C* Tgex Flue gas temperature at the exhaust of the (K) C* gas-water heat exchanger C* out(3) (øC) C* Wsh Shaft power (W) C* out(4) (kJ/hr) C* MfrFuel Gas mass flow rate (kg/s) C* out(5) (kg/hr) C* MfrGas Flue gas mass flow rate (kg/s) C* out(6) (kg/hr) C* Effic Gas engine efficiency (-) C* out(7) (-) C* ErrDetec = 1: the ratio of water capacity flow rate to (-) C* flue gas capacity flow rate is too small ( <1 ) C* = 2: the rotation speed for specified working C* conditions is lower than the minimum rotation C* speed (Nmin) C* = 3: the rotation speed for specified working C* conditions is greater than the maximum C* rotation speed (Nmax) C* = 4: the routine does not converge C* In these cases, the routine stops running; C* otherwise this variable is equal to 0. C* out(8) (-) C* C* PARAMETERS C* i Intermittency factor (-) C* par(1) (-) C* Vs Swept volume corresponding to all the (m**3) C* cylinders C* par(2) (m**3) C* Athroat Nozzle throat area (m**2) C* par(3) (m**2) C* EffiInt Internal efficiency (-) C* par(4) (-) C* Tlo Torque associated with the mechanical losses (N*m) C* and the auxiliary consumptions C* par(5) (N*m) C* AUgwNoEng Gas-water heat transfer coefficient in nominal (W/K) C* conditions C* par(6) (kJ/hr/øC) C* MfrGasNom Flue gas mass flow rate in nominal conditions (kg/s) C* par(7) (kg/hr) C* AUwenvEng Water-environment heat transfer coefficient (W/K) C* par(8) (kJ/hr/øC) C* C* AIR PROPERTIES C* CpAir Air specific heat (J/kg/K) C* RAir Air constant (J/kg/K) C* GammaAir Air isentropic coefficient (-) C* C* WATER PROPERTIES C* CpWat Specific heat of liquid water (J/kg/K) C* C* FUEL PROPERTIES C* Cweight Weight of carbon in 1kg of fuel (kg) C* FLHV Fuel lower heating value (J/kg) C* Tr Reference temperature at which the FLHV is C* evaluated (K) C* Cfuel Fuel specific heat (J/kg/K) C*********************************************************************** C MAJOR RESTRICTIONS: It is assumed that the water-environment C heat transfer coefficient as well as the C nozzle throat area, the internal efficiency C ,the fuel/air ratio and the torque C associated with the mechanical losses and C the auxiliary consumptions are constant. C Air-fuel mixing properties are the same as C for pure air. C The gas-water heat transfer coefficient is C function of the flue gas mass flow rate. C C DEVELOPER: Jean Lebrun C Marc Grodent C Jean-Pascal Bourdouxhe C Mark Nott C University of LiŠge, Belgium C C DATE: March 1, 1995 C C SUBROUTINES CALLED: TYPE99 (COMBCH) C ENTHALP C FUEL C LINKCK C*********************************************************************** C INTERNAL VARIABLES C Nmin Minimum rotation speed (1/s) C Nmax Maximum rotation speed (1/s) C VfrCyl Volume flow rate corresponding to all the (m**3/s) C cylinders C vCyl Specific volume at the cylinder supply (m**3/kg) C p3 Pressure at the cylinder supply (Pa) C pcritic Critical pressure (Pa) C v1 Air specific volume (m**3/kg) C Wpumping Pumping losses (W) C Win Internal power (W) C Wlo Power associated with the mechanical losses (W) C and the auxiliary consumptions C hg0f Flue gas enthalpy at the exhaust of the (J/kg gas) C adiabatic combustion chamber C hg0 Flue gas enthalpy at the exhaust of (J/kg flue gas) C the adiabatic combustion chamber C hgsu Flue gas enthalpy at the supply of (J/kg flue gas) C the gas-water heat exchanger C Tg0 Flue gas temperature at the exhaust of the (K) C adiabatic combustion chamber C Tgsu Flue gas temperature at the supply of the (K) C gas-water heat exchanger C Twexs Water temperature at the flue gas-water heat (K) C exchanger exhaust C TolRel Relative error tolerance (-) C Crgas Capacity flow rate of the combustion products (W/K) C Crw Water capacity flow rate (W/K) C Fct Value of the function to be nullified (K) C Dfct Value of the first derivative (-) C Effgw Effectiveness of the gas-water heat exchanger (-) C ErrRel Relative error (-) C hgex Gas enthalpy at the exhaust of the (J/kg flue gas) C flue gas-water heat exchanger C Qgw Flue gas-water heat transfer (W) C Qwenv Water-environment heat transfer (W) C AUgwEng Gas-water heat transfer coefficient (W/K) C C Sum1,Sum2,Jm1,Dhgex,DCPgas,Dcrgas,Deffgw,hgcal1,hgcal,Tgsup,hgex1 C and Tgexp are variables used in the Newton-Raphson method. C*********************************************************************** INTEGER*4 INFO,INFO99 DOUBLE PRECISION XIN,OUT,XIN99,OUT99 REAL Kmolp(5) REAL Ifuel,MfrW,MfrFuel,MfrGas,N,Nmin,Nmax,i,MfrGasNom DIMENSION PAR(8),XIN(6),OUT(8),INFO(15), & XIN99(5),OUT99(7),INFO99(15) COMMON /LUNITS/ LUR,LUW,IFORM,LUK COMMON /SIM/ TIME0,TFINAL,DELT,IWARN COMMON /STORE/ NSTORE,IAV,S(5000) COMMON /CONFIG/ TRNEDT,PERCOM,HEADER,PRTLAB,LNKCHK,PRUNIT,IOCHEK, & PRWARN COMMON/COMCP/PFCP(5,10) INFO(6)=8 INFO99(6)=7 DATA TolRel,Nmin,Nmax,CpWat,Pi/1E-05,8,85,4187,3.14159265359/ DATA CpAir,RAir,GammaAir/1005,287.06,1.4/ C*** INPUTS 6 (converted in SI units) C************ Fratio=SNGL(xin(1)) Ta=SNGL(xin(2)+273.15) Mfrw=SNGL(xin(3)/3600.) Twsu=SNGL(xin(4)+273.15) pa=SNGL(xin(5)*101325) N=SNGL(xin(6)/60) C*** PARAMETERS 8 (converted in SI units) C**************** i=par(1) Vs=par(2) Athroat=par(3) EffiInt=par(4) Tlo=par(5) AUgwNoEng=par(6)/3.6 MfrGasNom=par(7)/3600. AUwenvEng=par(8)/3.6 C2*** The gaseous fuel used is methane Ifuel=4 CALL FUEL (Ifuel,Cweight,FLHV,Tr,Cfuel,*1) CALL LINKCK('TYPE66','FUEL',1,99) 1 CONTINUE C1*** Test on the value of the rotation speed IF (N.LT.Nmin) THEN ErrDetec=2 GOTO 90 ELSE IF (N.GT.Nmax) THEN ErrDetec=3 GOTO 90 ENDIF ENDIF C1*** Calculate the critic pressure at the nozzle throat Gm1G=(GammaAir-1)/GammaAir pcritic=pa*(2/(GammaAir+1))**(1/Gm1g) C2*** Calculate the volume flow rate corresponding to all C2*** the cylinders VfrCyl=i*N*Vs C2*** Calculate the pressure at the cylinder supply if we C2*** assumed to be in sonic regime at the nozzle throat v1=Rair*Ta/pa MfrGas=Athroat/v1*SQRT(2*CpAir*Ta)*SQRT((pcritic/pa)** & (2/GammaAir)*(1-(pcritic/pa)**Gm1G)) vCyl=VfrCyl/MfrGas p3=RAir*Ta/vCyl C2*** Compare the pressure at the cylinder supply with the C2*** critic pressure IF (p3.GT.pcritic) THEN C2*** No sonic regime at the nozzle throat; calculate the pressure C2*** at the cylinder supply by means of the Newton-Raphson method C2*** First guess of the value of the pressure at the cylinder supply p3=0.9*pa 5 CONTINUE C2*** Calculate the function to be nullified Fct=Athroat/v1*SQRT(2*CpAir*Ta)*SQRT((p3/pa)** & (2/GammaAir)*(1-(p3/pa)**Gm1G))-VfrCyl*p3/(RAir* & Ta) C2*** Calculate the value of the first derivative prate=p3/pa Den=SQRT(prate**(2/GammaAir)*(1-prate**Gm1G)) DFct=Athroat/v1*SQRT(2*CpAir*Ta)*(2/GammaAir*prate & **((2-GammaAir)/GammaAir)-(GammaAir+1)/ & GammaAir*prate**(1/GammaAir))/(2*pa*Den)- & VfrCyl/(RAir*Ta) C2*** A new estimated value is calculated p3p=p3 p3=p3-Fct/DFct ErrRel=ABS((p3-p3p)/p3p) C2*** If converged, leave the loop IF (ErrRel.GT.TolRel) GOTO 5 IF (p3.LT.pcritic) THEN ErrDetec=4 GOTO 90 ENDIF C2*** Calculate the flue gas mass flow rate vCyl=RAir*Ta/p3 MfrGas=VfrCyl/vCyl ENDIF C1*** Calculate the gas mass flow rate MfrFuel=MfrGas*(Fratio/(1+Fratio)) C2*** Calculate the internal power Win=EffiInt*MfrFuel*FLHV C2*** Calculate the pumping loss Wpumping=i*N*Vs*(pa-p3) C2*** Calculate the mechanical losses and the auxiliary consumptions Wlo=Tlo*2*Pi*N C1*** Calculate the shaft power Wsh=Win-Wpumping-Wlo C1*** Calculate the gas-water heat transfer coefficient AUgwEng=AUgwNoEng*(MfrGas/MfrGasNom)**0.65 C1*** Calculate the adiabatic temperature, the fuel/air ratio as well as C1*** the enthalpy (expressed in J/kg fuel) and composition of the C1*** combustion products xin99(1)=DBLE(Ifuel) xin99(2)=1 xin99(3)=DBLE(Fratio) xin99(4)=DBLE(Ta-273.15) xin99(5)=DBLE(Ta-273.15) CALL TYPE99 (TIME,XIN99,OUT99,T,DTDT,PAR99,INFO99,ICNTRL,*7) CALL LINKCK('TYPE66','TYPE99 ',1,99) 7 CONTINUE Fratio=SNGL(out99(1)) Tg0=SNGL(out99(2)+273.15) Kmolp(2)=SNGL(out99(3)) Kmolp(3)=SNGL(out99(4)) Kmolp(4)=SNGL(out99(5)) Kmolp(5)=SNGL(out99(6)) hg0f=SNGL(out99(7)) C2*** The flue gas enthalpy at the exhaust of the adiabatic C2*** combustion chamber is expressed in J/kg (flue gas) hg0=hg0f/(1+1/Fratio) C1*** Calculate the flue gas enthalpy at the supply of the gas-water C1*** heat exchanger hgsu=hg0-Wsh/MfrGas C1*** Calculate the flue gas temperature at the supply of the C1*** gas-water heat exchanger C2*** First guess of the flue gas temperature at the heat exchanger C2*** supply Tgsu=Tg0/2 10 hgcal1=0 DO 20 J=2,5 CALL ENTHALP(Tgsu,J,hpi,*11) CALL LINKCK('TYPE66','ENTHALP',1,99) 11 CONTINUE hgcal1=hgcal1+Kmolp(J)*hpi 20 CONTINUE hgcal=hgcal1/(1+1/Fratio) C2*** Calculate the function to nullify Fct=hgcal-hgsu C2*** Calculate the value of the first derivative Sum1=0 DO 30 K=1,5 Sum2=0 DO 40 J=1,10 Sum2=Sum2+PFCP(K,J)*Tgsu**(J-1) 40 CONTINUE Sum1=Sum1+Kmolp(K)*Sum2 30 CONTINUE DFct=Sum1/(1+1/Fratio) C2*** A new estimated value is calculated Tgsup=Tgsu Tgsu=Tgsu-Fct/DFct ErrRel=ABS((Tgsu-Tgsup)/Tgsup) C2*** If converged, then leave the loop IF (ErrRel.GT.TolRel) GOTO 10 C2*** First guess of the exhaust flue gas temperature Tgex=Tgsu/2 C1*** Calculate the exhaust flue gas enthalpy (expressed in J/kg fuel) 50 hgex1=0 DO 60 J=2,5 CALL ENTHALP (Tgex,J,hpi,*51) CALL LINKCK('TYPE66','ENTHALP',1,99) 51 CONTINUE hgex1=hgex1+Kmolp(J)*hpi 60 CONTINUE C2*** The exhaust flue gas enthalpy is expressed in J/kg gas hgex=hgex1/(1+1/Fratio) C1*** Calculate the flue gas mean specific heat CPgas=(hgsu-hgex)/(Tgsu-Tgex) C1*** Calculate a new estimated value of the exhaust flue gas C1*** temperature by using the Newton-Raphson method C2*** Calculate the value of the function to be nullified Crgas=MfrGas*CPgas Crw=MfrW*CpWat C1*** Determine the value of ErrDetec IF (Crgas.GT.Crw) THEN ErrDetec=1 GOTO 90 ELSE ErrDetec=0 ENDIF par1=EXP(-AUgwEng*(1/Crgas-1/Crw)) Effgw=(1-par1)/(1-Crgas*par1/Crw) Fct=Effgw*(Tgsu-Twsu)-Tgsu+Tgex C2*** Calculate the value of the first derivative Sum1=0 DO 70 K=2,5 Sum2=0 DO 80 J=1,10 Jm1=J-1 Sum2=Sum2+PFCP(K,J)*Tgex**Jm1 80 CONTINUE Sum1=Sum1+Sum2*Kmolp(K) 70 CONTINUE Dhgex=Sum1/(1+1/Fratio) DCPgas=(hgsu-hgex-Dhgex*(Tgsu-Tgex))/(Tgsu-Tgex)**2 DCrgas=MfrGas*DCPgas DEffgw=(AUgwEng*DCrgas*par1*(1/Crw-1/Crgas)/Crgas+DCrgas*par1* & (1-par1)/Crw)/(1-(Crgas/Crw)*par1)**2 Dfct=(Tgsu-Twsu)*DEffgw+1 Tgexp=Tgex C2*** The new estimated value is calculated Tgex=Tgex-Fct/Dfct ErrRel=ABS((Tgex-Tgexp)/Tgexp) C2*** If converged, leave loop IF (ErrRel.GT.TolRel) GO TO 50 C1*** Calculate the gas-water heat transfer Qgw=MfrGas*(hgsu-hgex) C1*** Calculate the exhaust water temperature Twexs=Twsu+Qgw/(MfrW*CpWat) Twex=Ta+(Twexs-Ta)/EXP(AUwenvEng/(MfrW*CpWat)) C1*** Calculate the water-environment heat transfer Qwenv=MfrW*CpWat*(Twexs-Twex) C1*** Calculate the gas engine efficiency Effic=Wsh/(MfrFuel*FLHV) 90 CONTINUE C*** OUTPUTS 8 (converted in TRNSYS units) C************* out(1)=DBLE(CPgas) out(2)=DBLE(Twex-273.15) out(3)=DBLE(Tgex-273.15) out(4)=DBLE(Wsh*3.6) out(5)=DBLE(MfrFuel*3600.) out(6)=DBLE(MfrGas*3600.) out(7)=DBLE(Effic) out(8)=DBLE(ErrDetec) RETURN 1 END SUBROUTINE TYPE99 (TIME,XIN,OUT,T,DTDT,PAR,INFO,ICNTRL,*) C************************************************************************ C* Copyright ASHRAE A Toolkit for Primary HVAC System Energy C* Calculation C*********************************************************************** C* SUBROUTINE: TYPE99 (COMBCH) C* C* LANGUAGE: FORTRAN 77 C* C* PURPOSE: The purpose is to allow a very simplified C* study of the combustion process that takes C* place inside the combustion chamber. C*********************************************************************** C* INPUT VARIABLES C* Ifuel Selection of the fuel (-) C* If Ifuel C* =1: Light fuel oil (liquid fuel) C* =2: Heavy fuel oil (liquid fuel) C* =3: Domestic gas oil (liquid fuel) C* =4: Methane (gaseous fuel) C* xin(1) (-) C* C* Choice If Choice (-) C* =1: the fuel/air ratio is known C* =2: the CO2 concentration in dry flue gas C* is known C* =3: the O2 concentration in dry flue gas C* is known C* xin(2) (-) C* C* Val This value is equal to the fuel/air ratio f , (-) C* the CO2 concentration or the O2 concentration C* according to the value of Choice C* xin(3) (-) C* C* Tair Air temperature (K) C* xin(4) (øC) C* C* Tfuel Fuel temperature (K) C* xin(5) (øC) C* C* C* OUTPUT VARIABLES C* Fratio Actual fuel/air ratio (-) C* out(1) (-) C* C* Tadiab Adiabatic temperature of the combustion products (K) C* out(2) (øC) C* C* Kmolp(2) Number of kmol of O2 (kmol O2/kg fuel) C* in the combustion products per kg of fuel C* out(3) (kmol O2/kg fuel) C* C* Kmolp(3) Number of kmol of N2 (kmol N2/kg fuel) C* in the combustion products per kg of fuel C* out(4) (kmol N2/kg fuel) C* C* Kmolp(4) Number of kmol of CO2 (kmol CO2/kg fuel) C* in the combustion products per kg of fuel C* out(5) (kmol CO2/kg fuel) C* C* Kmolp(5) Number of kmol of HO2 (kmol HO2/kg fuel) C* in the combustion products per kg of fuel C* out(6) (kmol HO2/kg fuel) C* C* hprod Enthalpy of the combustion products (J/kg fuel) C* out(7) (J/kg fuel) C* C* C* FUEL PROPERTIES C* Cweight Weight of carbon in 1kg of fuel (kg) C* FLHV Fuel lower heating value (J/kg) C* Tr Reference temperature at which the FLHV is C* evaluated (K) C* Cfuel Fuel specific heat (J/kg/K) C*********************************************************************** C MAJOR RESTRICTIONS: The combustion process is assumed to be C adiabatic. The combustion reaction is C assumed to be complete and dissociation is C not taken into account. C C DEVELOPER: Philippe Ngendakumana C Marc Grodent C Jean-Pascal Bourdouxhe C University of LiŠge, Belgium C C DATE: March 1, 1995 C C SUBROUTINE CALLED: ENTHALP C FUEL C LINKCK C*********************************************************************** C INTERNAL VARIABLES C Excess Excess of air (-) C Hweight Weight of hydrogen in 1 kg of fuel (kg) C ParC Number of carbon atoms in equivalent hydrocarbon (-) C fuel C ParH Number of hydrogen atoms in equivalent (-) C hydrocarbon fuel C xCO2 CO2 concentration in dry flue gas (-) C xO2 O2 concentration in dry flue gas (-) C O2st Number of kmol of oxygen reacting with 1 kmol (kmol) C of fuel in a stoichiometric combustion process C Fratiost Stoichiometric fuel/air ratio (-) C Qa Heat transfer in the air preheater (W) C Qf Heat transfer in the fuel preheater (W) C Qr Heat transfer in the isothermal reactor (W) C Qg Heat transfer in the postheater (W) C MW Array containing the molecular weights (kg/kmol) C of the species (H2,O2,N2,CO2,H2O) C ZC Atomic number of carbon (-) C ParAir Number of kmol of nitrogen per kmol of oxygen (-) C (air composition) C hO2 Enthalpy of oxygen per kmol of oxygen (J/kmol) C hrO2 Enthalpy of oxygen per kmol of oxygen (J/kmol) C at the temperature Tr C hN2 Enthalpy of nitrogen per kmol of nitrogen (J/kmol) C hrN2 Enthalpy of nitrogen per kmol of nitrogen (J/kmol) C at the temperature Tr C hKP Enthalpy of species KP per kmol of (J/kmol) C species KP C hrKP Enthalpy of species KP per kmol of (J/kmol) C species KP at the temperature Tr C Toler Relative error tolerance (-) C ErrRel Relative error (-) C KP Loop counter C IO Integer replacing input Choice in the routine C Fct Value of the function to be nullified (J/kg fuel) C C Tmin,Tmax,Qg1,Fct1,Qg2,Fct2,Fcti,Fctip1,Ti,Tip1,Tp and C T are variables used in the chord method C*********************************************************************** INTEGER*4 INFO DOUBLE PRECISION XIN,OUT REAL Kmolp(5),MW(5),Ifuel DIMENSION XIN(5),OUT(7),INFO(15) COMMON /LUNITS/ LUR,LUW,IFORM,LUK COMMON /SIM/ TIME0,TFINAL,DELT,IWARN COMMON /STORE/ NSTORE,IAV,S(5000) COMMON /CONFIG/ TRNEDT,PERCOM,HEADER,PRTLAB,LNKCHK,PRUNIT,IOCHEK, & PRWARN INFO(6)=7 DATA Toler/1E-5/ DATA MW/2,32,28,44,18/ DATA ZC/12/ C*** INPUTS 5 (converted in SI units) C************ Ifuel=SNGL(xin(1)) Choice=SNGL(xin(2)) Val=SNGL(xin(3)) Tair=SNGL(xin(4)+273.15) Tfuel=SNGL(xin(5)+273.15) CALL FUEL (Ifuel,Cweight,FLHV,Tr,Cfuel,*1) CALL LINKCK('TYPE99','FUEL',1,99) 1 CONTINUE IO=INT(Choice) C2*** Selection of the information available GO TO (10,20,30),IO C2*** The fuel/air ratio is known 10 Fratio=Val GO TO 40 C2*** The CO2 concentration in dry flue gas is known 20 xCO2=Val GO TO 40 C2*** The O2 concentration in dry flue gas is known 30 xO2=Val C2*** The only fuel constituents are carbon and hydrogen 40 Hweight=1-Cweight C2*** Calculate the number of carbon atoms in C2*** equivalent hydrocarbon fuel ParC=Cweight/ZC C2*** Calculate the number of hydrogen atoms in C2*** equivalent hydrocarbon fuel ParH=Hweight C2*** Calculate the number of kmol of nitrogen per kmol of oxygen C2*** (air composition) ParAir=0.79/0.21 C2*** Calculate the number of kmol of oxygen reacting with 1 kmol C2*** of fuel in a stoichiometric combustion process O2st=ParC+ParH/4 C2*** Calculate the stoichiometric fuel/air ratio Fratiost=1/(O2st*(MW(2)+ParAir*MW(3))) C2*** Different cases according to the information available GO TO (50,60,70),IO C2*** Calculate the excess of air 50 Excess=(Fratiost/Fratio)-1 GO TO 80 60 Excess=(ParC-xCO2*(ParC+O2st*ParAir))/(xCO2*O2st*(1+ParAir)) C1*** Calculate the actual fuel/air ratio Fratio=Fratiost/(1+Excess) GO TO 80 70 Excess=-xO2*(ParC+O2st*ParAir)/(O2st*(xO2*(1+ParAir)-1)) Fratio=Fratiost/(1+Excess) C1*** Calculate the composition of the combustion products 80 Kmolp(2)=O2st*Excess Kmolp(3)=O2st*(1+Excess)*ParAir Kmolp(4)=ParC Kmolp(5)=ParH/2 C1*** Calculate the heat transfer in the fuel preheater Qf=Cfuel*(Tr-Tfuel) C1*** Calculate the heat transfer in the air preheater CALL ENTHALP(Tair,2,hO2,*81) CALL LINKCK('TYPE99','ENTHALP',1,99) 81 CONTINUE CALL ENTHALP(Tair,3,hN2,*82) 82 CALL ENTHALP(Tr,2,hrO2,*83) 83 CALL ENTHALP(Tr,3,hrN2,*84) 84 Qa=O2st*(1+Excess)*((hrO2-hO2)+ParAir*(hrN2-hN2)) C1*** Calculate the heat transfer in the isothermal reactor Qr=FLHV C1*** Calculate the adiabatic temperature by means of the chord method Tmin=700 C2*** For a given temperature calculate the heat transfer C2*** in the postheater Qg1=0 DO 90 KP=2,5 CALL ENTHALP(Tmin,KP,hKP,*85) 85 CALL ENTHALP(Tr,KP,hrKP,*86) 86 Qg1=Qg1+(hKP-hrKP)*Kmolp(KP) 90 CONTINUE C2*** Calculate the corresponding value of the function to be nullified Fct1=(Qr-Qa-Qf)-Qg1 C2*** Same processes for another given temperature Tmax=3000 Qg2=0 DO 100 KP=2,5 CALL ENTHALP(Tmax,KP,hKP,*91) 91 CALL ENTHALP(Tr,KP,hrKP,*92) 92 Qg2=Qg2+(hKP-hrKP)*Kmolp(KP) 100 CONTINUE Fct2=(Qr-Qa-Qf)-Qg2 Fcti=Fct1 Fctip1=Fct2 Ti=Tmin Tip1=Tmax Tp=Tmax C2*** New estimation of the adiabatic temperature 110 T=Ti+Fcti*(Ti-Tip1)/(Fctip1-Fcti) Qg=0 DO 120 KP=2,5 CALL ENTHALP(T,KP,hKP,*111) 111 CALL ENTHALP(Tr,KP,hrKP,*112) 112 Qg=Qg+(hKP-hrKP)*Kmolp(KP) 120 CONTINUE Fct=(Qr-Qa-Qf)-Qg ErrRel=ABS((T-Tp)/Tp) C2*** If converged, leave loop IF (ErrRel.GT.Toler) THEN Fcti=Fctip1 Fctip1=Fct Ti=Tip1 Tip1=T Tp=T GO TO 110 ENDIF Tadiab=T C1*** Calculate the enthalpy of the combustion products C1*** at the adiabatic temperature hprod=0 DO 130 KP=2,5 CALL ENTHALP(Tadiab,KP,hKP,*125) 125 hprod=hprod+Kmolp(KP)*hKP 130 CONTINUE C*** OUTPUTS 7 (converted in TRNSYS units) C************* out(1)=DBLE(Fratio) out(2)=DBLE(Tadiab-273.15) out(3)=DBLE(Kmolp(2)) out(4)=DBLE(Kmolp(3)) out(5)=DBLE(Kmolp(4)) out(6)=DBLE(Kmolp(5)) out(7)=DBLE(hprod) RETURN 1 END SUBROUTINE ENTHALP (Temp,I,Enthalpy,*) C************************************************************************ C* Copyright ASHRAE A Toolkit for Primary HVAC System Energy C* Calculation C*********************************************************************** C* SUBROUTINE: ENTHALP C* C* LANGUAGE: FORTRAN 77 C* C* PURPOSE: Calculate the enthalpy (J/kmol) of each C* species (H2,O2,N2,CO2,H2O) at a given C* temperature C*********************************************************************** C* INPUT VARIABLES C* Temp Temperature at which enthalpy must be calculated (K) C* I Selection of the species to be considered (-) C* I=1: H2 C* I=2: O2 C* I=3: N2 C* I=4: CO2 C* I=5: H2O C* C* OUTPUT VARIABLES C* Enthalpy Enthalpy of the species (J/kmol) C*********************************************************************** C DEVELOPER: Philippe Ngendakumana C Marc Grodent C University of LiŠge, Belgium C C DATE: March 1, 1995 C C REFERENCE: A. Brohmer and P. Kreuter C FEV Motorentechnik GmbH & Co KG C Aachen, Germany C*********************************************************************** C INTERNAL VARIABLES C PFCP Array containing the coefficients used (J/kmol/K) C in the polynomial expressions C Tref Array containing the temperatures at which (K) C the reference enthalpies are calculated C href Array containing the reference enthalpies (J/kmol) C h Enthalpy of species I (J/kmol) C J Loop counter C*********************************************************************** COMMON/COMCP/PFCP(5,10) COMMON/THREF/Tref(5),href(5) h=href(I) Enthalpy=0 DO 10 J=1,10 h=h+((PFCP(I,J)*Temp**J)-(PFCP(I,J)*Tref(I)**J))/J 10 CONTINUE Enthalpy=h RETURN 1 END BLOCK DATA COMMON/COMCP/PFCP(5,10) COMMON/THREF/Tref(5),href(5) C1*** Coefficients are given for H2 DATA PFCP(1,1),PFCP(1,2),PFCP(1,3), $PFCP(1,4),PFCP(1,5),PFCP(1,6),PFCP(1,7), $PFCP(1,8),PFCP(1,9),PFCP(1,10)/ $ 2.12183E+04, 4.90483E+01,-1.18908E-01, 1.50167E-04, $-1.07285E-07, 4.66644E-11,-1.26418E-14, 2.08562E-18, $-1.91864E-22, 7.54661E-27/ C1*** Coefficients are given for O2 DATA PFCP(2,1),PFCP(2,2),PFCP(2,3), $PFCP(2,4),PFCP(2,5),PFCP(2,6),PFCP(2,7), $PFCP(2,8),PFCP(2,9),PFCP(2,10)/ $ 3.12398E+04,-2.51025E+01, 9.50643E-02,-1.29283E-04, $ 9.56020E-08,-4.25012E-11, 1.16866E-14,-1.94778E-18, $ 1.80410E-22,-7.12717E-27/ C1*** Coefficients are given for N2 DATA PFCP(3,1),PFCP(3,2),PFCP(3,3), $PFCP(3,4),PFCP(3,5),PFCP(3,6),PFCP(3,7), $PFCP(3,8),PFCP(3,9),PFCP(3,10)/ $ 3.10052E+04,-1.65866E+01, 4.37297E-02,-4.10720E-05, $ 2.08732E-08,-6.27548E-12, 1.11654E-15,-1.08777E-19, $ 4.47487E-24, 0.E0 / C1*** Coefficients are given for CO2 DATA PFCP(4,1),PFCP(4,2),PFCP(4,3), $PFCP(4,4),PFCP(4,5),PFCP(4,6),PFCP(4,7), $PFCP(4,8),PFCP(4,9),PFCP(4,10)/ $ 1.89318E+04, 8.20742E+01,-8.47204E-02, 5.92177E-05, $-2.92546E-08, 1.01523E-11,-2.39525E-15, 3.62658E-19, $-3.15882E-23, 1.19863E-27/ C1*** Coefficients are given for H2O DATA PFCP(5,1),PFCP(5,2),PFCP(5,3), $PFCP(5,4),PFCP(5,5),PFCP(5,6),PFCP(5,7), $PFCP(5,8),PFCP(5,9),PFCP(5,10)/ $ 3.42084E+04,-1.04650E+01, 3.61342E-02,-2.73709E-05, $ 1.12406E-08,-2.93883E-12, 5.25323E-16,-6.54907E-20, $ 5.27765E-24,-2.04468E-28/ C1*** Reference values are given for H2 DATA Tref(1),href(1)/2.E3,6.144129E7/ C1*** Reference values are given for O2 DATA Tref(2),Href(2)/2.E3,6.7926643E7/ C1*** Reference values are given for N2 DATA Tref(3),Href(3)/2.E3,6.485353E7/ C1*** Reference values are given for CO2 DATA Tref(4),Href(4)/2.E3,-2.9253172E8/ C1*** Reference values are given for H2O DATA Tref(5),Href(5)/2.E3,-1.5643141E8/ END SUBROUTINE FUEL (Ifuel,Cweight,FLHV,Tr,Cfuel,*) C************************************************************************ C* Copyright ASHRAE A Toolkit for Primary HVAC System Energy C* Calculation C*********************************************************************** C* SUBROUTINE: FUEL C* C* LANGUAGE: FORTRAN 77 C* C* PURPOSE: Selection of the properties of a given fuel C*********************************************************************** C* INPUT VARIABLE: C* Ifuel Selection of the fuel (-) C* If Ifuel C* =1: Light fuel oil (liquid fuel) C* =2: Heavy fuel oil (liquid fuel) C* =3: Domestic gas oil (liquid fuel) C* =4: Methane (gaseous fuel) C*********************************************************************** C* OUTPUT VARIABLES: C* Cweight Weight of carbon in 1kg of fuel (kg) C* FLHV The fuel lower heating value (J/kg) C* Tr Reference temperature at which the FLHV is (K) C* evaluated C* Cfuel Fuel specific heat (J/kg/K) C*********************************************************************** C DEVELOPER: Jean-Pascal Bourdouxhe C Marc Grodent C University of LiŠge, Belgium C C DATE: March 1, 1995 C*********************************************************************** REAL Ifuel IF (Ifuel.EQ.1) THEN Cweight=0.88 FLHV=40910E3 Tr=298.15 Cfuel=1840 ENDIF IF (Ifuel.EQ.2) THEN Cweight=0.89 FLHV=40430E3 Tr=298.15 Cfuel=1840 ENDIF IF (Ifuel.EQ.3) THEN Cweight=0.86 FLHV=42770E3 Tr=298.15 Cfuel=1880 ENDIF IF (Ifuel.EQ.4) THEN Cweight=0.75 FLHV=49997E3 Tr=289.15 Cfuel=2183 ENDIF RETURN 1 END SUBROUTINE LINKCK(ENAME1,ENAME2,ILINK,LNKTYP) C*************************************************************************** C THIS SUBROUTINE WAS WRITTEN FOR TRNSYS 14.0 LINK CHECKING - THIS ROUTINE C IS CALLED BY OTHER SUBROUTINES WHEN AN UNLINKED SUBROUTINE HAS BEEN C FOUND. LINKCK IS NEEDED IN ORDER TO AVOID PUTTING COMMON BLOCKS LUNITS C AND CONFIG IN THE TRNSYS TYPES - JWT -- 3/93 C*************************************************************************** COMMON /LUNITS/ LUR,LUW,IFORM,LUK COMMON /CONFIG/ TRNEDT,PERCOM,HEADER,PRTLAB,LNKCHK,PRUNIT,IOCHEK, 1 PRWARN COMMON /SIM/TIME0,TFINAL,DELT,IWARN CHARACTER*1 TRNEDT,PERCOM,HEADER,PRTLAB,LNKCHK,PRUNIT,IOCHEK, 1 PRWARN CHARACTER*6 ENAME1,ENAME2 INTEGER ILINK,LNKTYP C ILINK = 1 --> GENERATE AN ERROR MESSAGE AND STOP TRNSYS C ILINK = 2 --> GENERATE A WARNING BUT DON'T STOP TRNSYS C ILINK = 3 --> TRNSYS HAS FOUND AN UNLINKED TYPE - GENERATE AN ERROR AND C STOP THE PROGRAM C ILINK = 4 --> WARN THE USER THAT A ROUTINE REQUIRES AN EXTERNAL FUNCTION C ENAME1 --> CALLING PROGRAM THAT NEEDED THE UNLINKED FILE C ENAME2 --> FILE THAT WAS NOT FOUND BY ENAME1 SUBROUTINE C LNKTYP --> TYPE NUMBER THAT IS UNLINKED IF((LNKCHK.EQ.'Y').OR.(LNKCHK.EQ.'y')) THEN IF(ILINK.EQ.1) THEN WRITE(LUW,20) 104,ENAME1,ENAME2 WRITE(LUW,15) CALL MYSTOP(104) ELSE IF(ILINK.EQ.2) THEN WRITE(LUW,20) 104,ENAME1,ENAME2 IWARN=IWARN+1 ELSE IF(ILINK.EQ.3) THEN WRITE(LUW,25) 105,LNKTYP,LNKTYP WRITE(LUW,15) CALL MYSTOP(105) ELSE IF(ILINK.EQ.4) THEN WRITE(LUW,35) LNKTYP,ENAME1,ENAME2 IWARN=IWARN+1 ELSE IF(ILINK.EQ.5) THEN WRITE(LUW,40) 105,LNKTYP,LNKTYP WRITE(LUW,15) CALL MYSTOP(105) ELSE WRITE(LUW,30) ENAME1 IWARN=IWARN+1 ENDIF ENDIF 15 FORMAT(//2X,47H*** SIMULATION TERMINATED WITH ERROR STATUS ***/) 20 FORMAT(//,1X,'***** ERROR *****',8X,'TRNSYS ERROR # ',I3,/1X,A6, 1' REQUIRES THE FILE "',A6,'" WHICH WAS CALLED BUT NOT LINKED.',/1X 1,'PLEASE LINK IN THE REQUIRED FILE AND RERUN THE SIMULATION.') 25 FORMAT(//,1X,'***** ERROR *****',8X,'TRNSYS ERROR # ',I3,/1X, 1'TYPE ',I3,' WAS CALLED IN THE TRNSYS INPUT FILE BUT NOT LINKED.', 1/1X,'LINK TYPE ',I3,' BEFORE RUNNING THIS SIMULATION.') 30 FORMAT(/1X,'*****WARNING*****',/1X,'THE LINKCK SUBROUTINE WAS CALL 1ED WITH AN INVALID OPERAND.',/1X,'THE PROGRAM WHICH CALLED LINKCK 1WITH THE IMPROPER OPERAND WAS ',A6,'.',/1X,'PLEASE MAKE SURE THAT 1THE CALLING PROGRAM IS FIXED OR UNLINKED SUBROUTINES MAY ',/1X,'GO 1 UNNOTICED.') 35 FORMAT(/1X,'*****WARNING*****',/1X,'UNIT ',I2,' ',A6,' REQUIRES TH 1E SUBROUTINE ',A6,/1X,'MAKE SURE THAT THIS SUBROUTINE IS LINKED IN 1 TO AVOID PROBLEMS. IT MAY ALREADY BE LINKED IN.',/) 40 FORMAT(//,1X,'***** ERROR *****',8X,'TRNSYS ERROR # ',I3,/1X, 1'TYPE',I3,' WAS CALLED IN THE TRNSYS INPUT FILE BUT NOT LINKED.', 1/1X,'A DUMMY TYPE SUBROUTINE WAS CALLED IN ITS PLACE. PLEASE LINK' 1,/1X,'TYPE',I3,' BEFORE RUNNING THIS SIMULATION OR TURN OFF THE CH 1ECK'/1X,'FOR UNLINKED SUBROUTINES OPTION IN THE CONFIGURATION FILE 1.') RETURN END