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A METHODOLOGY FOR THE SYNTHESIS
OF HOURLY WEATHER DATA
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Abstract—The ability to generate weather data from limited inputs and location independent correlations
would allow simulations of environmentally driven systems to be run at locations for which detailed weather
records do not exist. A further improvement would be to generate just one year of data which would yield -
the same simulation results as those of long-term data, thereby minimizing the computation needed to assess
long-term system performance. In this paper, a methodology to calculate such a year of data is described.

+ It is a combination and modification of several previously published generation methods. Statistics obtained
from long-term (22 years), Typical Meteorological Year, and synthetically generated weather data are com-
pared at three locations ( Albuquerque, NM, Madison, WI, and New York, NY).

1. INTRODUCTION |

The performance of environmentally driven systems
is dependent upon the solar radiation, ambient tem-
perature, humidity, and windspeed. These variables
are neither completely random nor deterministic; they
can best be described as irregular functions of time,
both on small (e.g., hourly or daily) and large (e.g.,
- seasonally or yearly) time scales. It is the irregular be-
havior of the weather which complicates the analyses
of solar energy systems and makes experimental de-
terminations of system performance time consuming,
expensive, and inconclusive with regard to the manner
in which they would have performed under other cli-
matic conditions.

Simulations have in common with experiments the
problem of accounting for the irregular behavior of
weather. A simulation will provide results only for the
period over which weather data are provided. Sufficient
data (e.g., many years) must be provided in order for
the simulation to calculate the long-term average per-
formance of the system. There are two problems as-
sociated with long-term simulations. First, the hour-
by-hour simulation of a system over many years in-
volves significant computational effort and is therefore

slow and/or expensive. Second, hourly records of me-

teorological variables for extended periods of time do
not exist for many locations. ‘ )
Since simulations must often be performed for lo-
cations without detailed recorded data, two methods
of providing data are commonly used; extrapolation
and synthetic generation. Extrapolation involves using
data at one or more neighboring or similar climate
locations to infer the weather data at a location for
which recorded data are not available. Extrapolation
of existing data may result in significant errors[1]; there
may also be errors associated with synthetic generation.
Numerous authors have developed models for the
generation of radiation series (both daily and/or
hourly), for example[2-12]. Temperature and wind-
speed have also been the object of several studies, for

example[11-15]. Degelman[16,17] developed a
weather generator which requires only limited
monthly-average values as input and outputs hourly
radiation, temperature, humidity, and windspeed val-
ues. Validation studies[18] of the Degelman program
have revealed areas of weakness, including some lo-
cation dependence. '

In this paper, techniques for the generation of ra-
diation and ambient temperature data are presented,
along with suggestions for humidity and windspeed.
Required input data consists only of monthly-average
values. Representative statistics calculated from the
generated, long-term, and “Typical Meteorological
Year” (TMY) data[19] are presented for three loca-
tions: Albuquerque, NM, Madison, WI, and New
York, NY. Albuquerque is classified as a mountain
desert climate, Madison as a temperate continental
climate, and New York as a temperate oceanic climate

. according to Koppen’s reformed classification{20].

The long-term data are taken from the SOLMET data-
base[21], and consist of 22 to 23 years of hourly ra-
diation, temperature, humidity and windspeed data.
The definition of “long-term” is difficult; indeed the
weather statistics when viewed on a large enough scale
are not stationary. For the purpose of this analysis,
however, long-term is defined by the length of available
weather records, namely 22 to 23 years.

Cross-correlations are not directly reproduced by
the modelling techniques presented here. This is per-
haps the most serious shortcoming; further research in
this area should include a study of the cross-correlations
between the different weather variables, first quanti-
fving the cross-correlations, then evaluating their effect
on system performance, and finally, if necessary, de-
termining a method for including them in the model,
such as by using multivariate time series.

2. STATISTICS OF WEATHER DATA

Viewed on a short-term basis, meteorological vari-
ables seem to be highly random and unpredictable.
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However. statistical analyses of these variables indicate
that they are not as unpredictable as they appear. Often
the distributions and diurnal variations can be ex-
pressed in location independent forms. The following
is an accounting of the correlations used to produce
the results shown in this paper; if other more accurate
correlations are available, they can be substituted.
The clearness index is defined as the ratio of the
global solar radiation on a horizontal surface to the
global extraterrestrial solar radiation on a horizontal
surface[22], and can be defined either on a daily (X))
or an hourly (k,) basis. The distribution of the daily
clearness index was shown by Liu and Jordan{23] to
be primarily dependent on the monthly-average daily
* clearness index, K,. Hollands and Huget[25] developed
an implicit expression for the Liu and Jordan distri-
butions. Bendt et al[24] analyzed 20 years of data
from 90 U.S. locations and developed the following
expression for the daily K, distribution based on their
data which agreed well with the curves of [23] except
at high fraction values: :

r= exp(YKimin) — exp(vK))

= I
exp(YKimin) — €Xp(YKimax) ()

where fis the cumulative fraction of occurrence and
v is found implicitly from the following equation:

| ) 1
(Kl.min - "‘)CXD('YKt.min) - (Kl.max - “)Exp(sz.max)
R = Y Y
t

exp(¥Kimin) — exp(¥Kimar)
(2)

Alternatively, Herzog[26] gives an explicit relation for
v from a curve fit:

1.184¢ — 27.182 exp(—1.5§)

= —]1.498 + (3)
Y Lo Kl.max - I<l.min
where
E - Kl.max - Kr.min
Kl.max - Kl

K, min Was recommended by Bendt ez al.[24] as a con-
stant value of K, min = 0.05; no expression was provided
for K ma. Hollands and Huget{25] recommend that
K max can be estimated from:

Kymax = 0.6313 + 0.267K,
- 11.9(K, — 0.75)%,

Recently, several papers have questioned the uni-

versality of these K, distributions, particularly their va-
lidity in tropical climates. Saunier et a/.[27] examined
K, distributions from 5 locations (4 tropical summer
rain climates and 1| subtropical winter rain cli-
mate[20]) and significant discrepancies with the Bendt

(4)

et al.[24] correlation are apparent. An expression for
the K, distribution in tropical climates is presented in
[27]. Gordon and Reddy{9] have proposed a new
expression for the K, distribution for all climates, in-
cluding the variance in the parameters necessary to
define the distribution. However, the data they ana-
lyzed consists of 7 tropical summer rain climates, 2
subtropical summer rain climates, | subtropical winter
rain climate, 1 desert climate, and 2 steppe cli-
mates[20]. No temperate climate data were included,.
and as such, the universality is as yet unverified. Stuart
and Hollands{28] propose modelling the distribution
of the beam transmittance instead of the clearness in-
dex, and provide an expression for the distribution,
the parameters of which are the air mass and the mean
value of the beam transmittance. Again, only limited
climate types were examined: 3 temperate continental
climates and | temperate oceanic climate[20]. The
results presented in this paper were obtained by using
the Bendt et al. correlation (eqn 1) with eqn (3) for
estimating v. This correlation was chosen in part for
its simplicity; if, however, the user is dealing with trop-
ical climates, another expression, for example Saunier
et al.[27], should be substituted.

The long-term monthly-average diurnal variation
of hourly total radiation (when divided by the average
daily total radiation) has been shown to be primarily
a function of the hour angle, w, and the sunset hour
angle, w,{23,29,30].

P%-—-(a%—bcos@{i—‘

a = 0.409 + 0.5016 sin(w, — 60)

(3)

re=

b = 0.6609.+ 0.4767 sin(w; — 60).

Equation (5) can be used to calculate the monthly-
average radiation for an hour, e.g.. 9-10 a.m., when
the monthly-average daily radiation is known. Equa-~
tion ( 5) does not give any information about the hourly
radiation values for each day of the month (other than
the mean). It has been suggested[22], however, that
eqn (5) be used to obtain the expected average value
of the ratio //H for a given location, day, and hour.
Multiplying by the daily total radiation, H, then gives
the expected average value of the hourly radiation, /i t,
for that location, day, hour and daily radiation value.
This radiation value is the “long-term average” value,
and correspondingly, a “long-term™ average k, value,
km, can be approximated as:

I
g = hx _\H/”H,
o, I, H,
H{{I\H, H,
R AVIE T U

Alternatively, Graham er al.[2] have proposed the fol-
lowing relation for estimating the long-term average
value of the radiation at an hour:
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kpm = K, = 1LL16TK3 (1 — K,)

—-1.14 - K
+0.979(1 - K,)exp[-—l——l,—li—in (7)
. K,cos 6.

where k,, is defined as the long-term average value of

k, for that hour of the day, month and daily clearness
index value. K,. The average of the deviations of &,
from k,,, obtained from each expression (eqns ( 6) and
(7}) is small; however, the average of the deviations
obtained from the long-term data (22 years) for Al-
buquerque, Madison, and New York using eqn (6) is
less than those reported by Graham[4] for Toronto.
Swift Current, and Vancouver using eqn (7). as seen
in Fig. 1. In addition, eqn (7) does not always return
the correct K, value. For example, in Madison using a
value of K, = 0.50 in eqn (7), the value of K, obtained
from the hourly. k,,,, values is 0.46 on January 15:0.50
on March 15;.and 0.53 on June 15. The K, values
obtained from eqn (6), however, agree with the input
K, values to £ 0.005.

Autocorrelation refers to the dependence of the
current value of a meteorological variable on earlier
values. It is generally most useful to eliminate deter-
ministic trends in the data set before attempting to
calculate autocorrelation values, resulting in a “de-
trended” series. Estimates of the autocorrelation are
often computed from the following equation[31.32].
although this is not the only expression used in the
literature to estimate autocorrelation:
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Fig. 1. Average values of the deviations of &, from ki, grouped

by daily clearness index. k,, is calculated from eqn (6) for

Albuquerque, Madison, and New York; from eqn (7) for To-

ronto, Swift Current, and Vancouver. Data for Toronto. Swift
Current, and Vancouver is from [4].

where p indicates the lag. The autocorrelation of daily
total radiation has been investigated by various authors,
for example [ 3~9,18.33-35]. The referral to “daily total
radiation™ implies all of the related de-trended radia-
tion variables used by the different authors in the au-
tocorrelation estimations, for example, K, and Z, where
Z=[{K/K)~ 11/ ok, %, The lag one autocorrelation
of the annual series of daily total radiation (including
the related de-trended radiation variables) is generally
in the range of 0.15 t0 0.35{3,4.6-8.34,35 ] and shows
no systematic dependence on location or climate type.
Part of the variation in the estimates is due to the use
of different de-trended radiation variables. An average
value 0f 0.29 is reported by Graham [4] for the K, series:
Klein[35] suggests using an average value of 0.3. The
reported estimates of the lag one autocorrelation of the
monthly series of daily total radiation cover a wide
range: —0.16 to 0.55[4,5,9.35]. Again, part of this
variation is due to the different de-trended radiation
variables, but some of the variation is also due to dif-
ferent autocorrelation estimation methods. In addition,
the associated standard error of the monthly values
tends to be larger since the data set is smaller. It is
therefore difficult to draw any conclusions about the
lag one autocorrelation values of the monthly series.

Many of these authors[4,6-8,35] have concluded
that the autocorrelation in daily solar radiation can be
described by a first order autoregressive model. An au-
toregressive (AR) model[31] is simply a model in
which the present value of some variable, Y,, is re-
gressed on previous values:

Yi=¢i Yoy + Yz + - - + d0pYin+e. (9)

The order of the model indicates the number of pa-
rameters in the model. For example, for a first order
autoregressive model (AR1), N in eqn (9) equals I;
the single parameter of an ARI model, ¢,, is the lag.
one autocorrelation coefficient.

The diurnal variation of the hourly monthly-average
lemperatures, T, has a location and month indepen-
dent shape when standardized by subtracting the mean
and dividing by the amplitude. Erbs er @/.[36] dem-
onstrated that the average normalized diurnal tem-
perature variation can be represented by

(Ty — T)/4 = 0.4632 cos(¢* — 3.805)

+ 0.0984 cos(2:* — 0.360)

+ 0.0168 cos(3:* — 0.822)

+ 0.0138 cos(4:* — 3.513) (10)-
t¥ = 2x(t — 1)/24

where T is the monthly-average daily temperature and
¢ is the hour of the day defined such that r = 1 at
! a.m. and ¢ = 24 at midnight. The amplitude, 4, in

°C. while varying considerably with month and loca-
tion, was shown to be related to K,[36]:

A = 258K, - 5.21. (1)
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The distribution of the daily average temperature
about the monthly-average daily temperature exhibits
wide variations in the mean and standard deviation
for different months and locations. Although the dis-
tribution is not Gaussian, Erbs et a/.[ 36] showed that
when expressed in the terms of a normalized variable,
h. the cumulative distribution can be represented by
the following equation:

I
1 + exp(—3.3964)

Flcmp =

where

h=(T—T)(amVNn./24). (13)
Ineqn (13), N,, is the number of hours in the month
and o,, is the standard deviation of T about its long-
term average value; ¢, can be estimated as a function
of T'and o, the standard deviation of the 12 7s about
the yearly-average temperature[36]:

Om = 1.45 = 0.0290T + 0.06640,;. (14)

Erbs et al.[36] suggest that the expression for the
distribution (eqn (12)) is equally valid for the distri-
bution of the hourly temperatures about their hourly

monthly-average values if T, is substituted for T in .

eqn (13). The relation for 4,, can be used in the hourly
distribution since o, is approximately equal to the
standard deviation of the hourly temperatures{36].

3. “TYPICAL METEOROLOGICAL YEAR" DATA

“Typical Meteorological Years” of hourly weather
data (commonly known as TMY data) have been de-
veloped for many U.S. locations[19]. They consist of
12 typical months, where each month was selected from
23 years of recorded data as being representative of
the long term. Specifically, the three criteria used to
define ‘typical’ as stated in [19] are (i) distributions
should be “close to the long-term distributions™; (ii)
sequences of daily variables should be “in some sense
like the sequences often regiétered”; and (iii) cross-
correlations should be “like the correlation observed
in the meteorological data.” Since it is virtually im-
possible to find one month (e.g., one January) out of
the 23 (e.g., 23 Januarys) in which the above are all
satisfied exactly for all variables, the actual selection
process involved minimizing the difference from long-
term distributions, means, and daily persistence (au-
tocorrelation) of a set of 13 weather indices. of which
some indices were judged to be more important. As
such, the TMY data set is a compromise between using
a reduced set of weather data and accurately portraying
the statistics represented in long-term data. Although
TMY data are commonly used in simulations, no
published study of the accuracy of simulation results
obtained with these data was found.
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4. THE TWO TYPES OF WEATHER DATA
GENERATION SCHEMES

There are two different approaches to weather data
generation, The first, Type I, is to combine the existing
information concerning distributions. autocorrelations,
and possibly cross-correlations of the meteorological
variables into a format which is driven by a random
number generator and produces, over the long-term,
weather statistics which are indistinguishable from
those of recorded data. Various types of stochastic
models usually form the basis of these models. This is
the most common approach{2~15]. The disadvantage
of these models is that the generated data are subject
to the same variability as real data and consequently
simulations have to be run for long periods in order
to reproduce statistics apparent in long-term weather
records. From this synthetic data a year similar in con-
cept to a TMY year could be constructed, but as with
actual data, it is difficult to choose one year of data
which closely represents the statistics observed in the
long-term data. As an alternative, Gordon and
Reddy[9] recommend generating years of data until
one is generated in which the statistics are similar to
the long-term, and storing the random number seed.
While this approach may be plausible for generating
data for just one weather variable, when generating
four different variables, the number of generated years
required before one is found in which all of the statistics
match the long-term would increase considerably.

The second approach to weather generation, Type
IL. is to directly generate just one ‘typical’ year in which
all of the statistics match those of the long-term, in-
cluding short-term randomness. This is the approach
taken by Degelman[16,17]. This paper describes a
technique which uses parts of a Type I generator to
provide realistic short-term variation with the ultimate
goal of producing a Type II year.

5. GENERATION OF RADIATION DATA

Hourly radiation values are generated by a two-step
process. First, the radiation for each day of the month
is obtained from the daily clearness index distribution
and ordered according to a predeterminéd sequence
which maintains the approximate autocorrelation of
daily radiation. Second, for each day, a series of hourly
clearness index values is generated from a first-order
autoregressive model.

Daily K, values are obtained from the daily X, cu-
mulative distribution function. The cumulative distri-
bution function relates the cumulative fraction of oc-
currence, F, to K,. The cumulative fraction of occur-
rence specifies the fraction of time the K, variable will
be less than a specified value of K,. As an example, for
a 31-day month, there is a value of K, (call it «) cor-
responding to an F value of 57, meaning that over the
long-term, only 37 of the time will K, take on a value
less than «, that is, only 1 out of 31 days will have a
K, value less than «. The standard procedure for se-
lecting a value is to take the value of K, at the average
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of this F value (;L,) and the previous one (0), for ex-
ample, F = g5. The K, value corresponding to this F
value can then be found from the cumulative distri-
bution function. Similarly, one and only one X, value
will occur between the K, value associated with F
=_3—',- and F = # this is the K, value corresponding to
an average F value of &5. Continuing on in this manner.
31 K values can be generated. This method is easily
applied to a 30- or 28-day month.

While this technique provides the daily clearness
index values for a month, it does not specify the order
in which the K, values occur. They should not occur
in either ascending or descending order, yet neither
should they be ordered randomly. The lag one auto-
correlation is a measure of the appropriate order, and
as previously noted, is generally in the range of 0.15
to 0.35, an indication of weak positive correlation. The
approach used by Degelman[16,17] capitalizes on the
similarity (i.e., all weak positive) in autocorrelation at
different locations, and fixes the order in which the
daily K, values occur, yielding a series of clearness in-
dices for which the lag one autocorrelation is approx-
imately equal to the appropriate average value. Spe-
cifically, the integers | to 31 are assigned to the 31 X,
values obtained from the daily “source™ distribution
(the daily K, distribution ), with | corresponding to the
smallest K, value and 31 to the largest. The integers |
to 31 are then placed in an order such that when the
K, values corresponding to the numbers are placed in
that order, the approximate lag one autocorrelation is
reproduced. Figure 2 illustrates this process for a 5-
day month. Throughout the rest of this paper, the term
“sequence’ is used exclusively to refer to one of the
sequences listed in Table 1.

Modelling the annual series of daily total radiation
is the technique used by various authors[3,5,7,35].
Because the autocorrelation estimates obtained from
the annual series are more accurate, in addition to being

Table I. Sequences for ordering daily weather variables

Ky Rogn4s J4O2801E 19, 1R, 302,04, 9, 200 140238, 16, 21, 26,
15, 10,22, 87,5, 1,6, 29, 12,730, 30,27, 13, 15

Ky 045 < K, < 0.55 242710019, 18, 3,2, 4.9, 200 14, 23,8, 16, 21, 5,
22,10, 28,6, 5, 1. 26,29, 1217, 31, 33, 15,13, 25

K, K,z 0.55 2427, 41, 4,18, 3,2, 19,9, 35, 14, 23,8, 16, 21, 26,
CLI001S 1705, 006029, 12,07, 31, 20, 28, 13, 30
T : 20,29, 13,26, 31,30, 210 12, 14, 11,2, 1, 3,15, 25,9,

5.7.6,3,19, 8,10, 23, 22, 27. 16, 18, 28, 17. 24

. 7,16, 25, 10,

T 24,29, 14 20, 30,300 23,5, 82,11, 2,0
7.27,19.28

8.3.4.9, 18,6, 13,26, 20,22, 15, |

somewhat universal, the estimate of the lag one au-
tocorrelation of the annual series was chosen to be rep-
licated by the sequence. In particular, Graham’s rec-
ommended estimate of 0.29 was used as a target for
the data presented in this paper. If there is a significant
monthly variation in the autocorrelation structure, this
approach represents a simplification, and if the user’s
system is expected to be highly sensitive to the daily )
radiation autocorrelation, the user is cautioned that
this method may not be appropriate; the use of TMY
data under these conditions may also be inappropriate.
The autocorrelation values generated from Degel-

man’s sequence were slightly higher than those reported
above, ranging from 0.28 to 0.44, while also varying
as a function of K,. The variation is due to the different
shapes of the K, distribution curves. Using trial and
error, three sequences were developed for three ranges
of K, (see Table 1), such that the lag one autocorre-
lation for all values of X, is within the range of 0.15 to
0.35. The same sequences are always used for ordering
the daily K, values, however, the starting position within
the sequence is randomly determined. While'th'e re-
sulting series of K values is not the order in which real
days always occur, it is a possible order which preserves
the proper autocorrelation between successive days’.ﬁ

one day 9/10 -
one day 7710
F  oneday

5/10 -

one day

¥

one day /10— - [

Sequence :

Kt sequence : .6

.3 572
1,.16,.50,.71, .37

35

Fig. 2. Obtaining the daily K, values from the K, distribution according to a fixed sequence for a
5-day month.
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There is nothing special about the particular sequences
used: any others which vield the correct autocorrelation
could be substituted. Alternatively, if the user specifi-
cally knows the lag one daily autocorrelation for the
location of interest. by trial-and-error. a different se-
quence can easily be obtained which would yield that
value. If a different K, distribution (i.e., not the Liu
and Jordan distribution or any of the curve fits to it)
is used. such as for tropical climates, these sequences
should also be modified since the autocorrelation value
obtained from the sequences is sensitive to the distri-
bution shape. .

" Once the daily value of K, is known, the long-term
‘mean’ value of clearness index for each hour, &,,. is
estimated from eqn (6). Generated days in which the
hourly to daily radiation ratio is equal to the long-term
value are smooth and symmetric. Such behavior is not
typical and generated radiation values with this be-
havior can lead to significant errors in performance
estimates for some systems[37]. The goal is to generate
an average month, but the days within this month
should be realistic in the sense that the hourly radiation
values should display the same variability observed in
actual days. This suggests that a Type | generation
scheme should be used on an hourly basis. Graham[4]
developed a first order autoregressive model for repro-
ducing hourly k, values; a slight modification of this
model was used for the work reported here. Specifically,
the long-term average k, value for an hour, k,,. is es-
timated from a correlation (such as eqns (6) or (7));
the deviations of the k, values from the long-term av-
erage value are modeled stochastically. The model of
Graham[4] was selected for its generality, simplicity,
and accuracy, although the recent work of Gordon and

Reddy[10] has questioned the universality of this

model, particularly for non-temperate climates.

To employ a stochastic model, the series to be
modeled must be stationary (i.e., the probability struc-
ture must be the same for all time yand Gaussian. The
distribution of k, about k,, satisfies neither of these
requirements. The shape of the distribution is depen-
dent on both the hour of the day and the value of the
daily clearness index. For a particular value of K|, the
variance of the k, distribution will be larger for an hour
far from noon. Physical constraints require the variance
to be different for different daily K, values; for a day
with a high value of K|, every hour must be clear (and
closer to the long-term average value), whereas for a
mid-range value of K, some hours could be cloudy
and some could be clear. Since k, is bounded by 0 and
1, the distributions will be skewed to the left for low
k. values and skewed to the right for high &, values.
Modeling the &,’s therefore requires modeling a variable
whose probability structure changes each hour and
each day.

To eliminate this problem, Graham [4] transforms
the k, values through their cumulative distribution
function to a normally distributed variable, X, with
mean O and variance . This transformed variable can
then be represented by a first order autoregressive
model (eqn (9)). The parameter ¢; was found by Gra-
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ham to be a weak function of K. but not statistically
different from the mean value of 0.54. This value also
represents the lag one autocorrelation of the deviations
of k, from k,,,. Since as many as 50 values are needed
in a series for a reliable estimate of the lag one auto-
correlation{31]. and since the &, series is not contin-
uous (errors would be introduced by catenating each
day’s hourly series). a pooled estimate of the autocor-
relation was used by Graham[4] to estimate the lag
one autocorrelation:

days N~

z ‘E’ (i = MY — 1)
- =k ; 4
r= days N—1 ( 1.3)

Z Ty

i=2

where N indicates the number of hourly k&, values in a
day. Good agreement with Graham’s results was found
from an analysis of 22 vears of data from Albuquerque,
Madison, and New York[18].

To generate the k, values, each hour a X value is
obtained by randomly selecting a value for ¢, from a
Gaussian distribution and applying eqn (9) with N
equal to 1. X is transformed to the non-Gaussian k; by
equating the cumulative distribution functions. The
expression for the normal cumulative distribution with
a mean of 0 and variance of 1 is

1 x |
Foormar = 5 f exp('- :2‘ lz)dt
V2w V-

]

Both the mean and the shape of the cumulative dis-
tribution of the k, values are observed to be functions
of K, and hour[18]. This functional dependence can
be approximated with a single curve when normalized
by subtracting the mean and dividing by the standard

(16)

. deviation

1
1 + exp(—1.585k)

Fiy = (17)

where

h _(kl—klm)/(ak!)' . (18)

This analytic representation for the cumulative dis-
tribution function was developed from the Madison,
WI and Albuquerque, NM TMY data. While this data
is not totally independent of the long-term data, it rep-
resents only a small subset of the long-term data. This
expression was fit to the data using a nonlinear least-
squares regression routine; for the poorest fit, R?
dropped from 96% to 93% when the general coefficient
was substituted in place of the location-hour- K, spe-
cific coefficients. This expression is an approximation
only; a more detailed analysis of this distribution is
necessary, including examination at a wider range of
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climate types. &, is estimated from eqn (6), while gy,
is found from an expression developed by Graham[4]:

= 0.1557 sin[ &
G = U sin 0.93 .

Equation (19) was developed using Graham's expres-
sion for k., (eqn (7)). however, as shown in Fig. 3, it
was found to be adequate for representing the standard
deviation when £, is calculated from eqn (6). It also
has the advantage of being developed from independent
data. It should be noted that the distribution of &, about
Ky is different from many other k, distributions, for
example, it is not the same as the distribution of the
k, values about their monthly-average value at an hour.

Equating the cumulative distribution functions and
solving for k, yields

Since thé__series of k,’s is not continuous. a new series
of X’s must be generated each day (the last X on one
day should not be used as the X, for the first hour of

(19)

Okt 1

T — 1
[s3 "

ky =k —

=il

(20)

the next day). The mean value of X, zero, was used"

for the initial value of X,,. : .

When the hourly radiation values are summed, the
daily total of the generated radiation is not necessarily
equivalent to the original ‘target’ value. Over a month.
these discrepancies tend to average out, although it is
also possible to check each day’s total against its target
value and scale the hourly values (by multiplying them
by the ratio of the ‘target’ K, value to the generated X,
value) such that the ‘target’ K, value is matched exactly.
The effect of this correction on the diurnal variation
is insignificant; however, the hourly lag one autocor-
relation is affected. An additional disadvantage of this
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Fig. 3. Standard deviations of the deviations of k, from k,,

grouped by daily clearness index. k,, is calculated from eqn

(6) for Albugquerque, Madison, and New York; from eqn (7)

for Toronto, Swift Current, and Vancouver. Data for Toronto,
Swift Current, and Vancouver is from [4].

Table 2. Comparison of monthly means of daily clearness
index and daily average temperature for selected locations

Ky TCO
(Madison) (Albuguerque)

LT Gl ™Y LT Gl Gy TMY
Jan 0.44 047 0.44 1313 18 1.4
Feb 0.50 049 0.9 39 39 54 34
Mar 0.50 0.48 0.54 80 8.0 68 6.8
Apr 0.48 048 047 131 146 126
May 0.51 0.51 0.49 184 . 184 187 186
Jun 0.54 0.57 0.52 23.8 238 244 229
Jul 0.54 0.56 0.54 252 252 247 255
Aug 0.55 0.56 0.56 239 239 241 240
Sep 0.52 0.53 0.54 204 304 217 195
Oct 0.49 0.51 0.48 140 140 158 14.1
Nov 0.40 0.38 0.40 66 66 67 6.5
Dec 038 038 0.37 1.6 1.6 55 2.1
LT=Long-Term TMY=Typical Meteorological Year

G(c)=Corrected Generated Gluc)=Uncorrected Generated

correction is that the entire day’s hourly clearness index
values must be generated at the beginning of each day
and stored. This correction was not applied to the gen-
erated radiation data reported in this paper.

6. STATISTICAL COMPARISON OF RADIATION DATA

The statistics computed from the generated data
are compared to both the long-term and the TMYY data.
There are statistically significant discrepancies between
the generated and long-term data, mainly due to the
limitations of the correlations; the comparison of the
generated data statistics to the TMY statistics is made
to get a feeling for the magnitude of these discrepancies.
A comparison of simulation results using generated
and long-term data could be madei however, the in-
formation gained from such a comparison is not nec-
essarily useful since the particular characteristics of the
system would influence and confound the results. A
system could be chosen for which a particular discrep-
ancy would be significant in affecting the simulation
results; similarly a different system could be chosen
which is highly insensitive to the same discrepancy.
For example, a solar energy system having no storage
capacity is independent of the radiation autocorrela-
tion; a system which has some storage capacity and
meets a high percentage of the load is highly sensitive
to the autocorrelation. .

A sampling of the statistics calculated from the long-
term, TMY, and generated data for Albuquerque, NM,
Madison, WI, and New York, NY is shown in Tables
2 and 3. The maximum deviation of the generated

Table 3. Comparison of annual lag one autocorrelations of
daily clearness index and daily average temperature

K TCO
ALB MAD NYC ALB MAD NYC
Long Term 0.25 0.21 0.13 0.71 0.66 0.60
Generated (uc) 020 0.20 0.2! 0.50 0.50 0.50
Generated (c) - - - 0.50 0.50 0.50
™Y 0.21 021 011 073 0.62 0.50

ALB=Albuquerque MAD=Madison NYC=New York
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monthly-average K, values is only 0.03; that of the
TMY values is only 0.04. Monthly-average K, values
for Madison are listed in Table 2.

The annual lag one autocorrelation values of the
generated daily K, series are all approximately 0.2,
which is lower than the value of 0.29 that the sequence

(Table 1) was chosen to create (although for these lo-.

cations it actually provides better agreement with the
long-term than the corrected values). The reason that
the lag one autocorrelation differs from 0.29 is that the
‘target’ K, value for the day is not identical to the K,
value actually generated. This difference is not expected
to have a significant effect on simulation results since
the autocorrelation is weak; a simple fix for this prob-
lem would be to change the sequence so as to generate
a higher lag one autocorrelation value. This change
was not made for the results presented in this paper so
as to indicate the effect of the simulation process.
The average diurnal variations of the generated,
TMY, and long-term radiation data are comparable,
although the generated data is slightly better than the
TMY data at replicating the long-term diurnal varia-
tion. As an example, the average diurnal variations of

the generated, TMY, and long-term data for Madison,"

WI are shown in Fig. 4.

Examination of the RMS error associated with the
K, distributions revealed that in Madison the generated
distributions provide a slightly better approximation
to the long-term curves than the TMY data; in New
York, the opposite is true, while for Albuguerque the
TMY and generated data are equally able to reproduce
the long-term distribution. The discrepancies between
the generated and the long-term distributions are due
to the limitations of the Bendt e/ a/. model[24]. As
shown in Fig. 5, a worst case example is the August
distribution for New York; the long-term distribution
is noticeably different from the distribution obtained
from the generated data, while the TMY data in this
instance tendsto better replicate the shape of the long-
term curve. As shown in Fig. 6, February in Madison
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Fig. 4. Comparison of long-term, generated and TMY radia-
tion diurnal variations for Madison, WI.
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Fig. 3. Comparison of long-term, generated. and TMY daily
clearness index distributions for a month in which the Bendt
et al. correlation[24] differs from the long-term distribution.

is a month in which the opposite is true; the generated
distribution more closely approximates the long-term
distribution than does the TMY data.

7. GENERATION OF AMBIENT TEMPERATURE DATA

‘To generate ambient temperature values, Degel-
man[16,17] first selects the daily average and maxi-
mum temperatures from a normal distribution and
orders them according to predetermined 31-day se-
quences similar to the manner used for daily radiation

"data generation. The particular sequences used by De-

gelman are shown in Table 1. The hourly temperatures
are then obtained by fitting a cosine curve between the

“'maximums and minimums, This detérministic ap-

proach does not attempt to preserve the autocorrelation
structure of the hourly ambient temperatures or the
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Fig. 6. Comparison of long-term, generated, and TMY daily

clearness index distributions for a month in which the Bendt

et al. correlation[24] accurately reproduces the long-term
distribution.
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distribution and diurnal variation documented by Erbs
et al.[36]. Hollands et al.[ 38] studied the effect of ne-
glecting the random component in hourly temperature
data for various solar process heat systems. They found
that the error in solar fraction introduced by not in-
cluding the random component for these systems is
on the order of 1%: taking the ambient temperature
constant at its monthly-average value resulted in errors
of only as much as 5%. These results indicate that for
some systems, the extra complexities of including the
random component of the hourly ambient temperature
is unwarranted. However, there may be systems for
which its inclusion is important. The following model
generates an hourly ambient temperature series with
the random component included.

- A logical extension of the method for generating
the hourly k, values would be to generate the hourly
ambient temperatures from the daily averages in a
similar manner. However, unlike the hourly clearness
index series, the ambient temperature series is contin-
uous. Once the daily average is fixed, it is difficult to
generate hourly values stochastically without intro-
ducing discontinuities between the last hour of one
day and the first hour of the next day.

An alternative to predetermining the daily values
and ordering them with a 31-day sequence is to pre-
determine the 24 hourly monthly-average temperatures
from the diurnal temperature variation relation (eqn
(10)). The hourly temperatures can then be generated
by a stochastic model, again by generating a Gaussian
random variable and transforming it to a temperature
value through the cumulative distribution function.
The diurnal variation is maintained through the dif-
ferent mean value of the distribution used for each
hour of the day.

First, 24 hourly monthly-average temperatures are
estimated from eqn ( 10). T, the monthly-average daily
temperature, is known, and the amplitude, 4, is esti-
mated from eqn (11).

Each hour, a new X value is generated according to
a second order autoregressive model (AR2), i.e., eqn
(9) with N equal to 2. The AR2 model was found to
be adequate based on analysis of the autocorrelation
structure and model residuals[18] of TMY data for
Albuquerque NM, Madison W1, and Miami FL. Hittle
and Pedersen[!1] also found an AR2 model to be ap-
propriate for modeling hourly ambient temperature.
¢1 and ¢, were estimated using a linear least-squares
regression routine, and were found to vary from month
to month and location to location with no apparent
pattern; it was believed that they were to an extent
compensating for each other. The increase in the re-
sidual sum of squares from using a single set of coef-
ficients as opposed to the location and month specific
coefficients is small; the residual standard deviation
increased less than 1°C when values of ¢, = 1.178 and
¢2 = —0.202 were used for all months and loca-
tions[18].

The generated X value is transformed to an hourly
temperature by equating the cumulative distribution
functions of X (eqn (16)) and hourly ambient tem-

perature. The cumulative distribution function of the
hourly ambient temperature is given by eqn (12).
where for this application. T is substituted for T in
eqn (13). The shape of the distribution is the same
throughout the month. but the mean is dependent
upon the hour of the day. Solving for the hourly tem-
perature. T, gives

T=7T- o, YN/24
3.396

o= T3]

The stochastic method just described does not
guarantee that the generated monthly-average daily
temperature is as originally specified. This discrepancy
can be eliminated by comparing the generated
monthly-average to the long-term average and adding
the difference to each hourly temperature. Again, a
disadvantage associated with this correction is that the
temperature values must be generated and stored; in
this case, the entire month’s hourly values must be
stored. This correction was applied to the generated
temperature data reported in this paper.

X In -1]. @

8. STATISTICAL COMPARISON OF
AMBIENT TEMPERATURE DATA

The monthly-average ambient temperatures for the
generated data and the long-term data are identical
when the generated values are adjusted; the TMY
monthly-average values differ by as much as 1.7°C
and the uncorrected generated values by as much as
4°C. The monthly-average temperatures for Albu-
querque are listed in Table 2. The generated daily au-
tocorrelations are low; instead of yielding values of
about 0.6 or 0.7, the generated values have a mean of
0.5 (Table 3). This indicates that there is a weakness
in the AR2 hourly temperature model, The following
statistics are for the corrected series of ambient tem-
perature values.

Examination of the RMS error associated with the
monthly-average hourly diurnal variation of ambient
temperature indicates that the TMY data is often better
than the generated data at reproducing the long-term
diurnal variation, the reason being the accuracy of the
diurnal variation correlation (eqn (10)). As shown in
Fig. 7, a worst case example is the diurnal variation
for November in Albuquerque. For some .months,
however, the opposite is true, and the generated data
more accurately represent the long-term data, for ex-
ample March in Madison, as shown in Fig. 8.

The distributions of the daily-average ambient
temperatures about their monthly-average value again
indicate that the limitations of the generated data lie
in the correlation accuracy. As shown in Fig. 9, slight
discrepancies are apparent for some months, such as
August in Albuquerque. For many of the months,
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Fig. 7. Comparison of long-term, generated, and TMY

monthly-average ambient temperature diurnal variations for

a month in which the Erbs et al. correlation[36] differs from
the long-term diurnal variation.

however, the distribution replication is quite good, for
example November in Madison, as shown in Fig. 10.
Again, substitution of a more accurate expression for
the temperature distribution will improve results, and
should be done whenever available.

-9, COMMEN;fS ON THE GENERATION OF
HUMIDITY AND WINDSPEED DATA

Models for.generating hourly relative humidity and
windspeed were also developed by Degelman[16,17].

" Analysis[ 18] has indicated a need for improvement of
both models. In particular, the morthly-average diur-
nal variations and the monthly distributions of daily
average values are significantly different from the long-
term diurnal variations and distributions for both rel-
“* ative humidity and windspeed. The methods presented
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Fig. 8. Comparison of long-term, generated, and TMY

monthly-average ambient temperature diurnal variations for
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“ reproduces the long-term diurnal variation.
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average ambient temperature distributions for a month in
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term distribution.

in this paper for the synthetic generation of radiation
and/or temperature could easily be extended. Corre-
lations for the diurnal variation and distribution of
relative humidity are presented by Erbs er al.[39]. Sto-
chastic models for windspeed are available, for ex-
ample[13-15].

10. CONCLUSIONS

Models for generating hourly series of radiation and
ambient temperature values have been presented. The
aim of these particular models is to replicate the sta-
tistics of long-term data with just one year of generated
data, similar to the concept of a ““Typical Meteorolog-
ical Year”[19], and ultimately to reproduce long-term
simulation results with one year’s simulation,

The statistics presented (means, distributions,
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the long-term distribution.
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diurnal variations and autocorrelations) indicate that
the accuracy of the generated data in reproducing the
statistics is on a par with that of the TMY data. Most
of the current discrepancies are due to the limitations
of the existing correlations: by improving these cor-
relations. the accuracy of the generated data can be
increased. :

The main emphasis of this paper is on the meth- '

odology used to produce a Type Il year of generated
data. The weakness in this type of weather data gen-
erator is its inability to reproduce weather character-
istics that are not classified in a location-independent
form. For example, it is not capable of reproducing
location-specific peculiarities such as morning fog.
Cross-correlations, which vary from location to loca-
tion and month to month. are also not directly mod-
eled.

This approach to weather data generation. offers
many advant'?'ges: simulations run with generated data
for one year periods will yield results quite similar to
those which would be obtained from simulations driven
by many years of recorded (or Type [ synthetic) data
but will require significantly less computation. Only
limited meteorological information will be needed as
inputs to synthesize data, so simulations will be able
to be run in many more locations than presently pos-
sible; Finally, the inconvenience of handling large
amounts of weather data will be avoided. However,
further verification to a wider range of climate types
is necessary before general universality can be claimed.

NOMENCLATURE

A long-term monthly average amplitude of ambient
temperature, °C

cumulative distribution function of the hourly clear-
ness index

cumulative distribution function of a normally, dis-
tributed variable

cumulative distribution function of hourly ambient
temperature

daily global solar radiation on a horizontal surface
daily extraterrestrial global solar radiation on a hor-
izontal surface (see [22])

I hourly global solar radiation on a horizontal surface
"I, hourly global extraterrestrial solar radiation ona hor-
izontal surface (see [22])
monthly-average hourly total radiation at a particular
hour
long-term average value of hourly total radiation for
a given location, day,.hour, and daily total radiation
value
k, hourly clearness index: the ratio of hourly global ra-
diation on a horizontal surface to hourly extraterres-
trial radiation, 7//,
long-term average value of the hourly clearness index
for a particular daily clearness index. sunset hour angle
and hour angle
daily clearness index; ratio of daily global solar ra-
diation on a horizontal surface to daily extraterrestrial
radiation, H/H,
monthly average clearness index; ratio of monthly-
average global solar radiation on-a horizontal surface
to monthly-average daily extraterrestrial radiation, H/
H,
number of hours in the month
p indicates the lag in an autocorrelation computation

~
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keim

K

o
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r, ratio of hourly global solar, radiation on a horizontal
- surface to daily global radiation on a horizontal sur-
face. I/H :

time (hours)

hourly ambient temperature

monthly-average daily ambient temperature
monthly-average ambient temperature ata particular
hour

normally distributed stochastic variable with a mean
of 0 and a variance of |

¢ normally distributed random disturbance with mean

of 0 and variance of ¢

¢ coefficient in autoregressive stochastic model
" p autocorrelation coefficient. subscript indicates lag
¢? variance of the normaily distributed random distur-
bance ¢ ] i
standard deviation of hourly clearness indices (k)
about their long-term average value (k)
standard deviation of a month's daily average ambient
temperature about the long-term average value for
that month
standard deviation of a month's average ambient
temperature at a particular hour about the long-term
average value for that month at that particular hour
standard deviation of the 12 monthly-average daily
ambient terperatures about the yearly average daily
. temperature '

w hour angle, in degrees

sunset hour angle, in degrees (see [22])
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