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HOURLY THERMAL LOAD PREDICTION FOR
THE NEXT 24 HOURS BY ARIMA, EWMA, LR,
AND AN ARTIFICIAL NEURAL NETWORK

Minoru Kawashima
Member ASHRAE Fellow ASHRAE

ABSTRACT

Predicting the thermal load for the next 24 hours is
essential for optimal control of heating, ventilating, and air-
conditioning (HVAC) systems that use thermal cool storage.
It can be useful in minimizing costs and energy in nonstor-
age systems. A cooperative research project between a U.S.
university and a Japanese corporation investigated four gen-
erally used prediction methods to examine the basic models
with variations and to compare the accuracy of each model.
A cooling and heating seasonal data set with known next-day
weather was used to evaluate the accuracy of each predic-
tion method. The results indicate that an artificial neural
network (ANN) model produces the most accurate thermal
load predictions.

After the initial comparisons with a computer-generated
data set, the ANN model was applied to two measured build-
ing loads from another research project. These sets included
typical measurement noise related to continuous field moni-
toring. The predictions of the next-day cooling load using
the ANN prediction model were close to the actual data,
even when the next-day weather was forecast. This confirms
that the ANN model has sufficient accuracy and is the cor-
rect method for practical utilization in HVAC system con-
trol, thermal storage optimal control, and load/demand
management.

INTRODUCTION

Accurate prediction allows us to engineer intelligently
in many fields. In HVAC design, accurate prediction of the
dynamic thermal behavior of cooling loads in a building is a
key for successful design. Examples where accurate predic-
tion is useful in HVAC operations include adjusting the
starting time of cooling to meet start-up loads, minimizing or
limiting the electric on-peak demand, thermal load predic-
tion to optimize costs and energy use for cool storage sys-
tems, and related energy and cost optimization needs in other

HVAC systems (i.e., cogeneration, dual paths, and dehumid- -

ification).
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The objective of this research project was to determine
the optimal thermal load prediction method for a thermal
cool storage HVAC system. The prediction can then be used
for optimal control to minimize operating costs and energy
use throughout the year. Although storage systems have the
potential to reduce operating costs by shifting chiller opera-
tion to off-peak periods, many existing systems do not mini-
mize energy use and costs. One reason for this is that they do
not adequately predict loads or use predictive methods to
control the chiller or manage energy in and out of storage. If
the hourly thermal loads for the next 24 hours can be pre-
dicted, operation decisions can be made to allow the proper
amount of energy to be stored in the tank during off-peak
hours. Subsequently, energy use during on-peak hours can
be managed to minimize operating costs.

Several prediction techniques that can be used for on-
line adaptive control have been previously investigated. For-
rester and Wepfer (1984) presented a method based on an
extensive multiple linear regression technique that predicts
electrical demand up to four hours in advance. MacArthur et
al. (1989) and Spethmann (1989) developed a prediction
method and applied it to an optimal cold storage controller.
It was based on the autoregressive integrated moving aver-
age model with exogenous inputs (ARIMAX time series
model) adopted with a clockwise recursive regression tech-
nique. Seem and Braun (1991) examined a cerebellar model
articulation controller (CMAC model) using an exponential
weighted moving average model (EWMA) to determine its
exponential smoothing constant.Ferrano and Wong (1990)
described an artificial neural network (ANN) model to pre-
dict the next day's total thermal load. Kreider and Wang
(1991) demonstrated an automated load predictor using the
ANN. Anstett and Kreider (1993) examined the accuracy of
the ANN for energy predictions. All of these works, as well
as others, have been reported with varying degrees of suc-
cess (Curtiss et al. 1993; Ding and Wong 1990; Kreider et al.
1991; Kreider and Wang 1992; Mistry and Nair 1993). How-
ever, there have been no clear performance comparisons
between the various models.
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The first part of this paper presents a review of each
model considered and a comparison of their accuracy in
hourly load prediction for the next 24 hours. The models
examined were four significantly different models, plus
three modified models:

1. autoregressive integrated moving average (ARIMA)
model,

exponential weighted moving average (EWMA) model,
modified EWMA model,

recursively modified EWMA model,

recursive linear regressive (LR) model,

artificial neural network (ANN) model, and

recursively modified ANN model.

Nowswp

In the second part of this paper, ANN models are examined
using measured data sets to show the range of the prediction
accuracy in actual buildings.

CONDITIONS FOR COMPARISON

Common conditions for the comparison of the different
models are as follows.

1. The hourly loads up to 24 hours in advance were pre-
dicted for three months of winter and summer using
present and past hourly observed load and weather data.

2. The calculated load data set was prepared for the com-
parison by using a transfer-function-based dynamic
thermal load caleulation program with the TMY data of

- Tokyo in the situation where the office building was
occupied from 8:00 a.m. to 6:00 p.m. on weekdays.

3. Since the thermal characteristics on Monday are differ-
ent from those on other days, hourly predictions for
Tuesday through Friday were used to compare the
accuracy.

4. The accuracy of each model was evaluated using stan-
dard deviation (o), expected error percentage (EEP),
coefficient of variation (CV), and mean bias error
(MBE), defined by Equations 1 through 4, respectively:
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where
Ydatgy = measured data at time ¢,
Ypredqr = predicted data at time ¢,
Ydatamae = Maximum measured data,
Ydata = mean value of the measured data, and
n = number of data.
ARIMA MODEL

The autoregressive integrated moving average

(ARIMA) model depends only on the previous time series
data. The fundamental scheme of the model is shown by
Equation 5. The p, d, and ¢ are order numbers of the pro-
cesses for autoregressive, integrated, and moving average
components, respectively. This means that the dth deviation
of the time series data is expressed by the pth-order autore-
gressive term and the gth-order moving average term. If the
data are also correlated with the previous data n steps
before, Equation 5 can be rewritten as Equation 6. The P, D,
and Q refer to the same orders as p, d, and g at nth previous
time. The value 24 for n was chosen since the time series
data have a 24-hour cycle, which means that the thermal
loads at an hour are correlated with previous data a few
hours before and one day before.

ARIMA(p, d, q):
d d

Vy, = igl(biv yl_x.+a,—jg116jat_j (5)
where
Vi = time series data at time 1,
a, = white noise at time ¢ (expectation = 0.0),
9; = coefficient of a;._;,
®; = coefficient of y,.;,

V4, = dth difference of the y, (V1y, =y, - y;_1), and
p. d, g = order numbers of AR, I, and MA, respectively (0,
1,2,...). .

ARIMA (p.d, q) * (P, D, Q)y:
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In this study, the coefficients Gj, 0, b;, and ¢, were esti-
mated using hourly loads for the first 10 days of data after
the suitable order numbers (p, d, ¢, P, D, Q) were chosen
empirically. Then, hourly thermal loads for the rest of the
entire season were predicted. The order numbers were usu-
ally zero, one, or two. This model will be referred to as
“ARIMA? in the following sections.

EWMA MODEL

The exponential weighted moving average (EWMA)
model is defined by Equation 7 or 8. The prediction of load
also depends on previous load data only. The exponential
smoothing constant, A, ranging between zero and one, is the
single parameter that needs to be identified for the model.

2
y, = Xy,_,+k(1—1)y,_2+k(l~1) Vgt e O]

- Zra e T ®

where

y{ = predicted data at time 7,
A = exponential smoothing constant, and
¥,-j = observed data j times prior to time .

For the thermal load data, the term ¢ — 1 in Equation 7
can be replaced by ¢ —24 since the loads have a 24-hour
cycle. If the previously predicted data are substituted for all
the previously observed data except those 24 hours before,
it can be denoted as Equation 9:

Yi=Yiiat A2 Yo2d) )]
where
t = time of day,
y/ = predicted data at time ¢,

V124 = observed data at time ¢ — 24, and
¥, = predicted data at time ¢ - 24.

The previous (1 — 24) thermal load data, both predicted
and observed, always refer to the data when the building is
occupied. The EWMA model is equal to an ARIMA model
that can be abbreviated as ARIMA(0,0,0) x(0,1,1)54.

In this study, the exponential smoothing constant ()
was estimated by using hourly data for the first 10 days of
load data. Then, the hourly loads for the rest of the season
were predicted. The value 0.3 for A was used. This model is
identified as “EWMA simple” in the following sections.

Two modified EWMA models were examined to
improve the accuracy of the prediction. The first modified
model was assumed to have the next day's total load. Since
there is usually a strong correlation between maximum
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ambient temperature and daily total load, the total load was
computed by a regression equation. The hourly loads were
predicted so that the daily total predicted load meets the
daily total regressed load. This model is referred to as
“EWMA modi” in the following sections. The second mod-
ified model is a recursively modified model of “EWMA
modi.” After the occupied hour has started, the difference
between predicted and observed loads can be obtained. The
hourly predicted loads were modified every hour by multi-
plying by the ratio of the total predicted load and the total
observed load from the day's start time of occupancy to the
current time. This recursive modification was examined
since this adaptability is important for practical HVAC con-
trol. This model is referred to as “EWMA recur” in the fol-
lowing sections.

LR MODEL

A linear system model that has » inputs (x), x5, x3 . . .
x,,) and one output () at time ¢ can be described by Equation
10. The ky, ks, . . ., k,, are constant unknown parameters:

Y = kyx +hox, + ok x,. 10)

The linear regression can be applied to the parameter
identification process and is explained as follows. At time 1
~ m, the system is shown by Equation 11 using the vectors y
and k and a matrix, X:

y = Xk (an
where
¥
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m
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X X

nl * " "nm

Then, the error vector, e, between observed and pre-
dicted data is as follows:




e = y-Xk. (12)

The square of the e vector is denoted J:

J= _ﬁle,? —efe (13)
i=
= (y-XK) " (y-XK) (14)
=y y-k X'y-y Xk+k X Xk. (15)

To determine the estimate k that minimizes J, the deriva-
tive of J with respect to kis set to 0:

Al = axTyr2x"xK =0, (16)
k=k
This yields
XXk = X'y. an
k can be solved for
-1
k= xX"x) X'y (18)

Then, prediction of y at time m + 1 is

Ym+1 T J‘l,m-‘}-lkl +X2,m+lk2+ +'xn,m+ lkn' (19)

After obtaining new observed data at time ¢ + 1, further
parameter estimation can be done by the recursive least-
squares method. A forgetting (ignoring) factor, A (0 ~ 1.0),
is introduced to weight recent data more than the previous
data.

(See Appendix A.)

k.., can be determined by the following equations:

T
ﬁm+l = r(m"'.ym'Hmem+l[ym-t~l-_xm+lr(m]’ (20)

1 T -1
Po=5 XX, @n
and
Va1 = 1 @)
1= T :
m [1+xm+lpmxm+1]
P for the next recursive calculation is as follows:
1 T
Pm+1 = X[Pm_7m+lpmxm+lxm+lpm]' (23)

In this study, the model was defined to have 15 inputs
and one output. The inputs were the observed thermal load
at ¢ — 24 hours, seven ambient temperatures, and seven solar
insolation data from six hours before to the current time.
One output was the hourly thermal load. The mnitial parame-
ters were calculated by using the hourly load and weather
data for the first nine days, and then were used to predict the
tenth-day loads. When the next 24 current observed data
were obtained, the parameters were re-estimated by the
recursive least-squares method. The hourly ambient temper-
atures and solar insolation for the next 24 hours are required
to predict hourly loads for the next 24 hours. The recorded
observed temperature and insolation data were used in this
study. The thermal loads for the entire season were pre-
dicted using the recursive least-squares method. The pre-
dicted result is indicated as “LR” in the following sections.

ANN MODEL

An artificial neural network is one model used for non-
linear systems. It has a topological structure that connects
fundamental processing units called neurons. Each neuron
receives several inputs through connections and determines
the outgoing activation with a threshold function. The ANN
could have several hidden layers to propagate its activations
from the input to the output.

Backpropagation is the name of a supervised training
algorithm. It requires a teacher's (known) outputs for partic-
ular inputs to train the network. During the training process,
the synaptic weights are gradually adjusted to suitable val-

. ues,

“Figure 1 shows the fundamental model of the ANN
with one hidden layer and two synaptic weighting matrices
(W1, W2).-The procedure of the ANN backpropagation
algorithm is described as follows.

First, the output of the model (o) is computed by equa-
tions called the forward path (Equations 24 and 25) using
injtial weighting matrices and biases. Second, the error
matrices (d, e) are computed using Equations 26 and 27.
Third, the error (d) is propagated to the hidden layer. This is
called the backward path. The weighting matrix and bias are
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Figure1 Fundamental structure of an artificial
neural network.

adjusted by Equations 28 through 30. Fourth, similar propa-
gation and adjustment for the input layer are performed
using Equations 31 through 33. These steps are repeated
using all of the training data again and again until the sum
of the squares error for the entire training data set becomes a
minimum.

h = F(i- W1+ biasl) 24
o = F(h- W2 + bias2) (25)
d=o0(1-0) (0-1) (26)
e=h(1-hH)W2.d @n
W2 = W2+ AW2, (28
AW2, = ahd + ©AW2, 29)
bias2 = bias2 + aud (30)
W1 = W1+AWL, €39
AW1, = aie+ ©AWL, (32)
biasl = biasl + ae (33)

After the ANN has been sufficiently trained (the error
is a minimum), it can estimate the outputs for the particular
input data set using Equations 34 and 35:

h = F(i- W1 + biasl) 34)
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o = F(h- W2 + bias2) 35

where

b = hidden-layer neuron vector,

i = normalized input vector (values are from 0.0 to
1.0),

) = output vector,

d = output error vector,

t = teacher's output vector,

e = hidden-layer error vector,

W1 = weighting matrix for the input layer,

W2 = weighting matrix for the hidden layer,

biasl = bias vector for the input layer,

bias2 = bias vector for the hidden layer,

F(x) = /(1 +¢e™)(called the sigmoid function),
AW1, = changing value matrix for matrix W1 at time 1,
AW?2, = changing value matrix for matrix W2 at time ¢,
o = learning rate (value from 0.0 to 1.0), and

C] = momentum factor (value from 0.0 to 1.0).

In this study, the learning rate (o) was gradually
reduced by a “three-phase annealing procedure” during the
training to accelerate the process. The three-phase annealing
is described in detail in Kawashima (1994). Figure 2 shows
the ANN model for the thermal load prediction. The 15
inputs and 1 output, which are the same as in the LR model,
and the 31 hidden layer neurons were chosen for the ANN
model. The network was trained using hourly data for the
entire season. After the training, the hourly loads for the
entire season were predicted using observed next-dav
weather data. This result is referred to as “ANN simple” in
the following section.

One modified ANN model was examined to improve
the accuracy of the prediction. This is a recursively modi-
fied model of the ANN simple model. The hourly predicted
loads were updated every occupied hour by multiplying by
the ratio of the total predicted load and the total observed
load from the day's start time of occupancy to the current
time. The recursive modification could improve the predic-
tion accuracy. This adaptability is important for the practical
HVAC controller. The modified ANN model is referred to
as “ANN recur” in the following sections.

COMPARISON OF THE SEVEN PREDICTIONS

Tables 1 and 2 show the accuracy criteria for the seven
thermal load predictions during the summer and winter. The
hourly-basis EEPs of the ANN simple mode] were 6.3% of
the maximum load for the winter and 5.7% for the summer.
Those of the “ANN recur” model were 5.3% and 4.7% for
the winter and summer, respectively. These results show
that the prediction accuracy of the ANN model is the best of
all models and the recursive ANN is better than the simple
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Figure2 ANN model for the thermal load prediction.

TABLE 1
Results of the Seven Thermal Load Predictions (c and EEP)
o(Kcal/hr) EEP (%)
Symbols winter summer winter summer
hourly basis | hourly basis | daily basis | hourly daily hourly
basis basis basis
1. ARIMA 4592.8 7938.6 20.2 14.5 29.7 17.5
2. EWMA simple 3654.0 6016.1 18.1 11.5 235 13.2
3. EWMA modi. 2750.7 3195.2 10.6 8.7 104 7.0
4. EWMA recur. 24733 9733.8 8.7 7.8 9.3 214
5.1R 4614.3 4939.2 224 14.5 173 10.9
6. ANN simple 1861.1 2090.9 93 6.3 8.6 57
7. ANN recur. 1536.4 1562.9 58 53 44 4.7
TABLE 2
Results of the Seven Thermal Load Predictions (CV and MBE)
CV(%) MBE(%)

Symbols winter summer winter summer .

hourly basis | hourly basis | hourly basis | hourly basis

1. ARIMA 21.7 344 16 1.0

2. EWMA simple 220 26.0 18 33

3. EWMA modi. 16.6 13.8 1.8 03

4. EWMA recur. 14.9 421 0.5 -05

5.LR 27.8 214 -20 -13

6. ANN simple 11.2 9.1 -0.5 -0.2

7. ANN recur. 9.3 6.8 -0.5 -04




ANN. There are significant differences between results of
the ANNSs and the others.

Figure 3 shows the error sum of squares on each model
computed with data for the entire cooling and heating sea-
sons. It clearly shows that both ANN models—simple and
recursively modified—have better accuracy than the other
models. Since ARIMA and EWMA depend on the previous
series data, there is a limitation on tracing the swings of the
load affected by the weather. The result of the LR shows
that it is difficult to apply the linear regression process to a
nonlinear system such as the thermal-load-determining
mechanism. The ANN nonlinear mode] was satisfactory on
the hourly thermal load prediction for the next 24 hours.

Figures 4 through 7 show examples of the results of the
hourly thermal load predictions. The bars represent the
observed loads and the lines represent the predicted loads.
Figures 4 and 5 show the heating loads and Figures 6 and 7
show the cooling loads. Each figure shows the predictions
by ARIMA, EWMA, LR, and ANN, in that order. The
hourly load predictions by the ANN have good agreement
even if the load profile for the day is different from the oth-
ers in both the cooling and heating seasons.

USING ANN MODEL WITH MEASURED DATA

Seven ANN prediction models were applied to two sets
of building thermal loads that were measured in Seattle,
Washington, and Phoenix, Arizona. The main objective of
this analytical phase was to confirm the error range of the
load prediction by the ANN on existing building loads that
have noise and measurement errors. The results assess the
performance of the ANN predictions in the nearly practical
situation.

Both data sets used for analvsis are the cooling loads
from June 3 to October 13 (19 weeks) in 1991. Building S in
Seattle is a 21-story office complex with stores. The HVAC

Exror sum of square

Figure3  Error sum of squares for seven load
predictions.
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system has static-type ice storage tanks, two chillers (107
and 243 tons), and is a 44°F cold air distribution system.
Building P in Phoenix is an aerospace manufacturing fac-
tory with eutectic salt thermal storage. Measurements at
both locations were taken with a computerized data-acquisi-
tion system at short time intervals (seconds). The measured
data were summed and averaged for one hour for use in the
prediction analysis.

There are several possibilities in defining the ANN
model. For example, it could have multiple hidden layers,
multiple outputs, etc. However, there is no approved model-
ing method to achieve the best accuracy on the prediction.
The modeling of the ANN for this study followed a guide-
line listed in Kawashima (1994). It recommends that the
ANN model have one output (thermal load) and one hidden
layer that has 2n+1 neurons (n is the number of inputs). The
three-phase annealing procedure for the learning rate was
used during the training.

Figure 8 shows one of the models used for buildings S
and P. The model has five or six inputs. The five inputs are
observed load at 7 — 24, ambient temperatures (at ¢, t - 1,1 —
2), and ambient relative humidity (at ). After the five-input
models were examined, the six-input models that had an
occupancy indicator (0 or 1) were also examined to improve
the prediction accuracy for building S. The solar insolation
data should have been used as inputs. However, no solar
insolation was available for either building. Both models
with known (observed) weather data and predicted weather
data (described below) were examined to determine the dif-
ference. The recursive modification, as described earlier,
was also examined for building S. The conditions for the
five models for building S and the two models for building
P examined in this study are given in Table 3.

WEATHER FORECAST FOR THE NEXT 24 HOURS

There are weather input items that have the time stamps
t,1-1, and 7 — 2 (¢ is the target time) in the ANN prediction
model. This requires the predicted weather data for use in
the next 24 hours in load prediction. The hourly ambient
temperature and relative humidity must be estimated before
the load prediction in an operating situation. Procedures
used in this analysis assume that tomorrow's high and low
temperatures can be obtained from a local weather station or
reporting station. In this study, the high and low tempera-
tures were obtained from recorded forecasts in old newspa-
pers. '

The hourly ambient temperatures were calculated using
Equation 36. The o, are coefficients recommended by
ASHRAE (1993):

T, =Ty-a,x (Ty-T;) (36)
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Figure 4  Thermal load prediction by ARIMA, EWMA, LR, and ANN (from January 31 to February 3).
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Figure 5  Thermal load prediction by ARIMA, EWMA, LR, and ANN (from February 7 1o February 10).
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Figure 6  Thermal load prediction by ARIMA, EWMA, LR, and ANN (from August 1 to August 4).
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Figure 7  Thermal load prediction by ARIMA, EWMA, LR, and ANN (from September 5 to September 8).
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Figure 8 ANN model for hourly load prediction on an existing building.

TABLE 3
Conditions for the Seven ANN Models
No. Symbol number of weather data recursive modifi-
inputs cation

1 S-5-k-n 5 known No

2 S-5-p-n 5 predicted No

3 S-6-k-n 6 known No

4 S-6-p-n 6 predicted No

5 S-6-p-y 6 predicted Yes

6 P-5-k-n 5 known No

7 P-5-p-n ‘5 predicted’ “I'No ™

where

T, = predicted temperature at time ¢,
a, = coefficient at time ¢,

Ty = forecast high for the next day, and
T; = forecast low for the next day.

The hourly ambient relative humidity was calculated by the
EWMA, as described earlier, using Equation 37:

Hy=H;_ o+ H _o-H, 5) (37)

where

H/ = predicted humidity at time 1, o
H, 4 = predicted humidity at time ¢ —24,

H, 54 = observed humidity at time ¢ — 24, and

A = exponential smoothing constant = 0.3.

The calculated (predicted) hourly ambient temperatures and
humidity for up to the next 24 hours were used as inputs in
the load predictions.

12

RESULTS OF ANN PREDICTION WITH
MEASURED DATA

Table 4 gives the performance of the seven load predic-
tions for the measured data, With respect to building S, the

~ prediction accuracy of the six-input models is better than

that of the five-input models. It indicates that the more input
information, the better the prediction accuracy. The expecta-
tion of error percentage of the maximum load (EEP) of all
the models was less than 8.5% on an hourly basis and
10.3% on a daily basis. The best EEP (hourly basis) was
6.8% for “S-6-k-n.” The EEPs on an hourly basis with the
predicted weather data were 7.5% for “S-6-p-n” and 8.1%
for “P-5-p-n.” This means that prediction by the ANN has
acceptable accuracy even with the predicted weather data.
The prediction with the recursive modification has an EEP
of 7.2% on an hourly basis. This is better than the nonmodi-
fied model (S-6-p-n), which has an EEP of 7.5%. The modi-
fication by observed load during the occupancy period
improved the accuracy slightly. The improvement in the
daily-basis value does not affect the system control since the
value is modified after the overnight charge in the tank.
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TABLE 4

Results of the Seven Thermal Load Predictions with Measured Data

o(Tons) EEP (%) CV(%) MBE(%)

Symbol hourly basis | daily basis | hourly basis | hourly basis | hourly basis
1.S-5-k-n 41.7 10.3 8.0 31.9 -12.9
2.S8-5-p-n 439 10.2 85 33.6 -10.8
3.8-6-k-n 353 15 6.8 26.3 -1.3
4. S-6-p-n 38.7 8.1 75 28.9 -14
5. 8-6-p-y 37.2 33 72 27.7 -0.4
6.P-5-k-n 269.3 6.5 7.7 16.8 -0.9
7.P-5-p-n 284.2 7.4 8.1 17.8 -3.7

Figures 9 through 12 show examples of the hourly pre-
diction for building S and P. The predicted loads for each
ANN model have acceptable agreement with the observed
loads.

CONCLUSION

Four different models (ARIMA, EWMA, LR, and
ANN) and three modified versions for the hourly thermal
load prediction during the next 24 hours were examined
using the same data set. According to a quantitative compar-
ison, the artificial neural network model had the best accu-
racy of all the models. The expectation-of-error percentage
of the maximum data (EEP) for the ANN models was less

than 6.3% for cooling and heating season data on an hourly
basis. There was a significant improvement in the accuracy
compared to that of the other models.

Next, seven ANN load prediction models were exam-
ined by using measured building data that included noise.
The EEPs of all ANN models (including models with the
predicted weather data) were between 6.8% and 8.5% on an
hourly basis. These results show that the ANN model can
predict the hourly loads accurately, even when using real
operating data. This confirms that the ANN model has great
potential for hourly thermal load prediction. The accuracy
of the load prediction is sufficient for utilization in HVAC
controllers.
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Figure 9 Hourly thermal load prediction for building S by ANN (from August 12 to August 18).
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Figure 10 Hourly thermal load prediction Jor building S by ANN (from September 16 to September 22).
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Figure 11 Hourly thermal load prediction for building P by ANN (from July 22 to July 28).
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Figure 12 Hourly thermal load prediction for building P by ANN (from July 29 to August 4).
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