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ABSTRACT

Development of oprimal control strategies for complex
heating, ventilating, and air-conditioning (HVAC) systems
often requires a model of the system. Models of conventional
heating or cooling plant equipment are nonlinear with multiple
input and output variables. Model parameter values (e.g., an
overall heat transfer coefficient, UA, in a heat exchanger
model) need to be assigned so that the model adequately pre-
dicts the performance of the actual system. Parameters for a
model of an operating system can be determined with regres-
sion techniques using measurements of model variables. The
work presented in this paper considers the multiresponse non-
linear parameter estimation problem associated with a system
of interconnected components in a chilled-water plant. Meth-
ods studied for solving the estimation problem include ordinary
least squares, weighted least squares, and a determinant crite-
rion derived from Bayesian estimation theory. Potential pitfalls

in multivariate regression, such as linear dependencies among’

responses, are identified.

The application and analysis of the parameter estimation
methods are directed toward building a predictive model for
use in optimal supervisory control strategies. Various solution
methods are reviewed and applied to a simulated chilled-water
plant for comparison and analysis. The parameter estimation
techniques are then used to create a predictive model of an
operational chilled-water plant. The plant has both electric and
steam-driven chillers and cooling towers with multispeed fans.
The goal of the predictive model is to predict variables associ-
ated with operational costs such as electric motor power and
steam consumption. The relative merits of the different regres-
sion techniques are judged (compared) according to how well
the model can predict these cost-related variables.

John W. Mitchell, Ph.D., P.E.

William A. Beckman, Ph.D., P.E.

INTRODUCTION

Generally, optimization studies of chilled-water facilities
require a model of the plant. A search of the prediction of plant
performance over a range of operation allows the minimum or
maximum value of the objective function (e.g., energy costs) to
be obtained. The model must predict system performance accu-
rately to obtain valid results. In general, a system model will
have parameters that can be set such that the model approxi-
mates actual system behavior. Finding good values or estimates
of these parameters can be cast as a nonlinear, multivariate
minimization problem in which a set of parameters that mini-
mize the difference between model predictions and observed
system measurements is sought. The difference between
predictions and observations in terms of a scalar objective func-
tion requires consideration of the statistical properties of the
data. In this paper, methods of estimating chilled-water plant
model parameters are presented and used with an example
chilled-water plant model where true parameter values are
known and are also used to estimate parameters for a model of
an actual chilled-water plant.

MODELING METHODS

The following vector equation can be used to describe a
general model of a multivariate system:

y = f(x,p) ¢))

where y is a vector of dependent variables associated with
costs, B is a vector of parameters, and x is a vector of indepen-
dent or forcing variables. The equation could represent any
given functional form such as a set of polynomial equations (a
curve fit) or an artificial neural network. Alternatively, the
equation could represent a set of mechanistic equations, such
as conservation laws and transport equations derived from the-
ory. The different functional forms may have individual
advantages in predictive abilities or the ease with which the
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Box and Draper (1990) approached the multiresponse esti-
mation problem using probabilistic arguments (Bayesian esti-
mation) and developed a criterion for the determinant. It was
demonstrated that given a data set ¥, the probability that a set of
parameter estimates, P, is the set of true parameter values is
inversely proportional to a measure of the residuals as follows:

-n/2

p(BIV) = |R"H] %)

The probability is maximized when the determinant of R'R is
minimized. Bates and Watts (1988) derive the same criterion
using a maximum likelihood argument.

Potential Problems in Parameter Estimation

Although the determinant criterion provides a means for
weighing residuals according to variance, its computation can
sometimes be problematic. A number of potential problems
that can arise include linear dependencies among the equations,
overparameterization of the model, and variance in the param-
eters. These problems are discussed in this section.

If one vector of residuals (a column of R) happens to be
linearly dependent (or nearly linearly dependent) with another
residual vector, RTR will not be full rank and the determinant
will be zero (or a very small number). Any minimization algo-
rithm will either fail or halt at this apparent minimum. Similar
problems are faced when using the two-step weighted least-
squares method where the covariance matrix is estimated from
the inverse of RTR. If not of full rank, the inverse of R'R is not
defined.

Linear dependencies among residuals can be caused by
linear dependencies in the responses. Such dependencies among
the measured variables can occur in many HVAC system com-
ponents, for example, a counterflow heat exchanger. The inlet
and outlet temperatures are measured and an estimate of the
overall heat transfer parameter, UA, is to be determined from the
temperature measurements. The mass flow rates and fluid-spe-
cific heats are known and assumed to be constant. An NTU-
effectiveness model can be used to represent the heat exchanger
and an estimate of the heat exchanger’s overall heat wansfer
coefficient, UA, is desired.

The overall heat transfer coefficient, UA, can be estimated
using either measurements of Ty, or measurements of Tg,.
Qualitatively, one might expect that using both measured outlet
temperatures in a multiresponse regression technique would
result in a better estimate of UA. However, if the overall heat
transfer coefficient, UA, does not vary with temperature, the
residuals associated with T, and Ty, are linearly dependent by
virtue of the energy balance.

Energy and mass balances are often used in HVAC compo-
nent models to predict dependent variables. Care must be used
to find and remove any linearly dependent responses from the
residual matrix when using multiresponse regression tech-
niques to determine system parameters.

In some cases of nonlinear estimation, the parameter
values at a problem solution are not unique. This problem will
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occur if the model function is specified with too many param-
eters (overparameterized). Overparameterization is not always
the result of a bad model. Parameter identification problems

. can occur in exact models when a fit is made with limited data.

Another problem with parameter identification is the pres-
ence of large variances in the parameter estimates. Parameter
estimates are functions of random variables and possess a
certain distribution. The distribution of the estimates depends
both upon the model and the distibution of the random vari-
ables. For models with multiple parameters, 2 variance-covari-
ance matrix, Vj, of the parameter estimates can be defined. If
multiple sets of data taken at equivalent values of independent
or regressor variables are available, the parameter estimation
problem can be solved with each data set and variance in the
resulting parameter estimates computed. The set of resulting
parameter estimates from the multiple (replicated) data will not
be equal but will demonstrate some random error and an asso-
ciated variance.

The occurrence of parameter identifiability problems does
not necessarily negate the use of the parameter estimates.
Whether or not the parameter estimates result in a model that
can predict the measured data with accuracy can be judged by
evaluating the residuals associated with each response. The
estimated parameters may still yield a model with adequate
predictive capabilities. However, the individual component
parameters possessing identifiability problems should be
limited to use with the original composite system model used in
the regression. If nearly “true” parameter estimates are required
for use with individual component models in different compos-
ite systems, parameter variance should be examined. Large
variance in parameters may also bring into question the ability
of mechanistic models to extrapolate outside the range of the
measured data used in the fit.

EXAMPLE OF PARAMETER ESTIMATION

Plant Description

A chilled-water plant is used as an example to illustrate
multiresponse regression techniques. The model consists of
four components as shown in Figure 1. The component models
are linked and solved using the TRNSYS (Klein et al. 1988)
simulation program. This example system represents a steam-
driven chiller, a cooling tower, and a surface condenser. Sepa-
rate chiller and steamn turbine components represent the steam-
driven chiller. The system function is to cool a flow of water,
My, from some relatively warm chilled-water return temper-
ature, Tp,r t0 2 prescribed chilled-water supply temperature,
T.pws- The chiller compressor is driven by a steam turbine that
exhausts to a surface condenser. A cooling tower is used to-
reject heat from the chiller’s refrigerant condenser and the
steam condenser to the environment.

The chiller component model predicts the compressor
power consumption, Peomp, and leaving temperature of the
condenser water, T, Input variables to the chiller model
include entering chilled-water temperature, T, ; a setpoint for



application, as the condenser water flow is nearly constant and
the condensing temperature does not vary widely. The effec-
tiveness is the ratio of actual heat exchanged to the maximum
possible heat exchange if the entering condenser water were
heated to the saturated steam temperature. However, the steam
exhaust enthalpy rather than the saturated steam temperature is
available as an input from the steam turbine component. The
steam saturation temperature, Tg,, is determined from an
energy balance,

s’hcwcp(rm - Tcdw|) = ’;zstwn(hgxh - hf(Tsa()) (16)

where h¢(T,,) is the enthalpy of saturated liquid steam at a
temperature of T,.

The condensate may be subcooled in the hot well by heat
exchange through the vessel walls. Separate measurements of
hot well temperatures are made at a nearby plant, and a model
quantifying the temperature drop due to subcooling as a func-
ton of water flow rate and condensing temperature was used:

m
Ta—Thw = fhwcxp(“f—&am_)( Toa~ Toui)- amn

Mgream, norm

Although the condensate in the hot well will lose heat to the
ambient environment, the ambient conditions are unknown.
As an approximation, it is assumed that the subcooling in the
hot well will be some fraction of the difference between the
saturated temperature in the condenser, T, and the entering
condenser water, T,;. At high steam flow rates, the conden-
sate leaving the hot well will approach the saturation tempera-
ture and at low steam flow rates will tend toward the entering
condenser water temperature.

The TRNSYS cooling tower component model was devel-
oped by Braun (1988) and incorporates an effectiveness/NTU
relationship to model heat and mass transfer transport. Cooling
tower effectiveness, €, is defined as the ratio of change in air
enthalpy, 7, to the maximum possible change in air enthalpy:

ha.out"ha.in
fa = hsar(Tcwr)"ha. in (18)

The maximum possible change in enthalpy would occur if the
airflow left the cooling tower saturated at the entering water
temperature, T, For the counterflow cooling tower used in
this work, the air-side effectiveness is calculated in terms of
the NTU and a ratio of heat capacitance rates, C;:

g, = C;'(1-exp{-C,[1 -exp(~-NTU)]}). (19)

The heat capacitance ratio, C,, is given in terms of the air and
entering water mass flow rates and specific heats:

faC
C, = —a (20)

MewCp, cw
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The specific heat associated with the moist airstream, ¢, is
given as the change in saturated air enthalpy with respect to
temperature. An average value is used where

Rl Tewi) = Poa(T o)
o = 53 ;wxi-Tsa! cwo. (21)

W cwo

[

A general correlation is given for NTU in terms of the flow
rates and two parameters ¢ and n:

. n+1
My
NTU = c(m————' — ] . (22)

The air mass flow rate represented in the denominator of
Equation 22 includes another parameter, V,,,,, the maximum
volumetric flow rate through the tower. The fraction of the
maximum airflow rate, f,; that comresponds to fractional fan
speed is a model input.

Fifteen parameters are used in the four component models
representing the example plant: o, &y, &y, 03, G4, 05, Ty Bos
By, Boy UA, fywn € 1, and Vi, The objective in this regression
problem is to determine estimates for these parameters using a
set of simulated measured data. Both unweighted and weighted
least-squares methods as well as the determinant criterion are
used to estimate the parameters. A simulated measured data set
was generated by the composite model with a set of selected
parameter values (“true” parameters). These “true” data were
then contaminated with noise following a multivariate normal
distribution with a zero mean and selected covariance matrix V.

Measurements for all dependent variables would rarely be
available in an actual plant. Of the eight dependent variables
defined for this example (Tews, Tedwor Peompr Msteams Rextir Tewr
Thw and pegy) it is assumed that two are not measurable: the
compressor power, Peomp, and the enthalpy of the turbine
exhaust, k. The multivariate regression is performed with
the remaining six dependent variables. The set of test data
consists of 240 (hourly) responses. All independent variables
were varied with periodic functions to simulate periodic
weather changes. A separate data set (not used in the regression

analysis) was used to evaluate the predictive capabilities. The "

independent variables in the separate set were varied over
ranges not encountered in the data set used for the fit.

Solution of the parameter estimation problem involves
minimizing some quantity such as a sum of squared residuals or
the determinant of the RTR matrix. For this example study,
three different algorithms were used to minimize either a sum-
of-squares objective function or the determinant objective
function.

A sequential quadratic programming (SQP) minimization
algorithm included in NAG (1991) was used on both the sum-
of-squares and determinant formulations. Sequential quadratic
programming is a frequently used method for solving nonlinear
constrained optimization problems. A software package that
uses the Levenburg-Marquardt algorithm was also used on the
sum-of-squares problem formulation. Since the computation of
a least-squares objective function is internal to the software



spond to residuals (measured minus predicted) over all the
observations used in the regression (240 observations). The sets
indicated by “P” correspond to differences between the
predicted values and the true values (errors rather than residu-
als) over another 240 observations not used in the fir.

The first entries in each table are reference values for
comparing the residual (and error) quantities and for comparing
the parameter estimates. The parameter values are those that
were used to generate the original data set and the additional
240 observations used for predictive comparisons. The data
used in the fit (the first 240 observations), however, were
“contaminated” with noise from a multivariate normal distribu-~
tion to produce a set of simulated data measurements.

Ordinary least squares was used with three different mini-
mization algorithms and three different sets of responses for
comparison. Regression results using six, four, and three

responses in the sum of squared residual objective functions are
given in Table 1. The reduced number of responses is used to
evaluate the effect of possible collinearity among the responses
upon the regression results.

Collinearity among the responses causes degeneracy in the
RTR matrix used in the weighted least-squares and determinant
criterion methods and subsequently results in an unsuccessful
regression. While not representing the proper objective func-
tion with respect to statistical theory, collinearity when using
the ordinary least-squares method will at most cause uneven
weighting among the responses. Ideally, in a least-squares
formulation, responses should be weighted according to their
variance, but disproportionate weighing caused by collinearity
may not strongly the influence the regression results.

The two responses removed for the four response runs were
the temperature leaving the hot well (7j,,,) and the temperature

TABLE2 Example System Regression Results—Weighted Least Squarés

Sum of Squared Sum of Squared | Standard Deviation
No. Residuals, All Residuals (Errors), of Steam Flow Mean of Steam
Estimation | Responses Min. Data | Responses (Errors) | Steam Flow Rate Residuals Flow Residuals
Method! Used®> | Algorithm®| Set! (Scaled) (kg/h % 106) (Errors) (kg/h) (Errors) (kg/h)
F | 1844 246 1012 -8.28
Residual “True” Values
P ~0 -0 -0 -0
F 30590.8 427.99 1316.7 23833
SQP
P 434923 608.72 1517.17 492.55
Six
F 358.9¢ 4.72¢ 140.314 -8.29
M
P 1049.2 1447 232,66 -80.04
F 6219.8 86.89 589.8 ~125.24
. SQP .
Weighted P 8513.0 119.07 669.8 ~22225
Least Four
Squares LM F 35340 4472 136.5° -7.75¢
P 973.74 13.224 2222 =77.26
F 430.8 5.81 1554 12.78
SQP
P 965.1 1335 215.2 ~97.53
Three
F 403.9 545 1509 ~5.26P
LM
P 1071.3 14.91 2320 -92.26
1Estimation Method: Ordinary least squares, weighted least squares, or determinant criterion

2Number of responses used in objective function:
SiX = Pexhr Myeam» Tedwor Thws Tewiv Tewo

Four = pops Myeams Teawor Tewi

Three = Mo, Tedwor Tewi

3Minimization algorithm used: Sequential quadratic programming (SQP), Levenburg-Marquardt (LM), Nelder-Mead (NM).
*Data set: F - Residuals over points used in the fit. P - Residuals over data points used to compare predictive capabilities.
5. e dIndicates “best” four results in category F or P over all 18 runs listed in Tables 1-3.
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lem, as evidenced by the results given in Table 3. Any region in
the parameter space that may give rise to collinearity in the
responses will correspond to a local minimum of the determi-
nant objective function. The Nelder-Mead minimization algo-
rithm (a derivative-free downhill search technique) performed
much better than the SQP algorithm when using the determi-
nant criterion, The resulting residual measures were on the
same order as those from using the Nelder-Mead algorithm and
the ordinary least-squares objective function. However, the
SQP algorithm outperformed the Nelder-Mead algorithm when
using the sum-of-squares objective function. This difference
gives some indication that the multidimensional objective
function surface of the determinant criterion is more trouble-
some to minimization algorithms that evaluate derivatives than
the corresponding sum-of-squares surface.

Overall, the ordinary least-squares method and either the
Levenburg-Marquardt or the sequential quadratic program-
ming method yielded the best results for the example regression
problem. Weighted least squares did not demonstrate any
significant improvement over ordinary least squares. The deter-
minant criterion was comparatively unsuccessful in solving the
example problem.

Residuals resulting from a successful regression should
support the assumptions made in the analysis. The normally
distributed errors for steam flow rate added to the true steam
flow rate values to produce simulated measured data with
instrument noise are plotted against the true values in Figure
2. The steam flow residuals from the regression run having
the smallest sum of squares demonstrate good results and are
plotted in Figure 3. The residuals have a standard deviation of
136.5 kg/h—very close to the standard deviation in the error
(100 kg/h)—and a mean of —7.8 kg/h corresponding to distri-
bution centered close to an error of zero.

Plots of measured and predicted values vs. time of steam
flow rate or other response variables can also aid in comparing
the regression results. However, for most of the runs showing
relatively small standard deviation in steam mass flow rates,

* input (independent) variables
% - = < uruDeasured variables

Tewr Tirw Paun
] L

Figure 2 Error vs. “true” steam flow rate values for the
240 points of simulated measured data used in
the regression analyses. The random error has
a standard deviation of 100 kg/h.
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Figure 3 Residuals (measured - predicted values) of
steam flow rate for 240 data points using
weighted least squares with the Levenburg-
Marquardt minimization algorithm and four
responses in the objective function. The residu-
als have a standard deviation of 136.5 kg/h.

curves of predicted and measured values overlap each other and

are indistinguishable in a plot scaled over the range of steam
flow rate. Any run resulting in a standard deviation of steam
flow residuals less than about 300 kg/h could be considered
successful, yielding reasonably accurate steam flow rate
predictions.

Qualitatively, this multiresponse, nonlinear parameter esti-
mation problem is almost certain to have some level of param-
eter identification problems. It is difficult for any minimization
algorithm to arrive at precisely a local minima when the objec-
tive function surface exhibits “flat” regions in any of the 13
dimensions. Some statistical measures of parameter variance for
the model and minimization method are presented below.

Parameter Variance

One hundred sets of simulated replicated data were used to
obtain 100 sets of parameter estimates. The same ordinary
least-squares method with six responses using the SQP algo-
rithm was used in each case, with the same starting values for
the parameters. Each data set contains errors drawn from a
multivariate pseudorandom number generator where the errors
follow a multivariate normal distribution with a given covari-
ance matrix. The resulting statistical properties calculated are a
function of both the model and the estimation procedure. It has
been demonstrated that, in general, nonlinear estimation prob-
lems will nearly always have biased parameters. The mean,
bias, and standard deviation (square root of variance) of the
example problem parameter estimates are given in Table 4.

The parameter means demonstrate significant bias, and
most parameters demonstrate significant standard deviation.
The two parameters showing relatively small standard devia-
tion are the overall heat transfer coefficient, UA, and the coef-
ficient ¢ used in the cooling tower NTU. These two parameters
can be estimated with a single observation and cannot contrib-
ute to overparameterization. For example, the coefficient ¢ is



i | ! 1

fan 5A fan 5B

fan 1A 'fanlB

\ CT#5

| i l i y
' ; ] ] L i
CTP#4 CTP#3 CTP#2 CTP #1
_| surface
condenser #1
condensate
/ ] retum
oor” [ chiller #4 chiller #1
from
boiler
CWP #4 CWP #3 ICWP#2 CWP #1
~ | chilled water supply (chws)' | y ] ¢
c = chilled water retum (chwr) | , | = >
o o

Figure 4 Schematic of Walnut Streer chilled-water plant.

System Model

The system was modeled in TRNSYS, with the individual

component models of chillers, heat exchangers, and a cooling
tower combined in a TRNSYS “deck” of the plant, where the
connections between outputs of one component and inputs of
others are defined. A wiring diagram showing the connections
defined in the deck is given in Figure 5. Independent (regres-
sor) variables include wet- and dry-bulb temperatures, T,.;, and
T chilled-water return temperatures entering the chiller evap-
orators, Topws 3 and Toyys 45 the chilled and condenser water
mass flow rates, Mgy 3, Mepw 40 Mew 30 A0 My, 4; and the
turbine inlet steam pressure, p;,. The independent variables are
indicated by a bold line and the dependent variables by a thin
line. The dashed lines indicate control variables, defined sepa-
rately from independent and dependent variables when used in
optimal supervisory control analysis. However, for the
purposes of parameter estimation, the control variables are
considered -independent variables. Control variables include
the fan speeds for the individual cooling tower fans ¥y, Y5, Y3,
and vy, and the chilled-water supply temperatures, Ty, 3 and

Tchws 4

Each output of each component is a dependent variable.
Chiller output variables include compressor power (Pgomg) and
condenser water outlet temperature (7.,). Dependent vari-
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ables from the steam turbine component include steam mass
flow rate and steam exhaust enthalpy, A,y Surface condenser
outputs include condenser water outlet temperature (7,4,,,), hot
well water temperature (7;,,), and exhaust pressure (p,,;,). The
electric chiller condenser outlet flow and surface condenser
outlet flow are mixed before entering the cooling tower, and
their mixed ternperature is designated as the condenser water
return temperature, I, and the combined condenser water
flow rate is m,. Cooling tower outputs include fan motor
power, Py, ¢, and the temperature of the cooling tower outlet
water supplied to the chiller condensers, T.

Parameter Estimation

Data taken during July and August 1994 were used for this
study. A number of observations were not recorded or incom-
plete and were removed from the data set. The data set repre-
sents approximately 54 days of operating data. There are 512
observations, made at two-hour intervals. The data set was
partitioned into two parts, which will be referred to as periods
I and II. The first 240 observations (period I) are used in the
regression analysis to determine parameter estimates. The next
272 observations (period II) are used to compare the predictive
capabilities over data not used in the fit.

The sequential quadratic programming (SQP) minimiza-
tion algorithm was used for parameter estimation studies with

"



TABLE 5 Walnut Street Regression Results
Sum of Standard Deviation of | Standard Deviation of
Estimation No. Responses Data Squared Residuals, Steam Flow Residuals |Electric Power Residuals
Method! Used? Set? All Responses (Scaled) (Kg/h) (Kw)
F 19764° 1170.3¢ 219.0b
Two
P 29060° 1160.9 249.6%
F 26960 1450.2 258.8
Four
Ordinary Least P 31957° 1434.9 296.8
Squares Six F 31785 1576.7 278.7
P 39226 1615.7 313.8
F 44 . X
Eight 281 1469.9 243.7
P 36792 1568.7 264.2°
F 22662° 1301.9 243.0°
Two
P 32994 1380.0 264.7
F 30184 1154.9° 345.7
Four
Determinant : P 38009 1089.2b 363.9
Criterion Six F 27732 1319.7 353.2
P 44282 1122.7¢ 581.0
F
Eight 195325 1831.7 608.7
P 294856 1599.4 900.3
s F 175582 1129.0° 185.32
Subsystemn
P 110632 867.32 127.32

IEstimation Method: Ordinary least squares or determinant criterion
2Number of responses used in objective function:

Eight = Pexnr ’;‘stam' Tcdwi' Tcdwo' Thw' Tcwsv Tcwo-i'Pcomp#d

Six = My Tegwis Tedwosr Tewss Tewods Pcnmpm

Four - mgem, Tegwor Tews+ P, comp#s

Two - mmm'Pcomp#-t

3Data set; F - Residuals over points used in fit. P - Residuals over points used to compare predictive capabilities.
4Subsystem ~ Results from using parameter estimates found in separate subsystem runs.
a.b. ¢ Indicates “best” three results in category F or P over all eight runs and the separate subsystem results listed in Table 5.

rion were applied and are discussed separately below. Both
methods produced similar results with neither method
demonstrating any clear advantage in producing a better fit in
all cases. The determinant criterion did not demonstrate poor
performance when compared to least squares as in the exam-
ple problem. The only significant difference between the two
applications is the use of real rather than simulated measured
data in the parameter estimation runs. Measurement noise in
.the simulated measured data set was relatively small
compared to estimated noise in the real data set. For example,
steam flow rate residual standard deviation in the exampie
data set was set at 100 kg/h (0.95% of the mean steam flow
rate) and is estimated to be 749 kg/h (7.0% of the mean steam
flow rate) in the real data set (the estimate is from results of
best fit for the steam flow rate). With small errors, the objec-
tive function surface given by the determinant criterion may

PH-97-4-2

have a less well-defined minima than the objective function
surface given by the sum of squared errors and may represent
a more difficult problem for the minimization algorithm.

Using the determinant criterion and four responses
yielded the smallest standard deviation in steam flow resid-
uals (1,089 kg/h) for period II. The steam flow standard
deviation increased using both fewer and more responses.
The increase in standard deviation using six and eight
responses (1,123 and 1,599 kg/h, respectively) indicates
some amount of collinearity with the added responses. As
expected, known collinearities among all 10 measured
responses caused the run using the determinant criterion to
fail. The minimization algorithm never moved from the
starting point. Using only steam flow rate and electric chiller
power to fit the parameters resulted in a steam flow residuals
standard deviation of 1,380 kg/h.

13



example system and an actual operational chilled-water plant.
The influence of using different sets of response variables in the
estimation problem was investigated. Using more responses
than just those for which predictions are needed (e.g., cost-
associated responses) can result in a better predictive model.
However, adding responses that can be collinear with other
responses is detrimental. If significant differences in response
variance are suspected, weighted least squares or the determi-
nant criterion formulation should be used rather than ordinary
least squares.

For a multiresponse plant model, it is beneficial to reduce
the dimension of the problem by breaking the system into the
smallest subsystems possible before estimating parameters.
The smallest subsystems may be individual components where
all input variables are available as measurements or a group of
components when some input measurements are unavailable.

The methods presented were used to build and fit a predic-
tive model of a chilled-water plant at a U.S. university. A
comparison of mode! predictions with measured data not used
in the parameter estimation problem demonstrates a good fit.

NOMENCLATURE

B = vector of parameters

r = vector of residuals

X = vector of independent (regressor) variables

y = vector of dependent (response) variables

m = number of responses

My, = chilled-water mass flow rate

mg, = condenser water mass flow rate

Mgeam = Steam mass flow rate

n = number of observations

Dexn = turbine steam exhaust pressure

Dinler = turbine steam inlet pressure

Peomp = chiller compressor power

P tans = cooling tower fan power

q = number of regressor variables

R = matrix of residuals

Twi = inlet cooling water temperature, steam (surface)
condenser

T.4wo = outlet cooling water temperature, steam (surface)
condenser ;

Towe = chillerchilled-water inlet temperature (chilled-water
return)

Tehws = chiller chilled-water outlet temperature (chilled
water supply)

Ty = heat exchanger cold fluid inlet temperature

Teo = heat exchanger cold fluid outlet temperature

PH-97-4-2

T..i = chiller condenser inlet water temperanre

T.wo = chiller condenser outlet water temperature

Towr = cooling tower inlet water temperature (condenser
water return)

Tews = cooling tower outlet water temperature (condenser
water supply)

Ty = dry-bulb temperature

Ty = heat exchanger hot fluid inlet temperature

Tho = heat exchanger hot fluid outlet temperature

Thw = outlet steam condensate (hot well) temperature,
steam (surface) condenser

Tww = wet-bulb temperature

UA = heat exchanger overall heat transfer coefficient-area
product

14 = variance-covariance matrix associated with the
response variables

w = matrix of weighting factors

X = matrix of measured regressor variables

Y = matrix of measured response variables

Y = cooling tower fan, fraction of full speed
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