C C TYPE 206 : COLUMN C C MODEL OF COLUMN FOR A HOT WATER HEATING SYSTEM C C CALL THE SUBROUTINE PIPE WHICH CALCULATE THE HEAT TRANSFER C COEFFICENT USING SIMPLIFIED LAWS, THE HEAT TRANSFER OF THE C PIPE AND THE EXHAUST TEMPERATURE OF THE FLUID GOING THROUGH C THE PIPE. C C C C SI UNITS ! C C PARAMETERS : PAR(1)=NOM: NUMBER OF SECTIONS C PAR(2)=D : PIPES DIAMETERS C PAR(3)=HV : HV >= 0 THEN VERTICAL PIPE ELSE HORIZONTAL C PAR(4)=EPS: EMISSION COEFFICIENT FOR OUTER SURFACE C PAR(5)=CPW: MASSIC HEAT OF FLUID C PAR(6)=L(1): LENGTH OF THE SECTIONS SUPPLY 1 C ... C PAR(5+NOM)=L(NOM): LENGTH OF THE SECTION SUPPLY NOM C PAR(5+NOM+1)=LR(1):LENGTH OF THE SECTION RETURN 1 C ... C PAR(5+2*NOM)=LR(NOM):LENGTH OF THE SECTION RETURN NOM C C INPUTS : XIN(1)=T0 : SUPPLY FLUID TEMPERATURE C XIN(2)=XM0 : SUPPLY FLUID MASSFLOW RATE C XIN(3)=XMRAD(1) :EXHAUST MASSFLOW RATE AFTER SECTION 1 C ... C XIN(2+NOM)=XMRAD(NOM):EXHAUST MASSFLOW AFTER SECTION NOM C XIN(2+NOM+1)=TAMB(1) C ... C XIN(2+2*NOM)=TAMB(NOM) C XIN(2+2*NOM+1)=TRET(1) C ... C XIN(2+3*NOM)=TRET(NOM) C XIN(2+3*NOM+1)=TAMBR(1) C ... C XIN(2+4*NOM)=TAMBR(NOM) C C OUTPUTS : OUT(1)=TEX : EXHAUST TEMPERATURE OF THE FLUID C OUT(2)=XM0 : TOTAL FLUID MASSFLOW RATE C OUT(3)=QT : TOTAL HEAT TRANSFER C OUT(4)=XMBP: MASSFLOW RATE TRHOUGH THEE BY PASS C OUT(5)=Q(1): HEAT TRANSFER FROM SECTION 1 SUPPLY C ... C OUT(4+NOM)=Q(NOM): HEAT TRANSFER FROM SECTION NOM SUPPLY C OUT(4+NOM+1)=QR(1): HEAT TRANSFER FROM SECTION 1 RETURN C ... C OUT(4+2*NOM)=QR(NOM): HEAT TRANSFER FROM SECTION NOM RET C OUT(4+2*NOM+1)=TEMP(1):EXHAUST TEMPERATURE AFTER 1 C ... C OUT(4+3*NOM)=TEMP(NOM):EXHAUST TEMPERATURE AFTER NOM C CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC C C SAMPLE INPUT AND OUTPUT VALUES C C PARAMETERS SAMPLE VALUES C PAR(1) N 3.0 C PAR(2) D 0.0272 C PAR(3) HV 1.0 C PAR(4) EPS 0.9 C PAR(5) CP 4187.0 C PAR(6) SUPPLY LENGTH 1 0.7 C PAR(7) SUPPLY LENGTH 2 0.24 C PAR(8) SUPPLY LENGTH 3 2.56 C PAR(9) RETURN LENGTH 1 0.26 C PAR(10) RETURN LENGTH 2 0.0 C PAR(11) RETURN LENGTH 3 2.8 C C INPUTS C XIN(1) TSU 68.0 C XIN(2) dM0 2.3 C XIN(3) 1 MASS FLOW RATE 0.4 C XIN(4) 2 MASS FLOW RATE 0.5 C XIN(5) 3 MASS FLOW RATE 0.6 C XIN(6) TAMB 1 20.0 C XIN(7) TAMB 2 18.0 C XIN(8) TAMB 3 19.0 C XIN(9) TRAD 1 60.0 C XIN(10) TRAD 2 61.0 C XIN(11) TRAD 3 62.0 C XIN(12) TAMB' 1 27.0 C XIN(13) TAMB' 2 16.0 C XIN(14) TAMB' 3 16.5 C C OUTPUTS C OUT(1) TEX 63.51 C OUT(2) XMO 2.3 C OUT(3) QT 292.1 C OUT(4) XMBP 0.8 C OUT(5) Q(1) 40.61 C OUT(6) Q(2) 11.56 C OUT(7) Q(3) 239.9 C OUT(8) QR(1) 67.99 C OUT(9) QR(2) 67.99 C OUT(10) QR(3) 67.94 C OUT(11) TEMP(1) 0.0 C OUT(12) TEMP(2) 0.0 C OUT(13) TEMP(3) 0.0 C CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC C ! This component has been assigned Type Number 206. If that number conflicts with ! another user Type number, you will need to change it and recompile the appropriate ! dll. SUBROUTINE TYPE206(TIME,XIN,OUT,T,DTDT,PAR,INFO,ICNTRL,*) !DEC$ATTRIBUTES DLLEXPORT :: TYPE206 C DIMENSION XIN(50),OUT(20),PAR(50),INFO(15),XL(11),XLR(11), 1XMRAD(11),TAMB(11),TRET(11),TAMBR(11),XM(12),TEMP(11), 2Q(11),QR(12),TREX(12),TRM(11) DOUBLE PRECISION XIN,OUT COMMON/LUNITS/LUR,LUW,IFORM,LUK ! Set the version information for TRNSYS IF (INFO(7).EQ.-2) THEN INFO(12) = 15 RETURN 1 ENDIF C C PARAMETERS C NOM=PAR(1)+0.1 D=PAR(2) HV=PAR(3) EPS=PAR(4) CPW=PAR(5) DO 10 I=1,NOM XL(I)=PAR(I+5) XLR(I)=PAR(I+NOM+5) 10 CONTINUE C C FIRST CALL C I1=4*NOM+2 I2=2*NOM+5 IF(INFO(7).EQ.-1) CALL TYPECK(1,INFO,I1,I2,0) C C INPUTS C T0=XIN(1) XM0=XIN(2) DO 20 I=1,NOM XMRAD(I)=XIN(I+2) TAMB(I)=XIN(I+NOM+2) TRET(I)=XIN(I+2*NOM+2) TAMBR(I)=XIN(I+3*NOM+2) 20 CONTINUE C C MASSFLOW IN THE SECTIONS C C SECTION 1 XM(1)=0. DO 30 I=1,NOM XM(1)=XM(1)+XMRAD(I) 30 CONTINUE C IS THE SUM OF THE MASSFLOW RATE IN THE RADIATORS C LOWER THAN THE TOTAL MASSFLOW RATE ? IF(XM(1).GT.XM0)THEN WRITE(LUW,*)'SUM OF THE MASSFLOW RATE OF THE RADIATORS HIGHER THAN 1THE TOTAL MASSFLOW RATE OF THE COLUMN IN TYPE 71' CALL MYSTOP(1001) RETURN 1 ENDIF C OTHER SECTIONS DO 40 I=2,NOM XM(I)=XM(I-1)-XMRAD(I-1) 40 CONTINUE C C SUPPLY COLLUMN C CALL PIPE(T0,XM(1),TAMB(1),XL(1),D,HV,EPS,CPW,TEMP(1),Q(1)) DO 50 I=2,NOM CALL PIPE(TEMP(I-1),XM(I),TAMB(I),XL(I),D,HV,EPS,CPW,TEMP(I),Q(I)) 50 CONTINUE C C RETURN COLUMN C XM(NOM+1)=0.0 TREX(NOM+1)=0.0 DO 60 I=NOM,1,-1 IF (XM(I).LE.0.0) THEN TRM(I)=0.0 ELSE TRM(I)=(XM(I+1)*TREX(I+1)+XMRAD(I)*TRET(I))/XM(I) ENDIF CALL PIPE(TRM(I),XM(I),TAMBR(I),XLR(I),D,HV,EPS,CPW,TREX(I), 1QR(I)) 60 CONTINUE C C BY-PASS MASSFLOW RATE C XMBP=XM0-XM(1) C C EXHAUST TEMPERATURE C IF(XM0.LE.0.0) THEN TEX=0.0 ELSE TEX=(XMBP*T0+XM(1)*TREX(1))/XM0 ENDIF C C TOTAL HEAT TRANSFER C QT=0. DO 70 I=1,NOM QT=QT+Q(I)+QR(I) 70 CONTINUE C C OUTPUTS C OUT(1)=TEX OUT(2)=XM0 OUT(3)=QT OUT(4)=XMBP DO 80 I=1,NOM OUT(I+4)=Q(I)+QR(I) OUT(I+4+NOM)=TEMP(I) 80 CONTINUE C RETURN 1 END C C SUBROUTINE PIPE C C CALCULATE THE HEAT TRANSFER COFFEFICIENT (SIMPLIFIED C FORMULA), THE HEAT TRANSFER FRO THE FLUID AND THE EXHAUST C TEMPERATURE OF THE FLUID. C C SEE DOCUMENT AN10-880603-02 OF THE ANNEX10 DATA BANK. C SUBROUTINE PIPE(TSU,XMW,TAMB,XL,D,HV,EPS,CPW,TEX,Q) C C C "PARAMETERS": XL : LENGTH OF THE PIPE C D : DIAMETER OF THE PIPE C HV : HV >= 0 THEN VERTICAL PIPE ELSE HORIZONTAL C EPS: EMISION COEFFICIENT FOR OUTER SURFACE C CPW: MASSIC HEAT OF FLUID C C "INPUTS" : TSU : SUPPLY FLUID TEMPERATURE C XMW : FLUID MASSFLOW RATE C TAMB: TEMPERATURE OF SURROUNDING WALLS AND AIR C C "OUTPUTS" : TEX : EXHAUST TEMPERATURE OF THE FLUID C Q : HEAT TRANSFER C C OTHER VARIABLES C C ARE THE VALUES ACCEPTABLE ? C C IS THE MASSFLOW RATE POSITVE ? IF(XMW.LT.0.0) THEN WRITE(LUW,*) 'NEGATIVE MASSFLOW RATE IN SUBROUTINE PIPE' CALL MYSTOP(1001) RETURN ENDIF C ARE THE DIMENSIONS POSITIVE ? IF((D.LT.0.0).OR.(XL.LT.0.0)) THEN WRITE(LUW,*) 'NEGATIVE DIMENSION FOR PIPE IN SUBROUTINE PIPE' CALL MYSTOP(1001) RETURN ENDIF C ARE THE TEMPERATURES HIGHER THAN 0 ? IF((TAMB.LT.0.0).OR.(TSU.LT.0.0)) THEN WRITE(LUW,*) 'TEMPERATURE LOWER THAN 0' C STOP ENDIF C VERY LOW MASSFLOW RATE IF(XMW.LT.1.E-5) THEN TEX=TAMB GO TO 111 ENDIF C C AREA CALCULATION C A=3.1416*D*XL C C HEAT TRANSFER COEFFICIENT DUE TO RADIATION C HR=5.7E-8*EPS*((TSU+273)**2+(TAMB+273)**2)*(TSU+273+TAMB+273) C C HEAT TRANSFER COEFFICIENT DUE TO CONVECTION C DELTAT=TSU-TAMB IF(DELTAT.LT.0.0) DELTAT=-DELTAT IF(HV.GE.0.0) THEN C VERTICAL PIPE HC=1.3*DELTAT**(1./3.) ELSE C HORIZONTAL PIPE HC=1.3*(DELTAT/D)**0.25 ENDIF C C TOTAL HEAT TRANSFER COEFFICIENT C U=HR+HC C C NO AREA OR HEAT TRANSFER COEFFICIENT = 0 C IF((U.EQ.0.0).OR.(A.EQ.0.0)) THEN TEX=TSU GO TO 111 ENDIF C C EXHAUST TEMPERATURE C PROV1=(U*A/XMW/CPW) IF(PROV1.GT.20) THEN TEX=TAMB ELSE PROV=EXP(PROV1) TEX=(TSU-TAMB*(1-PROV))/PROV ENDIF C C HEAT TRANSFER C 111 Q=XMW*CPW*(TSU-TEX) C RETURN END