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in desiccant dehumidifiers, embodied in the program DESSIM, has been proposed
as a conceptually and numerically simple analysis tool (Barlow, 1 982). A comparison
is made with a finite difference solution to determine the accuracy and limitations
of the pseudo-steady-state model. The comparison indicates that the pseudo-steady-
state model can produce accurate results of dehumidifier performance relative to

the finite difference solution when used carefully, although at greater computational
expense. Substitution of the finite difference solution into the overall DESSIM
program results in a potentially accurate and useful analysis tool.

1 Introduction

Steady progress in the development of high-performance
solid desiccant dehumidifiers has resulted in desiccant-based
air conditioning systems that are becoming competitive with
conventional vapor compression machines. Desiccant dehu-
midifer design and estimates of performance are often based
on analytical models. It is therefore important to establish
valid models for desiccant dehumidifiers.

A variety of models have been employed in the analysis,
development, and design of rotary solid desiccant dehumidi-
fiers. Equilibrium solutions to the governing wave equations
have been developed by Van den Bulck et al. (1985) and Epstein
et al. (1985). Maclaine-cross and Banks (1972) and Mathi-
prakasam and Lavan (1980) have proposed approximate an-
alytical solutions to the governing conservation and rate
equations. Finite difference approximations to the conserva-
tion and rate equations have proven useful for detailed analyses
and several solutions have been developed, for example, Pla-
Barby (1978), Holmberg (1979), Maclaine-cross (1974), and
Pesaran and Mills (1984). The solutions have been derived
from essentially the same set of partial differential equations.
These programs should therefore generate nearly identical re-
sults if carefully implemented.

Barlow (1982) has proposed a pseudo-steady-state model,
incorporated in the program DESSIM, which considers discrete
sections of the dehumidifier to act as simple steady-state heat
and mass exchangers. The program provides a flexible tool for
analyzing dehumidifier performance and has been used inten-
sively by some groups to study the effects of desiccant prop-
erties (Barlow and Collier, 1981; Collier et al., 1986; Collier,
1989), to estimate desiccant cooling system performance
(Schlepp and Barlow, 1984), and has been modified to model
the performance of a direct solar regenerated collector/de-
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humidifier (Schultz et al., 1987). Fair agreement of the model
with single-blow experimental data has been obtained (Schlepp
and Barlow, 1984).

The DESSIM model has met its goal as a tool to evaluate
different concepts in a quick and efficient manner. However,
the model is heuristic in nature and its validity has never been
fully established. The purpose of this paper is to examine the
validity of the pseudo-steady-state model by comparing it with
a model of a rotary counterflow desiccant dehumidifier that
is based on fundamental principles.

2 The Pseudo-Steady-State Model

The pseudo-steady-state (PSS) model considers a differential
angular slice of a dehumidifier wheel that is discretized along
the flow length. The model follows the slice in discrete time-
steps as it rotates from one air stream to the next. Rather than
obtaining a set of finite difference equations from the gov-
erning partial differential equations, each discrete control vol-
ume or node is considered as a simple steady-state counterflow
heat and mass exchanger, shown schematically in Fig. 1. A
summary of the DESSIM concept is presented here in non-
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Fig. 1 Schematic represantation of the heat and .
cesses occurring In a discrete section of a dehumld'!‘;resrs transfer pro
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. jonal formi further detail is contained in Schultz (1987).
dimers 1982) presents the original derivation in dimensional
Barlot’v his can also be found in Schuitz et al. (1987).
(ermsvlow first considers each node to be an isothermal coun-
%fw mass exchanger, in effect locally uncoupling the mass
o ¢ from the heat transfer. The driving force for mass
;s taken to be water vapor mass fraction,

Yo=Yi—= Ealyi—Vg) (D
where E, the counterflow effectiveness, is (Kays and London,
1984)

| —e-AI=0)
E= [ - Ce-A1-0) @
and the nodal parameters for mass transfer are given by
s Cem .M
A = NOE m= BT Ax
3)
~(1+W) aY ‘_(1+WE) (HWE) Q_[V_)
Im=\1+w yelr L+w 1+ W awe/r

where Ntu is a number of mass transfer units for the side of
the wheel under consideration, I is the ratio of the ‘‘mass flow
rate’” of dry desiccant to mass flow rate of dry air for that
side of the wheel, and g, is the moisture capacity ratio and is
analogous to the ratio of specific heats of the matrix and the
air for heat transfer. The water adsorbed (desorbed) is then
determined by a simple mass balance,

LA W
ﬁr Ax [} il

Second, an energy balance is performed on the matrix alone
assuming no heat transfer to the air to account for the heat
released by the adsorbed water. The resulting intermediate

Wo=W;— 4

T.=T+ (h/cu) (Wo— W) (5)

(6)

where the temperature dependence of the integral heat of wet-
ting term in the moist matrix enthalpy function has been in-
directly neglected due to an incorrect assumption made in the
derivation of equation (5). This is shown througha comparison
of equation (5) with equation (32) (developed later). This in-
troduces only very small errors in general.

Third, the heat transfer from the matrix to the air stream
is calculated considering the node to be a counterflow heat
exchanger,

Cy=Cpmt+ WoCuwr

to=t;—Ep(;=T,) (N

where equation (2) is used for E with the following parameters,
1 Af
o8 Ax

Ay=Le,NtusAx  Cy= op=cy/Csy (8)
where Le, is the nondimensional ratio of the local lumped
heat-transfer coefficient to the lumped mass-transfer coeffi-
cient. Collier et al. (1986), and Collier (1989) have chosen to
use the relations for parallel flow effectiveness. A final energy
balance then determines the ‘‘outlet’ matrix temperature at
the end of the time-step,

L,

U,,ﬁl" Ax

The outlet states of a node are calculated by one pass through
the above set of equations resulting in a potentially efficient
numerical procedure. Property evaluations are made at the
“initial”’ conditions that exist when the calculations are per-
formed. For comparison with the finite difference equations,
developed later, the set of pseudo-steady-state equations are -
rewritten below in which equation (5) has been substituted into
equations (7) and (9),

T,=T.+ (ti—15). )]

matrix temperature is given by

Qn
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Nomenclature

Yo =yl"Em(yi"')’E,')

specific heat (J/kg-°C)

local capacity rate ratio for a
node ()

counterflow effectiveness
factor (equation (2)) ()
lumped mass-transfer coeffi-
cient (kgu/m>-sec)

lumped heat-transfer coeffi-
cient (W/m?-sec)

specific enthalpy of moist air
(J/kgpa)

heat of sorption (J/kgw)
specific enthalpy of the
moist desiccant (J/kgpp)
integral heat of wetting (J/
kew)

finite difference effectiveness
factor (equation (29)) ()
overall Lewis number, ratio
of the lumped heat and mass
transfer coefficients ( ),

= yl/ Q,AC

number of mass transfer
units for the side of the
wheel under consideration
()= S-A/ my

temperature of moist air
O
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JE

temperature of desiccant ma-
trix (°C)

humidity ratio (kgu/kepa)
humidity ratio of air in equi-
libriurn with moist desiccant
(kgw/kgpa)

water content of dry desic-
cant (kgu/kgpp)
nondimensional axial length
coordinate relative to depth
of the wheel ()
nondimensional spacial step-
size ()

mass fraction of water in
moist air, w/(1 + w)

mass fraction of water in
moist air in equilibrium with
moist desiccant

mass fraction of water in
moist desiccant, W/7(1 + W)
fraction of total rotation pe-
riod occupied by side of the
wheel under consideration
)

ratio of flow rate of dry des-
iccant to flow rate of dry air
for side of the wheel under
consideration ( )

§ = nondimensional time coordi-
nate, t/T()
A8 = nondimensional time step-
size ()
A = nondimensional nodal-trans-
fer coefficient ( )
o = specific capacity ratio ( )
T = total rotational period (sec)-
Subscripts
A = moist air
DA = dry air
DD = dry desiccant
DM = dry matrix
ex = extrapolated state
h = heat transfer
i = inlet state--
L = large time step-size
m = mass transfer
M = moist matrix
o = outlet state
P = process period
R = regeneration period
S = small time step-size
W = water
WL = liquid water

intermediate state
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1 Ad

W,=W,;- EF'E(W°'W’) {an
t, =t~ E (t;i—T)) + Ex(h/e) (W, — W) (12)
' 1 Af
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T, =T+ {h/cn) (W, i) 78T Ax (t,—ty.  (13)

To determine the periodic steady-state solution of a dehu-
midifier, an initial profile of matrix states is assumed. Together
with the known inlet air condition, the outlet states from the
first node can be calculated using the above equations. The
air outlet state from that node becomes the inlet state to the
next node, etc. The matrix outlet state becomes the “inlet’’
state for that node at the next time-step, etc. The average air
outlet state for a whole period is the time-step-weighted average
of the air outlet states from the last node as it rotates through
the period. The periodic steady-state condition is reached when
the average air outlet state from one revolution is within a
small tolerance of the state from the previous revolution.

3 Modifications to the Pseudo-Steady-State (PSS)
Model

The PSS energy conservation equations are nonlinear in the
dependent variables and, therefore, equations (5) and (9) do
not exactly conserve energy. This situation is easily corrected
by replacing equations (5) and (9) with the thermodynamic
relations :

1
H, =H(Ti,u/,‘)"' 'B'f . (h(tiawo>—'h(tirwi))
Tt=T(Ht:Wa) (14)
1
H,=H,~ EI: . (h(to,w,,)—h(t,,wo))
Ta=T(HmWa)v (15)

respectively, where enthalpy is used as an intermediate depen-
dent variable and the corresponding temperatures are found
from the property relations. Implementation of this modifi-
cation will be referred to as the PSSe (energy conserving) model.

Local coupling of the heat and mass transfer can be intro-
duced by replacing equation (1) with

Yo=Yi—En(yi—ye(T,W)))
which can also be written as

1 d
Vo= Yi=En(Yi—ye) + EEm' ff)y(n—ﬂ) (16)

where yg has been expanded using a Taylor’s series and T is
taken to be the average of the inlet and outlet states. An
iterative procedure is now required to solve for the outlet states
at each node. A similar approach appears to have been taken
by Collier et al. (1986) in later verions of DESSIM.

4 Fundamental Heat and Mass Transfer Model

For heat and mass transfer processes between the air stream
and the matrix that are described by lumped transfer coeffi-
cients and where the heat and mass storage capacity of the air
is negligible relative to that of the matrix, the following set of
conservation and transfer rate equations can be derived (Ma-
claine-cross, 1974; Jurinak and Mitchell, 1984; Schultz, 1987),

iw

— =Ntus (1 +w)(wg—w) (an
ax

aw ow

_— — (18)
P +8r 7% 0
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To be compatible with the pseudo-steady-state model devel-
opment, the mass transfer coefficient is taken to be defined
for mass fraction as the driving potential. These equations are
nonlinear and coupled through the equilibrium relationship
for the air-water vapor-desiccant system,

W=W(Twg) H=H(T,W) h=h(tw). @2n

The description of the steady-state problem is completed by
specifying the inlet air states and periodic boundary conditions
on the matrix as it rotates.

Equation (17) can also be written on a wet-mass basis,

4 =Ntus (1-y) (¥e—y) (22)

X

and equation (22) can be combined with equation (18) on a

wet-mass basis to give

e __ 1 015) T

3  (l+wg)? aT/w 00
I

" pr el ."’ﬂ)
I+w owg/ T

23

«Ntus(y=ye)

where Y(7, yg) has been expanded in terms of T and yg.

A set of difference equations can be obtained from the partial
differential equations by expressing the inlet and outlet states
of a node as a Taylor’s series about the “‘center’’ of the node,
for example, _

2 2 3 3
ti=t_a_t..£+.a_t..é_'.x__.a._t.,éx_ (24)
ax 2 axt 8 ax? 48

where ¢ is the temperature at the center of the node. Subtraction
of equation (24) from a similar equation for ¢, gives a second-
order accurate estimate of the derivative at the center of the
node. A second-order accurate estimate of the state of the
center of the node is obtained by adding these same equations.
Substitution of these and similar results for the other dependent
variables into the partial differential equations results in the

following set of difference eéquations,

Yo =Xi— Km(yi"yE,')

L, L v
+ ZKm (1+WE)2 aT W(To—Ti) (25)
W—W—--—l—-—-—(w—w) 26
o i BF AX ] i ( )

1
t, =ti—Kp(ti=T)) + EKh(hs/CM)(Wa" W) @7
T, =T+ (A/cy) (Wo= W) ~ —— 46 (L,—t) (28)
O'hBF Ax ° !
where the ‘‘effectiveness”, K, is given by
A
K= e .

1+(A72)(1 +C) 29

This equation is identical in form to that obtained by Lam-
bertson (1954) in his finite difference analysis of rotary heat

exchangers. The appropriate parameters for mass and heat
transfer are
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A Ntu Ax Cp= 1,46 Um=(1+w5 :aw
l+w 080 Ax l+w m)r
(30)
1 Ad
Ap=LeNtuedx  Cy= U—hB_I: * Ae op=cCy/ey  (31)
c-—?—f—-,> =cpy+ We +aAH“' 32
w= 37, = Com wit o ) (32)

where the integral heat of wetting is correctly accounted for
in the moist matrix enthalpy function. Stability of the nu-
merical solution is maintained by choosing ax and A# such
that K is less than unity.

Equations (25)-(28) describe the heat and mass transfer pro-
cesses for a node and are of a form with which the PSS equa-
tions can be easily compared. Because equation (25) depends
on the temperature calculated in equation (28), an iterative
procedure is needed to find the solution. Convergence of var-
ious iteration schemes was found to be slow, resulting in long
computation times in determining the steady-state performance
of a rotary dehumidifier.

By choosing humidity ratio, w, rather than mass fraction,
y, as a dependent variable, Maclaine-cross (1974) arrived at
the following set of second-order difference equations in martrix
form,

di i “ : o .
ifferences are in the “'effectiveness’ relations. equation (2)

2?dl>=_guiz:ltitohn (2}?). that are used. and the absence of a factor
of 1/ ¢ third term of equation (12) as compared with
quation (27). Minor differen y

variations in t - dit ces also occur because of slight
Aand C (equatt\ieog:f(‘;\)m?;;s ?;fo"‘e effectiveness parameters.
us;d to evaluate prope‘rties“ Mg;:i{af?;('u))‘ and in the states
using equation (16) results in the <:orret<‘:cl)200l {.he PSS modei
and mass transfer, however, the other d'\ffe‘:‘p oo T et

Figure 2 presents a comparison of the PSeSn:fsdrem?m’ .
ference effectiveness relations as a function of n\ arrigué‘ The
finite difference and counterflow effectivenesses are ider{z he\
for C = 1. There is very little difference between the u;;:e
relationships at the same C for A < 1, although the deviation
of the parallel flow effectiveness is somewhat greater for C =
0. However, with the proper choice of sufficiently small space
and time-steps, the use of the counterflow or parallel flow
effectiveness in DESSIM should not lead to large errors.

As the space step Ax decreases, the node effectiveness also
decreases and so the difference between the node outlet and
inlet states becomes small. In equations (25) and (27), this
means that the last term goes to zero like K* as Ax goes o
zero, while the second term goes to z€ro like K. The last term
becomes negligible compared with the second term at suffi-
ciently small space-steps. Equations (10) and (12) then become
equivalent to equations (25) and (27), respectively. Therefore,

Through various matrix row operations, this system of equa-
tions is placed in upper triangular form and solved by back
substitution without need for iteration. Two passes are used,
however. In the first pass, properties are evaluated at the inlet
states and estimates of the outlet states are calculated. In the
second pass, properties are evaluated at the average of the inlet
and estimated outlet states and the outlet states are recalcu-
lated. This procedure is analogous to a second-order Runge-
Kutta method and maintains the second-order accuracy of the
difference scheme (Maclaine-cross, 1974). Because the water
conservation equation, equation (18), is linear, the finite dif-
ference scheme explicitly conserves water. Although the energy
conservation equation, equation (20), is nonlinear, the scheme
has been found to adequately conserve energy also. Equations
(33) have been shown to adequately represent actual dehu-
midifier performance given sufficient design information
(Schultz, 1987; Schultz and Mitchell, 1987).

The two sets of difference equations, equations (25)-(28)
and equations (33), predict nearly identical dehumidifier outlet
states when the same discretization is used (A¢ < = .0005 °C,
Aw < =.0003 g/kg) as should be expected. Equations (33)
represent a more efficient computational procedure (by up to
a factor of § over the iterative scheme) and are easily inserted
into the overall DESSIM program.

5 Comparison of Equations

A comparison of the PSS equations, equations (10)-(13),
and the finite difference equations, equations (25)-(28), shows
that the conservation equations are identical in form. A major
difference occurs in the PSS mass transfer equation, equation
(10), which lacks the temperature term that couples the heat
transfer to the mass transfer in equation (25). The other major
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the PSS concept and the finite difference solution converge as
the space discretization becomes small.

6 Comparison of Solutions

The dehumidifier performance predicted by the PSS and
finite difference formulations can be easily compared by im-
plementing the appropriate sets of equations in the DESSIM
framework. The formulations are referred to here as DES-PSS
(the pseudo-steady-state model), DES-PSSe (incorporating the
energy conserving modification), and DES-FD (the finite dif-
ference solution represented by equations (33)). The dehu-
midifier considered consists of regular density silica gel with
a zero heat capacity supporting matrix.

The results of the finite difference solution for different

1.5 = ey T
o Finite Duff.

3 Counterflow
a Parallel flow

E or K

Fig. 2 Comparison of the counterflow (E) and tinite ditterence (K) ef-
tactiveness relations
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Fig.3 Differences in process stream outlet states predicted by the PSS
model (energy consarving and nonconserving versions) and the finite

difference solution as a function of grid size. The finite difference so-
lution has been extrapolatqd to zero grid size. Ntu = 10.
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Fig. 4 Same as Fig. 3, with Nfu = 20

discretizations in which the ratio of Ax/A@ is maintained a
constant can be extrapolated to zero grid size because of the
second-order nature of the scheme (Maclaine-cross, 1974; Car-
nahan, et al., 1969). Using the extrapolated results as a basis,
Figs. 3 and 4 show the differences in the steady-state outlet
temperatures and humidity ratios predicted by the PSS and
finite difference solutions as a function of grid size. A silica
gel dehumidifier has been modeled at two levels of perform-
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Fig. 5 Process stream outiet state profiles as predicted by the PSS
model (energy conserving version) and the finite difference solution

Table 1 Description of silica gel dehumidifier modeled
Dehumidiﬁeﬂr description and operating parameters:

tp=30.0°C 1, =80.0°C

wp=14.0 g/kg wp=14.0 g/kg

Ntup=10, 20 Ntug/Ntup=1.0

[p=02 Fe/Tp=1.0

Le,=1.0 cony=921 J/kgpp-°C
Model parameters:

Aﬁs ) AoL
—c— =0.454 —_— =1,
AXBPFP Aos L 10

Extyagolated finite difference solution outlet states for the process
period:
Ntu=10: tp,=58.744°C
Ntu=20: tp,=60.707°C

Wpo=15.471 g/kg
wp,=4.823 g/kg

ance: moderate (Ntu = 10, equivalent to Ntu, = 5 in Kays
and London (1984) notation) and high (Ntu = 20 or Ntu, =
10). Further description of the dehumidifier is shown in Table
1. The small time-step size was chosen to approximately follow
the fast moving thermal wave in the process period; the larger
time-step size, when used, was based on the fastest portion of
the slower moving mass transfer wave (Maclaine-cross and
Banks, 1972). The determination of appropriate time-step sizes
is not currently an integral part of the DESSIM program and
was done separately here. Without the aid of the wave theory,
the choice of appropriate time-step sizes must be done by
numerical experimentation.

The behavior of the PSS solutions as the grid size becomes
small confirms that the PSS formulation does indeed converge
to the finite difference solution as discussed in Section 5. Errors
caused by the nonconservation of energy tend to be small.
However, the discretization errors tend to be larger for the
PSS model than for the finite difference solution, especially
when a large time-step is used. For small Ax where the effec-
tivenesses E and K are nearly equal, the absence of the tem-
perature term in the PSS mass transfer equation, equation
(25), is responsible for much of the error. Without this term,
the PSS model tends to overpredict the amount of water ad-
sorbed in the process period, resulting in a lower outlet hu-
midity ratio. Because more water is transferred, more
adsorption energy is released, resulting in a higher process
outlet temperature from the PSS equations. For large Ax, the
effectiveness E,, can be sufficiently less than K|, that the PSS
model underpredicts the amount of water adsorbed in the
process period, resulting in a larger outlet humidity ratio. In
addition, the heat transfer is also underpredicted, resulting in
a lower outlet temperature. Results for other inlet air states
show similar errors. However, the effect of other matrix ther-
mal and sorption properties has not been tested.

Figure 5 shows the process stream outlet temperature and
humidity profiles as a function of rotation angle. The PSSe
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ormulation predicts the proper outlet profiles in general. This
.« pecause errors passed from one space or time-step tO the
xsw tend to produce compensating errors. The PSS solutions

rédict an initial outlet state th'fu is greater ;han the regener-
ation inlet state. For large step sizes, this initial overpr;dxcnon
is significant and adversely af{ect§ the proﬁ}e for the rest of
the period. For large changes in time-step 51ze,‘t.h§ DESSIM

rocedure begins to shoyv some apparent instabilities. The fi-
nite difference scheme is not subject to these errors for the
range of grid sizes considered. In addition, a comparison of
the profiles inside the wheel reveals that the PSSe model errors
are even greater there than those shown in Fig. 5. These errors
are caused by the PSS model’s uncoupling of the mass transfer
from the heat transfer, i.e., by the absence of the temperature
term in equation (25).

Experimentally, the process stream outlet temperature and
humidity ratio can be determined to within +0.5°C and =.2
g/kg, respectively (Schultz, 1987). Therefore, the differences
between the PSS solution when done carefully (i.e., using small
space-steps and only one small time-step) and the finite dif-
ference solution appear not to be significant. However, the
use of small space and time-step results in a computationally
inefficient procedure, even though only one set of calculations
need be done at each node. Experience shows that the DES-
PSS model requires about 80 percent more computation time
than does the DES-FD model to achieve the same level of
precision.

7 Application of the Model to a Direct Solar-Regen-
erated Collector/Dehumidifier

Several researchers have proposed regenerating the desiccant
by direct exposure to solar radiation rather than relying on
convection heat transfer from a solar heated air stream. Schultz
et al., (1987) studied a desiccant-coated “belt’’ that rotates
through a solar collector where the regeneration energy is sup-
plied by direct absorption of solar radiation. To model this
device, the PSS formulation was modified to account for the
solar radiation gain by including an additional term in the
intermediate energy balance, equation (5),

T.=Ti+ (h(W,— W) + Q) /ey €2)

where
O, = (Frlra)l;— FRU, (T~ t=))A8T/(Mpp/A;) (33)

is the net solar energy gained by the node during the time-
step. This provided a simple straightforward means for a first
study of the collector/dehumidifier. This approach (with ad-
ditional effort) could also be inserted into the finite difference
solution.

During the regeneration period, the energy gain from the
solar radiation can be 2-5 times the magnitude of the energy
removed as water is desorbed from the matrix. This results in
changes in the matrix temperature for the time step that are
1-4 times that of the adiabatic case and are in the opposite
direction. The errors introduced in the PSS model by locally
uncoupling the mass transfer from the heat transfer will thus
be larger than in the adiabatic case. However, these errors
again produce compensating effects at the next step, so the
overall qualitative description provided by the model should
be satisfactory.

8 Conclusions

A comparison of the system of equations used in the pseudo-
steady-state (PSS) model with a set of finite difference equa-
tions has shown that the PSS model neglects the local coupling
of the heat and mass transfer processes that occur in a desiccant
dehumidifier. It appears that the greatest consequence of this
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is on the numerical stability of the computational scheme as
the resulting errors are sensitive to the sizes of the space and
time-steps used. By careful choice of space and time-step sizes,
accurate predictions of dehumidifier performance can be ob-
tained from the PSS model relative to a finite difference so-
lution; at greater computational expense, however.

The reasonable agreement shown between the PSS model
and the finite difference solution indicates that conclusions
drawn from past work using the PSS model are valid. However,
it is recommended that future research and development efforts
use 2 model with a more sound theoretical basis. This should
be especially true for detailed investigations of dehumidifier
design and performance and for situations, such as the col-
lector/dehumidifier, which depart from that of an adiabatic
wheel. The finite difference scheme presented here is a solution
to a particular set of partial differential equations which have
been widely used to describe desiccant dehumidifiers. Substi-
tution of equations (33) into the overall DESSIM program is
straightforward and results in a potentially accurate and useful
tool for the investigation of these devices.
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