SUBROUTINE TYPE91 (TIME,XIN,OUT,T,DTDT,PAR,INFO,ICNTRL,*) C************************************************************************ C* Copyright ASHRAE A Toolkit for Primary HVAC System Energy C* Calculation C*********************************************************************** C* SUBROUTINE: TYPE91 (PISCOMP2) C* C* LANGUAGE: FORTRAN 77 C* C* PURPOSE: Parameter identification based on C* reciprocating compressor performances C* in steady-state regime. C* The pressure drop at the compressor C* exhaust is taken into account. C*********************************************************************** C* INPUT VARIABLES C* Ifluid Selection of the refrigerant (-) C* If Ifluid C* =1: Refrigerant 12 C* =2: Refrigerant 134a C* =3: Refrigerant 114 C* =4: Refrigerant 22 C* =5: Refrigerant 502 C* =6: Refrigerant 717 (Ammonia) C* xin(1) (-) C* N Number of available working points (-) C* xin(2) (-) C* Acyl Cross section of a cylinder (m**2) C* xin(3) (m**2) C* Csti Lower bound of the parameter Cst which is (-) C* the ratio of the nozzle throat area to the C* section of a cylinder C* xin(4) (-) C* Cstf Upper bound of the parameter Cst (-) C* xin(5) (-) C* dCst Increment applied to the parameter Cst (-) C* xin(6) (-) C* NcFL Number of cylinders used in full load (-) C* xin(7) (-) C* C* C* For the working point considered : C* Tev Evaporating temperature (K) C* xin(8) (øC) C* Tcd Condensing temperature (K) C* xin(9) (øC) C* Pev Cooling capacity (W) C* xin(10) (kJ/hr) C* Pcomp Power consumed by the compressor (W) C* xin(11) (kJ/hr) C* DTSupHeat Superheating in the evaporator (K) C* xin(12) (øC) C* DTSubCool Subcooling in the condenser (K) C* xin(13) (øC) C* C* OUTPUT VARIABLES C* Losses Constant part of the electromechanical (W) C* losses C* out(1) (kJ/hr) C* Alpha Loss factor allowing to define another (-) C* electromechanical loss which is assumed to C* be proportional to the isentropic power C* out(2) (-) C* Cf Clearance factor of the compressor (-) C* out(3) (-) C* VsFL Geometric displacement of the compressor (m**3/s) C* out(4) (m**3/hr) C* Cst Ratio of the nozzle throat area of a cylinder (-) C* to the section of a cylinder C* out(5) (-) C* Aex Nozzle throat area of a cylinder (m**2) C* out(6) (-) C* SEw Dimensionless standard deviation of the linear (-) C* regression over the power consumed by C* the compressor C* out(7) (-) C* SEv Dimensionless standard deviation of the linear (-) C* regression over the refrigerant volume flow rate C* entering the compressor C* out(8) (-) C* Wis Isentropic compression power calculated for (W) C* the working point considered C* out(9) (kJ/hr) C* Pcomp Power consumed by the compressor for (W) C* the working point considered C* out(10) (kJ/hr) C* pfactor Value of pfactor calculated for (-) C* the working point considered C* out(11) (-) C* V Refrigerant volume flow rate entering the (m**3/s) C* compressor for the working point considered C* out(12) (m**3/hr) C* Wreg Calculated values of the power consumed by the (W) C* compressor obtained by means of the linear regression C* , for the working point considered C* out(13) (kJ/hr) C* Vreg Calculated values of the volume flow rate (m**3/s) C* entering the compressor obtained by means of C* the linear regression, for the working point C* considered C* out(14) (m**3/hr) C* C* REFRIGERANT PROPERTIES C* To Reference temperature (K) C* cpliq Mean specific heat in saturated liquid state (J/kg/K) C* hfo Enthalpy of the saturated liquid at the (J/kg) C* reference temperature C* cpvap Mean specific heat at constant pressure (J/kg/K) C* in superheated vapor state for saturation C* temperatures ranging from 253 K to 283 K C* cpvapcd Mean specific heat at constant pressure (J/kg/K) C* in superheated vapor state for saturation C* temperatures ranging from 303 K to 333 K C* hfgb Vaporization enthalpy at standard boiling (J/kg) C* point (101325 Pa) C* Tb Standard boiling temperature (K) C* Tc Critical temperature (K) C* b Coefficient used in the calculation of the (-) C* vaporization enthalpy C* r Gas constant (J/kg/K) C* Zeta Mean compressibility factor for saturation (-) C* temperatures ranging from 253 K to 283 K C* Zetacd Mean compressibility factor for saturation (-) C* temperatures ranging from 303 K to 333 K C* Gamma Mean isentropic coefficient (-) C* Acl First coefficient in the Clausius-Clapeyron (-) C* equation C* Bcl Second coefficient in the Clausius-Clapeyron (K) C* equation C*********************************************************************** C MAJOR RESTRICTIONS: The surrounding heat exchanges are C neglected.The maximum number of working C points is equal to 200. C The compression is assumed to be isentropic. C Perfect gas properties are used. C C DEVELOPER: Jean Lebrun C Jean-Pascal Bourdouxhe C Marc Grodent C University of LiŠge, Belgium C C DATE: March 1, 1995 C C SUBROUTINES CALLED: ERROR C PROPERTY C LINKCK C*********************************************************************** C INTERNAL VARIABLES: C pevap Array containing the evaporating pressure (Pa) C for each working point C pcond Array containing the condensing pressure (Pa) C for each working point C T1 Array containing the temperature at the (K) C evaporator exhaust for each working point C T1p Array containing the temperature (K) C after heating-up for each working point C dhfg Vaporization enthalpy (J/kg) C h1 Enthalpy at the evaporator exhaust (J/kg) C T3 Array containing the temperature at the (K) C condenser exhaust for each working point C h3 Enthalpy at the condenser exhaust (J/kg) C p2 Pressure at point 2 (Pa) C v2p Specific volume at point 2 prime (m**3/kg) C MfrRef Array containing the refrigerant mass (kg/s) C flow rate for each working point C Toler Relative error tolerance (-) C ErrRel Relative error (-) C C T1pp is a variable used in the iterative scheme C Sum1 to Sum8 and Y are variables used in the linear regressions C SEw1,T1p1 are storage variables C*********************************************************************** INTEGER*4 INFO DOUBLE PRECISION XIN,OUT REAL Losses,LossesId,Ifluid,NcFL,MfrRef(200) DIMENSION Pev(200),Pcomp(200),Tev(200),Tcd(200),pfactor(200), & V(200),Wis(200),DTsupheat(200),DTsubcool(200),Y(200), & pevap(200),pcond(200),T1(200),T3(200),T1p(200), & T1p1(200),Wreg(200),Vreg(200) DIMENSION XIN(13),OUT(14),INFO(15) COMMON /LUNITS/ LUR,LUW,IFORM,LUK COMMON /SIM/ TIME0,TFINAL,DELT,IWARN COMMON /STORE/ NSTORE,IAV,S(5000) COMMON /CONFIG/ TRNEDT,PERCOM,HEADER,PRTLAB,LNKCHK,PRUNIT,IOCHEK, & PRWARN INFO(6)=14 DATA Toler/1E-5/ C1*** Number of working points to be treated, refrigerant, cylinder C1*** area, boundaries and number of cylinders in full-load regime ITIME=INT(TIME) Ifluid=SNGL(xin(1)) N=IDINT(xin(2)) N2=2*N Acyl=SNGL(xin(3)) Csti=SNGL(xin(4)) Cstf=SNGL(xin(5)) dCst=SNGL(xin(6)) NcFL=SNGL(xin(7)) IF (ITIME.LE.N) THEN C1*** FIRST PART : reception of the remaining inputs associated with C1*** the working point considered. These inputs are stored in arrays. C2*** REMAINING INPUTS 6 (converted in SI units) C2*** ****************** Tev(ITIME)=SNGL(xin(8)+273.15) Tcd(ITIME)=SNGL(xin(9)+273.15) Pev(ITIME)=SNGL(xin(10)/3.6) Pcomp(ITIME)=SNGL(xin(11)/3.6) DTSupHeat(ITIME)=SNGL(xin(12)) DTSubCool(ITIME)=SNGL(xin(13)) ENDIF IF (ITIME.EQ.N) THEN C1*** SECOND PART : identification and printing of the identified C1*** parameters and the dimensionless standard deviations C2*** Selection of the refrigerant CALL PROPERTY (Ifluid,To,cpliq,hfo,cpvap,cpvapcd,hfgb,Tb,Tc, & b,r,Zeta,Zetacd,Gamma,Acl,Bcl,*1) CALL LINKCK('TYPE91','PROPERTY',1,99) 1 CONTINUE Gm1G=(Gamma-1)/Gamma C1*** For each working points we calculate: DO 20 I=1,N C1*** Calculate the evaporating and the condensing pressures pevap(I)=1000*EXP(Acl+Bcl/Tev(I)) pcond(I)=1000*EXP(Acl+Bcl/Tcd(I)) C1*** Calculate the temperature at the evaporator and C1*** condenser exhaust T1(I)=Tev(I)+DTsupheat(I) T3(I)=Tcd(I)-DTsubcool(I) C1*** Calculate the enthalpy at the evaporator and C1*** condenser exhaust dhfg=hfgb*((Tc-Tev(I))/(Tc-Tb))**b h1=hfo+cpliq*(Tev(I)-To)+dhfg+cpvap*DTsupheat(I) h3=hfo+cpliq*(T3(I)-To) C1*** Calculate the refrigerant mass flow rate MfrRef(I)=Pev(I)/(h1-h3) Y(I)=Pcomp(I) 20 CONTINUE SEw1=1E12 J=INT((Cstf-Csti)/dCst+0.5)+1 C1*** For each possible value of the parameter Cst we calculate: DO 30 L=1,J Cst=Csti+FLOAT(L-1)*dCst C2*** Calculate the nozzle throat area of a cylinder Aex=Cst*Acyl C2*** Initialization of the variables used in the linear regression C2*** over the power consumed by the compressor Sum5=0 Sum6=0 Sum7=0 Sum8=0 DO 40 I=1,N C1*** Beginning of the loop C1*** First guess of the temperature after heating-up T1p(I)=T1(I) C2*** Calculate the specific volume at point 2 prime 50 v2p=Zeta*r*T1p(I)/pcond(I)*(pcond(I)/pevap(I))**Gm1G C2*** Calculate the pressure at point 2 p2=pcond(I)+MfrRef(I)**2*v2p/(2*(NcFL*Aex)**2) C2*** Calculate the isentropic compression power Wis(I)=MfrRef(I)*Zeta*r*T1p(I)*((p2/pevap(I))**Gm1G-1)/Gm1G T1pp=T1p(I) C1*** Recalculate the temperature after heating-up T1p(I)=T1(I)+(Pcomp(I)-Wis(I))/(MfrRef(I)*cpvap) ErrRel=ABS((T1p(I)-T1pp)/T1pp) C2*** If converged ,leave loop IF (ErrRel.GT.Toler) GOTO 50 C2*** Up-to-date the variables used in the linear regression C2*** over the power consumed by the compressor Sum5=Sum5+Pcomp(I) Sum6=Sum6+Wis(I) Sum7=Sum7+Wis(I)**2 Sum8=Sum8+Pcomp(I)*Wis(I) 40 CONTINUE C1*** Calculate the parameters Alpha and Losses of the compressor Alpha=(Sum5*Sum6-N*Sum8)/(Sum6**2-N*Sum7)-1 Losses=(Sum5-(1+Alpha)*Sum6)/N C1*** Calculate the dimensionless standard deviation of the linear C1*** regression over the power consumed by the compressor Slope=1+Alpha dN=SNGL(N) CALL ERROR(dN,Wis,Y,Slope,SEw,*56) CALL LINKCK('TYPE91','ERROR',1,99) 56 CONTINUE C1*** IF SEw is lower than the smallest value found so far THEN C1*** store the value of the variables associated with the value C1*** of Cst considered IF (SEw.LT.SEw1) THEN C2*** Storage of the dimensionless standard deviation SEw1=SEw C2*** Storage of the temperature after heating-up for each C2*** working point DO 60 K=1,N T1p1(K)=T1p(K) 60 CONTINUE C2*** Storage of the parameters Alpha,Losses,Cst and Aex C2*** of the compressor AlphaId=Alpha LossesId=Losses CstId=Cst AexId=Aex ENDIF 30 CONTINUE C2*** The parameters characterizing the power consumed by the compressor C2*** are now identified Alpha=AlphaId Losses=LossesId Cst=CstId Aex=AexId SEw=SEw1 C2*** Initialization of the variables used in the linear regression C2*** over the refrigerant volume flow rate entering the compressor Sum1=0 Sum2=0 Sum3=0 Sum4=0 C1*** For each working point we calculate: DO 70 I=1,N C1*** Calculate the refrigerant volume flow rate entering the C1*** compressor associated with the optimal value of Cst V(I)=MfrRef(I)*Zeta*r*T1p1(I)/pevap(I) v2p=Zeta*r*T1p1(I)/pcond(I)*(pcond(I)/pevap(I))**Gm1G p2=pcond(I)+MfrRef(I)**2*v2p/(2*(NcFL*Aex)**2) C1*** Calculate the value of pfactor associated with the optimal C1*** value of Cst pfactor(I)=(p2/pevap(I))**(1/Gamma)-1 C1*** Calculate the isentropic compression power associated with C1*** the optimal value of Cst Wis(I)=MfrRef(I)*Zeta*r*T1p1(I)*((p2/pevap(I))**Gm1G-1)/Gm1G C2*** Up-to-date the variables used in the linear regression over C2*** the refrigerant volume flow rate entering the compressor Sum1=Sum1+pfactor(I) Sum2=Sum2+pfactor(I)**2 Sum3=Sum3+V(I)*pfactor(I) Sum4=Sum4+V(I) 70 CONTINUE C1*** Calculate the last two parameters Cf and VsFL of the compressor VsFL=(Sum1*Sum3-Sum2*Sum4)/(Sum1**2-N*Sum2) Cf=(N*Sum3-Sum1*Sum4)/(Sum1*Sum3-Sum2*Sum4) C1*** Determine the calculated values of the power consumed by the compressor C1*** and the volume flow rate entering the compressor by means of the C1*** linear regressions DO 75 K=1,N Wreg(K)=Losses+(1+Alpha)*Wis(K) Vreg(K)=VsFL-Cf*VsFL*pfactor(K) 75 CONTINUE C1*** Calculate the dimensionless standard deviation of the linear C1*** regression over the refrigerant volume flow rate entering C1*** the compressor Slope=-VsFL*Cf dN=SNGL(N) CALL ERROR (dN,pfactor,V,Slope,SEv,*76) CALL LINKCK('TYPE91','ERROR',1,99) 76 CONTINUE C1*** "Printing" of the identified parameters and the dimensionless C1*** standard deviations out(1)=DBLE(Losses*3.6) out(2)=DBLE(Alpha) out(3)=DBLE(Cf) out(4)=DBLE(VsFL*3600.) out(5)=DBLE(Cst) out(6)=DBLE(Aex) out(7)=DBLE(SEw) out(8)=DBLE(SEv) ENDIF IF ((ITIME.GT.N).AND.(ITIME.LE.N2)) THEN C1*** THIRD PART : "printing" of the isentropic compression power, the C1*** actual and calculated power consumed by the compressor, the C1*** pfactor, the "actual" and calculated refrigerant volume flow rate out(9)=DBLE(Wis(ITIME-N)*3.6) out(10)=DBLE(Pcomp(ITIME-N)*3.6) out(11)=DBLE(pfactor(ITIME-N)) out(12)=DBLE(V(ITIME-N)*3600.) out(13)=DBLE(Wreg(ITIME-N)*3.6) out(14)=DBLE(Vreg(ITIME-N)*3600.) ENDIF C1*** FOURTH PART: For TIME= 2*N+1 to last simulation time, C1*** everything has been done; so, just wait for the last C1*** simulation time. RETURN 1 END SUBROUTINE PROPERTY (Ifluid,To,cpliq,hfo,cpvap,cpvapcd,hfgb,Tb,Tc, & b,r,Zeta,Zetacd,Gamma,Acl,Bcl,*) C************************************************************************ C* Copyright ASHRAE A Toolkit for Primary HVAC System Energy C* Calculation C*********************************************************************** C* SUBROUTINE: PROPERTY C* C* LANGUAGE: FORTRAN 77 C* C* PURPOSE: Selection of the thermodynamic properties C* of a given refrigerant. C*********************************************************************** C* INPUT VARIABLES: C* Ifluid Selection of the refrigerant (-) C* If Ifluid C* =1: Refrigerant 12 C* =2: Refrigerant 134a C* =3: Refrigerant 114 C* =4: Refrigerant 22 C* =5: Refrigerant 502 C* =6: Refrigerant 717 (Ammonia) C*********************************************************************** C* OUTPUT VARIABLES: C* To Reference temperature (K) C* cpliq Mean specific heat in saturated liquid state (J/kg/K) C* hfo Enthalpy of the saturated liquid at the (J/kg) C* reference temperature C* cpvap Mean specific heat at constant pressure (J/kg/K) C* in superheated vapor state for saturation C* temperatures ranging from 253 K to 283 K C* cpvapcd Mean specific heat at constant pressure (J/kg/K) C* in superheated vapor state for saturation C* temperatures ranging from 303 K to 333 K C* hfgb Vaporization enthalpy at standard boiling (J/kg) C* point (101325 Pa) C* Tb Standard boiling temperature (K) C* Tc Critical temperature (K) C* b Coefficient used in the calculation of the (-) C* vaporization enthalpy C* r Gas constant (J/kg/K) C* Zeta Mean compressibility factor for saturation (-) C* temperatures ranging from 253 K to 283 K C* Zetacd Mean compressibility factor for saturation (-) C* temperatures ranging from 303 K to 333 K C* Gamma Mean isentropic coefficient (-) C* Acl First coefficient in the Clausius-Clapeyron (-) C* equation C* Bcl Second coefficient in the Clausius-Clapeyron (K) C* equation C*********************************************************************** C MAJOR RESTRICTION: Perfect gas approximation is used C C DEVELOPER: Claudio Saavedra C University of Concepcion, Chile C Marc Grodent, Jean-Pascal Bourdouxhe C University of LiŠge, Belgium C C DATE: March 1, 1995 C*********************************************************************** REAL Ifluid To=233.15 IF (Ifluid.EQ.1) THEN cpliq=917 hfo=0 cpvap=641.6 cpvapcd=779 hfgb=165300 Tb=243.4 Tc=385.2 b=0.37 r=68.7539 Zeta=0.9403 Zetacd=0.8670 Gamma=1.086 Acl=14.669 Bcl=-2443.13 ENDIF IF (Ifluid.EQ.2) THEN cpliq=1265 hfo=0 cpvap=892.5 cpvapcd=1144 hfgb=215100 Tb=246.9 Tc=374.3 b=0.376 r=81.4899 Zeta=0.9411 Zetacd=0.8610 Gamma=1.072 Acl=15.489 Bcl=-2681.99 ENDIF IF (Ifluid.EQ.3) THEN cpliq=925 hfo=0 cpvap=693.6 cpvapcd=784 hfgb=136100 Tb=276.9 Tc=418.9 b=0.359 r=48.6393 Zeta=0.9757 Zetacd=0.9260 Gamma=1.056 Acl=15.107 Bcl=-2908.73 ENDIF IF (Ifluid.EQ.4) THEN cpliq=1144 hfo=0 cpvap=710.4 cpvapcd=936 hfgb=233700 Tb=232.4 Tc=369.2 b=0.369 r=96.1426 Zeta=0.9300 Zetacd=0.8440 Gamma=1.114 Acl=15.070 Bcl=-2421.94 ENDIF IF (Ifluid.EQ.5) THEN cpliq=1090 hfo=0 cpvap=732 cpvapcd=965 hfgb=172500 Tb=227.8 Tc=355.4 b=0.374 r=74.4752 Zeta=0.9130 Zetacd=0.8150 Gamma=1.065 Acl=14.809 Bcl=-2312.21 ENDIF IF (Ifluid.EQ.6) THEN cpliq=4575 hfo=0 cpvap=2447.1 cpvapcd=3159 hfgb=1372900 Tb=239.8 Tc=405.6 b=0.396 r=488.2214 Zeta=0.9570 Zetacd=0.8960 Gamma=1.230 Acl=16.204 Bcl=-2772.39 ENDIF RETURN 1 END SUBROUTINE LINKCK(ENAME1,ENAME2,ILINK,LNKTYP) C*************************************************************************** C THIS SUBROUTINE WAS WRITTEN FOR TRNSYS 14.0 LINK CHECKING - THIS ROUTINE C IS CALLED BY OTHER SUBROUTINES WHEN AN UNLINKED SUBROUTINE HAS BEEN C FOUND. LINKCK IS NEEDED IN ORDER TO AVOID PUTTING COMMON BLOCKS LUNITS C AND CONFIG IN THE TRNSYS TYPES - JWT -- 3/93 C*************************************************************************** COMMON /LUNITS/ LUR,LUW,IFORM,LUK COMMON /CONFIG/ TRNEDT,PERCOM,HEADER,PRTLAB,LNKCHK,PRUNIT,IOCHEK, 1 PRWARN COMMON /SIM/TIME0,TFINAL,DELT,IWARN CHARACTER*1 TRNEDT,PERCOM,HEADER,PRTLAB,LNKCHK,PRUNIT,IOCHEK, 1 PRWARN CHARACTER*6 ENAME1,ENAME2 INTEGER ILINK,LNKTYP C ILINK = 1 --> GENERATE AN ERROR MESSAGE AND STOP TRNSYS C ILINK = 2 --> GENERATE A WARNING BUT DON'T STOP TRNSYS C ILINK = 3 --> TRNSYS HAS FOUND AN UNLINKED TYPE - GENERATE AN ERROR AND C STOP THE PROGRAM C ILINK = 4 --> WARN THE USER THAT A ROUTINE REQUIRES AN EXTERNAL FUNCTION C ENAME1 --> CALLING PROGRAM THAT NEEDED THE UNLINKED FILE C ENAME2 --> FILE THAT WAS NOT FOUND BY ENAME1 SUBROUTINE C LNKTYP --> TYPE NUMBER THAT IS UNLINKED IF((LNKCHK.EQ.'Y').OR.(LNKCHK.EQ.'y')) THEN IF(ILINK.EQ.1) THEN WRITE(LUW,20) 104,ENAME1,ENAME2 WRITE(LUW,15) CALL MYSTOP(104) ELSE IF(ILINK.EQ.2) THEN WRITE(LUW,20) 104,ENAME1,ENAME2 IWARN=IWARN+1 ELSE IF(ILINK.EQ.3) THEN WRITE(LUW,25) 105,LNKTYP,LNKTYP WRITE(LUW,15) CALL MYSTOP(105) ELSE IF(ILINK.EQ.4) THEN WRITE(LUW,35) LNKTYP,ENAME1,ENAME2 IWARN=IWARN+1 ELSE IF(ILINK.EQ.5) THEN WRITE(LUW,40) 105,LNKTYP,LNKTYP WRITE(LUW,15) CALL MYSTOP(105) ELSE WRITE(LUW,30) ENAME1 IWARN=IWARN+1 ENDIF ENDIF 15 FORMAT(//2X,47H*** SIMULATION TERMINATED WITH ERROR STATUS ***/) 20 FORMAT(//,1X,'***** ERROR *****',8X,'TRNSYS ERROR # ',I3,/1X,A6, 1' REQUIRES THE FILE "',A6,'" WHICH WAS CALLED BUT NOT LINKED.',/1X 1,'PLEASE LINK IN THE REQUIRED FILE AND RERUN THE SIMULATION.') 25 FORMAT(//,1X,'***** ERROR *****',8X,'TRNSYS ERROR # ',I3,/1X, 1'TYPE ',I3,' WAS CALLED IN THE TRNSYS INPUT FILE BUT NOT LINKED.', 1/1X,'LINK TYPE ',I3,' BEFORE RUNNING THIS SIMULATION.') 30 FORMAT(/1X,'*****WARNING*****',/1X,'THE LINKCK SUBROUTINE WAS CALL 1ED WITH AN INVALID OPERAND.',/1X,'THE PROGRAM WHICH CALLED LINKCK 1WITH THE IMPROPER OPERAND WAS ',A6,'.',/1X,'PLEASE MAKE SURE THAT 1THE CALLING PROGRAM IS FIXED OR UNLINKED SUBROUTINES MAY ',/1X,'GO 1 UNNOTICED.') 35 FORMAT(/1X,'*****WARNING*****',/1X,'UNIT ',I2,' ',A6,' REQUIRES TH 1E SUBROUTINE ',A6,/1X,'MAKE SURE THAT THIS SUBROUTINE IS LINKED IN 1 TO AVOID PROBLEMS. IT MAY ALREADY BE LINKED IN.',/) 40 FORMAT(//,1X,'***** ERROR *****',8X,'TRNSYS ERROR # ',I3,/1X, 1'TYPE',I3,' WAS CALLED IN THE TRNSYS INPUT FILE BUT NOT LINKED.', 1/1X,'A DUMMY TYPE SUBROUTINE WAS CALLED IN ITS PLACE. PLEASE LINK' 1,/1X,'TYPE',I3,' BEFORE RUNNING THIS SIMULATION OR TURN OFF THE CH 1ECK'/1X,'FOR UNLINKED SUBROUTINES OPTION IN THE CONFIGURATION FILE 1.') RETURN END SUBROUTINE ERROR (N,X,Y,Slope,ASyx,*) C************************************************************************ C* Copyright ASHRAE A Toolkit for Primary HVAC System Energy C* Calculation C*********************************************************************** C* SUBROUTINE: ERROR C* C* LANGAGE: FORTRAN 77 C* C* PURPOSE: Calculation of the dimensionless standard C* deviation of the linear regressions C*********************************************************************** C* INPUT VARIABLES C* N Number of available working points (-) C* X Array containing either the isentropic (W) or (-) C* compression power or the value of pfactor C* for each working point C* Y Array containing either the power (W) or (m**3/s) C* consumed by the compressor or the C* refrigerant volume flow rate entering the C* compressor for each working point C* Slope Slope of the straight line (-) or (m**3/s) C* C* OUTPUT VARIABLE C* ASyx Dimensionless standard deviation of the (-) C* linear regression C*********************************************************************** C MAJOR RESTRICTION: The maximum number of working points C is equal to 200. C C DEVELOPER: Jean-Pascal Bourdouxhe C Marc Grodent C University of LiŠge, Belgium C C DATE: March 1, 1995 C*********************************************************************** C INTERNAL VARIABLES C MeanX Mean value of either the isentropic (W) or (-) C compression power or the pfactor C MeanY Mean value of either the power (W) or (m**3/s) C consumed by the compressor or the C refrigerant volume flow rate entering C the compressor C C SumX and SumY are variables used to calculate these mean values C Xsq,Ysq and rsq are secondary variables used in the routine C*********************************************************************** REAL N,MeanX,MeanY DIMENSION X(200),Y(200) Nb=INT(N) SumX=0 SumY=0 DO 10 I=1,Nb SumX=SumX+X(I) SumY=SumY+Y(I) 10 CONTINUE C1*** Calculate the mean value of either the isentropic compression C1*** power or the pfactor MeanX=SumX/N C1*** Calculate the mean value of either the power consumed by the C1*** compressor or the refrigerant volume flow rate entering the C1*** compressor MeanY=SumY/N Xsq=0 Ysq=0 DO 20 I=1,Nb Xsq=Xsq+(X(I)-MeanX)**2 Ysq=Ysq+(Y(I)-MeanY)**2 20 CONTINUE rsq=Slope**2*Xsq/Ysq C1*** Calculate the standard deviation of the linear regression Syx=SQRT((1-rsq)*Ysq/(N-2)) C1*** Calculate the dimensionless standard deviation of the C1*** linear regression ASyx=Syx/MeanY RETURN 1 END