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ABSTRACT

This paper describes the performance of a partial ice stor-
age system that has a controller that predicts the load by neural
networks. To evaluate the performance, a comparison was
carried out between the two control strategies—chiller priority
control andpredictive control—using simulation. Chiller prior-
ity is the most common control strategy for existing thermal stor-
age systems. The predictive control proposed in this study uses
an hourly thermal load prediction by neural networks. The
predictive control is described in detail. The study indicates that
the accuracy of the load prediction is a key for optimizing the
system control. The predictive control can significantly reduce
the operating cost without energy shortage.

INTRODUCTION -

Heating, ventilating, and air-conditioning (HVAC)
systems can be optimized in two stages. One is the design
stage and the other is the operating stage. A system will not
work efficiently without proper control even if it is designed
correctly. This paper deals with the optimization in the oper-
ating stage and on the assumption that the partial storage
system is designed correctly.

In thermal storage systems, the capacity is specified for
chillers and storage tanks to meet the design loads. The system
should work as expected on the design day; however, how
does it work on off-design days? There are many days that
have a medium amount of load. Rooms should be kept
comfortable by the system and, at the same time, the operating
cost should be minimized by reducing the electricity
consumed during on-peak hours. It is generally thought that
there is no problem if energy remains in the tank at the end of
the occupied hours because the energy could be used on the
next day. However, this is not correct. The fact that there is a
significant amount of energy remaining at the end of the occu-
pied hours means that there was unnecessary chiller operation
during on-peak hours when the energy charge is much more
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expensive than during off-peak hours. On the other hand, ifthe
system uses the stored energy first and is completely

~ discharged, there will be an energy shortage in the afternoon

because the system normally does not have a large enough
chiller to meet the peak loads alone. Therefore, the discharge
of the storage must be properly controlled to minimize costs
and maintain comfort.

METHODOLOGY OF CONTROL

There are two design concepts for thermal storage
systems as shown in Figure 1—partial storage and full storage.
The full-storage design means that all thermal loads are met
solely by the stored energy. The partial-storage design means
the loads are met by a combination of storage and chillers. The
control of the full-storage system is simple—build ice every
night until the tanks are full and melt as much as needed to cool
the building during on-peak hours. However, in a full-storage
system a lot of energy remains in the tank at the end of the
occupancy if the load is small. In contrast, the partial-storage
system is popular because there is a lower initial cost than for
the full-storage system. However, in the control of the partial-
storage system it is difficult to maintain comfort in the occu-
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Figure 1 Classification of thermal storage system.
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pied room and minimize operating costs simultaneously.
Control strategies of the partial-storage system are classified
in Figure 1. Rawlings (1985) and Braun (1992) presented
similar classifications.

The three conventional control strategies for partial stor-
age are chiller-priority, ice-priority, and constant proportion.
In this paper there is a newly suggested strategy, predictive
control. All of these control strategies are reviewed as follows.
In the chiller-priority control, the thermal load is first met by
the chiller that is operated by a scheduled timer. During the
chiller operation, the ice only is melted if the thermal load
exceeds the chiller capacity. Because the control is simple, this
is the most popular control strategy for the partial-storage
system. The drawback is that the stored ice may not be fully
utilized. This means that there is unnecessary chiller operation
during on-peak hours.

The ice-priority control operates the chiller as little as
possible during the occupied hours. The chiller is operated at
desired capacity only if the load exceeds the tank-output
capacity. Generally, the chiller operation is triggered when the
tank outlet temperature exceeds a predetermined setting point.

Ideally, this control strategy could minimize the running cost -

and demand charge; however, there are some difficulties in
practice. First, it is difficult (sometimes it also is expensive) to
control the chiller capacity to be the desired amount at any
level. More important, the strategy might not meet the peak
load on a hot day because the ice might melt completely in the
early stage of the occupancy. The peak load usually is larger
than the full capacity of the chiller and so comfort would not
be maintained.

In the constant proportion control, the chiller and the ice
tank, respectively, handle a certain percentage of the building
load in every occupied hour. It also is difficult (and usually
expensive) to control the chiller capacity in a desired amount
in practice. This strategy has the advantage of meeting the
peak load using both energy from the chiller and the ice tank.
This means a lower demand charge than the chiller priority
control; however, ice may remain or an energy shortage may
occur as a result of daily load fluctuations. This control
method has been discussed by Rawlings (1985). A similar
control method, named “load-limiting,” was described by
Braun (1992). The percentage of chiller operation during on-
peak hours can be optimized to fully discharge the tank at the
end of the occupied hours if a load prediction is available.

The last control is a proposed strategy called “predictive
control” in this study. Studies on control associated with
prediction, for example, have been done by Shapiro et al.
(1988) and Braun (1990) to use the massive building structure
as a thermal storage. Ferrano and Wong (1990) discussed
prediction of the next-day cooling load for overnight chiller
operation. The main purpose of predictive control in this study
is to minimize the operating cost for the entire season in situ-
ations where the off-peak electric charge is much less than the
on-peak charge. (The energy charge of on-peak is roughly four
to five times the off-peak charge in Japan.) The strategy
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controls chiller operation based on the predicted hourly loads
for the next 24 hours. The prediction is computed at the begin-
ning of the off-peak hour (22:00 in Japan). During off-peak
hours, as much ice as the building needs for the next day is

“built. During on-peak hours, the strategy compares the

remaining energy in the tank and the total predicted load from
now to the end of the occupancy. Then, if the remaining energy -
is less than the total predicted load, the chiller operates. This
comparison is made every 30 minutes. In this strategy, ice is
saved and used for the afternoon peak loads. As aresult, the ice
melts completely by the end of the occupancy.

After the start of air-conditioning, the predicted loads are .
recursively modified at every hour by multiplying the load by
a coefficient that is the ratio of the total predicted load and the
total measured loads from start to current time. This modifi-
cation improves the accuracy of the prediction. The load
prediction is made with a neural network that needs to be
trained previously using the measured data. In this study,
measured weather data for three months and computed ther-
mal loads were used for the training,.

NEURAL NETWORK MODEL
FOR LOAD PREDICTION

The load prediction methods discussed here are applicable
to real thermal energy storage (TES) systems. It is possible to
use physical-based modeling methods that are popularly used in
the design process. However, the physical-based modeling is
not suitable for real systems because it requires considerable
effort to adapt it to practical situations. There are several meth-
ods suitable for the real-time load prediction, such as the time
series model, the regression model, and the artificial neural
network model. Ferrano and Wong (1990), Kreider and Wang
(1991, 1992), and Anstett and Kreider (1993) examined the arti-
ficial neural network (ANN) model for load prediction.
Kawashima (1995) compared the accuracy of the prediction
with several methods including ANN by employing exactly the
same data. The results showed that an ANN model had the best
accuracy among the methods examined.

The ANN is one of the modeling methods for nonlinear
systems. It has self-training capability but needs an input and
output data set from the target system for supervised training.
The biggest concern in this study is the accuracy of the predic-
tion and the applicability to a practical controller. Therefore,
it does not matter if the model’s coefficients do not have phys-
ical meanings.

An abstract model of a neuron that is the processing unit__
of ANN is shown in Figure 2. The neuron receives several
inputs through synapses. The incoming activations are multi-
plied by the weight of synapses and summed up. The outgoing
activation is computed by applying a threshold function to the
summation. The neuron has only one outgoing activation
value, although it might have several connections to other
neurons. The typical threshold function, called a sigmoid
function, is shown in Figure 3.
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The structure of an ANN model consists of some
neurons and their connections. There are hidden layers
between input and output layers. Each neuron processes the
incoming activation and transfers the outgoing activation to
the next neuron if measured data are presented in the inputs.
At first, random numbers are installed for all the synaptic
weights and the ANN output is far from measured output
data. However, the synaptic weights gradually are changed
in an appropriate manner by the self-training procedure. The
training procedure used in this study is a back propagation
method with three-phase annealing described in Kawashima
(1994).

A diagram of an ANN is shown in Figure 4. Any data
related to the thermal load could be used as inputs. In this
study 12 inputs are selected. The outdoor temperature and
solar insolation up for few hours in the past are employed
because the output has a time delay factor due to its thermal
capacity.

After the ANN model is trained, it can be used for load
prediction. However, a preprocess is required before the
prediction can be made because input data at the target time
are needed. In other words, to get a prediction 24 hours
ahead, the outdoor temperature and the solar insolation at 24
hours ahead are required. The processes to obtain those
weather data for the next 24 hours are described in the next
section.

AT-96-21-4

INPUTS

1. Qutdoor Yemp, (tergettime) 'F
2. Outdoor Temp. (target -1 hour) °F O
3. Outdoor Temp. (target -2 hours) °F O
4. Outdoor Temp. (target -3 hours) °F
§. Solar nso, (target time) BtuMt2h -
€. Sofar Inso. (target -1 hour) BtufMt2h

7. Solar Inso. (target -2 hours) Btum2

8. Occupled Hour (target time ) 01
S. internal Load (target time) 01
10. Room Temperature (target time) *
11. Outd.- Room Temp. (target time) *F
12. Jime 0-24
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{

Figure 4 Diagram of ANN for load prediction.

FORECASTING TOMORROW’S WEATHER

Hourly outdoor temperature and solar insolation 24 hours
in advance are required in the prediction phase. Some of the
forecast weather data are available from meteorological centers.
It usually is difficult or expensive to get the desired forecast
weather data for the next 24 hours in a timely fashion. In this
study these data were computed from tomorrow’s forecast high
and low outdoor temperatures and weather outlook, which
could easily be obtained from TV, radio, newspapers, etc.

FORECASTING OUTDOOR TEMPERATURE

The hourly outdoor temperatures (dry-bulb) are calcu-
lated by the following formula:

T, = Ty—a,x(Ty-T,) (¢))
where
T, = forecast outdoor temperature at time ¢,
o, = coefficient at time ¢,
Ty = forecasthigh, and
| T; = forecastlow.

The a, shown in Table 1 are coefficients at each time of day
presented in the 1993 ASHRAE Fundamentals Handbook
(ASHRAE 1993, Chapter 26, Table 2). This is a sinusoidal fit to
the hourly temperatures based on the daily temperature range. The
forecast values of tomorrow’s highs and lows (T, T} ) in this study
were obtained from recorded data and are taken as 100% accurate.
The differences in hourly load predictions with accurate and with
forecast weather data are discussed in Kawashima (1995).

FORECASTING SOLAR INSOLATION

The solar insolation is forecast in two steps. First, the
total amount of solar insolation for the next day (Q’s, a)is
calculated by using a polynomial Equation 2. The forecast
outlooks for the next day are typically sunny, fine, cloudy, and
rainy, which are expressed as levels 1, 2, 3, and 4, respec-



TABLE 1 Coefficients for Hourly
Temperature Prediction

t ; hour of the day
t Ol t | oy t oy t {oy
0 1082 6 {098 12023 |18} 0.21
1 0.87 |7 {093 J13]0.11 191034
2 1092 |8 1084 J14]0.03 |20]047
3 0.96 9 10.71 151 0.00 211 0.58
4 0.99 10 { 0.56 16 | 0.03 22 10.68
5 1.00 111039 17 1 0.10 231 0.76

tively. The coefficients (ag, a;, @, and as) are calculated by a
linear regression using the recorded temperature and outlook
data for the entire cooling season:

Q's,d = “0"’“1XT{{"‘az"(TH‘TL)"‘“s"’oTLK 2

where
Q,, = dailytotal solar insolation (Btw/f>h),
Ty = nextday’s high outdoor temperature (°F),

1; = next day’s low outdoor temperature (°F), and

lorix = nextday’s outlook (1,2, 3, or 4).

The hourly solar insolation (Q, ,) is calculated by Equa-
tion 3 using a set of coefficients (8,) that total 1.0 for aday. The
B, values are chosen so that the hourly solar insolation forecast
represents a typical smooth profile of the measured insolation
for the cooling season. It is hard to guess the coefficients (8,)
because the actual solar insolation is affected so much by

clouds, which causes arelatively large discrepancy between the -

- forecast and measured solar insolation.

Qs,t = BI X Qs,d N : (3)
RESULTS OF WEATHER PREDICTION

Scatter plots of the forecast vs. measured weather for
outdoor temperature and solar insolation are shown in Figures
5 and 6, respectively. The measured data are for Tokyo in 1991
- and are supplied by the Japanese Weather Association. There
is fair agreement between predicted and measured tempera-
tures and poorer agreement for solar insolation. These forecast
weather data will be used for the thermal load prediction in the
following simulations, and the measured weather data are
used in the ANN trammg procedure.

ACCURACY OF LOAD PREDICTION

The pseudo-real-time load prediction will be conducted
while the simulation is performed. An ANN model trained by
1991 data was utilized in all cases. Before simulating, the
prediction procedure was performed solely for the evaluation
of accuracy. The accuracy of the predictions and the results are
shown in Table 3 for several weather data sets.
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Figure 6 Measured vs.
predicted solar
insolation.

Figure 5 Measured vs.
predicted outdoor
temperatures.

TABLE 2 Coefficients for Equation 3

t ; hour of the day
t 1Bt By t B¢ t pt
0 00} 6 10.0105 |12 |0.1239 ] 18]0.01966
1 j0.0] 7 10.0334 |13 |0.1207 ] 19]/0.001829
2 10.0f 8 {0.05807 | 14 10.11294 } 20]0.0
3 100] 9 10.08230 {15 [0.09511 ] 21{0.0
4 10.0}10(0.10517 | 16 [0.07042 | 2210.0
5 10.0] 11 ]0.12025 | 17 [0.04572 ] 23|0.0

Case 1 is an impractical situation for applications because
it has 100% accurate weather data in the future. Case 2 is a
practical case that employs the forecast weather from the accu-
rate high and low for the next day. Case 3 is similar to case 2;
however, it predicts loads in 1992 with the ANN model trained
by 1991 data. Case 4 shows the accuracy in the prediction with
recursive modification discussed in the last part of the “Meth-
odology of Control” section.

Figures 7 and 8 show the scatter plots of measured vs.
predicted loads. The expected error percentage (EEP; see
Appendix A) of case 2, 4.34%, may be acceptable in practice.
The results of cases 3 and 4 suggest that retraining should be
done with current data if possible.

SIMULATION STUDY

Four simulations were carried out. The first simulation
was for an HVAC system with the chiller priority control for
the entire cooling season in 1991. This mode] simulates a
commonly existing ice storage system. After confirming that
the building load had been met during the all occupied hours,
the outputs (thermal loads and weather data) were transformed
into an ANN training data set. Then, the ANN was trained
sufficiently. Next, the trained ANN model data (weighting
matrices) were built into the second simulation. The second
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simulation used the predictive control under the same condi-
tions as the first simulation. Next, a third simulation with
chiller-priority control was carried out with the 1992 weather
data. Finally, the fourth simulation used predictive control for
1992 with the ANN model trained with the 1991 data set.

SYSTEM MODELING

The HVAC system with ice storage is shown in Figure 9.
The building is a commercial building located in Tokyo with
an air-conditioned area of 27,225 ft* (2,530 m?). The ice tank
capacity (247 ton-hours [3.13 GJ]) and the chiller capacity (25
tons [316 MJ/h] X 2 units) were carefully chosen for the build-
ing load by presimulations. A physical-based dynamic HVAC
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Figure 9 Target ice storage HVAC system.

TABLE 3 Accuracy of Load Prediction

[Year of |predicled o |EEP| CV |MBE
predicted {with
Btwhy % | % %
case 1 {1991 accurate ,
weather data 17840;2.42| 16.33} 0.13
case 2 {1991 forecasted
, weather data 31974{4.34]29.26 -3.08
case 3 1992 forecasted
weather data 53187(7.23} 51.9 | 2.21
case 4 {1992 forecasted
weather data 4585216.231 44.7 | 16.6
recur. modi.

system simulation program, TRNSYS (Klein et al. 1994), was
used for simulations. Nine new components (subroutines)
were constructed and five existing components were modi-
fied. The weather data set both in 1991 and 1992 in Tokyo
were supplied by the Japanese Weather Association.

The time step of the simulation was half an hour and the
period of the simulation was the entire cooling season. The
occupied hours were from 8:00 to 18:00 for weekdays. With
both chiller-priority and predictive control, one chiller was
operated during the on-peak hours to keep the supply water
temperature under control. If the temperature became higher
than the setpoint, the second chiller was operated. The off-peak
hours were from 22:00 to 8:00. The electric rates are shown in
Table 4 based on the exchange rate of 100.0 yen a dollar.

RESULTS AND COMPARISON

Figures 10 and 11 show examples of the simulation results
in the 10th and 11th weeks (Monday through Friday). The bars
indicate cooling loads. The dark part represents the ice tank
energy and the gray part represents the energy from the chiller.



The black line shows ice inventory with the scale on the right

" axis. The dotted line in Figure 11 represents the predicted load
that was recursively modified during the occupied hours. The
load each day for Figures 10 and 11 is the same; however, the
utilization of the energy from the ice tank is different. With
predictive control the chiller turns off in the afternoon if the load
for the day is small. The remaining energy at the end of occu-
pancy is always small with predictive control if the load predic-
tion is accurate. The remaining energy is large with chiller
priority, especially if the load of the day is small.

Figure 12 shows the daily cooling load for the entire cool-
ing season for 1991 for chiller-priority control. The black part
represents energy from the ice tank and the gray part repre-
sents energy from the chiller. The triangular mark indicates
the ice inventory at the end of the charging period. Figure 13
shows the results of Figure 12 sorted and plotted in decreasing
order (daily load duration curve). The gray area under the
dotted triangles, which is energy from chillers, indicates the

- possibility of further optimization because energy remains in
the tank. Figures 14 and 15 show the daily load duration curve
for predictive control in 1991 and 1992, respectively. In
Figures 14 and 15, the area with no loads on the right side
shows the data on Saturdays and Sundays. They clearly show
how the energy is utilized.

The percentage of the ice tank energy with chiller priority
is smaller than that with predictive control. This indicates that
predictive control attempts to maximize the ice tank energy
while it meéts the loads. The percentage of the ice tank energy
in each simulation is shown in Table 5.

The triangles in Figures 13 through 15 indicate that the ice
inventory during weekends is large in the chiller-priority

- control because the ice remains if the load is small on Friday.
This causes an energy loss from the ice tank. Also, the ice
inventory for the nonhot days with predictive control is
smaller than the tank capacity, while the chiller priority

Monday Tuesday

Wednesday

always has a full inventory in the morning. It is meaningful to
charge ice as much as necessary in early and late summer.
Tables 6 and 7 show the summary of electric consumption
in the cooling season for 1991 and 1992. The percentage of
off-peak electric consumption ‘was 59.8% for predictive
control and 37.8% for chiller priority in 1991. The total elec-
tric consumption was 75,764 kWh for predictive control and
70,905 kWh for chiller priority. The total consumption of
predictive control was 6.9% larger than that of chiller priority
in 1991 because the chiller coefficient of performance (COP)
in the ice-making mode was smaller than the COP in the chill-
ing mode; however, shifting electric consumption to the off-
peak time is a big advantage for customers and utility compa-
nies. The situation for 1992 is similar to the results for 1991.
Figure 16 shows the total operating costs for four simula-
tions. The demand charge was calculated as $936 per month for
all simulations based on the demand of 60 kW for the HVAC
system. There is a possibility for the predictive control to reduce
the demand charge if the system can manage the whole electric
consumption for HVAC, lighting, transportation, etc. However,
it is difficult to determine the amount of demand charge reduc-
tion by our simulation study. Therefore, the same value of the
demand charge was used for all controls. The demand charge
accounts for 23.6% of the total for chiller-priority control and
27.3% for optimal control in 1991. The on-peak energy charge
(the black part) for predictive control was smaller than that for
chiller priority. The total operating cost for the entire cooling
season was $11,895 for chiller priority and $10,294 for predic-
tive control. The total operating cost of predictive control was
13.5% smaller than that of chiller priority in 1991. This differ-
ence is significant because it is the result only of the control strat-
egy. Shifting the chiller operation as much as possible reduces
the operating cost without any energy shortage during occupied
hours. It shows that optimizing the HVAC control of thermal
storage systems significantly can reduce operating cost.
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Figure 10  Energy flows for chiller-priority control for 1991.
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Figure 12 Daily cooling load with chiller-priority

control in 1991. : Figure 13  Sorted daily cooling load with chiller-prior-
POSSIBILITY OF FAULT DETECTION ity control in 1991.
BY NEURAL NETWORK

TE+6
Maintenance of HVAC systems is a big issue and malfunc- O

tion of the system potentially could cause damage. Research on '
automated self-diagnostic systems is of current interest. Petze and S.E46
Reed (1988) discussed an artificial intelligence (AI) approach for F4EE
building control systems. Haberl et al. (1989) developed a rule- %’35 ©
based diagnosis intelligent system. Anderson et al. (1989)
discussed a rule-based expert system with a predictor. Culp et al. 2848
(1990) discussed the impact of Al technology in HVAC systems. 1E+6 : 3
The ultimate goal of the system is A, which can detect the inap- 0E+ Ay 4 s
propriate operational condition at an early stage and advise the 1 . ,:; mﬂl . ::( 44 51 81 T 81 e
maintenance person what should be done before a fatal shutdown. 8 “Tergy Tom oo Tank mEnerdy from Chile 4 Stored Energy n Tank

An Al system contains three functions: fault detection, specifica-

tion, and diagnosis. Fault detection can be performed by the ANN Figure 14 Sorted daily cooling load W”h predictive
load prediction. Because the ANN can predict the load accu- - control in 1991.

rately, a significant discrepancy between the predicted and -
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TABLE 4 Electric Rates in Tokyo

for summer season
Rate :
Demand charge $15.60 /kWMonth
On-peak energy charge $0.1784/kWh
Off-peak energy charge $0.0454/kWh

TABLE 5 Percentage of Ice Tank Energy
for Entire Cooling Load

| Percentage of energy
from ice tank (%)
Chiller priority in 1991 34.1
Chiller priority in 1992 34.9
| Predictive control in 1991 62.4
Predictive control in 1992 62.7

TABLE 6 Electric Consumption in 1991

1991 Chiller priority | Predictive control
kWh (%) kWh (%)
on-peak 44119 (62.2) 30424 (40.2)
off-peak | 26786 (37.8) 45340 (59.8)
“ Total 70905 (100) 75764 (100)

“TABLE 7  Electric Consumption in 1992

1992 Chiller priority| Predictive control
kWh (%) kWh (%)
on-peak | 41821 (62.1). 29056 (40.9)
off-peak | 25547 (37.9) 41922 (59.1)
Total 67368 (100) 70978 (100)

Figure 16 Operating costs in four simulations.
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Figure 17 Scattered plots of measured vs. predicted
loads.
observed loads for a long period indicates the possibility of an
existing malfunction of the system even if the occupants are not
aware of it. This approach could be a detector of the system fault
and a trigger of real-time HVAC diagnostic systems.

Figure 17 shows the scatter plots of the measured vs.
predicted hourly loads. If the HVAC system works properly,
most of the points will be located within certain probability limits
(for example, 95%). If the points start falling outside the limits
continuously, it may be an indicator of faults in the HVAC
system. Haberl et al. (1989) use similar criteria, but with absolute
residuals between regressed and measured loads. Further study is
required on the use of ANNs for fault detection. '

CONCLUSIONS

Dynamic HVAC simulations, including a thermal model of
the target building, were conducted for the entire cooling season
to simulate the energy performance for different control strate-
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gies. The conventional chiller-priority strategy was compared to
predictive control. Energy and cost analysis with the same year’s
weather data showed that the total electric consumption with
predictive control was 6.9% greater than with chiller-priority
control. This was a result of operating the chiller at times with
poorer COP. However, the operating cost with predictive control

was 13.5% less than with chiller-priority control. This was a

result of operating the chiller much less during the on-peak hours.

This study shows that predictive control significantly can
reduce operating costs and maintain comfort with no energy
shortage during occupied hours. System operation with real-
time load prediction and an intelligent fault detection scheme is
a possibility.
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APPENDIX A

Criteria of Accuracy

To compare the different load predictions, the following
criteria for accuracy were defined. The CV and MBE are from
Kreider and Haberl (1994). The EEP is defined by Kawashima
(1995). The reason for the additional definition is that the EEP is
appropriate for load distributions that have many zero values at
night.

Standard deviation (o):

2
gl (ypred, t ™ Vdata, r)
6= )= (A1)

n

Expected error percentage (EEP):

2
2) (ypred, t~ YVdata, l)
1=

EEP = : n | x 100. (A2)
l 'dala. max
Coefficient of variance (CV):
2
'g:] (ypred, [ ydam, r)
A3
CV = I x 100. (A3)
15’ daral
Mean bias error (MBE):
,2: . (ypred, t~ Ydata, p)
MBE = L x 100. (A4)

|5’dam|



where

Ydatar =

yprea'.t =

10

measured data at time ¢,

predicted data at time t,

Ydatama™ maximum measured data,
¥ 4ara = mean value of the measured data, and
' number of data.

it

n
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