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ABSTRACT

Geothermal (ground-source) hear pumps (GHPs) are an
efficient alternative to conventional methods of conditioning
buildings. However, GHP systems can have relatively high
installation costs because of the ground hear exchanger.
Proper sizing of the exchanger is critical 1o performance. Ver-
tical U-tube heat exchangers are commonly used as the
ground heat exchanger, but the design and determination of
the operating performance is difficult because of the unique
heat rransfer situation. This paper proposes a U-tube heat
exchanger model based on finite-difference methods that can
be used in svstem design and annual performance simulations.

INTRODUCTION

Ground-source or geothermal heat pumps use the ground as
a heat sink or source. The temperature of the ground becomes
relatively constant with depth and is closer than the ambient air
to the temperature desired for human comfort. This nearly
constant temperature results in a high level of heat pump perfor-
mance even in extreme climates. Many public utilities and
energy service companies (both independent and utility affili-
ates) endorse the use of geothermal heat pumps and are currently
active in persuading the heating, ventilating, and air-condition-
ing (HVAC) industry and customers to mcrease the number of
units installed.

Ground-source heat pump systems often employ a closed-
loop ground-coupled heat exchanger consisting of either vertical
or horizontal tubes. Vertical U-tube heat exchangers can be
expensive but are often used instead of horizontal units because
they are require less surface area. The U-tube is usually a plastic
tube %-in. to 1% in. (19 to 31.7 mm) in diameter with a U-bend
in the middle that reverses the direction of fluid flow, as shown
in Figure 1. The U-tube is inserted in a vertical borehole in the
ground, and the borehole is filled with backfill or grout. The heat
exchange fluid travels through the tubes and exchanges heat with
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the ground. It is difficult to accurately represent the unique heat
transfer conditions of this configuration, and many models (e.g.,
Muraya 1995) have been created to simulate U-tube operation.
In the past, numerical models have required a significant amount
of computer runtime, and, consequently, most oftoday’s models
still rely on analytical methods referred to as the “line source
theory” (Ingersoll eral. 1954) and the “cylindrical source theory”
(Carslaw and Jaeger 1946).

This paper proposes a finite-difference mode! for the simu-
lation of a vertical U-tube ground heat exchanger that can
enhance existing design tools by providing a comparative solu-
tion. The heat exchanger is modeled using a finite-difference
approach to the three-dimensional transient conductive heat
transfer in the ground. The program allows the user to change the
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Figure 1 GHP with two vertical U-tube hear exchangers
in parallel.
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borehole depth. bore diameter. pipe diameter, simulation dura-
tion, fluid flow rate, as well as the properties and temperature of
the ground, grout, and inlet fluid. The soil properties are assumed
to be constant over the period of the simulation. Results obtained
from the simulations are compared with solutions from other
numerical models.

MODEL DEVELOPMENT

The thermal system of a U-tube heat exchanger consists of
the heat transfer fluid, U-tubes, borehole grout, and the surround-
ing ground formation. The volume of ground that is affected by
the U-tube exchanger is referred to as the ground storage
- volume. For modeling purposes, the ground storage volume can
be considered a cylinder with a height equal to the depth of the
borehole. The radius of the cylinder is large enough to ensure that
the soil at the edge is not significantly affected by the U-tubes at
its center; this is referred to as the farfield radius. The tempera-
ture of the ground at the farfield radius is a function of depth
determined using the relationship of Kusuda and Archenbach
(1965). :

The cylinder is divided axially into sections, with each
section representing the ground at a specific depth, as shown in
Figure 2. The heat transfer is symmetrical about a vertical plane
passing through the center of the bes. Consequently, it is only
necessary-to model half of the ground storage volume and its
associated tubes, fluid, and grout. The model developed allows
heat transfer in the ground to occur radially and circumferen-
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Figure 2 Combination of cylindrical grids to provide a
three-dimensional model of a U-tube.

tially, but not axially. The assumption of no axial conduction is
Justified because of the large distances between axial nodes rela-
tive to the temperature difference. A two-dimensional cylindri-
cal grid represents the fluid, tubes, grout, and soil at one axial
section. The reason behind this choice of grid geometry is to
create a circular grid outside the borehole that allows the nodal
spacing to increase in the radial direction, which minimizes the
total number of nodes required.

It is difficult to create a general finite-difference formula-
tion for the two tubes that are encased in grout and buried in the
ground. For simplicity in modeling, the circular tubes are
approximated as noncircular sections, as shown in Figure 3. The
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Figure 3 Cylindrical finite-difference grid used to calculate the heat transfer at one depth. For bpical configurations.

m =1 = 3 as shown.
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node positions are represented by the variables / in the radial
direction. ;j in the azimuth direction, = in the vertical direction,
and k in time. The variables » and m are integers and their impor-
tance is explained later (the values of m and » are 3 in Figure 3).
For the results presented in this paper and as shown in Figure 3,
the radial position of the tubes is at the edge of the borehole (i =
m). However, the model allows the tubes to be placed at other
radial positions and is only restricted in that the spacing between
the centers of the tubes must be greater than three diameters. The
cylindrical grids are then used at each axial section to create the
three-dimensional model shown in Figure 2. The fluid enters at
the surface (z = 1), travels through to the bottom of the grid (z =
L), back up the return tube, and exits again at the top (z=1).

Figure 4 shows the resistance network for the soil and the
grout nodes. The special nodes atj =+ 1 and the nodes adjacent
to the U-tube are discussed later. The resistance between nodes
in the soil in the radial direction is given by

ln(w)

r{i) (1

RUD = a7

and the resistance between the nodes in the soil in the circum-
ferential direction is given by

iy o A0-r()
R(,j+1) k_y'AZ'(rm(i)_rm(i-I)). (2)

The resistance equations for the grout material are identical
to those for the soil, with the soil conductivity () replaced with
the grout conductivity (kg). Equation 3 is used to calculate the
resistance between the nodes at the grout-to-soil interface, where
1, is the radius halfivay between the nodes:

0

Figure 4  Resistance nerwork for cylindrical mesh.
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R(m.j) = Rg—Rx (3)
where

ln (rl)l(m ))
r(m)

R = com———
& kg-Ae-'_\Z

(3a)

and

n w\
R = rm(m) / 3b
$ Tk, A8-AZ (3b)

An explicit (Euler) finite-difference formulation is used to
represent the energy balance on a soil node, as given by

(pcl’(i))x(ﬂi’ jook+= 1) =T, j. = k)

Aty
S TU=1 5= R =T /. = k)
R(i-1.))
+(T(i+l.i.:.k)—T(i./'.:.k)) (4)
R(i.])
ATl =12 ) = T(i 2. B))
LT+ 12 B) = T( 2 B)
R(i,j+1) '

Consistent with the development of the Lund model (Hell-
strom 1991), the capacitance of the tube wall and grout is
neglected. The capacitance of these elements is small relative to
that of the ground and inclusion of these capacitances would
require very small time steps. The thermal energy change of the
grout over a year is on the order of 0.5% of the total heat flow,
and thus the wall and grout capacitances are not significant in
annual simulations. However. neglecting the pipe wall and grout
capacitances might affect the short time response and could be
readily included. The grout node temperawres are calculated
using Equation 3.

0= Mizlj=®)-Tlijzk+1)

R(i-1,))
NIGANS-N LY (YY)
D ©)
Sl L= B =T = k)
R(i,j+1)
ST =12 R~ T(ij. = k)
R(ij-1) '

The radial spacing, AR. and the angular spacing, A8, are
chosen such that the perimeter of the circular pipes and the cylin-
drical grid sections that represent the pipes are equal. Since A8
is a function of the tube size. it will not necessarily be an integer
divisor of 180 degrees. To account for this, the angular spacing
between nodes is taken to be A6 except atj = n+ |, where the
angular separation is (AB/2 +~ A6,,,+2). Equations | and 3 are
then modified by replacing A@ with A8,,,,. Equation 2 requires
the replacement of A@ with (AB:2 — AB,,,,2), and Equation 4 is -
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Figure 5 Resistance nerwork of noncircular tubes.

modified by calculating the volume /(i) with A8, instead of
AB. The nodes along the adiabatic boundary (j= 1 and j = 2n +
1) use A spacing but are only halfthe volume of the other nodes.
As indicated. the pipe tubes in the finite-difference mesh are
not circular but are approximated by noncircular sections in the
grid. The fluid-to-ground thermal resistance is calculated with
three combined resistances, R(m—1,1), R(m,1), and R(m.2), as
shown in Figure 5. Each combined resistance consists of the
resistance from the fluid to the tube wall, the tube resistance. and
the resistance of the soil or grout. Equations 6 through 8 are used
to determine R(m—1.1), R(m,1). and R(m,2). Since AR and A8
are calculated so that the inside perimeters of the noncircular and
circular pipe tubes are equal, the cross-sectional (flow) areas are
not equal. Using the flow area calculated with the noncircular
grid would produce a velocity different from the actual velocity.
In the model, the fluid velocity and transit time for the noncir-
cular tube are set to be the same as for the actual circular wbe.

R(m=1,1) = Rm=1, 1)~ Rlm=1,1),+ R(m~ 1, 1), (6)

R(m -1, l)f ._.___]_.._.__. (6&)
leZ-——rm(m 1)

Rim=1.1), = In(r, (m-1V/(r, (m-1)-38)) (6b)
-‘e)k AZ

R(m-1. ])g ln((rm - ])‘61)/"(”’)) (6C)
39)/\ AZ

R(m,1) = R(m, D+ Rim, 1),+ R(m, 1), (7

Rim. 1)y = —d— (72)
hAZAve/ - lm)

R(m; 1), = In(z,,(m) (r,(m)+3)) (7b)

(¥ kAZ

In((r(m~1)-3,)/r,(m))

R(m, 1), = 7

(m, 1), .é_@)k . (7¢)
\72
R(m,2) = R(m,2);= R(m.2), * R(m, 2), (8)
- I

R(m, 2), = RAZ(r(m)~r(m = 1) (8a)

R(m,2), = 5 (8b)
! kAZ(r, (m)—r,(m—1))
(r(m)(éﬁ\: —5)
R(m,2), = (8¢)

/chZ(rm(m) —r,(m=1))

The temperature of the node in the center of the mesh (i =
1) is determined from the resistances berween the center node
and its adjacent nodes as determined from Equations 9 and 10.
Using these resistances, an energy balance on the center node
will result in a central node temperature that is equal to the aver-
age temperature of its surrounding nodes.

L rhalf T(rm( l) rlzval/) (9)
2N
R(1,j) = o (10)

L AB-AZ

The equations for the heat wansfer from the tubes 1o the
ground are determined from an energy balance on the fluid. For
a fluid flowing downward through tubes located at positions
given by indices m and j, the energy balance is expressed in
finite-difference form by Equations 11 and 12:

(ch) (Tm j,z. k=D ~T(m. . = k))
Al (n
= mc(T(m, j, == 1, k)~ T(m,j.z k)) - Qo

where the axial position is indicated by the index z and time by
the index 4.

0. = T(m j =k =T(m=1.j.=. k)

o R(m—1,1)
+T(m./'.:.k)~7'(m+1./'.:./:3 ' (12)
R(m. 1)
ym iz R ~Tim. j+1.2.4)
R(m.2)

Equations 1 through 12 have been combined into a ransient
model for the ground-source hear exchanger. The time required
to perform calculations is reduced by minimizing the number of
nodes and splitting the system into two time domains.

The number of nodes in the system is dependent on the
nodal spacing. The number of nodes in the circumferential and
axial directions depends on the svstem geometry. Currently. the
distance between axial nodes is 10 fi (3 m). but this distance
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could be increased or decreased depending on the level of accu-
racy desired. The radial spacing for the tbes and the nodes close
to the tbes depends on the U-tube inner diameter. The node
spacing is chosen to be small close to the tubes because the
temperature gradients are large. As the radial distance from the
tubes increases, the temperature gradients decrease, making it
possible to increase the radial spacing without loss in accuracy.

Two time steps are used, one for the fluid transport (Az;) and
one forthe heat transfer to the ground (At-). The system was split
into these two domains because the critical time step for the soil
is often an order of magnitude greater than the critical time step
for the fluid and allows for much larger time steps. The maxi-
mum value of Az, is given by the time it takes the fluid to travel
through one axial section:

At s;_._&..zl.. (13)
¢
The maximum value of At, is found for each node by dividing
the sum of the thermal capacity of the node by the sum of its
surrounding thermal resistances. The maximum value of As
is the smallest value of these critical time steps:
(14)

. L Mass;c;
Ary = minimum(At;) = MINIMUM  m——

\S1/R,

Using two time steps decreased the simulation time by about
80% over simulations in which the time steps were the same
for both fluid and ground.

For the U-tube geometry specified in Table 1 the number of
nodes radially, circumferentially, and axially were 17, 7, and 20,
respectively, and the time steps for the fluid and ground were 20
seconds and 3 minutes, respectively. The model was able to
complete an annual simulation in approximately half an hour on
a 166-Mhz computer.

TABLE 1
Single-Tube Finite-Difference Comparison

Fluid Inlet Temp.  100°F (37.7°C) | p, 131 b/
Farfield Radius 10 ft (3m) ] Cg 0.2 Buw/ibm-°F
Farfield Temperawre O°F (—17.7°C) | k,  0.75 Bwhft°F
Inner Tube Diameter 1.5 in. (3.8 cm) | Depth 200 ft (60.9 m) *
o 1012 Bu/lbmF| k., 0.226 Buvh-ft°F:
k, 0.75 Btwh-ft°F | Flow Sepm
Rate §

VALIDATION OF THE MODEL

The model was first verified by comparing results with a
finite-difference model of a single circular tube. The cylindrical
grid shown in Figure 3 was altered to allow calculation of the
hear transfer from a single-tube heat exchanger. The node that
was originally used as the return tube of the U-tube was repro-
grammed to be ground material. Therefore, the model would
represent a single tube slightly off center (4 in. [10.1 cm] from
the center of the grid). Soil and fluid properties were taken from
the literature as typical values for heat pump applications. The
grout properties were set equal to those of the surrounding
ground for the validation tests. The model was run with the
conditions shown in Table 1. For comparison, the steady-state
solution was also calculated using heat exchanger effectiveness
NTU relations (Incropera and DeWitt 1990). A large value of
fluid-specific heat (10'?) was used to maintain a constant fluid
temperature with depth. ;

The results of these simulations are shown in Figure 6 along
with the steady-state solution obtained analytically. The hear
transfer from the different models is plotted as a function of time.
It can be seen that the results for the noncircular tube (labeled as

geometry factor = 1) are below the
circular rube solution by about 5%. The
reason for this difference was deter-
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Noa-Circular Tube (Geometry Factor = 0.5)
/ /-— Circular Tube

mined to be due to the effect of the
different shapes of the tubes on the heat
ransfer. The thermal resistances near
the noncircular wbe are significantly
different from those near the circular
- tube. Although the noncircular model
provides relatively good agreement, an

empirically determined geometric

10 -

Heat Transfer (Btw/hr 1093)

--------

- factor is used to improve the model.
The soil and grout components of
the fluid to ground resistances (Equa-
- tions 6c¢, 7c, and 8c) are multiplied by a
geometric factor to account for the
effect of the noncircular geometry

Time (hrs)

Figure 6 Comparison of a circular and a noncircular tube (0-100 hours).
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(Figure 3). The value of the factor was
determined so that the heat transfer for
the noncircular geometry gave the
same steady-state heat transfer as that
 foracircular wbe. The geomerric factor

80 100
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was applied to only the soil and grout components because their
thermal resistance is relatively more constant than the convec-
tion resistance (Equations 6a. 7a. and 8a) or the tube resistance
(Equations 6b, 7b. and 8b). This is important because, in order to
be useful, the geometric factor needs to be independent of the
configuration and material properties of the system. The geomet-
ric factor was first determined by matching the heat transfer from
the noncircular tube with that of a circular tube under the condi-
tions listed in Table 1. For this case the geometric factor should

“be 0.5. The simulation for a geometric factor of 0.5 is also shown
in Figure 6, and the computed heat transfer using this factor is
virtually identical to that for the circular tbe.

~ The steady-state temperature contours for the simulations
of the circular tubes and the noncircular tubes with the geometric
factor applied were also compared. As shown in Figure 7, there
is excellent agreement between the two models.

It is probable that the geometric factor is dependent on four
variables: AR, A®, k. and k,. After an appropriate geometric
factor was determined for the initial case, several more simula-
tions were run to estimate its dependency on these variables. It
was found that the geometric factor was mainly dependent on the
properties of the materials (k; and &,) and showed little effect of
the geometry of the system. The average value from simulations
for the conditions shown in Table 2 was determined to be 0.38.
Without the geometric factor. the differences in heat flow are
within 8%. Using the average geometric factor value of 0.38, the

TABLE 2
Values Used to Determine the Largest

and Smallest Geometric Factors
AB k| - &,

AR | .

Parameter

Small Value |0.033 f£]0.13 radians| 0.2 Biw/h-fi-°F |0.2 Buwh-ft-°F |

Large Value | 0.13 ft |0.52 radians| 1.5 Buw/h-ft-°F | 1.5 Buw/h-ft-°F:

heat flow from the noncircular tube nodes was within 3% of that
for the circular tube for all cases.

The accuracy of the noncircular ube model in simulating
the two-dimensional heat transfer from two tubes was evaluated.
The finite-difference model with noncircular ubes was run to
steady state under the conditions shown in Table 3. The fluid
temperatures at the ground surface (z = 1) were determined and
then used as constant-temperature boundarv conditions in an
established finite-element heat transfer program (FEHT, Klein
et al. 1997). The steady-state temperature distributions from
these two models were compared. The temperature contours of
the ground surrounding the U-tube were compared. As shown in
Figure 8, there is good agreement between the temperature
contours for the two cases.

The results from the finite-difference model were also
compared to those from the line source model created at a Swed-
ish university (Hellstrom 1991). The comparison is based on the
specifications given in Table 4. These conditions are similar to
those at Fort Polk, Louisiana, for which the performance has
been determined (Thornton et al. 1996).
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Figure 7 Comparison of one circular and one noncircular tube (2 f1).
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TABLE 3 The Swedish model determines the total heat mansfer from

Two-Tube Finite Element Comparison the U-tubes in two calculations. The first calculation determines

- the heat transfer to the ground near the tubes and is referred to as

Py I311b/ft” . Fluid Inlet Temp. 100°F the “local” process. The local problem is solved in two steps. The
(37.7°C) first step determines an effective fluid to borehole resistance and

Ce 0.2 Buw/bm-°F Farfield Radius 8 f1(2.4m) then applies heat flux step pulses to obtain an average borehole

0.75 Buw/h-fi-°F | Farfield Temperature 0°F (—17.7°C) temperature. A finite-difference mesh is then emploved beyond
: the borehole wall to calculate the heat transfer to the local storage
volume. The volume of ground considered in this local process

ki!
Kype  0.75 Btw/h-ft-°F | Inside Tube Diameter 1.3 in. (3.3 cm)

flow rate 1.5 gpm cr 0.998 B/ is specified by the user. The second calculation determines the
Ibm-°F heat rejected from the local ground volume fo the surrounding
k,  0.75 Buvh-ft°F ground. The volun.le of the ground surrounding the local ground
volume is determined by the model based on the ground heat
TABLE 4 exchanger configuration and the time of the simulation. The far -
Parameters Used to Compare edge of this volume is considered an adiabatic boundary.
with the Hellstrom (1991) Model The Swedish model enables the user to insulate the top and

side of the local storage volume, and this feature was utilized for

Ty 100°F 67.7°C)| Lshif 32. days the first comparison berween the two models. The size of the

Tmean  69°F (20.5°C) Ce 0.998 B/ local storage volume for both the Swedish and the finite-differ-

lbm-°F ence models was set to equal 31,673 ft° (896.8 m?) (a cylinder

Amplitude 17°F (—8.3°C) mug 2.07 Ibm/ft-h with a radius of approximately 7.1 feet {2.1 m] and a height of

K, .4 Buwh- ft°F e 0.353 B/ 200 feet [60.9 m]) and the edges of both boundaries were insu-
h-f1-°F lated.

The two models were run with the conditions shown in
- - Table 4, and comparisons were made between the fluid exit
Ay 200 lbm/ft> Borehole Depth 200 £t (609 m)|  temperature and the heat transferred to the ground. After a one-

g 0.2 Btu/lbm-°F | U-Tube Spacing 3in. (7.6 cm)

k, 1.4 Buwh-ft-°F | Inner Tube Diameter 1.11in.(2.7cm)| yearsimulation, the fluid exit temperature of the Swedish model

] _ . - - was 98.2°F (36.7°C) and the finite-difference model provided a

ks 0'2; Zﬁ'.logtu/ Outer Tube Diameter 1.5 in. (3.3 cm) temperature of 98.6°F (37°C). The finite-difference model

" showed that the U-tubes transferred 33.7 MBtu of heat to the

Pr 624 lom/ft” Flow Rate 1.5 gpm ground and the Swedish model provided slightly different
Geometry 0.38 answers, depending on how the calculation was performed. Ifthe
Factor heat transfer was determined by the temperature rise in the

P T T

P + @ @

P o

L

70F\
m/;r\
05 05 1 1.5 2

Distance From the Center of the Borehole (ft)
= == Non-Circular Tubes Circular Tubes

Figure 8 Comparison of two circular and two noncircular tubes (2 fi).
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ground. the model showed that 32.8 MBtu were ransferred to
the ground. If an energy balance on the fluid nodes was inte-
grated with time. the model provided an answer of 35.1 MBtu.
These values are different from the finite-difference model by
2.6% and 4.1%. respectively. The main reason for this difference
appears to be the difference in the manner that heat transfer from
the bottom of the local storage volume is calculated. The outlet
temperature of the fluid over time from the two models was in
excellent agreement (within 1°F [0.5°C]).

A second comparison between the two models was made
using the conditions shown in Table 4 with the insulation along
the side of both storage volumes removed to allow heat transfer
to the surrounding ground. The finite-difference model
employed a constant-temperature boundary at 20 feet (6 m) from
the U-tubes. while the Swedish model emploved the adiabatic
boundary as described previously. The results of this simulation

~ also provided nearly identical results, with the Swedish model
and the finite-difference modél showing fluid exit temperatures
of 90.8°F (32.6°C) and 90.5°F (32.5°C), respectively. The
agreement in the long-term response establishes confidence in
the current finite-difference model with noncircular mbes.

RESULTS AND CONCLUSION

This paper presented a finite-difference model that simu-
lates the.unique heat transfer conditions present in a U-tube heat
exchanger. A geometric factor was introduced 1o account for the
noncircular geometry used to represent the pipes in the borehole.
The model has been validated for simple conditions and can be
extended to include realistic conditions such as those for varying
ground properties with depth and interference from other bore-
holes. Improvements such as these will increase the usefulness
of the model to industry. The model was compared to an existing
model used to estimate the performance of ground-coupled heat
exchangers and showed good agreement.

The finite-difference approach is fundamental and provides
flexibility in modeling complex situations for which the line
source and cvlindrical source models are less applicable. The
accuracy and speed are dependent on the geometry of the system.
Annual simulations for rypical U-tube configurations can be
performed in about 30 minutes on a 166-Mhz computer.

NOMENCLATURE

c = specific heat

0 = thickness

Aty = time step for the soil nodes

Ay = time step for the fluid nodes

AR = radial distance between nodes

A8 = angular dimension of a node

AB,,; = angular dimension berween nodes

h = fluid-to-tube heat transfer coefficient

k = thermal conductivity of soil

m = radial position of the tubes and edge of grout
n = number of multiples of A8 contained in 90°

[+ ]

P = density

Qo = heat transfer from tubes

r = radius at node

- = radius halfway between nodes

R = resistance

rhay = radius between the center and second nodes
T = temperature

14 = volume

Vel = velocity

AZ = axial distance between nodes

Array Variables

i = radial position of the nodes

J = circumferential position of the nodes
k = time step

z = axial position of the nodes
Subscripts

I = fluid

g = grout

s = s0il

t = tube
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