Optimum Heat Power Cycles for
Specified Boundary Conditions

Optimization of the power output of Carnor and closed Brayton cycles is considered
Jor both finite and infinite thermal capacitance rates of the external fluid streams.
The method of Lagrange multipliers is used o solve for working fluid temperatures
that yield maximum power. Analiytical expressions for the maximum power and the
cycle efficiency at maximum power are obrained. A comparison of the maximum
power from the two cycles for the same boundary conditions, i.e., the same hear
source/sink inlet temperatures, thermal capacitance rates, and heat exchanger con-
ductances, shows that the Brayton cycle can produce more power than the Carnot
cycle. This comparison illustrates that cycles exist that can produce more power
than the Carnot cycle. The optimum heat power cycle, which will provide the upper
limit of power obtained from any thermodynamic cycle for specified boundary
conditions and heat exchanger conductances is considered. The optimum heat power
cycle is identified by optimizing the sum of the power output from a sequence of
Carnot cycles. The shape of the optimum hear power cycle, the power output, and
corresponding efficiency are presented. The efficiency at maximum power of all
cycles investigated in this study is found to be equal to (or well approximated by)
N=1-NT ;n/0Th,in where ¢ is a factor relating the entropy changes during hear
rejection and heat cddition.
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Introduction

Carnot (1824) introduced the concepts of reversibility and
the principle that the thermal efficiency of a reversible cycle
is determined solely by the temperatures of the heat source

TH-—-—-——-——-—-—-

and heat sink. The maximum possible efficiency is obtained Ty
when only reversible processes are involved. Reversible heat T
transfer processes require thermal energy to be transferred with

infinitesimal temperature differences. For finite hear exchange T,

areas and heat transfer coefficients, the rate of heat exchange
in reversible processes approaches zero, and the total energy
transfer in finite time is zero. As a result, as a cycle approaches
thermodynamic reversibility, its outpur power becomes infin-

itesimally small.

Consider a simplified model of a Carnot cycle' where all of
the irreversibilities are associated with the transfer of heat to
and from the power cycle equipment. There are no internal
losses within the cycle itself. The heat source and heat sink are
first considered to be at constant temperatures Ty and 77,
respectively. Because of the finite heat transfer conductance
of materials, the cycle operates between T, and 7T; as shown
in Fig. 1 to provide temperature differences, the driving forces
for heat transfer between the cycle and the hot and cold res-
ervoirs. Figure 2 shows a plot of power versus efficiency for

'In this paper, the term **Carnot cycle” is used to refer to a cycle having two
adiabatic and two isothermal processes. The processes may be irreversible and
as a result the cycle may not achieve the Carnot cycle efficiency.
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Fig. 1 Camot cycle coupled to heat source and heat sink with infinite
heat capacitance rates
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Fig. 2 Powerlefficiency tradeoffs for the Camot cycle
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the cycle. Finite power can only be achieved by operating at
less than the maximum efficiency. A point of maximum power
exists, and at this point the efficiency is given by

n=1-NT/Ty 1

The existence of a maximum power point for this simple cycle
and the limiration of the efficiencies of real processes resulting
from finite heat transfer rate constraints were recognized by
El-Wakil (1962), and by Curzon and Ahlborn (1975). They
considered a Carnot cycle with heat transfer limitations and
derived expressions for the maximum power and the cycle
efficiency at the maximum power. Their studies were limited
to the case in which the heat transfer fluid streams have infinite
thermal capacitance rates (mass flow rate — specific heat prod-
uct), i.e., the source and sink were assumed to be isothermal.
Curzon and Ahlborn’s study has inspired many subsequent
studies. Leff (1987a) shows that the Brayton, Otto, Diesel and
Atkinson cycles also produce maximum power at an efficiency
of n=1—~T./Ty. Gordon (1988) has investigated the max-
imum power-efficiency relations for solar-driven cycles. Bejan
(1988) considered an irreversible power plant model, account-
ing for the heat loss through the plant to the surroundings.
Several papers deal with optimum power of the Carnot cycle
operating between finite thermal capacitance rates heat source
and sink, e.g., Ondrechen et al. (1983) and Wu (1988). Lee et
al. (1990) analytically present the optimum power and the
efficiency of a finite time Carnot heat engine operating between
two reservoirs with finite heaticapacity rates. They show that
the efficiency at maximum power depends only on the inlet
temperatures of the cold and hot reservoirs. To achieve their
results, a periodic cycle is considered with heat exchange con-
tact time being among the independent variables. Rubin (1979a)
extended the Curzon and Ahlborn model by consideration of
cycles in which the reservoir temperatures are controllable pa-
rameters varying between the temperatures of the coldest and
hottest reservoirs. Using a Lagrange optimization method, he
shows that the efficiency at maximum power depends only on
the coldest and hottest reservoir temperatures, Rubin (1979b)
considered a reciprocating engine with heat exchange contact
time being among the independent variables. The engine is a
standard engine with a cylinder and piston, which is used to

do work on the outside world. The working fluid is a perfect™

gas. He used optimum-control theory to find the possible op-
timum controls and the optimum trajectories for this type of
engine.

Ondrechen et al. (1981) investigated a reversible cycle using
an ideal gas working fluid providing maximum power using a
finite thermal capacitance ratg heat source. They considered

a series of sequential Carnot cycles where each sequential cycle
operates at its maximum power point. The heat sink was as-
sumed to be isothermal and the heat exchangers were assumed
infinitely large. Leff (1987b) used a second law availability
analysis to obtain the maximum work available for the case
where both heat source and heat sink have finite thermal ca-
pacitance rates. However, no study has identified the nature
of a power cycle that produces maximum power for the case
where heat exchanger area and heat transfer coefficients are
finite, the cycle is internally irreversible, and the working fluid
is not restricted to an ideal gas.

Although the Carnot cycle is the most efficient cycle, there
exist cycles that can produce more power than the Carnot cycle
for the same boundary conditions when heat transfer con-
straints are considered. The goal of this paper is to identify
the optimum power cycle, i.e., the cycle that produces the
maximum power for specified external boundary conditions.
Although still somewhat idealized, the cycle that provides max-
imum power for specified external boundary conditions gives
a more reasonable design goal than do reversible cycles that
generate zero power. In this analysis, heat exchanger areas and
heat transfer coefficients are finite and the cycle may be in-
ternally irreversible. Analytical and numerical techniques are
used to determine the maximum power. The shape of optimum
power cycle, i.e., the working fluid temperature as a function
of entropy, T(s), along with power output and efficiency, are
presented for given heat source, heat sink, and heat exchanger
conductances.

Irreversible Power Cycle Model
The irreversibilities that constrain the performance of a power

“cycle can be considered as external and internal. External ir-

reversibilities arise from temperature differences that occur
between the cycle and the heat source and sink. Internal r-
reversibilities result primarily because of fluid and mechanical
friction. External irreversibilities are considered in previous
studies (e.g., Curzon and Ahlborn, 1975).

There are several ways to account for internal irreversibil-
ities. Howe (1982) derived an equation for the efficiency at
maximum power for an irreversible Carnot cycle, accounting
for internal irreversibilities, by multiplying the thermal effi-
ciency of a reversible cycle by a factor () less than one (equal
to one when the cycle is internally reversible).

n=y[1-T)/T4] @

El-Wakil (1962) accounted for internal irreversibilities by re-
lating the entropy change during heat rejection for reversible
and irreversible cycles.

—— Nomenclature

s = entropy, kI/kg K Subscripts
C, = specific heat capacity at con- S = entropy transfer rate (mass A = area
stant pressure, kJ/kg K flow rate-entropy product), B = Brayton
C, = specific heat capacity at con- kW/K C = Carnot
. stant volume, kJ/kg K T = temperature, K H = heating fluid, heat source,
C = heart capacitance rate (mass UA = heat exchanger conductance hot-side heat exchanger
flow rate-specific heat prod- (total hear transfer coefficient h = high
ucn), kW/K : ) area product), kW/K L = cooling fluid, heat sink, cold-
k = heat capacity ratio = C,/C, W = power, kW side heat exchanger
i = fraction of unavailable energy e = heat exchanger effectiveness | = low
that occurs with internal ir- n = thermal efficiency i = cycle
reversibilities (El-Wakil, 1962) A = Lagrange multiplier in = inlet
m = mass flow rate, kg/s Y = a factor relating the efficiency min = minimum
N = number of cycles of an irreversible cycle to a max = maximum
NTU = number of transfer units = reversible one (Howe, 1982) op = optimum
va/C ¢ = a factor relating the entropy p = production
= rate of heat tre;nsfer, kW change during heat rejection total = total
P = pressure,"N/m” and hear addition wf = working fluid
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AS{/AS; =1+i 3)
where /= fraction of unavailable energy that occurs with in-
ternal irreversibilities; AS] =eniropy change during heat re-
jection for irreversible cycles; AS; =entropy change during
heat rejection for reversible cycles. Equation (3) leads to the
following expression for the thermal efficiency for an irrever-
sible cycle:

n=1—-{+1DT/T, 4)
Thermodynamic analysis of a Carnot cycle results in
W=0u-0Q; )
On O
=== 6
T, T, =0 6)

where @y is the rate of heat rejected, Qp is the rate of heat
supplied, and W is the power output. Equation (6) is known
as the ‘‘Clausius Inequality.”’

In this study, a simple model relating the entropy change
during heat rejection and heat addition is considered. An ir-
reversibility factor (¢) is defined such that the entropy ine-
quality for internally irreversible cycles, Eq. (6), can be written
as an equality:

O, 0_
T, ¢ T,

¢ is equal to one when the cycle is internally reversible and
less than one when the cycle is internally irreversible. The
entropy production, Sy, is related to ¢ by the following equa-
tion: : . .

0 ¥

$p=(1—¢>% : ®

Introducing ¢ makes it possible to derive an analytical solution
for an internally irreversible Carnot cycle similar to the solution
obtained for the internally reversible one. In the following
analysis, ¢ is assumed to be constant. The thermal efficiency
for the irreversible cycle then can be written as

=] -— , 9

i oT, | ®

The fact that » should be greater than zero requires that = T/

Ty= T,/ Ty, which sets a lower limit for é. All of the above

expressions for the thermal efficiency for irreversible cycles
are related in the following manner:

b=t (10)

1+i
_1-T/eT,
‘ll_ml—T,/T,, (11)

Maximum Power of a Carnot Cycle

Carnot Cycle Coupled to Heat Source and Sink With Infinite
Thermal Capacitance Rates. When the Carnot cycle is cou-
pled to an isothermal heat source and sink as shown in Fig.
3, the rates at which heat is supplied and rejected are given
by:

On=UAu(Tu—T)) (12)
Or=UAL(T-Ty) (13)

where UAy and UA; are, respectively, the hot-side and cold-
side heat exchanger conductance (heat transfer coefficient-area
product). The energy and the entropy balances on the cycle
are then given by

W=UAy(Ty—Ty)— UAL(Ti— T1) (14)
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Fig.3 Carmot cycle with irreversible expansion and compression cou-
pled to heat source and heat sink with infinite heat capacitance rates

2= UAy(Ty— Th)_¢ UAL (T~ TL)=
T, T
where g is the entropy constraint function.
The values of T and T} that result in the maximum power

are found using the method of Lagrange multipliers. A La-
grange multiplier, A, is defined such that:

dW/3T,=Ndg/dT, - (16)
dW/T,=Nog/dT, an

Evaluating the partial derivatives allows Egs. (16) and (17) to
be written as:

0 (15)

1=\Ty/T? (18)

1=X¢T/T? (19)

Solving Egs. (15), (18), and (19) leads to the following relation
for the unknown cycle temperatures:

T/ Ty=No¢T /Ty (20)
The efficiency at the maximum power point is then given by:
n=1-NT/(¢Ty) 3))]
The values of T, and T; that result in the maximum power are:

_ (ﬁUA[_'\f T;/d+UA Ty
T”"[ oUA,+UAy VT

(22)

_ oUANT, /o +UA Tyl —
Ti= [ oUAL+UAy o1 @)

The maximum power for a single Carnot cycle coupled to an
isothermal heat source and heat sink is then:

dUA, ~ 5
SUA, £ UAs UAHINTy—NT73]
The Lagrange multiplier method locates an extremum point,
which may be a minimum or a maximum. A verification that
Waax in Eq. (24) is a maximum js possible by obtaining the
sign of the second derivative of W, with respect to any free
variable (e.g., Ty, T)) or by examination of a plot of W
versus the variable, as in Fig. 4.

Equation (21) shows thar the efficiency of a Carnot cycle at
a maximum power depends only on the temperature of the
hear reservoirs and the irreversibility factor ¢. If ¢=1, the
efficiency reduces to the relationship of El-Wakil (1962), and
Curzon and Ahlborn (1975). The effects of internal irrever-
sibility on the power/efficiency tradeoffs are shown in Fig. 4.
The internal irreversibilities decrease both the maximum power
and the efficiency at the maximum power.

The variation of power with the cold-side heat exchanger
conductance ratio, defined as the fraction of total heat ex-

Wonax = " (24)
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Fig.4 Powerlefficiency tradeotfs for the Camot cycie showing the ef-
fects of internal ieversibility (UA, = UA))
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Fig. 5 Variation of power output with cold-side heat exchanger con-
ductance ratio

changer conductance used at the cold-side heat exchanger, is
shown in Fig. 5. There exists an optimum balance between the
conductances of the hot-side and cold-side heat exchangers.
The total heat exchanger conductance, UA g = UAL + UAp,
should be split evenly when the cycle is internally reversible,
as concluded by Bejan (1988). However, as the internal irre-
yersibility increases, the cold-side heat exchanger should be
increasingly larger than the hot-side heat exchanger to obtain
maximum power because the internal irreversibility increases
the heat rejection. A larger cold-side heat exchanger reduces
the external irreversibility by allowing the cycle o reject energy
at a lower temperature.

Carnot Cycle Coupled to Heat Source and Sink With Finite
Thermal Capacitance Rates. When the Carnot cycle is cou-
pled to a source and sink with finite thermal capacitance rates,
-the rates at which heat is supplied andrejected can be expressed
as (Kays and London, 1964)

On=Crea(Trn—Th) 25

Or=Crer(Ti— Trin) (26)

where T}, ;,, =inlet temperature of the heating fluid; T} ;, =inlet
temperature of the cooling fluid; Cp = thermal capacitance rate
of Ehe heating fluid; C, = heat capacitance rate of the cooling
fluid; ey = effectiveness of the hot-side heat exchanger=
I-exp (~NTUy); e, = effectiveness of the cold-side heat ex-
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Fig. 6 Variation of power output with cold-side heat exchanger con-
ductance ratio

changer=1-exp (—~NTU.). Using the method of Lagrange
multipliers, similar to the analysis for infinite thermal capac-
itance rates, the optimum power for a single Carnot cycle
coupled to source and sink streams with finite thermal capac-
itance rates is

qSC" € :
et CuenNTaim—~NTLin/ 91
oCrer +Crey

Equation (27) reduces to Eq. (24) in the limit of high capacity
rates whereupon ey Cy—UAy and ¢, C,— UA;.
The efficiency at the maximum power point is given by:

=1 —=~NTLun/TH,n (28)

Equations (21) and (28), which are very similar, demonstrate
that for both finite and infinite capacitance rates, the efficiency
of a Carnot cycle at maximum power depends only on the inlet
temperatures of the heat reservoirs.

The variation of the power with the cold-side heat exchanger
conductance ratio is shown in Fig. 6. The optimum ratio is a
function of the irreversibility factor, the thermal capacitance
rates of the heat source and heat sink, and the total conduct-
ance. As the internal irreversibilities increase, the optimum
cold-side heat exchanger conductance ratio increases. When
C,/Cy=1, the total heat exchanger conductance, UA oty
should be split evenly when the cycle is internally reversible;
however, as C,/Cy increases, the optimum cold-side con-
ductance ratio (UA [/ UAq) increases.

Wonax = @n

Maximum Power of a Closed Brayton Cycle

A simple closed Brayton cycle. composed of two adiabatic
and two constant-pressure processes, is considered with an
ideal gas having constant thermal capacitance rate (Cyy). The
shape of the closed Brayton cycle on temperarure-entropy co-
ordinates is a function of the thermal capacitance rate of the
working fluid, C.s. As C,,s becomes infinitely large, the Bray-
ton cycle maximum power approaches the Carnot cycle max-
imum power, since the constant pressure processes approach
isothermal behavior. The effect of the Brayton cycle shape on
cycle power output is presented in this section to show- that
there exist cycles that can produce more power than the Carnot
cycle for the same boundary conditions.

Brayton Cycle Coupled to Heat Source and Sink With In-
finite Thermal Capacitance Rates. The Brayton cycle coupled
to heat source and heat sink with infinite thermal capacitance
rates is sketched in Fig. 7. The rates at which heat is supplied
and rejected are given by:

On=Cuper(Tr—T1) = Cup(To = T}) (29)

OCTOBER 1991, Vol. 1131517
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Fig.7 Brayton cycle coupled to heat source and sink with infinite heat
capacitanca rates

0= Cuyer(T3—= T1) = Copl(Ts— T) (30)
Thermodynamic analysis of a closed Brayton cycle provides
W=Curer(Ty—T) — Cuper (T3-T1) (1)

CufIn[To/T] - CoyIn[T3/T{] =0 (32)

Using the method of Lagrange multipliers, the maximum power
and the cfliciency at maximum power for a closed internally
reversible Brayton cycle coupled to an isothermal heat source
and heat sink are given by:

. éw Epr€
Winax = ——LHL — [T =T, (33)
€t €L —€yer
1=1-~T /Ty (34)

The efficiency of the Brayton cycle can be expressed in terms
of pressure ratio (P./Ppy) only:

n=1-[P/Py]*~ 1% 35)
Therefore, at the maximum power point:
NTL/Ty=[P/Py)“" " (36)

A comparison of the maximum power of this Brayton cycle
and the Carnot cycle is shown in Fig. 8. As C,increases, the
maximum power of the Brayton cycle increases and asymp-
totically approaches the Carnot cycle maximum power. The
maximum power of the Carnot cycle is always greater than
the maximum power of Brayton cycle for the case where the
heat source and heat sink are isothermal. The Carnot cycle
provides better temperature matching with the isothermal heat
source amd heat sink, which reduces the external irreversibility.

Brayton Cycle Coupled to Heat Source and Sink With Finite
Thermal ¢ apacitance Rates. When the Brayton cycle is cou-
pled to a heat source and sink with finite thermal capacitance
rates (Fig. 9), the rates at which heat is supplied and rejected
are given by:

On=Crrminerr(Tetjn—T1) = Cup(Ta—T)) 37

O =Cpminr Ty~ Tpin) = Cup(T3— T9) (38)
where the effectivenesses of hot-side heat exchanger ey, and
cold-side heat exchanger ¢, for counterflow heat exchangers
are defined as (Kays and London, 1964):

: 1~ e-“ip[ - NTUH(l - CH.min/CH.mu)] -
1 - (Crmin/ Crmax)eXpl ~ NTUg(1 ~ Chmin/ Crmax)]
(39)

€=

o 1= exPl=NTUL(l = Comin/ Crmadl @0)
£ 1 = (CLmin/ Cr.madexpl — NTUL(1 = Crmin/ CLma)]

where (f‘,,\mm and Cy nmax are, respectively, the smaller and the

larger of the two capacitance rates Cy and wa CL min and

Cmax arc. respectively, the smaller and the larger of C, and
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Fig.8 Comparison of the maximum power of internally reversible Bray-

ton and Carnot cycles when the heat source and the heat sink heat
capacitance rates are infinite
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Fig. 9 Brayton cycle coupled to heat source and sink with finite heat
capacitance rates

C.s. The number of heat transfer units, NTUy and NTU,,
are based on the minimum thermal capacitance rates.

Energy and entropy balances on an internally reversible
closed Brayton cycle are:

W= Cu zinetr(Tetjn = T1) = Crminér (Ta — 1)

CuyIn[To/ Ti] = CooyIn[ T3/ Ti] =0 (42)

Using the method of Lagrange multipliers, similar to the anal-
ysis for the case of isothermal heat reservoirs, the optimum
power and the efficiency at maximum power:

CH mmGHéL qin€L IV Trin =~ Tpin] 2

TL.in)

Winax= 43)
CH in€H + CL min€L CH min€H C'L min€L/ Cw[
1=1=~NTp i/ T,in 44)

The effect of the heat capacitance rate of the working fluid
(C.y) on the maximum power of the internally reversible Bray-
ton cycle is shown in Fig. 10. The Brayton cycle can produce
more power than the maximum power of the Carnot cycle for
the same boundary conditions and the same heat exchanger
conductances. The increased power of the Bravion cycle can
be attributed to the lower entropy production during the heat
transfer processes, due to more favorable matching of the
working fluid and external stream temperatures. The optimum
value of working fluid thermal capacitance rate, Cuy,op i

always bounded by C.=Cujop=Cp. When C; =Cy, Cw/,op/
Cy=1, the maximum power of the Brayton cycle asymptot-
ically approaches the Carnot maximum power as C,y in-
creases.

Optimum Heat Power Cycles
It has been shown that the Brayton cycle can produce more

Transactions of the ASME
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Fig. 10 Comparison of the maximum power of internally reversible

Brayton and Carnot cycles when the heat source and the heat sink heat
capacitance rates are finite

power than an equivalent Carnot cycle when the heat source
and heat sink have finite thermal capacitance rates. Other
cycles, such as the Otto and Diesel cycles, can also produce
more power than the Carnot cycle. The purpose of this section
is to identify the internally reversible cycle that will result in
the upper limit of the maximum power for specified boundary
conditions.

Any internally reversible thermodynamic cycle can be broken
into a sequence of internally reversible Carnot cycles as shown
in Fig. 11. An infinite number of infinitesimal cycles have the
same heat interactions with the heat source and heat sink, and
the same power output as the original cycle. Starting from a
sequence of Carnot cycles, the optimum power cycle can be
identified by dividing the total hear exchange conductance
equally between the cycles. As the number of cycles in sequence
approaches infinity, the performance and shape of the se-
quence approaches the performance and shape of the optimum
power cycle. Ondrechen et al. (1981) considered sequential
Carnot cycles to find the maximum power from a heat source
with finite thermal capacitance rates and infinitely large heat
exchangers. However, they determined the sum of the maxi-
mum power for each cycle in the sequence. Operating each
cvele in the sequence at maximum power does not necessarily
result in the system consisting of all cycles in the sequence
producing maximum power. In this study, the goal is to op-
timize the sum of the power output from all cycles, rather than
optimizing the power output from each individual cycle in the
sequence as done by Ondrechen et al.

An energy balance on all the Carnot cycles in Fig. 11 is

- N - -
W=Z_ [Qn,i— O (45)

An entropy balance for each cycle 7 in the sequence can be
expressed as

Omi_Qui_y e
ZA-TH=0 =1 (46)

' Opiimum Power Cycle Coupled to Heat Source and Sink
With Infinite Thermal Capacitance Rates. When sequential
Carnot cycles are coupled to an isothermal heat source and
heat sink, the power from the N-Carnot cycles is given by:

N
W= WAz Tr~Ta) = UALi(Tu=To)] @D

i=1

The shape of the optimum cycle is determined by maximizing
I with respect to Tj; and Ty, subject to the following con-
straints:
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Fig. 11 A thermodynamic cycle can be broken into a sequence of Car-
not cycles

UAn{Tr—Tri) UALi(Tui=T1) -0 [i=1,N] 48)
T, T,
Using the method of Lagrange multipliers, the efficiency at

the maximum power point for any cycle i in the sequence is
found, as discussed previously, to be

n= 1 - T[_/TH (49)

The values of Tj,; and T}, that result in the maximum power
are:

UANTL+ UAmT,
) Th,x=Th.z=---=Th.i={ £k H]VTH (50)

UA, + UAy

UANTL+UANT,
T/,x=T1.z=---=T1.i=[ L ”]x/n (51)

UA;, +UAy

The maximum power for sequential Carnot cycles coupled to
an isothermal heat source and hear sink is then:

N
) UA,; .
W= 2;_______.___.. ANT, T
max ,~ UAL,i+U;H,i UAH. [NTw L]

UA, s

~ U, + UL, UAuNTa—TF (52)
Equations (22), (23), (50), and (51) show that all individual
cycles have the same upper and lower temperatures, and they
are the same as the upper and lower temperatures resulting
from the power optimization of a single cycle. The maximum
power, efficiency, and the shape of N-cycles in a sequence are
the same as those of a single cycle. For an isothermal heat
source and heat sink, the maximum power cycle is the Carnot
cycle. This conclusion is consistent with the results shown in
Fig. 8, which show that the Brayton cycle always produces less
power than the maximum power of the Carnot cycle for the
case where the heat source and heat sink are isothermal.

Optimum Power Cycle Coupled to Heat Source and Heat
Sink With Finite Thermal Capacitance Rates. When the se-
quential Carnot cycles are coupled to a heat source and sink
with finite thermal capacitance rates, the power from the N-
Carnot cycles is given by:

N
W= (Cres(Trimi— Tei) = CrelTii= Trinl - (53)

i=1

The shape of the optimum cycle is determined by maximizing

W with respect to Ty; and Ty, subject to the following con- -

straints:

Cren(Trini— Thi) Crer(Tii=Trin) ;
dnd— Thi _ i o (=1, 54
Ty T ¢ NG9

Tuimist = Trini—e(Tami=Tnd) =1, N=1) (55
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Fig. 13 Variation of maximum power with heat capacitance rate ratio

T

30

Trini-v=TLini+ €(T1i= Ty i) (56)

Ty.niand Ty ;,; are the source and sink inlet temperatures for
a Carnot cycle in the sequence where T, #in1 and Ty, are
specified inlet source and sink temperatures. As the cycles in
the sequence extract and reject heat, the source temperature
decreases and sink temperature increases in the flow direction.
€y, and e, ; are the effectivenesses of the hot-side and cold-
side heat exchangers of each cycle, which are assumed to be
equal in this analysis.

An analytical solution is not apparent for this optimization
problem. However, the optimum heat power cycle with finite
thermal capacitance rate heat source and heat sink can be
determined numerically. Consider a hot fluid stream entering
the boiler at 455 K, and a cold fluid stream entering the con-
denser heat exchanger at 286 K.

The required number of Carnot cycles in sequence that will
sufficiently identify the cycle is considered for the case where
NTUg=10and C,/Cy=10. Figure 12 shows the efficiency at
maximum power as the number of Carnot cycles in sequence
increases from 1 to 15. The efficiency at maximum power is
approximately independent of the number of Carnot cycles in
the sequence. The efficiency of the optimum heat power cycle
is almost the same as the maximum power efficiency of a single
Carnot cycle operating between the same external streams (the
1 percent difference noted in this case can be due to the nu-
merical techniques and roundoff error). However, the maxi-
mum power increases significantly as the number of Carnot
cycles in sequence increases from 1 to 15. The difference be-
tween the maximum power obrained from 10 cycles in sequence
and 15 cycles in sequence is very small (less that 1 percent),
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which indicates that the 15 cycles approximate the optimum
heat power cycle. ..

The effect of thermal capacitance rates ratio (C./Cy) on
the maximum power for different number of Carnot cycles in
sequence is shown in Fig. 13. As the thermal capacitance rate
ratio increases, the power output increases rapidly at first and
then levels off for thermal capacitance rates ratios greater than
5 approaching an asymprotic limit. However, there is no sig-
nificant variation in the power output as C;/Cy is increased
above 10.

Figure 14 shows the shape of the optimum heat power cycles
ina 7-S diagram. The slopes of the heating and cooling proc-
esses, as well as the cycle temperatures, vary with the thermal-
capacitance rate ratio. Similar graphs can be constructed to
show the effects of heat exchanger conductances on the op-
timum power cycle shape. The shape of the optimum heat
power cycles varies from rectangular for infinitely small heat
exchangers to triangular for infinitely large hear exchangers.

Conclusions

The optimum power produced by the closed Brayton, Otto,
and other familiar cycles can be greater than the optimum
power produced by the Carnot cycle for the same working
conditions and heat exchanger conductances. The heat power
cycle that produces the maximum power for specified boundary
conditions provides a useful tool for studying power cycles
and forms the basis for making design improvements. The
shape of the optimum heat power cycle varies with the external
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bAundarY conditions such as the type of heat source and heat
sink, and heat exchanger cc.mductange. ) )

If the heat source and sink have infinite heat capacitance
rates (i.€.» isothermal),. the heat trgnsfer processes for th_e op-
timum cycle cycle are 1sott}ermal, i.e., the Carnot cycle is 'the
optimum cycle. However, if the heat source and the heat sink
have finite heat capacitance rates, the peat transfer processes
for the optimum cycle cycle are not isothermal, but rather
gceur over a range of temperatures. This variable temperature
at both the cooling and heating processes can be achieved eithf:r
py varying the pressure during the phase c_hange of a pure fluid
or by keeping the pressure constant during the phase change
of a nonazeotropic binary mixture. The thermodynamic ad-
vantages of the cycles proposed by Kalina (e.g., Kalina, 1983),
which uses ammonia-water as working fluid may be explained
in this manner.

For both finite and infinite capacitance rates, the efficiency
at maximum power of internally reversible Carnot and Brayton

cycles is equal to 1 —~/ Ty in/ Trin. Moreover, the efficiency of
the optimum heat power cycles is found to be well approxi-
mated by the same form. Because this efficiency depends only
on the inlet temperatures of the heat reservoirs, it can be
obtained easily and used asa design tool. In the case of internal
irreversibility, the efficiency at maximum power is no longer
given by this simple form. Rather it is given by a more com-
plicated form, which depends on how the internal irreversibility
is modeled. In this study, a simple model relating the entropy
change during heat rejection and heat addition is used. The
result is a modification to the efficiency at maximum power,
which is found to be equal to or well approximated by

n=1~~T1,ia/ & Tt,in, Where ¢ is a factor relating the entropy
changes during heat rejection and heat addition.
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