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Table 1: Nomenclature of variables, along with a description, typical value (if applicable), and units 

(Choi & Okos, 1986). 

Nomenclature Description 
Typical Value 

(if Applicable) 
Units 

A Overall surface area 0.2 m2 

α Thermal diffusivity   m2/s 

c Specific heat   J/kg-K 

Δt Time step   s 

Δy Node spacing   m 

dU/dt Change in internal energy vs time   W 

ε Emissivity of aluminum 0.1   

F F term in Levy's model 0.704   

G G term in Levy's model 0.659   

h 
Local heat transfer coefficient between 

the surface and surrounding air 
31.9 W/m²-K 

ℎ̅  Average heat transfer coefficient 31.9 W/m2-K 

K Constant factor    
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√2 
k Thermal conductivity 0.02616 W/m-K 

kair Thermal conductivity of air 0.023 W/m-K 

kc Thermal conductivity of carbohydrates 0.187 W/m-K 

kf Thermal conductivity of fat 0.184 W/m-K 

kI Thermal conductivity (Parallel model) 0.216 W/m-K 

kice Thermal conductivity of ice 2.292 W/m-K 

kII Thermal conductivity (Levy's model) 0.687 W/m-K 

kIV Thermal conductivity (EMT theory) 0.387 W/m-K 

L Thickness of the product 0.016 m 

L or Lchar 
Characteristic length (distance from 

leading edge of plate) 
0.153 m 

Lw Latent heat of fusion of water 333.6 J/g 

mA milliamp transmitter output 4.3 mA 

μ Air viscosity 0.01839 centipoise 

Mj Molecular weight of solids (estimate) 50000 g/mol 

mV 
milliVolts produced by heat flux 

sensor 
2 mV 

Mw Molecular weight of water 18.02 g/mol 

N Number of nodes     

ν Air velocity measured by anemometer 5 m/s 

Nu Nusselt number 186 - 

Nu0 Nusselt number at zero-degree angle 207 - 

Nurr Nusselt number reduction ratio 0.9 - 

𝑞̇𝑐𝑜𝑛𝑣  Convection term   W 

 𝑞̇𝑓𝑙𝑢𝑥 Heat flux measured by sensor 1500 W/m2 

 𝑞̇𝐿𝑆 Conduction term, lower surface   W 

 𝑞̇𝑟𝑎𝑑 Radiation correction factor 23 W/m2 

 𝑞̇𝑈𝑆 Conduction term, upper surface   W 

ρ Density 1.189 kg/m3 

Re Reynolds number 49,250 - 

Rrad Radiation thermal resistance 7.8 K/W 

S 
Corrected heat flux sensor calibration 

coefficient in milliVolts 
0.0013 

mV-

m2/W 

Scalib 
Heat flux sensor calibration coefficient 

in microVolts 
1.27 µV-m2/W 

σ Stefan-Boltzmann constant 5.67 × 10⁻⁸ W/m²-K⁴ 
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T Temperature -10 °C (or K) 

t Time   s 

T0 Initial temperature vector  311 K 

T∞ Temperature of air inside spiral 286 K 

Tif,K  Initial freezing temperature  237.1 K 

Tini Initial temperature  311 K 

Ts 
Surface temperature of plate at the heat 

flux sensor  
308 K 

U Internal energy   J 

Vair Volume fraction of air 0.541   

Vc Volume fraction of carbohydrates 0.491   

Vfat Volume fraction of fat 0.039   

Vice Volume fraction of ice 0.424   

Voidf Void fraction 0.541   

Vw Volume fraction of water 0.047   

xbw “Bound water” (estimate) 0.035   

xj All solids other than water/ice and fat 0.625   

xtw Mass fraction of total water 0.346   

 

 

Abstract 

The global food industry relies heavily on spiral air blast freezers for frozen food production, a process 

that is both energy-intensive and environmentally impactful. This dissertation focuses on advancing the 

modeling and optimization of spiral air blast freezers to improve energy efficiency, reduce environmental 

impact, and enhance system performance. Despite their widespread use, significant research gaps remain 

including better modeling techniques, process understanding, and experimental validation. 

This research addresses these challenges by developing advanced computational and experimental 

techniques to evaluate and enhance freezer performance. Key contributions include the development of a 

one-dimensional thermal model incorporating temperature-dependent properties, the use of computational 

fluid dynamics (CFD) to establish velocity-dependent heat transfer coefficients, and the introduction of 
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optimization techniques to improve airflow management. Experimental validations were conducted using 

custom pseudo products in operational spiral freezers, providing benchmarks and ensuring model 

accuracy. 

Findings demonstrate the potential for significant energy savings and improved freezer modeling and 

performance through optimized airflow designs and the integration of practical engineering strategies. 

This work lays the foundation for spiral blast freezers that are not only more efficient but also aligned 

with global sustainability goals, offering actionable insights for researchers and industry professionals. 
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1 Introduction 

The global food industry relies heavily on refrigeration systems for frozen food production, making it 

a significant consumer of energy and contributor to greenhouse gas emissions. Spiral air blast freezers, 

central to these processes, are among the most energy-intensive components due to their reliance on high-

velocity airflow and ultra-low temperatures. This energy demand underscores the need for optimization to 

improve efficiency, reduce environmental impact, and enhance overall system performance. 

1.1 Motivations for Improving Low-Temperature Freezing Systems 

Spiral air blast freezers, although integral to food production, are energy-intensive, and prone to 

inefficiencies that may create bottlenecks, escalate costs, and increase waste. Despite their importance, 

advancements in the technology have been slow to develop, with many systems relying on excessive 

refrigeration and fan power instead of optimized designs. Research has been limited by oversimplified 

models and inadequate validation, leaving gaps in understanding airflow and heat transfer dynamics. This 

research addresses these challenges by proposing advanced thermal modeling techniques, detailed CFD 

modeling, and practical optimization techniques. 

1.1.1 Energy Intensity Concentration 

The global primary energy consumption reached approximately 634 EJ/year (601 quads/year) in 2022, 

with fossil fuels comprising 89% of the energy mix (EIA, 2022). The food and beverage sector 

contributes approximately 30% of global energy consumption and over 20% of greenhouse gas emissions 

(FAO, 2011). Figure 1 shows these statistics in greater detail.  
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Figure 1: The upper figure shows total global energy consumption by source (EIA, 2022) and the lower 

figure shows the energy consumed and total CO2 emitted by the food sector in 2011 (FAO, 2011).  

Within the food industry, globally, "Processing and Distribution" is the most energy-intensive 

segment, accounting for about 42% of the sector’s energy use. An additional 35% is consumed by "Retail, 

Preparation, and Cooking," bringing the combined energy demand of the food sector to 95 EJ/year (90 

quads/year), which is shown at the bottom of Figure 1. Although food processing and distribution 

facilities, which are heavily reliant on refrigeration, are fewer in number compared to retail and 

preparation operations, they exhibit significantly higher energy intensity. This highlights the potential for 

impactful energy reductions through efficiency improvements in processing facilities. This research 

focuses on spiral air blast freezing, the dominant technology used in the production of frozen foods 
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(ASHRAE, 2018). Spiral freezers are widely used in large-scale processing facilities for nonparticulate 

food products due to their compact design and superior performance (ASHRAE, 2014); however, the high 

energy intensity of air blast freezing systems presents a critical opportunity for strategic optimization, 

enabling meaningful reductions in energy consumption. 

1.1.2 Food Production Bottleneck 

In contrast to traditional static freezing methods, most dynamic air blast freezing systems incorporate 

well into plants using continuous conveyors that move food products through a processing plant.  The 

latter stages in the production of frozen foodstuffs is a step in the continuous process that involves the 

actual freezing of the food product.  Dynamic freezing systems integrate into continuous production 

systems by utilizing a conveyor that can move products to be frozen through a refrigerated enclosure 

where high-velocity air is used to rapidly freeze food products – an air blast freezer. One configuration of 

a continuous freezer is the spiral air blast freezer illustrated in Figure 2. Spiral blast freezers use a helical 

conveyor belt arrangement within a refrigerated enclosure to permit a sufficient dwell time within the 

freezer to achieve product freezing while simultaneously limiting the overall footprint of the freezing 

system itself. A key advantage of using a dynamic freezing system in continuous process systems is the 

ability to seamlessly integrate the freezer with upstream and downstream processes, enabling continuous 

product flow and high throughput. 
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Figure 2: A horizontal airflow spiral freezer (ASHRAE, 2018). 

Although spiral blast freezers integrate well into continuous flow food production processes, they 

quickly become a production bottleneck when the freezer is performing poorly, as explained by Kolbe 

and Kramer (2007). For example, inadequate freezing capacity or uneven airflow can lead to 

insufficiently frozen products, which might require the products to be discarded or reprocessed, resulting 

in potentially large amounts of waste, degraded food quality, or food safety concerns. Similarly, 

downtime or poor maintenance of the freezing system can halt an entire production line, significantly 

reducing throughput and increasing operational costs. 

1.1.3 Substantial Capital Investment 

Dynamic freezing systems represent a significant capital expenditure in food production. To meet 

stringent sanitation, corrosion, and safety standards, freezer enclosures and components (such as valves) 

are primarily constructed from stainless steel, driving up initial costs. Most air blast freezers use 

evaporators in a direct-refrigerant arrangement to remove heat from the product and ammonia (R717) is 

the principal refrigerant used in food processing facilities.  Although ammonia has a number of desirable 

characteristics that include low refrigerant costs, no ozone depletion potential, and no global warming 

potential, it is classified by ASHRAE 34 (2024) as having higher toxic and mild flammability resulting in 

a safety group classification of B2L. Ammonia is corrosive to copper, but it is not reactive to carbon or 

stainless steel. Since stainless steel is easier to maintain than carbon steel from external corrosion, it is the 

most common piping material used within spiral blast freezers. Although commodity prices are highly 



5 

 

dynamic, at the time of writing, the material cost of stainless-steel piping is approximately 3x that of 

carbon steel (Metallica Metals, 2024). Freezers incur additional costs due to other mechanical 

components, including large electric motors to drive the conveying system and fans for rapid air 

circulation within the freezer. Maintaining ultra-low temperatures also requires high operational costs; for 

example, lowering refrigeration temperatures by 10°F (-12°C) can increase utility bills by 15% 

(ASHRAE, 2018). For corporations, these systems are a long-term substantial capital investment integral 

to production, affecting throughput, product quality, and reliability, making overall lifetime efficiency 

critical to managing costs and ensuring a maximum return on investment. 

1.1.4 Stagnation in Technology  

Since its inception in the early part of the 20th century, blast freezing has contributed to the economic 

growth of multiple countries (Dempsey and Bansal, 2012). This process not only allows for the rapid 

freezing of food but also facilitates the global distribution of frozen goods. However, air blast freezing has 

experienced minimal technological innovation in recent decades. While early technology produced 

quickly frozen food with ample throughput, modern systems have not kept pace as they often neglect 

optimal airflow management and rely on excess refrigeration capacity and “brute-force” fan power. Field 

evaluations conducted as a part of this project and a review of current product literature from 

manufacturers of dynamic freezing systems reveal that many spiral freezers lack internal baffling for 

efficiently directing airflow internally, leading to reduced energy efficiency and suboptimal freezing 

performance. Additionally, freezer design companies are often reluctant to deviate from existing designs 

due to liability concerns, fearing (for good reason) that changes from legacy designs might result in 

systems failing to meet performance specifications for customers, resulting in legal consequences. With 

rising energy costs and growing environmental concerns, the need for advancements in spiral freezer 

design is increasingly important.  
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1.2 Research Gaps and Necessity 

Despite the critical role of spiral air blast freezers in food production, significant gaps remain in 

understanding and optimizing their performance. Previous studies have often relied on oversimplified 

models, such as uniform airflow that leads to constant heat transfer coefficients, which fail to capture the 

complex dynamics within these systems. Furthermore, technological advancements in freezer design have 

stagnated, with many systems relying on excessive energy use rather than targeted optimizations. This 

research identifies key opportunities for improvement, including enhancing airflow management, 

developing more accurate predictive models for heat transfer and product freezing, and validating these 

models through experimental data. Addressing these gaps will provide actionable strategies for improving 

freezer efficiency, reducing energy consumption, and advancing the sustainability of food production 

systems. 

1.2.1 Improvement Potential 

The global push for sustainability, driven by ambitious initiatives like the Paris Agreement, aims to 

limit global warming to 1.5°C by the end of the 21st century through zero-carbon goals and a 70% 

reduction in emissions by participating countries (UNFCCC, 2024). In the United States, the federal 

government has advanced its own ambitious net-zero policies under the Council on Environmental 

Quality (CEQ, 2024), reflecting a broader trend toward stricter emissions regulations and carbon pricing. 

These measures incentivize companies in various ways to adopt more sustainable practices, avoid 

financial disincentives, and align with international initiatives like the European Union's Green Deal 

(European Commission, 2024). 

For food companies operating large low-temperature freezing systems, embracing strategies that can 

improve the thermal and energy performance of their freezing systems can offer substantial financial 

benefits. Enhanced freezing system efficiency allows businesses to produce more food with the same 
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equipment. Improved energy efficiency reduces operational costs by lowering unit electricity 

consumption.  Lower electricity consumption contributes to improvements in carbon footprint; thereby, 

helping companies achieve sustainability goals without compromising profitability. Furthermore, energy 

sustainable policies can improve the reputation of a name brand, leading to investor and talent attraction.  

 

1.2.2 Previous Applications of CFD  

The initial analysis of blast freezers conducted in the present research focused on performance 

improvement by considering the spatial geometry within the freezing system and airflow experienced 

locally at the food product boundary as it moved through the freezing system. The application of 

Computational Fluid Dynamics (CFD), as a tool to help understand air flow patterns within a given 

freezing system, was utilized to evaluate proposed internal spiral freezer modifications that seek to 

efficiently increase air flow across the food product being frozen. Although there has been limited use of 

CFD on blast freezers in the past, the existing research seeks to address certain limitations and gaps that 

hinder a comprehensive understanding of the energy flows within a spiral freezing system. For instance, 

Guiqiang (2014) attempted to apply CFD to a blast freezer in order to predict the freezing behavior of 

simulated pork in polythene packaging; however, his model lacked crucial details such as disclosing the 

number of nodes used and demonstrating mesh-independency which raises questions about the validity 

results and conclusions. Additionally, the paper did not provide detailed CFD flow streamlines or 

visualizations, which are vital for comprehending fluid behavior and validating the model. The only plot 

in the paper that showed CFD results was a 2-D contour flow field of velocity but even that plot lacked 

detail. The local velocity experienced by the product as a function of simulation time inside the freezer 

was not provided. The paper assumed the heat transfer coefficient experienced by the product was 

constant during the freezing process, but relative to even the basic flow field described, this would be 

impossible. Additionally, the paper neglected any localized natural convection effects in the analysis, 
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simply stating it can be ignored since air speeds across the product are between 0.5 m/s and 5 m/s, in a 

sweeping statement. This is an unnecessary oversimplification to the problem, and potentially leads to 

incorrect analyses, because it ignores the variance of the velocity of air across products being conveyed 

through the freezer at different instances during their dwell time in the freezer. These velocities can be 

potentially less than 0.5 m/s (below the stated threshold). Lastly, the heat transfer coefficient was never 

field-verified. The only attempt to validate the CFD model relied on comparing the pulldown 

temperatures of the product (at various locations inside the food) during the freezing process.  There was 

no mention of fan curves used, implying that the fan could deliver infinite air flow rate at a perfect, 

prescribed velocity. A real fan curve would produce a velocity that was a function of the pressure drop of 

the system. To conclude, this paper lacked a solid CFD foundation to support realistic conclusions on the 

performance of an existing blast freezer or evaluations of proposed modifications to an existing blast 

freezer.  

Okita (2013) attempted to utilize CFD in evaluating a blast freezer with the computational domain 

shown in Figure 3. The modeled space appears to be a 2.5 x 2.5 x 2.7 meter enclosure based on a rough 

approximation of dimensions shown, though never explicitly stated. The number of elements used to 

discretize the computational domain ranged from 122,000 to 608,000 which is quite small by today’s 

standards for appropriately resolving air flows within the computational domain. The size of mesh 

elements is not explicitly listed in the paper and no evidence of mesh refinement is provided.  Based on 

geometries of the products and diagrams, computational elements appear to range from 30-50 mm.  A 

Courant number of 3 was chosen by the author as an upper limit. Although this might be sufficient for 

large open spaces where velocity is not significantly changing, in areas near the blast freezer’s fans and in 

other areas where the product is being conveyed, the air velocity will be changing much more quickly.  

This means that the Courant number should be limited to less than unity so air velocity does not “skip” 

elements. An approach to address this limitation would be the addition of inflation layers, but they were 
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not used in Okita’s modeling.  Moreover, this paper lacks essential discussions on critical aspects such as 

wall treatments (e.g., y+), fan curves, and other pertinent details that can significantly influence simulation 

accuracy. 

 

Figure 3: A simplified geometry of an air blast freezer is shown from Okita (2013). 

Another limitation in both the Okita and Guiqiang models was their assumption that the air velocity 

across the product was perfectly horizontal inside of the blast freezer which is not evidenced by field 

observations of air blast freezers considered in the present research effort.  Presumably, this assumption 

was made to make the process of resolving the heat transfer coefficient across the product relatively 

straightforward.  

 

Figure 4: CFD to determine heat transfer coefficient across a product (Okita 2013). 
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Figure 4 shows heat transfer coefficients being predicted in Okita’s work. Although the top of the 

plate is flat, the edge has thickness to it. This blunted edge has some effects on the heat transfer 

coefficient as flow develops over the plate. Airflow is shown to be perfectly horizontal. The drawback is 

that the velocity field within a real blast freezer is virtually never perfectly horizontal, never at steady 

state, and never without turbulence (e.g., eddies) in all three spatial dimensions.  

The work of Khenien (2019) represents a significant advancement in the field of CFD studies on blast 

freezers. This paper discusses important factors such as wall treatments and the importance of y+ in CFD 

simulations. The spiral height studied was 6 meters (~20 ft) tall and consisted of 15 tiers – but no other 

dimensions of the modeled freezer were given. Based on figures in the paper, the refrigerated enclosure 

appears to be approximately 12 x 10 x 10 m (H) (~39 x 33 x 33 ft). Khenien used a Reynolds Averaged 

Navier Stokes (RANS) approach to account for turbulent behavior to further enhance the performance of 

the freezer modeling. One noteworthy improvement over the previously mentioned papers is the 

substantial increase in the number of elements Khenien used in the CFD simulation which ranged from 10 

million to 70 million elements. This higher resolution enabled a more detailed and precise representation 

of the flow behavior and thermal characteristics inside a blast freezer. Cornish pasty was the product 

considered, which had a “D” shaped aspect ratio. Certain aspects of the Khenien study can be further 

improved. For example, the oversimplification of the overall blast freezer model into two rectangular 

boxes and a cylinder, while perhaps convenient from a computational standpoint, does not fully capture 

the complexities of a spiral blast freezer. This geometry is illustrated in Figure 5.  
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Figure 5: A drawing of a blast freezer is shown on the left, with its re-created, simplified version on the 

right from Khenian (2019). 

This figure from Khenian appears to show that multiple important elements from the actual spiral 

freezer design such as baffling, refrigerant coils, and metal structures are absent from the CFD model. 

The spiral belt and its frame were not modeled – products were simply added to the model in circular tiers 

to represent the spiral belt. Evaporator coils were not modeled – they were omitted and treated as just 

mass flow boundaries. Additionally, the absence of information regarding the use of fan curves raises 

questions about the accuracy of the representation of airflow patterns and its distribution within the 

freezer. A constant inlet velocity of 12 m/s was used for the fan discharge condition rather than a fan 

curve that would provide “feedback” to decrease volumetric air flow rates based on pressure drop across 

the computational domain. No inflation layers were mentioned in the larger CFD model, which would 

introduce errors in specific areas within the computational domain where velocity is changing quickly 

(such as fan outlets, walls, coils, etc.). These factors limit the potential for CFD to be used as a tool in 

predicting the performance of spiral air blast freezers.  Collectively, the prior work in this area 

underscores the need for a comprehensive and detailed study.  

 



12 

 

1.2.3 Predicting Air-side Heat Transfer  

Past research has attempted to estimate the external heat transfer coefficient on food products being 

conveyed through a dynamic blast freezer using currently available convection correlations along with 

calculated (or inferred) air velocity. Introduced as Figure 2 from ASHRAE earlier in this chapter suggests 

that the spiral blast freezer is producing “horizontal airflow” in its most ideal condition. Leinhard (2020) 

provides valuable and up-to-date correlations for laminar, transitional, and turbulent flow over a flat plate 

subject to such horizontal airflow. These correlations enable the prediction of Nusselt number (and 

subsequently heat transfer coefficients) based on velocity, film temperature, and some indication of the 

turbulence present in the system. Some of these correlations are shown graphically in Figure 6; however, 

it is essential to highlight that these correlations are believed to be applicable only to “flat plates” with 

horizontal air flow. A “flat plate” in this context would have a thin vertical leading edge, and it would be 

shaped in such a way, like an airfoil, to prevent flow separation off the surface of the plate, so that air 

would not be disturbed as it traveled along the upper surface of the plate. While Leinhard's work is 

salient, there exists a notable gap in available information regarding the behavior of a flat plate when air 

flow across the plate is not uniformly horizontal but approaching the product at a specific non-zero angle. 

The uncertainty in predicting freezing rates using CFD-predicted velocities and existing forced 

convection recipes on a food product in operation is unknown.  
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Figure 6: Convection correlation that combines the flat plate effects taken from various other investigators 

(Leinhard 2020). 

A persistent difficulty is simply measuring heat transfer coefficient in an actual food production 

environment (or anywhere). To address this challenge, Amarante (2005) offered techniques for using heat 

flux sensors to measure external heat transfer coefficients. Amarante’s team calibrated their heat flux 

sensors at various horizontal air speeds ranging from 0 to 7 m/s as shown in Figure 7. They accomplished 

this by calculating heat transfer coefficient using heat flux sensors and applying a correction factor to 

match a simulated numerical model of the same setup. However, this method is simply fitting measured 

data to a model; therefore, expectedly to produce strong agreement between measured and simulated data. 

Improving these experimental methods, while also using Leinhard's correlations, could lead to a better 

understanding of the external heat transfer coefficient experienced by a product in a spiral freezer.  
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Figure 7: Heat flux sensors shown mounted to PVC in an experiment to measure heat transfer coefficient 

by Amarante (2003). 

Although perfectly horizontal airflow has been assumed in spiral blast freezers, this simplifying 

assumption is likely not reflective of the actual air flow across products being conveyed through a 

dynamic freezing system. It is unknown what effect the angle of air flow over the product has on the heat 

transfer coefficient that product is experiencing during its dwell time in a freezing system. This 

assumption could lead to increased (or reduced) heat transfer coefficient that could have a substantial 

effect on predicting freezer performance. If the angle and uniformity of airflow across the product are 

controllable variables, this knowledge or understanding would be valuable to design engineers and 

researchers.  

 

After using CFD to establish the velocity field inside a spiral freezer, resulting velocity can be linked 

to the product in its location while traveling through the freezing system.  Knowing the velocity across the 

product in the spiral allows estimates of the external heat transfer coefficient to be developed as an input 

to a more detailed thermal model of the food product itself.  The product model can then be used to 

predict the temperature throughout the product as a function of time. Such a thermal model requires 

characterizing thermal properties of the foodstuff. Prior research efforts have focused on methods that can 

more accurately estimate the thermal properties of the food products (Cleland, 2019, Gulati, 2013). These 
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studies use the composition of a food product such as the quantity of fat, protein, water, and air void 

fraction to predict the initial freezing transition temperature of the product as well as other properties 

including a mass-weighted effective density, thermal conductivity, specific heat, and ice fraction. Cleland 

2019) incorporated the research of many others (notably Gulati, 2013, Choi & Okos, 1986, and Carson, 

2017) into a comprehensive method that can be used to predict the thermal properties of the following 

classes of foods:  

• Class I: Unfrozen, non-porous foods (e.g., slab of meat) 

• Class II: Frozen, non-porous foods (e.g., frozen chicken) 

• Class III: Unfrozen, porous foods (e.g., bread) 

• Class IV: Frozen, porous foods (e.g., frozen pizza crust) 

Cleland and Gulati’s studies offer comparatively simple yet valuable approaches for estimating food 

thermal properties; however, they do acknowledge the presence of an inherent 10-20% or greater margin 

of error that exists when attempting to model the food due to unavoidable complexities in food 

microstructure. Cleland (2019) demonstrated the derived thermal properties through his model, that 

revealed mathematical discontinuities in volumetric heat capacity, enthalpy, thermal conductivity, and 

density curves posing challenges for numerical finite difference methods. It is reasonable to assume that 

these curves really exhibit smoother behavior, reflecting the intricacies involved in accurately 

representing thermal properties of food. An example of a set of discontinuous generic food thermal 

property curves are shown in Figure 8.  
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Figure 8: Thermal properties as a function of temperature for an example product (Cleland, 2019). 

A reason the thermal properties exhibit discontinuous behavior is likely because an infinitesimal 

element size is being considered. But each element of the food product throughout its modeled volume 

would be approaching this discontinuity at a different time during a typical freezing process because 
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temperature is never uniform throughout the product. A numerical model would have to have a time step 

of infinitesimal size and nearly infinite nodes to sufficiently capture these discontinuities, which would be 

computationally prohibitive, if not impossible. If the time step sizes are chosen to be finite and reasonably 

large, then such sharp behaviors in density and heat capacity lead to significant energy and mass loss 

errors from the model. To realistically model a food product using established numerical methods while 

accounting for all mass and energy, modifications to these thermal properties are required to eliminate the 

discontinuous nature of the curves. No known work has considered addressing these limitations in food 

freezing processes, including food freezing within a dynamic blast freezer.  

 

Researchers have made significant strides in developing product models that use food properties to 

predict the temperature response during the freezing process, resulting in several archetypal "freezing 

curves." For instance, Cleland (1987) and Huan (2003) have successfully incorporated temperature-

dependent food properties into their numerical models to accurately forecast the temperature response of 

food in blast freezing operations (see Figure 9 from Huan). However, it is worth noting that these models 

typically do not encompass detailed considerations of the freezer's velocity and resultant heat transfer 

coefficient throughout the freezing process – considerations addressed in the present work.  
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Figure 9: A typical freezing curve exhibited by a modeled food product in a “quick freezer” (Huan, 2003). 

The freezing curves shown from Huan’s model exhibit peculiar behaviors that are unexplained by the 

author. For example, in Figure 9, the calculated center temperature is warmer than the experimentally 

measured center temperature during the freezing region, yet the calculated surface temperature is cooler 

than the experimentally measured temperature. This suggests errors in thermal properties or Biot number 

are not fully accounted for. Further, at around the Time = 175(*60) second mark, the surface of the 

experimental product abruptly drops in temperature and crosses over the calculated surface temperature. 

Such a distinctive behavior should perhaps have been captured by the model. 

 

Furthermore, while these past studies have yielded interesting results, similar to the CFD review, a 

crucial aspect that remains to be addressed is the model validation through real-world field measurements 

in actual blast freezers. Such validation studies are essential to ascertain the reliability and accuracy of the 

predictions generated by these numerical models when compared to practical real-world operating 

scenarios. Incorporating velocity and heat transfer coefficient data, along with anchoring the CFD models 

with real field measurements, is needed to enhance the precision and practicality of the freezing process 
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predictions. In other words, the measured field data that a product in a freezer experiences should match 

the behavior that the models predict.  

 

1.2.4 Enlisting Practical Optimization  

Over the past few decades, research in optimization methods has experienced a surge in advancement, 

presenting effective solutions for minimizing or maximizing a wide variety of objective functions under 

both linear and nonlinear constraints. Past research by others (including Bendsøe in 1988) laid the 

groundwork for integrating optimization into Computer-Aided Engineering (CAE) practices, opening up 

new possibilities for the application of these techniques for design optimization. In the present day, the 

availability of commercial software like MATLAB with versatile and powerful functions such as 

fminsearchcon written by D’Errico (2022) simplified the conversion of constrained problems into 

straightforward programmable optimization routines. Moreover, the advancements in optimization via 

CAE are not limited to proprietary software. Free and open-source alternatives like Python's SciPy 

(SciPy, 2023) offer similar optimization capabilities, enabling researchers and practitioners to harness the 

latest developments and incredible potential in optimization into their work with minimal financial 

constraints. While not yet discussed in the context of blast freezer research, there are numerous aspects 

within this research that can benefit by application of these advancements. A premise of the current 

research effort is that the utilization of optimization techniques, in conjunction with CAE tools, can help 

enhance freezer design, improve thermal and energy efficiency, and optimize the overall performance of 

spiral blast freezers.  
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1.3 Statement of Research  

The key challenge in optimizing spiral freezers is achieving greater efficiency while ensuring that 

production throughput remains uncompromised (if not augmented), requiring strategies that balance 

operational improvements with the demands of high-volume processing. Current systems often rely on 

lower air temperatures and higher air velocities to improve freezing rates but, taken at face value, these 

strategies significantly increase energy usage and operational costs. To address this challenge, it is 

essential to develop modeling and experimental techniques that allow determination of existing spiral 

freezer performance, along with actionable performance improvement strategies. The following list of 

objectives have been set forth for the present research efforts to address a number of the limitations noted 

above in past work and achieve significant performance improvements in low temperature blast freezing 

systems. 

Objectives: 

1. Develop a food simulation model incorporating temperature-dependent thermal properties to 

accurately represent the freezing process that can be rapidly solved using modern computational 

tools.  

2. Quantify the impact of air velocity profiles on freezing performance and energy efficiency. 

3. Use CFD and in situ data to establish velocity-dependent heat transfer coefficients, accounting for 

spatial and temporal variations in airflow. 

4. Propose optimized air-side designs, including the use of baffles, to improve airflow management 

and enhance system efficiency. 

5. Develop a pseudo product that can be used in an actual spiral freezer to validate the thermal model 

and CFD, and to benchmark different freezers against one another.  

6. Establish correlations that show the effect of velocity magnitude and angle over the product has on 

the external heat transfer coefficient.  
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7. Introduce engineering strategies (i.e., best practices) that should be targeted, and others that should 

be avoided, in the design and operation of spiral blast freezers.  

 

 

2 Methodology 

The methodology for this research encompasses the development and analysis of numerical models to 

simulate the freezing process in air blast spiral freezers. This includes the derivation of governing 

equations for heat transfer, numerical solution techniques, and the use of experimental and computational 

methods to validate and optimize the models. The primary focus is on understanding and improving the 

thermal performance of products frozen within these systems by exploring dynamic airflow and 

temperature conditions, enabling actionable insights for process enhancement and energy efficiency. 

2.1 One-Dimensional Conduction Model 

A one-dimensional (1-D) conduction model was developed to simulate the freezing process of various 

food products, accounting for critical factors such as conduction within the product and convection at its 

surfaces. This model serves as the foundation for evaluating heat transfer dynamics in spiral freezers. 

Simplifications, such as neglecting radiation and tactfully using temperature-dependent material 

properties, ensure computational efficiency while preserving accuracy. A method to validate the 

numerical model's results against experimental data is introduced, offering a robust solution for 

understanding and optimizing freezing performance in industrial settings. 

2.1.1 Derivation of Ordinary Differential Equations 

Food products being frozen in an air blast spiral freezer typically enter at a uniform temperature well 

above their intended final temperature and the products themselves could either be packaged or 

unpackaged. For example, a bread or dough product might exit its upstream process such as a proofer or 
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par-baker at a temperature of 38°C (100°F).  The warm product would then enter the spiral freezer and be 

exposed to an environment with extremely low air temperatures and high air velocity intended to quickly 

remove heat from the product by increased forced convection heat transfer with the freezer air. Removing 

heat from the core of the product relies on conduction causing the center temperature of the product to 

gradually decrease and, eventually, equilibrate with the temperature inside the freezer if the dwell time 

within the freezer is sufficiently long. Oftentimes, process facilities will establish and monitor exit criteria 

such as a center temperature of the product exiting the freezer reaching -10°C (10°F) or lower. Production 

process operators may have the ability to vary the belt speed (dwell time), fan speed, evaporator coil 

defrost, refrigeration saturation temperature, and product volume (load) in response to product 

temperatures above (or below) the established criteria.    

 

An unsteady 1-D numerical conduction model of the freezing process of a planar food product (dough) 

was derived using the boundary conditions and control volumes shown in Figure 10. This model 

experiences convection on both the upper and lower surfaces, and conduction in the interior. Radiation is 

neglected in this analysis for two reasons.  First, the focus of the present research effort was on comparing 

the relative effect of baffling changes within the spiral freezer. As such, the effects of radiation would 

have mostly “canceled out” between modeling iterations. Second, the heat transfer due to radiation was 

calculated using measured data in a real spiral freezer and found to be responsible for only 2% of the 

overall heat transfer between the product and freezer environment based on an experimental pseudo 

product (which will be introduced later). Therefore, radiation effects are neglected in this 1-D model.  
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Figure 10: 1-D numerical thermal model of the dough product. 

An energy balance on the bottom surface of the modeled product shown in Figure 10 at the first node 

T1, which has a convection term on the bottom and a conduction term on the top of the node, produces 

Equation 1: 

 

 

(1) 

 

The internal nodes, shown in Figure 10, experience only conduction between adjacent nodes on the 

boundary surfaces above and below between the given node, i, as shown by Equation 2: 

 

 

(2) 

 

The top surface node, N, of the model is similar to Eq. 1, except the conduction is now on the node’s 

lower surface and convection is on the top: 

 
 

(3) 

 

Substituting relevant dimensions and properties into Equation 1 from Figure 10 produces the 

following differential equation for the bottom node 1: 

𝑑𝑈1

𝑑𝑡
= 𝑞̇

𝑈𝑆
+ 𝑞̇

𝑐𝑜𝑛𝑣
 

𝑑𝑈𝑖

𝑑𝑡
= 𝑞̇

𝑈𝑆
+ 𝑞̇

𝐿𝑆
 

𝑑𝑈𝑁

𝑑𝑡
= 𝑞̇

𝐿𝑆
+ 𝑞̇

𝑐𝑜𝑛𝑣
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(4) 

 

The internal nodes are slightly different, because the nodes are double the size of the end nodes, and 

they have two conduction terms instead of a conduction and convection term. This is shown in Figure 10. 

Substituting terms from Figure 10 into Eq. 2 produces the following for internal node i: 

 

 

(5) 

 

Finally, the upper node, N, is determined by substituting in properties and dimensions from Figure 10 

into Eq. 3, which produces the following: 

 

 

(6) 

 

The Δy term is variable and represents the spacing between nodes and is determined based on the 

overall thickness of the product, L, and the number of nodes used in the model, N. This is shown in Eq. 7: 

 
 

(7) 

 

In the differential equations Eq. 4-6, the average surface heat transfer coefficient, ℎ̅, is dependent on 

the air’s velocity, temperature, and thermal properties over the product.  Within the dynamic freezing 

system, this surface heat transfer coefficient will be dependent on time (position within the freezer), and 

varies continuously, as shown in a simplified manner by Equation 8.  

 
 

(8) 

 

𝑑𝑇1

𝑑𝑡
=

2 𝑘𝑇1,𝑇2

∆𝑦2 𝜌 𝑐1

 (𝑇2 − 𝑇1) +  
2 ℎ̅(𝑇∞ − 𝑇1)

∆𝑦 𝜌 𝑐1

 

𝑑𝑇𝑖

𝑑𝑡
=

𝑘𝑇𝑖+1,𝑇𝑖

∆𝑦2 𝜌 𝑐𝑖

 (𝑇𝑖+1 − 𝑇𝑖) +
𝑘𝑇𝑖−1,𝑇𝑖

∆𝑦2 𝜌 𝑐𝑖

 (𝑇𝑖−1 − 𝑇𝑖) 

𝑑𝑇𝑁

𝑑𝑡
=

2 𝑘𝑇𝑁−1,𝑇𝑁

∆𝑦2 𝜌 𝑐𝑁

 (𝑇𝑁−1 − 𝑇𝑁) +  
2 ℎ̅ (𝑇∞ − 𝑇𝑁)

∆𝑦 𝜌 𝑐𝑁

 

∆𝑦 =  
𝐿

𝑁 − 1
 

ℎ̅ = 𝑓(𝑡) 
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The actual velocity and resulting heat transfer coefficient (HTC) for a product within a spiral is not 

known a priori. As noted in Chapter 1, several past researchers have simply assigned or assumed a value 

of the HTC to estimate product freezing time.  CFD could be used to determine the heat transfer 

coefficient, however, in a computational domain as large as a spiral freezer, the energy equation required 

to be solved would be computationally unfeasible with sufficient resolution, since the product is moving, 

it is constantly being exposed to new geometry within the spiral freezer that influences the velocity of air. 

Also, in CFD, assumptions such as constant heat flux or constant temperatures are typically made to 

calculate a heat transfer coefficient, making this an educated guess at best. A different method was 

developed in this research and will be presented in Chapter 3.  As a first step to exercise the 1-D model, a 

nominal heat transfer coefficient of horig, of 25 W/m2-K was found to make the 1-D thermal model match 

the actual measured thermal performance (i.e., belt speed and exiting product temperature) of an actual 

spiral freezer evaluated as part of this project. This value of heat transfer coefficient corresponds to an air 

velocity of velorig = 5 m/s and spot anemometer measurements inside of the actual spiral freezer 

corroborated this velocity magnitude.  The baseline heat transfer coefficient hnew is subsequently scaled 

using local velocity velnew values predicted by the CFD model using the relationship shown in Eq. (9). 

This scaling relationship is based on typical turbulent external flow correlations (such as Dittus-Boelter) 

that calculate the Nusselt number as a function of Re0.8 (Winterton 1998). The major takeaway is that heat 

transfer coefficient scales with velocity but with diminishing returns to the 4/5 power.  

 

 

(9) 

 

2.1.2 ODE113 Solver in MATLAB 

The differential equations Eq. 4-6 can be solved using a variety of numerical techniques and, initially, 

analytical finite difference methods were used to validate the equation set.  Although functional, the 
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analytical methods with constant time-steps were found to be quite slow therefore alternative integration 

techniques were explored, including ODE45 and ODE113 in MATLAB. An example of the function call 

that solves system of differential equations using ODE113 is shown in Equation 10 (Nellis & Klein, 

2009).  

 
 

(10) 

 

ODE113 is a numerical solver for ordinary differential equations (ODEs) that uses a variable time 

step and is ideal for problems that have long, smooth dynamics where high accuracy is required. ODE45 

was also evaluated but underperformed compared to ODE113 once simulations became increasingly 

complex, such as when heat transfer coefficients as a function of time from field measurements and 

temperatures were supplied to the equation set as boundary conditions. Both ODE solvers have a variable 

time step, and therefore a convergence study with a fixed timestep is not easily possible. Spatial 

resolution was evaluated in Section 2.1.3. However, the relative tolerance of the function was varied to 

confirm converged solutions. This is shown in Figure 11. Note that the error here is defined as the 

deviation of the center temperature of the simulated food product upon exiting the freezer after the ODE 

is solved compared to the converged result with the lowest relative tolerance of 10-6. 

[𝑡𝑖𝑚𝑒, 𝑇] = 𝑂𝐷𝐸113 ({
𝑑𝑇

𝑑𝑡
} , ∆𝑡, 𝑇0) 
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Figure 11: Error in the temperature solution as a function of the relative tolerance used in the ODE113 

solver. 

 

In Eq. 10, T is a vector or matrix of temperatures that is a function of time, dT/dt is a vector of the 

differential temperature terms derived from Eq. 4-6, Δt is the time step (which is variable), and T0 is the 

initial temperature vector, which in this case is the temperature that the product enters the spiral freezer. 

Table 1 shows the nomenclature used in the 1-D thermal model, along with brief descriptions of the 

variables and their units.  

This numerical technique allows the thermal conductivity and specific heat capacity of the product to 

be expressed as functions of temperature and the heat transfer coefficient to vary as a function of time 

based on the local velocity of air across the product as it is conveyed through the spiral freezer. It must be 

noted that an energy balance was performed on this time-dependent model that ensured that the total heat 

transfer between each node throughout the entire simulation was equivalent to the overall available heat 

capacity of the product model. In other words, no energy “was lost” in the simulation.  
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2.1.3 Vectorization in MATLAB 

To solve the system of ODEs efficiently, the model was implemented in MATLAB with vectorization. 

This approach eliminates computational overhead associated with “for” loops, optimizing performance 

for the large-scale simulations discussed later in Section 2.4.2. MATLAB, as a commercial software, is 

uniquely powerful in solving matrices and vectors quickly using highly optimized low level math 

processes, parallelization, and batch processing techniques. MATLAB’s name comes from “MATrix 

LABoratory,” as it was designed for this exact purpose.   

Although temperature-dependent food thermal properties will be introduced in Section 2.2.1, a 

convergence study on the vectorized ODE food model introduced earlier in Section 2.1.1 was conducted, 

shown in Figure 12, to determine the number of nodes required to ensure numerical stability and 

accuracy. The error here was defined as the time required for the center of the product to meet freezing 

requirements compared to the time required at the maximum node count of 180.  

 

Figure 12: Modeling error and calculation time as a function of node count. 

The results indicate that 20 to 40 nodes provide an optimal balance between computational efficiency and solution 

precision. Typically, 40 or 80 nodes were used whether speed was desired for large model calculation ensembles or 

optimal accuracy was required for single model use cases. However, this discretization is likely dependent on the 
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dough product’s thermal properties and the geometry of the 1-D plane. Studies should be completed for other modeled 

food types and geometries.  

 

2.1.4 Symmetry Model 

The 1-D thermal model assumes symmetrical convection boundaries for most cases, treating the 

product's upper and lower surfaces equivalently. This assumption simplifies computations without 

sacrificing substantial accuracy for standard geometries like slabs. For cases with asymmetrical airflow, 

the model was adjusted by incorporating distinct heat transfer coefficients and contact resistances for each 

surface based on experimental data or other methods. Establishing the proper contact resistance between a 

product and the conveyor belt while it is being exposed to high velocity air is so inherently complex that 

usually the symmetrical model was preferred. However, a study was performed that field-measured the 

performance between different belt materials in a spiral freezer that will be presented in Chapter 3.  

 

2.2 Food Product Thermal Model 

2.2.1 Temperature Dependent Properties  

The 1-D thermal model of the food product was developed to predict the product’s freezing thermal 

behavior given the temperature the product experiences during its dwell time in the blast freezer. The first 

food product modeled was two varieties of a flat dough product (pizza crust). Beginning with the 

product’s mass composition of fat, carbohydrates, water, and the known weight and volume of the 

individual product unit, a detailed one-dimensional thermal model was constructed based on the methods 

presented by Cleland (2019), which is an amalgamation of methods by other researchers. The product in 

this research had a diameter of 0.29 m, thickness of 16 mm, overall mass of 0.57 kg, 35% mass fraction of 

water, 62% carbohydrates, and 3% fat.  The estimated void fraction of the dough at the entry to the 
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freezing system was 54%. Using the methods of Cleland (2019) the temperature-dependent thermal 

conductivity for the dough product is shown in Figure 13 (left). The thermal conductivity tends to 

decrease as the temperature decreases with the exception of a near step-change increase near the freezing 

point of water.  

 

 
Figure 13: Thermal conductivity as a function of temperature for the product using methods from Cleland 

(2019) is shown on the left. Specific heat as a function of temperature is shown on the right. 

The product’s temperature-dependent specific heat shown in Figure 13 (right) was initially modeled 

using methods presented in Cleland (2019); however, this approach produced a step change in specific 

heat capacity that was not tolerated well by the numerical techniques used to solve the system of 

differential equations. The behavior associated with the freezing process was modified to represent the 

temperature-dependent heat capacity by the continuous function shown in Figure 13 (right). When this 

function is integrated, the result is equal to the latent heat of fusion of water based on its mass fraction 

within the product in addition to the change in sensible heat capacity of the food. The difference between 

this and the original step change is that the step change requires an infinitesimally small time step to 

capture the abrupt change in the specific heat capacity, in addition to many nodes. Since every node in the 

discretized food product is at a different temperature during the transient cooling/freezing process, this 

small time step would be required at many different temporal instances in a numerical simulation, which 

makes it difficult to program and unnecessarily slow. The continuous Gaussian distribution shown in 
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Figure 13 and given by Equation 11 allows a larger time step, where accuracy is retained as the product 

passes through this freezing region and the overall cooling process is sufficiently captured with no 

discernable loss in accuracy. Another reason this equation was used to model the specific heat is for 

performance, as it allows very rapid calculations of food properties, which is conducive to running many 

simulations quickly. Equation 11 provides the specific heat, c (J/kg), as a function of temperature, T (K); 

the parameter µ is the mean freezing temperature (273 K), and σ is the standard deviation which can be 

adjusted, but for the preliminary analysis reported here is set to 1 K.  

 

 

(11) 

 

The initial freezing temperature was determined based on the freezing point depression theory, or 

Raoult’s Law (Cleland, 2019, Boonsupthip, 2007). Initial freezing temperature is critical to enable 

computing the ice fraction as a function of time during the process. Ice fraction is used in deriving 

additional thermal properties, which will be explained in more detail shortly. In addition, some properties, 

such as thermal conductivity, can vary significantly with the product’s freezing period as already noted 

above. Indeed, this is the point where many of the properties produce discontinuous curves shown in 

Figure 13. The calculation for initial freezing temperature, Tif,K, is given by Equation 12 using techniques 

from Cleland (2019). Table 1 identifies the nomenclature used here and typical values.  

 

 

(12) 

Subsequent properties use the initial freezing temperature and the real time continuously decreasing 

product temperature to calculate an ice fraction (shown in Eq. 13) that is used to derive properties within 

the transition region between liquid and solid water content. The initial freezing temperature is used in 

calculating an ice fraction, which is zero above this temperature, then increases as the temperature of the 

c =
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product decreases. The ice fraction is limited by the original proportion of water in the food. The 

calculation of ice fraction, xice, was shown by Miles (1997), Chen (1985), and Cleland (2019) for foods 

with low concentrations of solutes; this calculation is given by Equation 13: 

 

 

(13) 

Using the calculated fraction of ice, water, carbohydrates, and fat, thermal conductivity is calculated 

using the Effective Medium Theory (EMT) because it is a Class IV (i.e., frozen, porous) food according 

to Carson (2016). Recall the classes of food discussed previously in Section 1.1.4. This conductivity 

calculation is given by Equation 14:  

 

(14) 

 

The conductivity kIV shown in Eq. 14 is a function of kII, which must be determined using Levy’s 

model (Levy, 1981). Levy’s model combines the individual constituents of the food product, including ice 

and water, as if they were dispersed uniformly within the food model according to a well-known 

Maxwell-Eucken model (Cleland, 2019). For many homogeneous foods, this appears to be an adequate 

assumption. The calculation for Levy’s conductivity is begun in Eq. 15. 

 

 

(15) 

 

Levy’s model has two additional terms, F and G. F is determined by Equation 16:  

 

 

(16) 

𝑥𝑖𝑐𝑒 = (𝑥𝑡𝑤 − 𝑥𝑏𝑤) (1 −
𝑇𝑖𝑓

𝑇
) 

𝑘𝐼𝑉 = (3𝑉𝑜𝑖𝑑𝑓 − 1)𝑘𝑎𝑖𝑟 + (3(1 − 𝑉𝑎𝑖𝑟) − 1)𝑘𝐼𝐼 +

√((3𝑉𝑎𝑖𝑟 − 1)𝑘𝑎𝑖𝑟 + (3(1 − 𝑉𝑎𝑖𝑟) − 1)𝑘𝐼𝐼)
2
+ 8𝑘𝐼𝐼𝑘𝑎𝑖𝑟
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2 𝑘𝑖𝑐𝑒 + 𝑘𝐼 − 2(𝑘𝑖𝑐𝑒 − 𝑘𝐼) 𝐹

2 𝑘𝑖𝑐𝑒 + 𝑘𝐼 + (𝑘𝑖𝑐𝑒 − 𝑘𝐼) 𝐹
) 

𝐹 =

2
𝐺

− 1 + 2 (1 − 𝑉𝑖𝑐𝑒) − (√(
2
𝐺

− 1 + 2 (1 − 𝑉𝑖𝑐𝑒))

2

− 8(
1 − 𝑉𝑖𝑐𝑒

𝐺
))

2
 



33 

 

 

G is shown in Equation 17: 

 

 

(17) 

 

Lastly, kII (from Equation 15) and G are both functions of kI, a conductivity term that is calculated 

using the Parallel model shown by Carson (2016). The calculation for kI is shown in Equation 18: 

 
 

(18) 

 

In this research, the temperature of the freezing product varies as a function of time; therefore, few of 

the properties shown above are truly constant during the product’s dwell time in the spiral freezer. 

Equations 11-18 establish temperature-dependent functions for thermal properties of the product that are 

called by the algorithm to solve the system of equations for the 1-D finite difference product thermal 

model. Table 1 at the beginning of Chapter 1 shows the values of the variables and a description of the 

nomenclature used for the frozen dough product at T = -10°C (14°F).  

 

A constant density of 533.8 kg/m3 (33.32 lbm/ft3) was used, which was calculated directly from the 

measured mass and volume of the specific dough product. This calculated density agreed closely with a 

composite temperature-dependent model constructed using methods from Cleland (2019). The density 

calculated using the composite method was also discontinuous, and this adversely affected numerical 

stability because it led to a loss of mass discovered by running an energy balance verification on the 

numerical model. Also, the discontinuous temperature-dependent density showed little change throughout 

the operating range; therefore, a constant value was safely assumed. Additionally, using constant density 

allowed for faster computational performance, allowing many simulations in a smaller amount of time.  

𝐺 =
(𝑘𝑖𝑐𝑒 − 𝑘𝐼)

2

(𝑘𝑖𝑐𝑒 − 𝑘𝐼)
2 + 𝑘𝑖𝑐𝑒  (

𝑘𝐼

2
)

 

𝑘𝐼 =
𝑘𝑤 𝑉𝑤 + 𝑘𝑓 𝑉𝑓𝑎𝑡 + 𝑘𝑐 𝑉𝑐

1 − 𝑉𝑖𝑐𝑒
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2.2.2 Selectable Food Types 

To better understand the thermal behavior of different products with different geometries and the 

implications of these attributes in the freezing process, other numerical food product models were 

developed. One of these models focused on a one-dimensional (1-D) spherical geometry, representing 

common food items such as chicken drumsticks and wings. The 1-D spherical model complements the 

existing 1-D plane wall model, providing insights into how geometry influences heat transfer during 

freezing.  The 1-D spherical model was designed using a node-based approach, where the geometry was 

discretized into concentric rings surrounding a central node. Each ring represented a successive layer of 

the sphere, with its temperature governed by the heat conduction equation and boundary conditions 

applied to the outermost layer. The numerical method solved the transient heat conduction equations 

iteratively, tracking temperature changes at each node over time.  

Temperature-dependent thermal properties were incorporated, allowing the model to account for 

variations in conductivity and heat capacity as the product cooled. The spherical model was 

systematically compared to the previously developed 1-D plane wall model to assess the influence of 

geometry on cooling curves and temperature variations. This comparison was useful in identifying 

geometry-specific thermal behaviors that could be leveraged to optimize freezing strategies. 

Understanding these differences allows for the strategic exploitation of distinct cooling patterns, such as 

those observed in "crust freezing," where only the product's surface freezes while the core remains 

unfrozen. Insights from these geometry-dependent behaviors also open opportunities for implementing 

energy-saving strategies tailored to specific product geometries.  

In addition to geometry variations, additional food thermal property models were developed, including 

one that simulates chicken breast meat. This model, activated through a configurable flag in the 

MATLAB ODE code, accounts for the significantly different fat, carbohydrates, and moisture content of 
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chicken compared to other products such as pizza dough. These compositional differences produced 

distinct cooling behaviors under identical conditions that will be further elaborated upon in Chapter 3.  

 

2.3 Performance Factors  

2.3.1 Optimization for Belt Speed 

The conveyor belt speed within a dynamic freezing system is a critical parameter in balancing freezing 

time and energy efficiency while being held to a constraint metric such as a required product exit 

temperature. CFD-predicted velocity is used as an input to the product thermal model to estimate the 

transient temperature response of the product as it progresses through the spiral and for evaluating overall 

freezing time and temperature. A lower than desired freezing temperature allows the speed of the spiral 

belt to be increased, which in turn increases product throughput while achieving target temperature. 

Figure 14 illustrates this behavior. If the desired output temperature of the product is -12°C (10°F), 

increasing the belt speed will result in products leaving the freezer in a warmer state. Slowing the belt 

down will result in the product exiting cooler and more closely approaching the freezer temperature.  

 
Figure 14: The exiting temperature of the product as a function of belt speed. 
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Figure 14 shows that decreasing the belt speed to 50 units/min or slower results in the exiting 

temperature of the product approaching the -30°F air supply temperature. If the belt speed is increased 

above 150 units/min (in this specific case), the exiting temperature of the product corresponds to the 

initial freezing point of the product (approximately 32°F). In between these two extremes, the exiting 

temperature of the product can be quite sensitive to the belt speed, as the water contained in the product is 

mostly in a single-phase state.   

The belt speed in a spiral freezing system is used as an independent variable that can be adjusted; the 

manufacturing plant changes this belt speed using a variable speed drive to maximize the throughput of 

the blast freezer while still achieving the desired temperature of the product exiting. The MATLAB 

optimization function fminsearchcon, a minimization routine that allows constraints, was used to 

automate this process of choosing the maximum belt speed that causes the product to leave in a 

completely frozen state (D’Errico 2022, Suresh 2021).  

In this way, a given velocity profile can be imposed on the 1-D model which then automatically 

adjusts the belt speed as an independent variable to minimize the temperature difference between the 

maximum (center) temperature in the product and the desired leaving temperature of the product (i.e., the 

temperature considered to be completely frozen). Once “favorable” air velocity profiles over the product 

are better understood, modifications to the air flow patterns within a spiral freezer can be pursued to 

improve freezing performance of the system.  

2.3.2 Air Velocity Over Product 

Air velocity over the product is a critical factor influencing the performance of spiral freezers, as it 

directly impacts the heat transfer coefficient, which governs the rate of heat removal from the product. 

Key characteristics such as velocity magnitude, direction, and temporal variations play vital roles in 

determining freezing efficiency, uniformity, and energy consumption. Higher air velocities enhance heat 
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transfer, leading to faster freezing times that can preserve product quality by minimizing the size of ice 

crystal formations and maintaining desirable texture. However, the primary energy required to generate 

increased air velocities grows cubically, creating a need to balance freezing efficiency against rising 

operational costs. Beyond a certain point, the marginal benefits of higher air velocity are outweighed by 

the additional energy expenditure, necessitating careful optimization for each application.  In addition, 

freezing systems operate with an upper constraint on air velocity to avoid dislodging product from the 

conveyor belt that can lead to belt jambs or other product (e.g. pizza topping) losses leading to diminished 

production yields. 

The direction of airflow also significantly affects freezing performance. As products move through the 

spiral freezer on the conveyor belt, they encounter airflow from multiple directions due to the freezer's 

geometry, including the center drum of the spiral, support structures, and internal baffles. Well-directed 

airflow ensures the product experiences uniform exposure to cold air, reducing temperature gradients and 

minimizing uneven freezing. Conversely, misdirected airflow can lead to inefficiencies such as short-

circuiting, where cold air bypasses the product, or dead zones, areas with low airflow velocity that result 

in inconsistent freezing and decreased refrigeration system performance. 

Temporal variations in air velocity further influence freezing dynamics. Products experience 

fluctuations in airflow intensity depending on their position relative to fans and bulk airflow distribution 

patterns. For instance, products nearer to fans may experience higher velocities than those farther 

downstream. The interaction between the product's trajectory and the spatial distribution of coldest air 

significantly impacts freezing performance. Timing and location of exposure to peak velocities and 

temperatures can create localized enhancement or degradation in heat transfer. This dynamic interaction 

was systematically studied and will be discussed in Chapter 3 with surprising conclusions.  
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2.3.3 Air Temperature Over Product 

Maintaining consistent air temperature is essential for achieving uniform freezing in spiral freezers. 

Spatial temperature gradients can be minimized through optimized airflow strategies and high air 

exchange rates, but reducing the average air temperature to accelerate freezing often increases energy 

consumption, as refrigeration systems must work harder to maintain lower suction pressures. This 

necessitates a balance between operational efficiency and cost. In practice, air temperatures in spiral 

freezers typically range from -40°C (-40°F) to -20°C (4°F), depending on the product type and desired 

freezing time. However, achieving uniform low temperatures throughout the freezer is challenging due to 

factors such as equipment design, airflow patterns, and variable product loading. These factors can create 

spatial temperature variations that lead to uneven freezing and require robust airflow control and 

temperature monitoring systems to address. 

Operational dynamics introduce additional complexities to maintaining uniform air temperatures. 

Sequential defrosting of evaporator coils, where individual coils are heated and isolated with dampers, 

can create localized hotspots, disrupting temperature consistency. The "chimney effect," wherein warm 

air rises rapidly within the freezer, exacerbates vertical temperature stratification, further complicating 

uniform freezing. Moreover, the entry zone of the spiral freezer often exhibits localized higher 

temperatures and increased humidity due to infiltration of plant air into the freezing system and product 

loading, which can disrupt freezing efficiency and product uniformity. Addressing these challenges 

requires a comprehensive, holistic approach to airflow management and temperature regulation to 

maintain desired thermal conditions throughout the freezer. 

The temperature difference between the product’s surface and the surrounding air (ΔT) is the driving 

force for convective heat transfer. As the product cools, ΔT decreases, reducing the rate of heat removal 

from the product. Strategies such as increasing air velocity near the freezer exit could counteract this 
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effect, though it remains uncertain whether this strategy is more effective than pursuing velocity increases 

at the freezer's entrance, where ΔT is initially highest; this was studied and is addressed in Chapter 3. 

Maintaining consistent ΔT across each product being conveyed through a freezing system is crucial for 

consistent freezing and process output, reducing variability in freezing times and avoiding issues such as 

partial or over-freezing, which can compromise product quality. In production environments, sample 

products are typically periodically tested throughout operating shifts upon exiting the freezer to ensure 

their internal temperatures meet specified ranges. A low variance in this temperature data is essential for 

optimal freezer performance and product quality. 

Lower air temperatures result in faster freezing by increasing ΔT, preserving product quality by 

minimizing ice crystal growth and maintaining desirable texture and appearance, which is explained in 

more detail by Kolbe and Kramer (2007) and Wu (et al., 2021). Additionally, products frozen more rapidly 

lose less intercellular moisture upon thawing, further enhancing quality. Conversely, slower freezing 

caused by a smaller ΔT leads to larger ice crystal formation, which negatively impacts structural integrity, 

causing sogginess and significant water loss upon thawing. Optimizing air temperature is therefore critical 

to balancing freezing performance, energy efficiency, and product quality. 

2.3.4 Belt Material 

The 1-D thermal model used in this research assumes the same heat transfer coefficient on both the top 

and bottom surfaces of the product, a simplification that streamlines the analysis while maintaining 

sufficient accuracy for most applications. In practice, however, the bottom of the food product rests on the 

conveyor belt, introducing additional thermal resistance factors influenced by the belt material, the open 

area of the belt, the airflow around the belt and within its cavities, and the type of product being frozen. 

Modeling this complex thermal resistance network would require numerous assumptions, many of them 

nearly arbitrary, making the analysis unnecessarily cumbersome and potentially less reliable. 
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Additionally, the majority of this research is comparative in nature, rendering the influence of belt 

material inconsequential, because it does not change between iterations, and altering it in practice would 

involve substantial logistical challenges. Instead of attempting to model all of the complex thermal 

interactions of the product on the belt, a heat flux sensor was employed in the experimental setup that will 

be described in Section 2.6. This sensor was mounted on the underside of a simulated product to directly 

measure the heat flow through the bottom surface. These measurements were then compared to the heat 

transfer occurring on the top surface, driven exclusively by forced convection. 

The material of the conveyor belt in a spiral blast freezer has an influence on both heat transfer and 

product quality. The two most common materials for conveyor belts in low temperature dynamic freezing 

systems are stainless steel and food grade plastic.  Stainless steel belts, known for their comparatively 

higher thermal conductivity, facilitate rapid and efficient heat transfer between the product and the 

freezing environment. This leads to faster freezing times and improved cooling efficiency, which are 

advantageous in high-throughput industrial settings. However, the open weave design of stainless steel 

belts, while enhancing airflow, can create surface imprints on softer unpackaged products like dough due 

to increased contact pressure. These imprints may compromise the aesthetic appeal of certain products, 

making stainless steel less suitable for applications where visual presentation on the bottom side of a 

product is critical. Additionally, stainless steel belts are generally significantly more expensive than their 

plastic counterparts, increasing initial capital and replacement costs. 

Plastic conveyor belts on the other hand have lower thermal conductivity, which slows heat transfer 

and extends freezing times. Despite this limitation, their smoother and less open surface minimizes 

surface imprints on soft or delicate products, preserving their appearance and structural integrity. Plastic 

belts are also lighter than stainless steel, which reduces drive belt motor power, maintenance 

requirements, and operational downtime. Moreover, they are easier to remove and replace in large 
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sections, a valuable advantage in cases of operational issues, such as if a belt slips or is damaged during 

production. While plastic belts may lack the thermal efficiency of stainless steel, their ability to handle 

products without deformation makes them ideal for applications where surface quality takes precedence 

over rapid freezing. One other consideration is that plastic belts are flammable, with melted remains that 

are more difficult to clean up in the event of a fire, as compared to stainless steel belts. The selection of 

belt material ultimately depends on the specific requirements of the application, balancing heat transfer 

performance, aesthetic product preservation, and cost considerations. 

The measurements on various belts in this research including stainless steel belts and plastic (Blue 

Acetal Intralox 2600 series) were conducted in an operational spiral freezer to provide practical insights into 

the comparative performance of the two materials. The findings from this analysis will offer a data-driven 

basis for evaluating the trade-offs between these conveyor belt materials and will be further detailed in 

Chapter 3. 

 

2.4 Identifying Ideal Velocity Profiles 

As noted in Section 2.3.2 the velocity of air over the product has a direct influence on the external heat 

transfer coefficient thermally coupling the freezer environment to the process of heat removal from 

product.  It has also been noted that the velocity field throughout a dynamic freezing system is varied and 

field measurements on different freezing systems show quite a range of velocity fields.  The underlying 

question that needs to be answered is what is a desirable velocity field to maximize freezing performance 

while balancing power demands for fan operation?  Increased fan power to achieve higher velocities 

brings a direct increase in the power to operate the fans (cubic relationship) and that increased fan power 

leads to an increased parasitic thermal load within the freezing system.  In the sections that follow, an 

analysis of the effects of time-varying velocity profiles during the freezing process is conducted. Velocity 
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profiles that optimize overall freezing performance are identified and serve as landmarks for designers of 

freezing systems to target to improve the performance of both existing freezing systems in operation and 

planning for next generation of freezing systems.  Unfortunately, optimizing the performance of a 

dynamic freezing system does not rely solely on single air velocity but on time-varying velocities over the 

product as well as other environmental factors such as air temperature.   

Monte Carlo simulations are used as a means of exploring the solution space in search for optimal 

performance.  To ensure the simulations are robust, randomization is used as a strategy to minimize the 

likelihood of becoming “stuck” in regions with local minima.  

2.4.1 Randomization 

Randomization was a critical component of this research, enabling the effective use of computational 

resources to explore a broad range of not only potential solutions but solutions that support optimal 

operation. Randomized initial values were incorporated into optimization algorithms to avoid 

convergence to local minima and improve solution robustness. This approach was particularly crucial for 

determining optimal airflow profiles and belt speeds within models constrained by non-linear dynamics. 

By introducing randomness into initial parameter guesses, such as time-varying air velocity profiles, the 

methodology minimized the risk of overlooking global maxima and ensured a comprehensive search of 

the solution space. Additionally, randomized adjustments in airflow configurations allowed for systematic 

evaluation of diverse scenarios without bias from predefined assumptions, providing valuable insights 

into configurations that enhance performance. 

The MATLAB ODE code, described in Section 2.1.1, was engineered with exceptional robustness, 

capable of handling significant variations in input parameters without system failures and crashes. This 

resilience was vital for automating the testing of thousands of permutations, enabling the algorithms to 

efficiently navigate diverse parameter sets without manual intervention. This automated approach 
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increased productivity by more than 100 times, eliminating the need for labor-intensive manual iteration 

and significantly accelerated the exploration of parameter spaces. Randomization not only facilitated this 

computational efficiency, but also yielded insights that would have been unattainable through 

deterministic methods, ultimately contributing to the development of more effective and reliable 

optimization strategies. 

2.4.2 Monte Carlo Simulations 

Monte Carlo simulations were employed, both explicitly and implicitly, to explore variability in 

freezer performance and optimize operational parameters. Historically, transient simulations of food 

models as intricate as the one detailed in Section 2.1.1 would have required significantly more 

computational time; however, advancements in computational efficiency and power allowed the 

simulations in this research, even with a larger 1-D product model node count of 80, to be completed 

within seconds. Monte Carlo techniques were utilized to generate extensive datasets of potential air 

velocity profiles within the spiral freezer. These profiles were evaluated to identify those delivering the 

highest performance, with shared traits among the top-performing profiles analyzed and subsequently 

targeted as initial conditions for subsequent optimization algorithms, which further refined them. The 

results of the Monte Carlo simulations were visualized using Pareto fronts, which displayed the limits of 

performance and helped catalog velocity features that were advantageous to optimal spiral freezer 

performance.   

Other Monte Carlo simulations incorporated variations in air velocity, belt speed, and temperature to 

generate a complete range of the solution space showing the tradeoffs and limits of these factors. The 

resulting Pareto fronts not only highlighted optimal solutions but also provided actionable insights into 

areas where performance improvements could be achieved and operational adjustments made. This 

approach ensured a data-driven basis for optimizing freezer operations. 
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2.4.3 Optimization 

Optimization techniques play a pivotal role in enhancing the modeling and performance of blast 

freezers by systematically refining critical parameters to achieve objectives such as reduced freezing 

times and improved energy efficiency. Even fundamental field adjustments, such as changing the belt 

speed to achieve a target product temperature, can be considered a basic form of optimization. As 

described in detail in Section 2.3.1, optimization was initially employed to determine the belt speed 

required to achieve a specified center temperature for the food product. Additionally, optimization was 

employed to refine polynomial curves that were used to represent time-varying velocity profiles, with the 

aim of maximizing belt speed, and thus product throughput, within specified constraints. These 

constraints typically included upper and lower velocity bounds and an average velocity limit for the entire 

profile. This approach inherently penalized profiles with extremely large velocity peaks, as such peaks 

consume a disproportionate share of the average velocity allowance and exhibit diminishing returns in 

heat transfer efficiency, as demonstrated in Equation 9. 

Programmatic optimization methods were utilized to refine both belt speeds and airflow profiles. By 

iteratively adjusting these parameters, the model identified configurations that optimized freezing 

performance while balancing rapid freezing with energy conservation. This systematic approach enabled 

the development of efficient, data-driven solutions to improve freezer throughput and operational 

effectiveness. The results of this will be shown in Section 2.4. 

2.5 CFD Setup and Assumptions 

2.5.1 Simplifications 

The dynamic freezing systems used in food production facilities today are quite large, on the order of 

283 m3 (10,000 ft3) or more of internal volume.  In addition, blast freezing systems have a number of 

internal physical elements at considerably smaller length scales such as belt openings that are on the order 
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of tens of millimeters or the spaces between finned surfaces on evaporator coils on the order of 

millimeters.  The excessively large computational domain couple with small feature details creates a 

challenge in creating a three-dimensional mesh that can be solved in a reasonable time. 

These realities require simplifications in computational fluid dynamics (CFD) to effectively and 

efficiently model the complex geometry while properly capturing the airflow dynamics. To capture the 

essential physics of airflow and heat transfer without excessive computational demands, several key 

simplifications were employed in the CFD models developed. The evaporator coils and spiral conveyor 

belt, which have intricate geometries, were modeled as porous media. This approach eliminated the need 

for fine mesh resolution to detail every physical feature, such as the flow passages within the coils or belt. 

Instead, the hydraulic resistance of these components was approximated and calibrated using empirical 

data from actual operating spiral freezing systems, allowing for an accurate representation of bulk airflow 

with a significantly reduced computational load. 

A global grid size was selected to balance accuracy and computational efficiency. Areas of particular 

interest, such as regions near fans or product surfaces, were refined with smaller mesh sizes and inflation 

layers to ensure critical details were resolved without requiring a uniformly fine grid throughout the 

computational domain representing the freezer. This hierarchical meshing approach minimized 

computational costs while preserving accuracy in areas with quickly changing airflow. Mesh convergence 

studies were performed to validate that as the mesh was refined more, the CFD solution converged. One 

such study is shown in Figure 15, where the starting mesh size is reduced from 0.4 m (16”) to less than 

0.05 m (2”). The velocity modeled at the refrigeration coils and along the spiral freezer clearly converge 

to stable conditions as this mesh size is reduced, indicating that the CFD model is stable. Simulations also 

assumed steady-state or time-averaged airflow conditions, simplifying transient airflow behavior. While 
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these dynamic changes are important, they were either excluded or addressed separately in smaller-scale 

studies to prioritize the assessment of long-term freezer operational performance. 

 

Figure 15: Mesh study done in ANSYS Fluent to test convergence of CFD model. 

 

To model the airflow generated by the fans, detailed mechanics of the fan blades themselves were 

bypassed by incorporating fan performance curves directly as boundary conditions. This ensured realistic 

airflow rates and pressure drops without needing to simulate the internal mechanics of the fans. The fan 

curves were taken directly from the fan manufacturer’s product literature using the serial numbers of 

actual fans deployed in a real operating spiral freezer.  

Advanced wall treatments were utilized in the CFD modeling to refine the mesh at critical areas, 

including physical structures near fans, walls, and other object surfaces such as baffles, ensuring accurate 

capture of boundary layer effects. The y+ value, a dimensionless parameter representing the distance of 

the first computational cell from the wall normalized by local flow conditions, was carefully considered in 

mesh refinement and defining inflation layers. This parameter is important for the accuracy and validity 

of wall-bounded flow simulations, particularly in scenarios involving significant turbulence, such as 
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airflow studies within spiral freezers. Striking a balance between computational cost and simulation 

accuracy was sought. For large-scale systems like spiral freezers, maintaining y+ less than one with a 

highly refined mesh was determined to be computationally prohibitive. Instead, a practical approach was 

adopted, employing coarser meshes with wall functions to achieve moderate y+ values, generally below 

300, while ensuring the chosen turbulence model and flow regime supported this approximation. Through 

iterative mesh refinement during CFD testing, it was found that significant improvements in airflow 

dynamics within the spiral freezer could be observed without the need for exhaustive refinement of wall 

treatments. This approach enabled efficient yet reliable simulations, capturing essential airflow behaviors 

while maintaining manageable computational demands. 

These simplifications allowed the CFD models to effectively capture airflow patterns and velocity 

distributions within the spiral freezer without overwhelming computational resources. While trade-offs in 

detail were necessary, validation against experimental data and surrogate models ensured that the 

simulations remained both accurate and reliable for engineering analysis. 

2.5.2 Porous Media 

In the CFD model of the spiral freezer, porous media were used to represent the conveyor belts and 

evaporator coils, simplifying their intricate geometries while capturing their effects on bulk airflow. This 

approach avoided the need for a fine mesh to resolve the physical details of each coil or belt opening, 

significantly reducing computational demand. To accurately replicate the airflow dynamics, anisotropic 

flow resistances were assigned to the porous media parameters, reflecting the directional dependence of 

airflow through these components. Specifically, the resistance in the vertical direction was modeled to be 

higher than in the lateral directions, mimicking the natural tendency of air to flow more easily along the 

horizontal plane due to the tiers in the spiral freezer belt and passages in evaporator coils. The parameters 

for these resistances were calibrated and tuned using empirical data, ensuring that the porous media 
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accurately represented the hydraulic behavior and contributed to realistic airflow simulations in the 

freezer environment. 

2.5.3 Point Cloud Analysis 

A “point cloud” was developed in the CFD modeling of the spiral to capture discrete velocity vectors 

along the path trajectory of food products as they moved on the conveyor through the freezing system. 

The points in the cloud were carefully aligned with the actual path taken by food products in the modeled 

spiral freezer, which was based on physical data from an actual spiral freezing system, as shown in Figure 

16. The point cloud consisted of 3,200 discrete points, each corresponding to a specific location on the 

conveyor belt path. It enabled the generation of a high-resolution dataset that included the air velocity 

magnitude and its x, y, and z components at each point of the cloud. By accurately representing the 

conditions encountered by food products, the point cloud provided a robust dataset that could be directly 

compared to experimental measurements from operational spiral freezers. 

  

Figure 16: The point cloud used in the CFD model to track the velocity along the path a product follows 

in a spiral freezer. 

This detailed comparison of velocity and temperature profiles derived from the point cloud against 

field measurements validated the CFD simulations and confirmed their accuracy and reliability. Multiple 

examples of the point cloud’s utility will be shown in Chapter 3. 
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2.6 Modeling Validation: Phantom I 

To validate the thermal models and CFD predictions developed in this research, a surrogate device 

known as Phantom I was designed and constructed. Phantom I was engineered to replicate the physical 

geometry of a food product within a spiral blast freezer, providing a controlled and measurable platform 

for assessing in situ heat transfer dynamics and airflow interactions. This device served as a critical tool 

for bridging the gap between theoretical models and real-world freezer performance, enabling direct 

measurement of key parameters such as ambient temperature, product surface temperature, and heat flux. 

The following subsections detail the mechanical design and instrumentation of Phantom I, emphasizing 

its role in experimental validation and performance benchmarking. 

2.6.1  Mechanical Design 

A geometrically-similar surrogate device was designed to collect data on the thermal environment 

within a spiral blast freezer. Referred to as “Phantom I”, this instrument was engineered to accurately 

measure surface heat transfer coefficients and temperatures that would be experienced by actual food 

products being conveyed through the blast freezer.  The instrument measures surface heat fluxes and 

temperatures on both the upper and lower surfaces while being robust enough to withstand the operational 

environment of an industrial freezer. Constructed from T6061-T651 aluminum, this high-conductivity 

metal was chosen to ensure minimal temperature gradients within the instrument as well as being durable 

and able to maintain its structural integrity while being conveyed side-be-side with actual products in an 

operational industrial spiral freezer. The Phantom I is a circular flat plate having a diameter of 11.5 inches 

(29 cm) and overall thickness of 5/8 inches (1.6 cm) replicating the geometry of the dough product (pizza 

crusts) being processed in the first freezer utilized in this project.  The Phantom is comprised of two 

equally sized aluminum plates machined to a thickness of 5/16 inches (0.8 cm).  The split plate design is 

needed to incorporate a heat source in the center of the surrogate product. The heat source enabled the 
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Phantom to maintain a measurable temperature difference between the plate’s exposed surface and the 

local thermal environment within the spiral freezer so a non-zero heat flux would be assured throughout 

its movement through the freezing system. A mechanical drawing of the Phantom I is provided in Figure 

17. 

 

Figure 17: Mechanical drawing of the Phantom I. 

 

The electric resistance heater sits within a machined groove between the two aluminum plates with the 

machined depth of the channel configured to maintain an intentional interference fit, ensuring it was 

compressed for optimal thermal contact. Gennel brand G107 thermal paste with a thermal conductivity of 

3.17 W/m-K was applied between the heater and the plates to fill any surface irregularities and minimize 

contact resistance. To measure heat flux, and subsequently calculate heat transfer coefficients, a heat flux 

sensor was mounted on the top surface of the Phantom using HPFIX brand 30mm wide high-conductivity 

adhesive with a thermal conductivity of 1.5 W/m-K and 0.2 mm thickness. Another heat flux sensor was 

positioned in a slight recessed cavity on the bottom of the Phantom, coincident with the bottom aluminum 

plate to capture heat flux data on the lower surface. The recess in the bottom of the plate was necessary so 

the plate would lie flat on the belt.  Figure 18 shows critical Phantom components.  
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Figure 18: The Phantom I.  

Several Type-T thermocouples were installed on the Phantom to monitor temperatures at critical 

locations, including at the top surface coincident with the heat flux sensor, at the bottom surface 

coincident with this heat flux sensor, within an internal cavity adjacent to the heating element, and one 

that captured the local air temperature within the spiral freezer. These thermocouples provided real-time 

data on temperature differences, enabling precise calculations of heat transfer rates. The Phantom I was 

also designed for structural durability, ensuring it could endure mechanical stresses typical of spiral 

freezer environments such as abrupt belt transitions. Compact and portable, it was designed to be easily 

integrated into the product path alongside actual food items. Figure 19 shows a photo of the Phantom I, 

with its instrumentation tote on the left and the aluminum pseudo-product on the right. 
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Figure 19: The Phantom I, a portable device designed to measure heat transfer coefficient and temperature 

inside spiral freezers. 

2.6.2 Electrical Circuitry 

The electrical circuitry of Phantom I was designed to enable precise measurement of the data being 

collected in the harsh conditions of a spiral freezer. Figure 20 shows a simplified version of the wiring 

diagram. The largest electrical load was the electric resistance heater already introduced in Section 2.6.1 

embedded within the aluminum plates. Power to the heating element is supplied to the heater by Lithium 

polymer (LiPo) batteries and was indirectly measured using voltage across a calibrated shunt resistor that 

corresponded to amperage through the heater circuit. Furthermore, the red switch shown in Figure 19 

allowed the heater power to be turned off while the batteries kept the data acquisition system continuously 

active, allowing a “power saving mode” when the Phantom was on standby before and after the Phantom 

was inside a spiral freezer. All of the major components of the Phantom are listed in  

Table 2 at the end of this section.    
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Figure 20: Phantom wiring diagram. 

The heat flux sensors employed in Phantom I were FluxTeq PHFS-01 models, selected for their high 

accuracy and NIST traceability, shown in Figure 20. These sensors have a measurement range of ±150 

kW/m² and capable of reliably operating in temperatures ranging from -50°C (-58°F) to 120°C (248°F). 

The sensors output a millivolt signal proportional to the instantaneous heat flux through the sensor which 

is equal to the heat flux at the coincident surface of the aluminum plate. The output signals from the heat 

flux sensors were converted to a 4-20 mA signal using loop-powered TxBlock-USB transmitters, which 

ensured data fidelity during logging. The transmitters were designed to operate within a broad power 

range (10-35 V DC), allowing them to handle potential voltage drops from battery power sources in the 

low-temperature environment.  

Data from the heat flux sensors, heater current, and thermocouples were recorded using Hobo data 

loggers, providing precise, time-stamped measurements throughout the freezer cycle. These loggers 

enabled detailed post-process analysis, including the calculation of surface heat transfer coefficients, and 

the application of thermal correction factors to account for radiation effects. The entire electrical system 
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was powered by a compact and reliable battery pack capable of sustaining operation in extreme low-

temperature conditions, ensuring uninterrupted functionality throughout the Phantom’s journey in the 

spiral freezer. This robust electrical circuitry was integral to Phantom I's ability to deliver reliable and 

actionable data under demanding operational conditions.  

Table 2: The mechanical and electrical details of the Phantom I. 
Category Component Description Specifications 

Apparatus Aluminum plate 

Two T6061- T651 circular aluminum plates 

resembling a generic blunted “flat plate" 

mated into one overall plate with M6 bolts 

11.5” diameter, overall 

thickness: 1.6 cm (5/8”), 

grooved to accept heater 

element with interference fit 

Apparatus Heater 
Silicone rubber coated heater embedded in 

the aluminum plate 

23 cm x 23 cm (9” x 9”), 403W 

at 24V DC 

Apparatus 
Thermal adhesive 

(CPU tape) 

Used to affix heat flux sensors to the top of 

the aluminum plate 

Width: 30mm x 30mm, 0.2mm 

thick, thermal conductivity: 1.5 

W/m-K 

Apparatus Thermal paste 

Applied to minimize contact resistance due 

to dimensional variation in heater surfaces 

and aluminum plates 

Thermal conductivity: 3.17 

W/m-K 

Instrumentation/sensors Batteries Two 4S Lipo batteries 
4S, 14.8V, 5200 mAh per 

battery 

Instrumentation/sensors 

Heat flux sensors, 

FluxTeq model 

PHFS-01 

NIST traceable sensors used to measure heat 

flux affixed to the aluminum plates, 380-

micron thick thermopile coated in Kapton 

(polyimide)  

Measurement range: ±150 

kW/m2, accuracy: ±2.5% 

reading, -50 to 120°C operating 

temperature 

Instrumentation/sensors 

TxBlock-USB loop-

powered temperature 

transmitters 

Converts mV signal from heat flux sensors 

to a 4-20 mA signal for better data fidelity, 

programmable using USB 

Range: 0-50 mV (scales to 4-20 

mA), power supply: 10-35 V 

DC, accuracy: ±0.1%, 

operating temperature: -40 to 

85°C 

Instrumentation/sensors 

HOBO® UX120-

006M 4-channel 

analog data loggers 

Used to read the 4-20 mA signals from each 

heat flux sensor 

Accuracy: ±0.001 mA ±0.2% 

of reading 

Instrumentation/sensors 

HOBO® UX120-

014M 4-channel 

thermocouple data 

loggers 

Used to directly measure the Type-T 

thermocouple signals 

Accuracy: ±0.6°C ± 

thermocouple probe accuracy 

Instrumentation/sensors 
Type-T 

thermocouples 

Used to measure temperature at the heat flux 

sensor and the ambient environment 

Accuracy: ±1°C (2°C is used in 

calculations accounting for data 

logger, conservatively) 
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The sensitive electrical components were placed in a polypropylene tote and sealed with aluminum 

tape around a polycarbonate top plate. The tote was iteratively reduced in size throughout successive plant 

visits to fit the entrance of multiple spiral freezers. The final height of the Phantom was 2 inches, as 

shown in Figure 21.    

 

Figure 21: The profile of the Phantom equipment tote. 

 

2.6.3 Action Camera  

An action camera integrated into the Phantom I was a vital tool for visually supplementing the thermal 

and airflow data collected by the sensors. A photo of the front of the Phantom that shows this camera 

(along with an LED light bar) is shown in Figure 22. The main purpose of the camera is that it allowed a 

global time to be recorded at the beginning of each run, which enabled more accurate synchronization of 

the Phantom data with the point cloud from the CFD analysis introduced in Section 2.5.3. The precise 

position of the Phantom could be determined down to the second inside the freezers using internal 

structures within the freezer as landmarks. In some freezers, there were belt stoppages for a period of time 

that influenced measured data. With the video footage, this could easily be clipped out of the data. 

The camera also captured insights into operational dynamics and potential issues that are not 

discernible from sensor data alone. The camera documented critical moments, such as the Phantom’s 

transitions between different conveyor belt systems, where mechanical stresses, abrupt bursts of airflow, 
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or mechanical obstruction could affect the freezer performance. The camera identified disruptions such as 

blockages or "jam-ups" caused by product congestion, as shown in Figure 23. The camera also provided 

visual evidence of frost accumulation on internal structural supports, where frost build-up could impede 

airflow and reduce heat transfer efficiency.  

 

Figure 22: The front of the Phantom I with the action camera on the right. 

 

 

Figure 23: Leftover remains of a product jam-up are shown on the left. 
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Figure 24 shows a screenshot of the Phantom entering a spiral freezer that had a substantial amount of 

frost buildup on structures within the spiral freezer. In this particular example, an unexpected use-case for 

the equipment tote was discovered: snowplow. The action camera observed unexpected unsanitary 

conditions by capturing footage of the freezer interior, which showed potential food particle buildup that 

missed routine deep-cleaning operations. The visual documentation provided by the camera proved 

invaluable for this research and provided a new perspective to what product sees inside freezers that has 

not been shown in any other known published works.  

 

Figure 24: Frost buildup in a freezer captured by the Phantom’s camera on board the snowplow. 

2.6.4 Phantom equations 

The millivolt signal produced by the heat flux sensors is converted to a 4-20 mA signal using loop-

powered transmitters. The 4-20 mA signal, commonly used in industrial controls, showed higher data 

fidelity using the portable loggers employed for collection when compared to attempts to directly measure 

and amplify the mV signal. Also, small battery-powered portable devices that can measure 4-20 mA 

signals are readily available but small mV signal measuring devices are typically constrained to 

thermocouple signals. Dedicated devices for measuring generic mV signals are often physically large and 

need to be plugged in.  Portability is a consideration here based on the subsequent planned use of this 

instrument in an actual dynamic air blast freezing system. 
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The signal transmitters used in this experiment are versatile in that they can utilize a relatively broad 

power supply ranging from 10-35 V DC with no loss in accuracy, which is especially critical because they 

are often powered with an external battery that experiences a voltage decrease during operation in a 

freezer as the battery discharges in the harsh low ambient temperature environment. Thermocouple data 

loggers were used to directly measure the Type-T thermocouple signals. All the data loggers shared the 

same time stamp during initialization so that collected data could be synchronized to the nearest second, 

and synchronized to the action camera introduced in Section 2.6.3. 

The equation to convert 4-20 mA milliAmps to 0-50 milliVolt is shown: 

 

 

(19) 

 

The calibration method by the heat flux sensor manufacturer produces an equation that is a function of 

the calibration sensitivity Scalib and the surface temperature Ts for each sensor. This sensitivity varied from 

0.00125 to 0.00134 mV/(W/m2) for all the flux sensors used. Equation 20 produces the overall sensitivity 

coefficient S: 

 
 

(20) 

A correction factor (𝑞̇𝑟𝑎𝑑
" ) was applied to remove radiation from the measured surface heat flux, 

isolating the heat transfer that is due to convection. The radiation correction resistance term (Rrad) is 

calculated in Equation 21, taken from Nellis and Klein (2009): 

 

 

(21) 

 

where A is the overall surface area of the plate, ε is the estimated emissivity of aluminum, and σ is the 

Stefan-Boltzmann constant of 5.67 x 10-8 W/m2-K4. A handheld infrared thermometer was used to 

𝑆 =  (0.00334 𝑇𝑠 + 0.917) 𝑆𝑐𝑎𝑙𝑖𝑏  

 

𝑅𝑟𝑎𝑑 =  
1

𝐴𝜀𝜎(𝑇𝑠
2 + 𝑇∞

2)(𝑇𝑠 + 𝑇∞)
 

𝑚𝑉 =  (
𝑚𝐴 − 4

16
) 50 



59 

 

measure the emissivity of the aluminum which was found to be approximately 0.1. Equation 22 shows the 

application of this radiation resistance in deriving a simple radiation correction factor 𝑞̇𝑟𝑎𝑑
" : 

 

 

(22) 

The heat flux 𝑞̇𝑓𝑙𝑢𝑥
"  for each sensor in W/m2 is then calculated using Equation 23, with 𝑞̇𝑚𝑒𝑎𝑠

"  shown 

as the uncorrected measured heat flux and the radiation correction factor 𝑞̇𝑟𝑎𝑑
"  subtracted:   

 

 

(23) 

The last step is to use Newton’s law of cooling to calculate the local heat transfer coefficient shown in 

Equation 24: 

 

 

(24) 

Table 1 at the beginning of Chapter 1 shows a summary of the variables and their descriptions from 

Equations 19-24, along with typical values for each as a reference.  

 

2.7 Phantom II 

The Phantom II was developed to examine how airflow angle impacts the measured heat transfer 

coefficient, a key parameter in freezing processes. While previous studies assumed horizontal airflow 

over a flat plate, real-world spiral freezers feature multidirectional airflow due to fan currents, conveyor 

geometry, and product placement. These deviations raised questions about the accuracy of traditional 

convection correlations. 

To address this, Phantom II's square geometry was designed to better represent the flat plate 

configuration used in convection studies. Granted, the edge of the Phantom II is blunted, therefore it more 

 
𝑞̇𝑟𝑎𝑑

" =  
𝑇𝑠 − 𝑇∞

𝑅𝑟𝑎𝑑  𝐴
 

 
𝑞̇𝑓𝑙𝑢𝑥

" = 𝑞̇𝑚𝑒𝑎𝑠
" − 𝑞̇𝑟𝑎𝑑

"  

 
ℎ =
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resembles the theoretical studies shown in Section 1.2.2. This setup allows controlled testing of angular 

airflow variations, providing insights into real-world heat transfer dynamics. 

2.7.1 Horizontal Flow Assumptions 

The Phantom II was developed to address uncertainties surrounding the impact of airflow 

“impingement” angle on the surface-measured heat transfer coefficient, a critical parameter in the 

freezing process. Existing literature and previous experiments with the round Phantom I are based on the 

assumption of predominantly horizontal airflow across a flat plate. However, in real-world spiral freezers, 

airflow is often multidirectional due to the complex interplay of fan-generated air currents, conveyor belt 

geometry, physical structures within the spiral, and product placement. Airflow impacts the product 

surface at a certain velocity magnitude and angular direction. The discrepancy observed between 

theoretical models and operational conditions raised questions about the validity of only using horizontal 

airflow assumptions to model heat transfer accurately. The goal of Phantom II was to create a platform for 

exploring how angular deviations in airflow affect convective heat transfer once this angle is added 

experimentally.  

2.7.2 Phantom II Design 

The design of the Phantom II represents a change from its predecessor, featuring square aluminum 

plates instead of round ones. The details and dimensions are shown in Figure 25. This modification was 

implemented to better replicate the geometric conditions of flat plate heat transfer as described in 

theoretical and empirical studies. However, the edges of the plate are blunt, rather than thin, which makes 

it more like a food product than an infinitesimally-thin plate. Three heat flux sensors were along the 

length of developing flow on the top side to ascertain differences in heat transfer coefficient depending on 

the length measurements were taken from the leading edge. The initial version of the Phantom II had 

three heat flux sensors on its bottom as well, but were removed in later stages once it was placed in actual 
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operating spiral freezers. Constructed from high thermal conductivity T6061-T651 aluminum, the 

Phantom II retains the robust thermal and mechanical properties required to endure experimental 

conditions, including controlled airflow exceeding 10 m/s (2000 feet/min) in wind tunnels. Its design also 

includes an embedded heater, and thermocouples at strategic locations, providing high-resolution 

measurements of heat transfer and temperature gradients across the plate’s surface. Most of the 

equipment, including the sensors, are the same as Phantom I, and the data acquisition and equations 

required to obtain heat transfer coefficient are the same as those presented in Section 2.6.4. 

 

Figure 25: The Phantom II design. 

2.7.3 Wind Tunnel Experimental Setup 

To investigate the effects of airflow angle on heat transfer, an adjustable testing frame was constructed 

from welded galvanized steel Unistrut, with a fixture to securely hold the Phantom II by its edges using 

stainless steel hardware. The prototype version of this apparatus is shown in Figure 26, using the round 

Phantom I for initial tests. 
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Figure 26: The Phantom wind tunnel angle testing stand. 

 

 
The Phantom II setup within a wind tunnel was designed to allow precise control of both airflow angle 

and velocity relative to the Phantom's surface, with airflow through the wind tunnel’s test section 

generated by a variable frequency-driven fan. Air velocity and temperature were monitored and recorded 

at one-second intervals for subsequent post-processing. The square geometry of Phantom II ensured 

uniform exposure to airflow across its surface, enabling detailed analysis of angular variations. This 

controlled experimental environment provided critical insights into the influence of airflow direction on 

convective heat transfer, addressing gaps between theoretical models and the complex dynamics 

encountered in operational spiral freezers that will be presented in Chapter 3.  

2.7.4 Velocity at an Angle Initial Experiment 

Initial experiments with the Phantom II were conducted to measure the leeward and downwind surface 

heat transfer coefficients under varying airflow angles, offering a preliminary understanding of if and how 

angular deviations impact convective heat transfer. By systematically adjusting the airflow angle by 

tilting the Phantom within the wind tunnel, detailed data were captured, as shown in Figure 27, which 
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presents the average heat transfer coefficient recorded by all three sensors on the top side of the plate. The 

results revealed that non-horizontal airflow introduced substantial variations in heat transfer, underscoring 

the limitations of the traditional uniform horizontal airflow assumption commonly used in freezer 

modeling. These findings provided valuable new insights into the influence of airflow direction on 

thermal performance, offering a more nuanced understanding relevant to freezer applications. 

 

Figure 27: Initial wind tunnel tests showing heat transfer coefficient as a function of angle. 

2.7.5 Dimensionless Results 

Dimensionless Nusselt number and Reynolds numbers were calculated using the heat transfer 

coefficient data from the wind tunnel. The Nusselt number is derived using the heat transfer coefficient, 

characteristic length L, and the thermal conductivity k of air over the plate, shown in Equation 25. The 

temperature used in determining thermal conductivity is the film temperature, the average temperature of 

the surface of the plate, and the air inside the wind tunnel. The characteristic length is the distance from 

the leading edge of the plate of the heat flux sensor being considered along the direction of air flow, 

shown in Figure 25 as L1, L2, etc. 
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(25) 

Depending on the analysis, either the average heat transfer coefficient of all three sensors or the center 

sensors on a given plate side was used. In the final analysis using the Phantom II in an actual spiral 

freezer, presented in Chapter 3, only the center heat flux sensor was used due to it being in the center of 

the plate as the plate traveled circularly within an operating spiral freezer. In other words, its 

characteristic length was more constant than the sensors near the edges, making it a more reliable 

indicator of heat transfer coefficient over the surface.   

A Testo 405i hot wire anemometer (accuracy ±0.55 m/s) was used to simultaneously measure the 

velocity of the air inside of the wind tunnel during testing to calculate Reynolds number. The calculation 

for this is shown in Equation 26, where ρ is air density, ν is air velocity measured by the anemometer, L is 

the characteristic length, and µ is the dynamic viscosity.  

 

 

(26) 

A term was developed in this research that compared the measured Nusselt number at a prescribed 

angle to the same Nusselt number at zero impingement angle (Nu0), named the Nusselt number reduction 

ratio, or Nurr, shown in Equation 27: 

 

 

(27) 

 

The Nurr shown in Equation 27 allows the findings of this research from this specific setup of heat flux 

sensors, temperature sensors, and physical apparatus, to be separated and used with any other method of 

determining Nusselt number for a given geometry, scaling it using a known angle of impingement. Much 

more actionable detail is devoted to this in Chapter 3. Table 1 shows a description and typical value of all 

of the terms introduced for the Phantom II.  
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2.8 Uncertainty analysis  

An uncertainty analysis was performed on the system to obtain an estimate of overall expected 

measurement accuracy for the surface heat transfer coefficient. Major contributors including 

thermocouples, heat flux sensors, milliamp transmitters, and the hot wire anemometer were considered 

and their individual uncertainties, derived from manufacturer literature or calibration data, were then 

propagated through to the overall uncertainty in the calculated surface heat transfer coefficient. The 

required properties of air (viscosity, density, and thermal conductivity) were estimated using data reported 

by Lemon (2004). The result, shown in Table 1, is a heat transfer coefficient uncertainty of 14%. The 

Nusselt number, derived in Section 2.7.5 from the heat transfer coefficient as shown in Equation 25, has a 

calculated uncertainty of 14.5%. The Reynolds number (determined using the hot wire anemometer 

instead of the heat flux sensor), has an uncertainty of 13.1%.  The purpose of these calculations is to show 

the relative influences of major components of the measurement to drive insights into the utility of heat 

flux sensors and motivate similar future efforts. Table 4 and Table 5 show more detail from each of the 

three cases, showing individual sensor contributions on Nusselt number and Reynolds number from Table 

3.   

Table 3: Overall uncertainty analysis on measurements, devices, properties, and calculated values.  

Measurements and devices Symbol Typical value Units 

Accuracy/ 

uncertainty 

 
Ambient temperature T∞ 286 K  ±2 K 

 
Flux surface temperature Ts 308 K   ±2 K 

 
Milliamp transmitter mA 4.3 mA ±0.01 mA 
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Flux sensitivity coefficient Scalib 1.27 µV/(W/m2) ±2.5% 

 
Hot wire anemometer Uinf 5.0 m/s ±0.55 m/s 

 

      
Properties         

 
Viscosity  µ 0.01839 centipoise 5.0% 

 
Density ρ 1.189 kg/m3 5.0% 

 
Thermal conductivity  k 0.02616 W/m-K 3.0% 

 

      
Calculated uncertainty         % Uncertainty 

Heat transfer coefficient 
 

31.9 W/m2-K 4.5 W/m2-K 14.1 

Nusselt number Nu 186 - 27 14.5 

Reynolds number Re 49250 - 6450 13.1 

 

 

Table 4 shows the detailed view of the Nusselt number uncertainty, showing the individual 

contributions from the component sensors.  The ambient temperature and flux surface temperature 

measurements make up a combined 88% of the overall uncertainty. This is because the temperature 

sensors have greater listed relative inaccuracy than the heat flux sensors. Since Nu is largely a function of 

the heat transfer coefficient, as shown in Equation 25, the uncertainty in h would be nearly identical in 

magnitude to the uncertainty in Nu in this instance, therefore an uncertainty analysis on h will not be 

shown but can be assumed to be around the same uncertainty as that of Nu (14.5%). The uncertainty in 

the characteristic length is ignored in this analysis because an accurate measurement of length is much 

easier to make than the other measurements.  

ℎ̅ 
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Table 4: Detail of Nusselt number uncertainty contributions. 

Nu   = 186 ± 27 (14.5%)   Typical Value Units Uncertainty % of Uncertainty 

Thermal conductivity  k 0.03 W/m-K ±3.0% 4.3 

Milliamp transmitter mA 4.3 mA ±0.01 mA 5.1 

Flux sensitivity coefficient Scalib 

 

1.27 µV/(W/m2) ±2.5% 2.8 

Ambient temperature T∞ 286 K  ±2 K 38.2 

Flux surface temperature Ts 308 K  ±2 K 49.7 

 

 

The uncertainty in Reynolds number, previously defined in Equation 26, is shown in Table 5. 71% of the 

error in Reynolds number is attributed to the hot wire anemometer velocity measurement.  

 

 

Table 5: Detail of Reynolds number uncertainty. 

Re   = 49251 ± 6454 (13.1%)   Typical Value Units Uncertainty % of Uncertainty 

Viscosity  µ 0.02 centipoise ±5.0% 14.6 

Density ρ 1.19 kg/m3 ±5.0% 14.6 

Ambient temperature T∞ 286 °K  ±2 °K 0.2 

Flux surface temperature Ts 308 °K  ±2 °K 0.2 

Hot wire anemometer Uinf 5.0 m/s ±0.55 m/s 70.5 
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The analysis revealed that uncertainties in less dominant factors, such as the heat flux sensors and 

milliamp transmitters, contributed proportionally less to the overall error. Although this does not make 

them any less important to the experiment, it just motivates experiments to perhaps prioritize 

improvements in temperature and velocity measurement instrumentation and methods before moving onto 

others. By breaking down individual contributions to uncertainty, the analysis delivers valuable guidance 

for optimizing sensor selection and system design in subsequent investigations. 

 

3 Results 

This section presents a comprehensive analysis of the research findings, starting with the application 

of CFD to predict airflow within a spiral freezing system with a goal of using the CFD results iteratively 

to optimize freezer thermal performance.  Altering air flow within the freezer relies on addressing interior 

areas with high losses or redirecting air flow using baffling to improve air flow patterns local to the food 

products being conveyed through the enclosure.  The detailed CFD velocity profiling is input to the 1-D 

product thermal model to assess overall freezing performance reflected in a metric of the maximum belt 

speed (i.e. product throughput) to achieve a defined product core temperature.  Because the food product 

model accommodates different food geometries and food properties, the approach is flexible in its ability 

to further expand in application to a wide variety of products. Monte Carlo simulations and optimization 

studies are used as tools to provide insights into improving freezing system performance, with Pareto 

fronts illustrating trade-offs between key operational parameters such as fan velocity and air temperature, 

and throughput. Results from the thermal model demonstrate how product temperature evolves with dwell 

time, the impact of belt speed on freezing rates, and the influence of airflow timing, termed the “blast 

effect." Field-testing of the Phantom I in a food processing facility provided confidence in the heat 

transfer predictions and CFD model accuracy, while wind tunnel experiments with the Phantom II further 
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investigated the effects of air velocity, airflow angle, and Nusselt number relationships. Finally, field 

benchmarking of five spiral freezers across different food processing plants and types of products 

provided a comparative analysis of system performance using experimental and modeled results. 

3.1 CFD as a Tool for Assessing Blast Freezer Air Flow 

This section summarizes the use of computational fluid dynamics (CFD) to analyze and optimize 

airflow within a spiral freezer through the addition of physical structures referred to as “baffling” within 

the spiral. The modeled spiral freezer, based on an actual large-scale spiral freezing system operating in 

Plant 1, revealed inefficiencies such as regions of bypassing airflow and dead zones within the spiral that 

resulted in reduced air velocity over food product leading to poor freezing performance. Iterative CFD 

analyses tested various baffling configurations to direct airflow more effectively within the spiral freezing 

system. Implementing the proposed physical modifications resulted in predictions of increased velocity 

delivered to the product by 40% compared to the as-found freezer serving as the baseline. 

3.1.1 CFD Description 

The CFD software used was ANSYS Fluent, Release 19.3, 2019 (Workbench Environment). The 

modeling considered a real, operating spiral freezer as part of a broader research study that investigated 

six (6) different freezing systems in five (5) food production plants. The spiral freezer from Plant 1, 

shown in a CAD drawing in Figure 28, had dimensions of 30 feet wide by 35 feet long and 30 feet high 

with a resulting footprint of 1,050 ft2 and volume of 31,500 ft3. Within the freezer was the spiral 

conveyor, six evaporator coils (two vertically stacked rows of three side-by-side coils), six fans, and 

various other components including spiral belt support structure, drive motor, and structural members. 

The CFD study incorporated the modeling techniques discussed in Section 2.5 to ensure the CFD mesh 

balanced computational efficiency with accuracy. The model limited the 3-D tetrahedral element sizes to 

a maximum of 10 to 12.5 centimeters per edge. Inflation layers were utilized for improved near-wall mesh 
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resolution, with a first layer thickness of 7.5 mm, a minimum of 10 growth layers, and a growth rate of 

approximately 1.3. A sphere of influence was applied near the fans, refining the element size to 0.5 cm 

within a 200 cm radius. This mesh setup resulted in a node count that ranged from 5.3 to 8.6 million and 

12.6 to 21 million elements. The resulting y+ values achieved at the walls fell within a range from 30 to 

200, ensuring compatibility with the turbulence model’s enhanced wall treatment. Additional details and 

methodologies related to this CFD work are extensively documented in Tyler Young's M.S. thesis, which 

was completed in collaboration with the author in 2023 (Young, 2023). 

 

Figure 28: 3-D model of an actual spiral freezer from Plant 1 modeled in CFD. 

The airflow was simulated using the two-equation k-epsilon realizable turbulence model with 

enhanced wall treatment, which is suitable for capturing complex interactions between the freezer 

geometry and airflow patterns. The manufacturer’s fan curve for the Airfoil Impellers fan model U2-33Y-

6-42PM was obtained and implemented in the CFD model to relate the developed volumetric air flow 

developed to vary with the external pressure drop of that air as it flowed from the fan discharge, through 

the spiral enclosure, evaporator coils, and back to the fan inlet.  This detail was intended to accurately 
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capture realistic fan operation within the CFD model. Air transport properties were derived using a 

temperature of -28°F (-33.3°C) at standard atmospheric pressure (14.696 psi) which were consistent with 

the actual thermal conditions encountered during operation of the spiral freezer. 

The point cloud introduced in Section 2.5.3 was integrated into the study to extract three-dimensional 

velocity data along the product’s path from the CFD model, producing a 3200-point vector of velocity in 

the x, y, and z directions. A visual representation of the helical point cloud is shown in Figure 29 (right) 

along with streamlines throughout the entire computational domain (left) from one of the CFD baffling 

iterations.  

 

Figure 29: CFD streamlines (left) and the point cloud (right) that tracks velocity as a function of position.  

This study built upon previous CFD work in spiral freezers by incorporating enhanced mesh 

refinement, wall treatment effects, and more internal structural details. These improvements addressed 

unnecessary simplifications present in the prior studies referenced in Section 1.2.2, providing a more 

accurate representation of airflow behavior within the spiral freezer. This comprehensive approach lays 

the groundwork for CFD to be used as a tool for modeling air flow within large-scale spiral freezers into 

the future. 
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3.1.2 Velocity from Point Cloud 

The existing spiral air blast freezing system from Plant 1 processing a flat par (partially) baked dough 

product (pizza crust) serves as the reference for this work. A 2-D drawing of this freezer is shown in 

Figure 30 along with an illustration of the general pattern of air flow within the spiral using arrows scaled 

in size to reflect the relative air velocity. In this freezing system, the dough product enters near the top of 

the spiral (denoted by the box labeled “Inlet”) and leaves near the bottom (at the location labeled as 

“Outlet”).  

 

 
Figure 30: Spiral freezer from Plant 1. 

 

Figure 31 (left) shows the CFD-predicted quasi-steady air velocity magnitude (total of x, y, and z 

components) experienced by the product along its trajectory through the spiral during its dwell time, as 

captured by the point cloud.  The food product experiences comparatively low air velocities in the first 

half of its dwell time (corresponding to the upper half of the spiral from time 0 to approximately 850 

seconds) while the product experiences higher air velocities during the latter part of its dwell time 

(corresponding to the lower half of the spiral from time 850 to 1700 seconds). Figure 31 (right) shows the 
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corresponding heat transfer coefficient over the product as it moves through the spiral as-calculated using 

the Dittus-Boelter velocity0.8 relationship introduced in Section 2.1.1.  

  
Figure 31: The local air velocity (left) experienced by a product as it travels through a spiral belt freezer 

and the predicted heat transfer coefficient (right). 

As the product is conveyed through the spiral, it experiences an oscillating velocity due to the 

product’s flow path moving closer to and then farther away from the areas of locally high velocity 

adjacent to the fans within the freezing system.  This cyclic velocity profile with each rotation around the 

spiral is a characteristic pattern that was confirmed through field measurements taken in several operating 

spiral freezing systems during the course of the present research effort. Figure 32 shows velocity 

streamlines at a vertical cross section midway up the spiral. It clearly shows low velocity on the left 

(furthest away from the fans) and peak velocities at the apex of the spiral where the air flow speeds up 

due to the narrowing path posed by the spiral nearing the sidewall of the freezer.  The product experiences 

a second “dead zone” at the right-side of the spiral which is near the entrance to the evaporator coils. This 

image is intended to further explain the cyclical variation in velocity observed in the point cloud trends. 

Although the air velocity in some localized areas appears to be exceeding 10 m/s, the dead zone appears 

to experience nearly zero airflow. This runs contrary to claims put forth in existing literature, as discussed 

in Section 1.2.2. The existence of these pronounced dead zones in spiral freezers was confirmed in the 

field using Phantom 1, which will be discussed further in Section 3.7.1. Surprisingly, this cyclical 
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variation in airflow has not been reported or discussed in any other known studies of spiral blast freezers. 

Its effect on performance will be assessed in Section 3.5.  

 
Figure 32: Plan view of air flow observed around the spiral cross section. 

 

Multiple initial baffling modifications were incorporated into the CFD model in an attempt to improve 

air flow patterns within the spiral with a focus on those areas where the spiral belt traverse the product.  A 

summary of the conditions and baffling modifications attempted are shown in Table 6 with the physical 

changes noted in red within Figure 33. The Spiral Velocity shown in Table 6 is the average velocity 

magnitude throughout the entire point cloud. The relative performance of the changes is defined as the 

change in spiral velocity experienced by the product compared with the spiral velocity of the original 

CFD model.  The cases are shown in the first column, and the corresponding physical baffling and CFD 

details of these changes are shown in Figure 33. As can be seen, only two or three changes significantly 

increased the performance with option 7 yielding an impressive 42% improvement in air velocity over the 

base case. The baffles that were effective tended to work individually or in concert with one another. 
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Table 6: Summary of CFD baffling iterations. 

Case Condition/Baffling Added Spiral Velocity (ft/min) Relative Performance 

1 Existing spiral freezer 827 (4.2 m/s) 1.00 

2 Both skirts at the base of the spiral 785 (4.0 m/s) 0.95 

3 

Skirt at the base of the spiral only on the 

side opposite the evaporator coils 
846 (4.3 m/s) 

1.02 

4 

Curved baffles (x3) to re-direct air flow 

through the spiral at distributed vertical 

locations and both skirts at spiral base 

854 (4.3 m/s) 

1.03 

5 Bottom plate 882 (4.5 m/s) 1.07 

6 Curved baffles (x3), bottom plate, skirts 907 (4.6 m/s) 1.10 

7 All baffles, plus cubes, center drum 1,174 (6.0 m/s) 1.42 
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Figure 33: Physical baffling added to spiral freezer and the results of the CFD. 

Case 1 is the unmodified existing spiral freezer.  The fans discharge air at about a 45 degree angle at 

the top of the spiral. The high velocity air traverses across the top of the spiral between the ceiling and the 

top row of the spiral belt where it reaches the opposite side wall and makes a 90 degree turn down the 

back wall.  This abrupt 90 degree turn results in a non-recoverable pressure drop and only a small region 

of air flow maintains high velocity as it flows from ceiling to floor on the opposite (back) wall. Because 

there is no structure to direct air to flow through the spiral belt, the air impinges on the floor where it must 

make another 90 degree turn to flow away from the back wall through the lower tiers of the spiral belt 

back across the evaporator coils and to a plenum returning air to the fan inlets. 

Proposed modification to the base case begins with Case 2 shown in Figure 33.  In Case 2, “skirt 

baffles” that wrapped around the base of the spiral circumferentially were added with the goal of 

preventing the higher velocity air reaching the bottom of the freezer enclosure from bypassing the belt 

through an open portion created by the last level of the spiral and the enclosure floor. These skirt baffles 

actually reduced the velocity performance by 5%. The “full skirt” tended to hurt performance because 

once air entered this skirted area (through the core of the spiral), it could not easily leave, creating a flow 

disruption. Case 3, with only one skirt baffle on 180° of the opposite side of the room as the coils, 

experienced a very small 2% improvement in airflow. Case 4 added curved, tiered baffles to the exterior 

of the spiral that were designed to “peel off” a portion of the main bulk air flow path that moves down the 



78 

 

back wall of the freezer. There appeared to be little benefit in these baffles, even though visually, based 

on the prior CFD results, they appeared promising. Case 5 introduced a bottom plate baffle that blocked 

air from being able to enter under the spiral. This is the first significant performance improvement, which 

showed a 7% increase in spiral velocity over the baseline. The next iteration, Case 6, included all three 

tiered curved baffles, the flat bottom plate, and the full skirt – these modifications resulted in a 10% 

improvement in air velocity. A number of small-scale “sub-studies” were conducted separately to better 

inform the research as to more specific modifications that could be pursued to more significantly improve 

air flow.  Although not reported here, these sub-studies pointed to baffling arrangements that would more 

aggressively direct or “force’ air flow through the spiral horizontally. Case 7 implemented a few 

specific baffles intended to achieve this objective including: 1) a structure called a “drum baffle” that fills 

the center or core of the spiral belt, 2) two “cube baffles” near the back walls on either side of the room 

that prevent air from bypassing between the apex of the spiral and the freezer’s sidewalls and 3) the 

bottom plate previously introduced. The result was an increase in velocity delivered over the product by 

42% as shown in Table 6. From further small-scale sub-studies, it was demonstrated that the upper tiered 

baffles, the skirt, and the corner baffle shown in Case 7 were not significant factors that contributed to this 

performance increase. The majority of the performance increase was due to the drum, cubes, and bottom 

plate baffle that forced air through the spiral.  

Because each spiral freezer manufacturer has their own unique designs, the results of this particular 

application of interior modifications are not universally applicable; however, these findings do underscore 

the importance of pursuing designs that direct air flow through the levels of the spiral belt conveying 

product. The present research also underscores how the iterative CFD process can be used as a tool to 

study various baffling modifications to the spiral freezer to determine which arrangements can 

significantly enhance air velocity experienced by the product versus modifications that have minimal 

positive effect. While some modifications that might initially appear self-evident, such as the full skirt 
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baffle, disrupted airflow and reduced performance, others, like the bottom plate, were non-obvious and 

marked a clear improvement by preventing air from bypassing under the spiral.  

Any open area within the freezer enclosure where air can bypass the spiral belt results in a “short 

circuit” of air flow with, potentially, significant freezer performance degradation. Another important 

consideration is that regions of air flow with very high velocity peaks can result in aerodynamically 

dislocating food products and toppings depending on the product, which can lead to substantial product 

loss and production costs when dislodged product results in a belt malfunction (jam). In cases where a 

single spiral runs a range of food products with some products more susceptible to high air velocity while 

other products are less susceptible to high air velocity, variable speed drives on fans can be used to 

manage air velocity and maintain maximum freezer performance. The variability of velocity is important 

and will be discussed in Section 3.3. Young (2023) significantly evolved upon the CFD work shown, 

focusing on it exclusively, and developed new strategies, including using the same equipment (fans, coils, 

etc.) in different layouts to produce even larger increases in performance than with just using baffles. 

Some of these layouts used fewer fans, yet retained the same number of evaporator coils, with better 

overall performance, creating promising new conceptual designs for the next generation of spiral air blast 

freezers (Young, 2023).  

3.2 Thermal Model Results 

This chapter presents the outcomes of the thermal model developed to simulate product temperature 

dynamics within a spiral freezer. Key findings include the modeling of product temperature as a function 

of dwell time while exposed to a highly dynamic air velocity and air temperature environment which 

coupled to impact the product’s thermal boundary conditions. The impact of belt speed on achieving 

target product temperatures is analyzed, emphasizing the relationship between throughput and freezing 

efficiency. Additionally, the "blast effect," which explores the macro timing of high-velocity airflow 
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exposure during the product’s dwell time within the freezer, is introduced to evaluate its influence on 

overall freezing performance. The model's adaptability is demonstrated through simulations of various 

food types and geometries, providing insights into the interplay between product-specific thermal 

properties and freezing conditions.  

3.2.1 Product Temperature as a Function of Dwell Time 

The velocity profile generated by the CFD model, previously presented in Figure 31, was applied to 

the 1-D thermal model introduced in Section 2.1 to produce a freezing curve of the product as a function 

of dwell time within a spiral freezer, shown in Figure 34. One key observation from this graph is that the 

surface temperatures of the product are more responsive to ambient velocity variations than the center. 

This heightened sensitivity is due to the surfaces being on the thermal boundaries of the model, where 

direct exposure to convective heat transfer occurs. In contrast, the interior layers of the food product being 

less thermally coupled to the freezer’s environment and governed primarily by conduction within the 

product, resulting in a more attenuated response to velocity fluctuations. 
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Figure 34: Temperature of a dough product as a function of dwell time (base case). 

Additionally, the freezing curve exhibits a temperature plateau near 0°C (32°F) during a portion of the 

freezing process as expected due to the effects of the enthalpy of fusion, as water content within the 

product transitions from liquid to solid phase. This phase change absorbs significant energy, temporarily 

delaying further cooling. These results align with established thermal behavior of food products 

undergoing freezing and provide insight into the interplay between convective and conductive heat 

transfer mechanisms within the product during its dwell time in the spiral freezer. 

3.2.2 Belt Speed and Time 

Previously introduced in Chapter 2, the belt speed in a spiral freezing system is an adjustable 

parameter by production personnel typically controlled by a variable speed drive, allowing manufacturing 

facilities to maximize the throughput of the freezer while ensuring the product exits at the desired 

terminal product temperature (usually a defined core temperature or temperature range). To automate the 

determination of the required belt speed to achieve this, the MATLAB optimization function 

fminsearchcon, a minimization routine accommodating constraints by D’Errico (2022), was employed. 
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This approach allowed determination of the maximum belt speed at which the product exits in a fully 

frozen state, using function implementation and techniques shown by Suresh (2021). By imposing a given 

time-dependent velocity profile on the 1-D product thermal model, belt speed is treated as an independent 

variable optimized to minimize the temperature difference between the product’s maximum internal 

(center) temperature and the desired fully frozen temperature. This methodology not only determined the 

fastest belt speed that delivered target temperature, but also enabled the identification of new favorable 

velocity profiles to further inform airflow modifications that would be desirable to enhance freezer 

performance. 

3.2.3 Blast Effect Introduction 

As illustrated in Figure 35 (left), the reference air velocity profile derived from the CFD model 

indicates that the product experiences a significantly higher velocity at end of its dwell period 

corresponding the lower portion of the spiral freezer (near the product outfeed) compared to the upper 

portion (near the infeed). This bias reflects the physical design of the spiral freezer, specifically, its air-

side, and prompted an initial study to determine whether this arrangement was advantageous for freezing 

performance. 

 
Figure 35: Base case velocity profile (left) and the reverse velocity profile (right) for comparison. 
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A comparative was conducted by simply “mirroring” the base case reference velocity distribution.  In 

this analysis, the product experiences a higher air velocity at the infeed and lower velocity at the outfeed. 

Surprisingly, the results of shifting the higher air velocity to the infeed led to over a 3% increase in belt 

speed while all other characteristics remained the same as shown in Figure 35 (right). This improvement 

demonstrates that directing higher air velocity across the product earlier in the freezing process dwell time 

may enhance overall performance, aligning with the objectives of rapid freezing in terms of food quality 

and reduced moisture loss. Early freezing prevents excessive moisture loss by sealing water content in the 

product's outer layers as they freeze more quickly (Wu et al., 2021). The dough product used in this study 

exhibited negligible moisture loss (<1%), verified through gravimetric analysis; therefore, product 

moisture retention was not considered to be a significant factor in subsequent thermal analyses. However, 

the finding that relatively simple adjustments to airflow distribution can yield significant improvements in 

product throughput underscores the importance of optimizing blast freezer conditions. To further explore 

this observed effect, the simplified heat transfer model shown in Figure 36 was developed to illustrate the 

comparative impact of “blasting early” (higher air velocity over the product at the start of the freezing 

dwell time) versus “blasting late” (higher air velocity over the product latter in the freezing dwell time). 

The results confirm the behavior observed in mirroring the air velocity profile discussed above, 

prioritizing higher air velocity early in the freezing process, improves freezing times.  
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Figure 36: A semi-infinite 1-D plane wall model with convection, conduction, time-varying thermal 

penetration depth, and an energy generation term dU/dt. 

Using the behavior of thermal diffusivity in a plane wall, concepts from Nellis and Klein (2009), 

Figure 36 can be approximately described by Equation 28, where Ts is solved for implicitly. The 

descriptions of variables used in this simple model were shown in Table 1 at the beginning of Chapter 1.    

 
 

(28) 

Next, the change in internal energy with respect to time, dU/dt, of the entire wall can be defined as: 

 
 

(29) 

Where α is the thermal diffusivity represented in Equation 30: 

 
 

(30) 

The integral of Equation 29, with respect to time, is the overall energy (Q in Figure 37) that is 

transferred in this plane wall model. The only unknowns in this simplified case are the constant K and the 

temperature of the product, Ts. Arbitrary unit values (i.e., 1) are selected for the thermal properties, and K 

is set to √2 to satisfy initial conditions. Time, t, is varied, and the heat transfer coefficient is doubled (or 

halved) midway through the transient analysis to simulate “blasting late” vs “blasting early,” and the 

results are shown in Figure 37. The “do nothing” (i.e., constant) case is simply the average of the two heat 

ℎ 𝐴𝑐 (𝑇∞ − 𝑇𝑠) ≈ 𝑘 𝐴𝑐 (
𝑇𝑠 − 𝑇𝑖𝑛𝑖

𝐾√𝛼 𝑡
) 

𝑑𝑈

𝑑𝑡
= ℎ 𝐴𝑐 (𝑇∞ − 𝑇𝑠) 

𝛼 =
𝑘

𝜌 𝑐
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transfer coefficients used. In this example, h = 0.25 W/m2-K is used for the low, 0.5 W/m2-K as the high 

heat transfer coefficient, and 0.325 W/m2-K is used in the do nothing (i.e., constant) case.  

 
Figure 37: The “blast effect” is shown. 

The “blast early” effect, or simply “blast effect” occurs because the initially higher heat transfer 

coefficient leverages the large ΔT between the surface of the product and the cold temperature inside of 

the freezer that occurs early in the product’s dwell time within the freezer. This high heat transfer 

coefficient early leads to a higher dU/dt (Q) or overall heat removal from the product. The area under the 

dU/dt curves in Figure 37 is the total heat transferred from the product (in Joules), as shown on the right 

y-axis. In this simple example, the blasting-early case has around a 10% greater area under the dU/dt 

curve, or 10% greater heat transfer relative to blasting late. Therefore, it can be advantageous to increase 

velocity over the product early in the freezing process, confirming the observations of the mirrored 

velocity profile shown in Figure 35. Surprisingly, blasting early is even slightly better than having a 

constant average velocity over the product (~3% greater heat transfer). Note, this blast early advantage 

appears only applicable in a specific range of Biot numbers ((havgL)/k) between 0 and ~30, which will be 

investigated more thoroughly in the next section.  
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3.2.4 Blast Effect Dimensionless Model 

A more detailed dimensionless model was created to show and explore the blast effect using 

techniques from Meyers (1998) and Nellis & Klein (2009). The variables shown here are introduced in 

Table 1. Consider a plane wall shown in Figure 38 of thickness 2L that experiences convection along both 

edges.   

 

Figure 38: A symmetrical plane wall of length 2L. 

Taking advantage of the symmetry of the problem, the computational domain is 0 < x < L; where x = 0 

corresponds to the surface experiencing convection and x = L corresponds to the centerline.  Assuming 

constant properties, the governing differential equation for the problem is: 

 
 

(31) 

The material is assumed to be initially at a uniform temperature: 

 
 

(32) 

The boundary condition at x = L is: 

𝛼
𝜕2𝑇

𝜕𝑥2
=

𝜕𝑇

𝜕𝑡
 

𝑇𝑡=0 = 𝑇𝑖𝑛𝑖 
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(33) 

The boundary condition at x = 0 is: 

 
 

(34) 

where the heat transfer coefficient, h, is a function of time: 

 
 

(35) 

where havg is the average heat transfer coefficient and h is the change relative to that average (a positive 

value of h indicates a blast first or early situation while a negative value indicates a blast last or late 

situation). 

The following dimensionless parameters are defined: 

 
 

(36) 

 

 
 

(37) 

 

 
 

(38) 

 

 
 

(39) 

 

 
 

(40) 

(
𝜕𝑇

𝜕𝑥
)
𝑥=𝐿

= 0 

ℎ(𝑡)(𝑇∞ − 𝑇𝑥=0) = −𝑘 (
𝜕𝑇

𝜕𝑥
)
𝑥=0

 

ℎ(𝑡) =  {
ℎ𝑎𝑣𝑔 + ∆ℎ 𝑓𝑜𝑟 0 < 𝑡 < 𝑡𝑠𝑤𝑖𝑡𝑐ℎ

ℎ𝑎𝑣𝑔 − ∆ℎ 𝑓𝑜𝑟 𝑡𝑠𝑤𝑖𝑡𝑐ℎ < 𝑡
 

𝜃 =  
𝑇 − 𝑇𝑖𝑛𝑖

𝑇∞ − 𝑇𝑖𝑛𝑖
 

𝑡̃ =
𝑡𝛼

𝐿2
 

𝑥̃ =  
𝑥

𝐿
 

𝐵𝑖 =  
ℎ𝑎𝑣𝑔𝐿

𝑘
 

𝛽 =
∆ℎ

ℎ𝑎𝑣𝑔
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Substituting Eqs. (36) through (40) into Eqs. (31) through (35) provides the dimensionless form of the 

problem: 

 
𝜕2𝜃

𝜕𝑥̃2
=

𝜕𝜃

𝜕𝑡̃
 (41) 

 

 𝜃𝑡̃=0 = 0 (42) 

 

 (
𝜕𝜃

𝜕𝑥̃
)
𝑥̃=1

= 0 (43) 

 

 𝐵𝑖(1 ± 𝛼)(1 − 𝜃𝑥̃=0) =  − (
𝜕𝜃

𝜕𝑥̃
)
𝑥̃=0

 
 

(44) 

 

where the positive value in Eq. 44 is applied if 𝑡̃ <  𝑡̃𝑠𝑤𝑖𝑡𝑐ℎ and the negative value is applied afterwards.  

The objective of the problem is to predict the time required (tf) for the center temperature to reach some 

specified value, Tf.  Therefore, the outcome of the problem is the dimensionless time required (𝑡̃𝑓 =

 𝑡𝑓𝛼/𝐿2) for the dimensionless center temperature to reach a specified value (𝜃𝑓 = (𝑇𝑓 − 𝑇𝑖𝑛𝑖)/(𝑇∞ −

𝑇𝑖𝑛𝑖)).  This process is complicated by the requirement that the switch time for the altered heat transfer 

coefficient be half of the freezing time (𝑡̃𝑠𝑤𝑖𝑡𝑐ℎ = 𝑡̃𝑓/2, corresponding to a product experiencing elevated 

and reduced heat transfer coefficient each 50% of the time).  It will be necessary to iteratively adjust 

𝑡̃𝑠𝑤𝑖𝑡𝑐ℎ during a simulation. The numerical implementation follows.  

The computational domain is discretized according to: 

 𝑥̃𝑖 = 
(𝑖 − 1)

(𝑀 − 1)
 𝑓𝑜𝑟 𝑖 = 1. .𝑀 
 

(45) 

where M is the number of nodes.  The distance between adjacent nodes is then: 
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 ∆𝑥̃𝑖 = 
1

(𝑀 − 1)
 

 

(46) 

The state equation corresponding to each of the internal nodes comes from Eq. 41: 

 𝜕𝜃𝑖

𝜕𝑡̃
=

(𝜃𝑖+1 + 𝜃𝑖−1 − 2𝜃𝑖)

∆𝑥̃2
 𝑓𝑜𝑟 𝑖 = 2. . (𝑀 − 1) 

 

(47) 

The state equation for node 1 is: 

 𝜕𝜃1

𝜕𝑡̃
=

2𝐵𝑖

∆𝑥̃
(1 ± 𝛽)(1 − 𝜃1) +

2

∆𝑥̃2
(𝜃2 − 𝜃1) 

 

(48) 

and for node M is: 

 𝜕𝜃𝑀

𝜕𝑡̃
=

2

∆𝑥̃2
(𝜃𝑀−1 − 𝜃𝑀) 
 

(49) 

 

The state equations were simulated through time using MATLAB’s ode45 function with an event 

function implemented that terminated the simulation when θM = f which corresponds to 𝑡̃𝑓.  A successive 

substitution method was used to adjust the value of 𝑡̃𝑠𝑤𝑖𝑡𝑐ℎ until it is equal to 𝑡̃𝑓/2.  The result is a 

numerical model capable of predicting dimensionless freezing time as a function of three parameters: the 

Biot number (Bi), the relative amplitude of the heat transfer coefficient change (), and the dimensionless 

freezing temperature (f).   

We are interested in how the freezing time changes by implementing a blast early (  > 0) or blast late 

( < 0) type of process.  Therefore, the fractional change in freezing time is defined relative to the 

constant heat transfer coefficient ( = 0) case. 

 𝑓𝑟 =  
𝑡̃𝑓,𝛽 − 𝑡̃𝑓,𝛽=0

𝑓𝑓,𝛽=0

 (50) 
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      Note that fr > 0 corresponds to an undesirable increase in freezing time while fr < 0 indicates that the 

freezing time has been reduced (which is desirable).  Figure 39 through Figure 41 illustrate fr in the 

parameter space of b and Bi for qf = 0.25, 0.5, and 0.75, respectively. A log10 of Biot of -1 corresponds to 

0.1 while 2 corresponds to 100. 

 

Figure 39: Fractional reduction in freezing time as a function of the log base 10 of the Biot number and the 

value of the blast freezing parameter for θf = 0.25. 
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Figure 40: Fractional reduction in freezing time as a function of the log base 10 of the Biot number and the 

value of the blast freezing parameter for θf = 0.5. 
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Figure 41: Fractional reduction in freezing time as a function of the log base 10 of the Biot number and the 

value of the blast freezing parameter for f = 0.75. 

Figure 39 through Figure 41 show that under all conditions the blast early approach is better than 

the blast late approach (i.e., it is better to be on the  > 0 side of the graph). The dark blue area near the 

top of Figure 39, where fr < 0, is where the blast early effect shows better performance in freezing and 

can achieve nearly a 10% reduction in freezing time compared to even a constant heat transfer coefficient 

under certain conditions. Remarkably, compared to the blast late case, for some values of  and Bi, 

there is a 30% improvement in freezing time if blast early is implemented. For example, in Figure 39 

(θf = 0.25), at a  = 0.7, and log10 of Bi of 0, fr = -0.10. At  = -0.7, log10 of Bi of 0, fr = 0.2.  The 

difference in these freezing reductions is 0.30, or 30%.    

The significance of the blast effect is diminished as f is increased (corresponding to requiring that the 

center temperature approach the ambient temperature more closely).  The importance and benefit of 

blasting earlier is therefore more pronounced for blast freezers using a lower temperature air stream with 
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product exit temperatures that are not approaching the air temperature which is the case for the vast 

majority of dynamic freezing systems in operation today.  

Notice that the impact of the blast freezing process approaches zero at both high and low values of Bi.  

At high values of Bi, the resistance to heat transfer is almost entirely internal due to conduction and the 

surface temperature is very close to T∞ throughout the process and less affected by variations in the 

surface heat transfer coefficient.  At low values of Bi, the resistance to heat transfer is almost entirely due 

to convection and the lumped capacitance approximation becomes justified.  It is less obvious why fr 

should approach zero in this low Bi regime.   

As Bi approaches zero we can develop a lumped capacitance model; an energy balance on the material 

(all of the material since internal temperature gradients can be ignored) provides: 

 ℎ(𝑡)(𝑇∞ − 𝑇) = 𝜌𝑐𝐿
𝑑𝑇

𝑑𝑡
 (51) 

with the initial condition: 

 𝑇𝑡=0 = 𝑇𝑖𝑛𝑖 (52) 

 

We can nondimensionalize Eq. 51 by defining the same dimensionless temperature: 

 𝜃 =
𝑇 − 𝑇𝑖𝑛𝑖

𝑇∞ − 𝑇𝑖𝑛𝑖
 (53) 

and a dimensionless time that is normalized using the lumped capacitance time constant 

 𝑡̂ =
𝑡ℎ𝑎𝑣𝑔

𝜌𝑐𝐿
 (54) 

Substituting Eqs. 53 and 54 into Eqs. 51 and 52 provides: 

 (1 ± 𝛽)(1 − 𝜃) =
𝑑𝜃

𝑑𝑡̂
 (55) 

with  
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 𝜃𝑡̂=0 = 0 (56) 

For the first half of the process (0 < 𝑡̂< 𝑡̂𝑓/2) the positive value is used in Eq. 55 while the negative value 

is used for the last half (𝑡̂𝑓/2 < 𝑡̂< 𝑡̂𝑓).  Therefore, Eq. 55 can be written as: 

 (1 + 𝛽)(1 − 𝜃) =
𝑑𝜃

𝑑𝑡̂
  for 0 < 𝑡̂ <

𝑡̄𝑓

2
 (57) 

Separating Eq. 57 and integrating leads to: 

 (1 + 𝛽)∫ 𝑑𝑡̂
𝑡̂𝑓/2

0

= ∫
𝑑𝜃

(1 − 𝜃)

𝜃𝑡̂=𝑡̂𝑓/2

0

 (58) 

which leads to: 

 (1 + 𝛽)
𝑡̂𝑓

2
= − 𝑙𝑛 (1 − 𝜃𝑡̂=𝑡̂𝑓/2) (59) 

Solving for 𝜃𝑡̂=𝑡̂𝑓/2 provides: 

 𝜃𝑡̂=𝑡̂𝑓/2 = 1 − 𝑒𝑥𝑝 [−(1 + 𝛽)
𝑡̂𝑓

2
] (60) 

For the second half of the process Eq. 55 can be written as: 

 (1 − 𝛽)(1 − 𝜃) =
𝑑𝜃

𝑑𝑡̂
  for 

𝑡̄𝑓

2
 < 𝑡̂ < 𝑡̄𝑓 (61) 

Separating and integrating Eq. 61 leads to: 

 (1 − 𝛽)∫ 𝑑𝑡̂
𝑡̂𝑓

𝑡̂𝑓/2

= ∫
𝑑𝜃

(1 − 𝜃)

𝜃𝑓

1−𝑒𝑥𝑝[−(1+𝛽)
𝑡̂𝑓
2 ]

 (62) 

or: 

 (1 − 𝛽)
𝑡̂𝑓

2
= − 𝑙𝑛

[
 
 
 
 

1 − 𝜃𝑓

𝑒𝑥𝑝 [−(1 + 𝛽)
𝑡̂𝑓
2]

]
 
 
 
 

 (63) 

Solving Eq. 63 provides: 

 𝑒𝑥𝑝 [−(1 − 𝛽)
𝑡̂𝑓

2
] 𝑒𝑥𝑝 [−(1 + 𝛽)

𝑡̂𝑓

2
] = 1 − 𝜃𝑓 (64) 
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or: 

 𝜃𝑓 = 1 − 𝑒𝑥𝑝 [−(1 − 𝛽)
𝑡̂𝑓

2
− (1 + 𝛽)

𝑡̂𝑓

2
] (65) 

Simplifying provides: 

 𝜃𝑓 = 1 − 𝑒𝑥𝑝[−𝑡̂𝑓] (66) 

 

and therefore the freezing time does not depend on  for cases where Bi is approaching zero.    

The development of the dimensionless model for the blast effect highlights the intricate interplay 

between heat transfer dynamics and freezing performance under varying surface heat transfer coefficient 

conditions. By leveraging a systematic numerical approach, the model effectively predicted the impact of 

key parameters, namely, the Biot number, the relative amplitude of heat transfer coefficient changes, and 

the dimensionless freezing temperature, on the dimensionless freezing time. Results indicate that 

implementing a "blast early" strategy (β > 0) consistently reduced freezing time compared to both the 

"blast late" strategy (β < 0) and the constant (“do nothing”) heat transfer coefficient scenario (β = 0), with 

reductions up to 30% in certain parameter spaces. 

Importantly, the benefits of the blast early approach diminish as θf increases, reflecting reduced 

sensitivity when the center temperature more closely approached ambient conditions. The model also 

revealed diminishing effects at both high and low Biot numbers. At high Bi values, the dominance of 

conduction minimizes the influence of convection variations, while at low Bi, the lumped capacitance 

approximation explains the negligible impact of varying heat transfer coefficients. The lumped 

capacitance analysis confirmed that freezing time is independent of β in this regime.  

These insights highlight the importance of the awareness of the blast effect in designing freezing 

processes that involve an interaction of moving food products and high air velocity such as in spiral blast 

freezers. Practically, it is much better to blast food early with higher air velocity than blast late. It will be 
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shown in Chapter 3.3 using Monte Carlo simulations with a dough product that it is essentially as 

beneficial to have a relatively constant airflow in a spiral freezer. However, blasting product with higher 

velocity air later in the cooling process can be detrimental given the airflow path and the specific thermal 

properties of the food (including dough). The dimensionless blast effect model provides a foundation for 

further exploration of heat transfer dynamics in freezing applications and the pursuit of air flow 

arrangements that preferentially deliver higher air velocity across the product early in its dwell time 

within the freezer. To the author’s knowledge, this phenomenon has never been described in any other 

known research in food engineering or heat transfer.  

3.2.5 Selectable Food Types and Geometries 

In the previously established 1-D plane wall model introduced in Section 2.1.1, heat transfer was 

modeled as occurring in a linear direction, resulting in relatively uniform temperature reductions across 

the thickness of the product slab. To further investigate the model's behavior, the food type was changed 

from dough to modeled chicken breast, allowing for the examination of how the slab model responds to 

significantly different thermal properties, including thermal conductivity, heat capacity (influenced by 

water content), and density. 

This comparative analysis aimed to evaluate the impact of these differing thermal properties on the 

freezing process. A detailed derivation of the chicken breast's thermal properties can be found in the 

Appendix, while Table 7 summarizes the three primary thermal properties, comparatively, for dough and 

chicken. The "Effect" column in Table 7, discussed later in this section, quantifies the influence of these 

property changes. The "Chicken/Dough" ratio highlights the relative difference between the thermal 

properties of chicken breast and dough, serving as a basis for understanding the distinct thermal responses 

of these two materials in the freezing model. 
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Table 7: Thermal properties of dough and chicken breast compared. 

Properties at 300K             

  Symbol Units Dough Chicken breast Chicken/dough Effect 

Thermal conductivity k W/m-K 0.2531 0.5398 2.13 1.07x 

Heat capacity c J/kg-K 2097 3490 1.66 0.468x 

Density ρ kg/m3 533.8 1150 2.15 0.462x 

 

For comparative purposes, a simplified version of the standard plane model of pizza crust is shown in 

Figure 42, which is 5/8” thick and experiences convection on its upper and lower surfaces. Its upper 

surface can be defined as x/L = 1, lower surface defined as x/L = 0, and center point as x/L = 0.5. Recall 

that the temperature at this center point is what is being controlled by the model (by adjusting belt speed). 

The actual model had 40 nodes – only 3 are shown in the figure for simplification. 

 

Figure 42: 1-D plane model shown with highlighted locations corresponding to Figure 43.   

 

In Figure 43, (a) and (b) show the dough slab experiencing the baseline velocity profile from Plant 1, 

and (c) and (d) show the same geometry changed to a slab of chicken instead of dough.  
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Figure 43: The original dough slab is shown in (a) and (b) and the same slab geometry changed to chicken 

breast is shown in (c) and (d). 

If the constraint of achieving a product center temperature of 10°F (-12.2°C) upon exiting the freezer 

was enforced, the change to chicken resulted in a significant reduction in belt speed from 141.7 to 32.9 

products per minute, or 23% of the dough's belt speed. In other words, the dough product could be 

processed 4.3 times faster than chicken. The temperature profiles shown in (b) and (d) in Figure 43 

illustrate the product temperatures at various positions along the slab as a function of five dimensionless 

dwell times. These graphs reveal that chicken exhibits a flatter temperature profile at each dwell time 

compared to dough, likely due to its longer dwell time, which allows for greater conduction-driven heat 
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transfer within the product. The substantially lower belt speed for chicken can be partially attributed to its 

higher water content, which leads to a higher heat capacity. In this study, chicken was modeled with a 

total water content of 77%, compared to only 35% for the dough, further explaining the increased thermal 

load and slower processing speed for chicken. 

A sensitivity study was conducted to isolate the effects of individual thermal properties by 

standardizing all other properties and varying only one at a time. The results, summarized in the “Effect” 

column of Table 7, provide insights into the influence of each property. For instance, the thermal 

conductivity of chicken breast meat was found to be 2.13 times that of dough, which intuitively suggests 

enhanced heat transfer within the chicken. However, this increase in thermal conductivity translated to 

only a 7% improvement in belt speed for chicken. This relatively modest effect is likely due to the surface 

heat transfer coefficient acting as the limiting factor in the freezing process, rather than internal 

conduction within the food itself.  

In the next phase of the sensitivity study, only the heat capacity of the dough model was adjusted to 

match that of chicken, while other properties remained constant. Chicken’s heat capacity is 1.66 times 

greater than that of dough, which intuitively suggests that it would require more time to freeze, resulting 

in a slower belt speed. The analysis confirmed this, with the belt speed reducing to 66.3 products per 

minute compared to the original 141.7, or 46.8% of the speed achieved with dough. This means that the 

belt speed for dough is approximately 2.1 times faster than chicken when only heat capacity is considered, 

indicating that heat capacity has a slightly greater than 1:1 effect on belt speed. 

Lastly, the density of the dough model was adjusted to match that of chicken while heat capacity and 

other properties were kept unchanged. Chicken’s density is 2.15 times greater than that of dough, which 

would be expected to increase freezing time and slow belt speed. The resulting belt speed dropped to 
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46.2% of the dough speed, or approximately 2.2 times slower than dough. This finding shows that density 

has a nearly exact 1:1 effect on belt speed, highlighting its proportional influence on the freezing process. 

The subsequent study focused on developing and analyzing a spherical food model to account for the 

geometric variations found in products like chicken drumsticks, chicken wings, meat chunks, or other 

items with thicker profiles and potentially different volume-to-surface area ratios compared to the 

previously studied dough slab. The 1-D conduction model was re-derived in spherical coordinates to 

reflect the radial symmetry of such food items. This approach allowed for a more accurate representation 

of the heat transfer process in products with significant curvature. 

A product diameter of 2.5 inches was selected as the baseline for the study. To simulate the 

conduction process within the spherical geometry, a vector of radial nodes, r(i), was defined according to 

the following equation (with the other variables previously introduced in Table 1): 

 𝑟(𝑖) =  (
(𝑖 − 1)𝐿

𝑁 − 1
) (67) 

 

The center node is unique since it only experiences conduction in one direction and is derived: 

 
𝑑𝑇1

𝑑𝑡
=

4𝜋𝑘𝑇1,𝑇2
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∆𝑟
2 )

2

(𝑇2 − 𝑇1)

∆𝑟𝜌1𝑐1 (
4𝜋
3 (

∆𝑟
2 )

3

)

 (68) 

 

The second node, which is also unique in a spherical model, is shown: 

 𝑑𝑇2

𝑑𝑡
=

4𝜋𝑘𝑇1,𝑇2
(𝑟1 +
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2 )
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The internal nodes are shown next: 

 𝑑𝑇𝑖

𝑑𝑡
=

4𝜋𝑘𝑇𝑖−1,𝑇𝑖
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(70) 

 

Lastly, the outer shell of the sphere which experiences forced convection is shown: 

 𝑑𝑇𝑁

𝑑𝑡
=

4𝜋𝑘𝑇𝑁−1,𝑇𝑁
(
𝑇𝑁−1 − 𝑇𝑁

1
𝑟𝑁−1

−
1
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4𝜋
3 ((𝑟𝑁)3 − (𝑟𝑁−1 +

∆𝑦
2

)
3

))

 (71) 

 

A representation of the spherical model is shown in Figure 44. The actual model had 80 nodes, but 

only 3 nodes are highlighted in the figure. The radius is 1.25” and the outer shell can be described as x/R 

= 1, with its center point x/R = 0, and a point halfway between these two defined as x/R = 0.5. Note that 

in the spherical case, the temperature being controlled is still the center temperature, which is x/R = 0, and 

this is slightly different than the temperature being controlled in the plane model (x/L = 0.5). The center 

of the sphere is necessarily the highest temperature because convection is assumed to be uniform across 

the entire surface area of the sphere and the food is considered homogeneous.  

 

Figure 44: Spherical model of food in radial coordinates with nodes shown in specific locations.  
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The initial study using the spherical geometry retained all thermal properties of dough while 

transitioning to the newly derived spherical conduction model. This analysis, illustrated in Figure 45, 

revealed a belt speed increase to 184.5 products per minute, representing a 1.3x improvement compared 

to the plane geometry. The increase is likely attributable to the greater surface area provided by the 

spherical product, enhancing heat transfer. However, practical considerations such as packing limitations, 

which could restrict airflow and cooling efficiency, were not accounted for in this analysis. Additionally, 

the use of dough as the modeled product, while useful for consistency, may not fully represent realistic 

scenarios for spherical food items. 

The most significant finding from this study was the temperature profile within the spherical product 

as a function of time in the freezer. While the outer surface of the food rapidly reached extremely cold 

temperatures (approaching -35°C), the core required significantly more time to reach the target 

temperature of -10°C. This pronounced temperature gradient highlights the challenges associated with 

freezing products with larger volume-to-surface area ratios, emphasizing the importance of considering 

geometry in optimizing freezing processes. 

 

Figure 45: Using dough properties but with a spherical 1-D conduction model. 
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The last study used both the spherical geometry and changed the food properties to that of chicken 

breast meat instead of dough. This is shown in Figure 46. The result of this is the belt speed is 58.7, or 

41.4% that of the plane model with dough. Recall that maintaining the 1-D plane geometry and switching 

to chicken resulted in a belt speed of 23% of the original. Therefore, some of that belt speed was recouped 

by switching to a more spherical product.  

 

Figure 46: Spherical food model with chicken properties. 

Although not studied here, the diameter of the product would undoubtedly have a large influence on 

these results. One major drawback of the features of the spherical temperature profile shown in Figure 45 

and Figure 46 is the extremely cold surface temperature of the product that is reached and then 

maintained for nearly the entire cooling period. For a product like meat, this could result in quality 

degradation. However, meat (including chicken and beef) sealed packaging adds significant thermal 

resistance, complicating this problem – but likely reducing the negative effect as well. Since packaging 

was not a focal point in the present effort, it was not explicitly studied. Additionally, many chicken and 

meat products are purposely only “crust frozen” to preserve moisture while qualifying as “fresh” not 

previously frozen product, and then they are purposely sent to slower, static freezer systems where they 

slowly equilibrate to a target temperature. The center temperature of meat is often not targeted in a spiral 

blast freezer in the way that it is with pizza crust. In this regard, a spiral freezer such as the one shown in 
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Figure 46 accomplishes crust freezing extremely quickly and therefore this belt speed might be able 

capable of being substantially faster than what is shown with the correct loading and belt speed.  

The study of selectable food types and geometries provides insights into how product properties and 

shapes influence freezing performance in spiral freezers. By comparing the thermal properties of dough 

and chicken breast, the analysis highlights how factors such as conductivity, heat capacity, and density 

affect belt speed and freezing efficiency. Sensitivity studies demonstrate the varying impact of individual 

thermal properties, with heat capacity and density showing the most pronounced effects on belt speed. 

Transitioning from a planar to a spherical geometry revealed differences in freezing dynamics, including 

faster belt speeds for spherical products due to increased surface area but also challenges such as extreme 

surface temperatures that could lead to quality degradation. While the spherical model offers valuable 

insights, practical considerations such as packaging and industry-specific freezing goals, like crust 

freezing for chicken, suggest that further studies are needed to fully understand and optimize the interplay 

between geometry, material properties, and freezing strategies in dynamic systems. 

3.3 Monte Carlo Simulation Results 

Before introducing results of the Monte Carlo simulations, a limiting case was analyzed that 

considered a constant velocity throughout the spiral where the magnitude of the constant velocity was 

allowed to vary from 0.5 m/s and up to 10 m/s.  The resulting production throughput for this constant 

velocity case and the scaled as-found velocity profiles from Figure 35 that lead to the same time average 

velocity case are compared in Figure 47.  Interestingly, the constant velocity profile yielded the best 

performance compared to the existing and reversed velocity profiles. The motivating question was: is 

there a realistic velocity profile that can meet or exceed the performance of this ideal constant velocity 

case? 
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Figure 47: Air velocity as a function of the product throughput (i.e., belt speed) of various velocity 

schemas. 

The Monte Carlo analysis was conducted using 1000s of different randomly generated five-point 

polynomial velocity profiles using MATLAB’s Piecewise Cubic Hermite Interpolating Polynomial 

(PCHIP) function. A B-spline was also attempted, but the optimization algorithm was more stable using 

PCHIP. An example of how the algorithm worked is shown in Figure 48 for a five-point case.  

 

Figure 48: The randomized polynomial generator. 

 

A few examples of the result of the random generator are shown in Figure 49. Multiple constraints 

were added, including individual limits on each point that kept velocity between 0.1 m/s and 12 m/s, and 
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later a constraint that was activated by a flag in the code that fixed the average of the entire polynomial to 

a specified value.  

 

Figure 49: Examples of random velocity profile polynomials generated by the MATLAB algorithm. 

 

3.3.1 Pareto fronts 

Throughout this analysis, the air temperature was held constant at -30°F (-34.4ºC). Thousands of 

random velocity profiles were generated across a spectrum of velocity magnitudes to create a Pareto front 

of the feasible operating domain as shown in Figure 50. What emerges from the analysis are a large 

number of suboptimal performing velocity profiles appearing above a sharper edge of optimal cases.  This 

sharp edge represents the Pareto front of the best possible performing velocity profiles to achieve a given 

throughput. Points on the edge of the Pareto graph are top performers that deliver better performance, 

while points above the leading edge are lower performing.  
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Figure 50: The results of a 1000-point Monte Carlo simulation are shown as a Pareto front along with 

selected profiles. 

Included in Figure 50 are symbols that correspond to various, interesting velocity profiles; these 

include the two profiles analyzed previously and shown in Figure 35, two suboptimal velocity profiles, 

and two high performing velocity profiles.  Figure 51 compares the two highlighted poor performing 

velocity profiles (on the left) where both exhibit low velocity over the product early in the dwell time, 

followed by a high peak of velocity in the latter half of the product’s dwell time. The two high performing 

velocity profiles (right) show much higher air velocity over the product early in the dwell time and have a 

relatively constant velocity throughout the entire dwell time. High velocity peaks are penalized because of 

the less than linear impact that velocity has on the resulting heat transfer coefficient, as shown in Equation 

9.  
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Figure 51: Low (left) and high (right) performing velocity profiles from Figure 50. 

 

3.4 Optimization Results 

Figure 50 showed an optimized velocity profile denoted as a square. To determine this condition, a 

velocity profile near the Pareto front was selected. The best performing velocity profile produced a 

26% higher throughput than the lowest performer at the same average velocity.  Next, an additional 

optimization algorithm was written that varied the five base points of the polynomial that made up the 

selected best performing velocity profile while maximizing the throughput to achieve the global optimum 

profile to determine if any further improvement could be obtained. 

The optimal velocity profile, as determined from the Monte Carlo randomization and the further 

optimization refinement, is shown in Figure 52. The optimized velocity profile produced 156.4 

products/min, which is a 10.4% improvement over the existing base case velocity profile which netted 

141.7 products/min. For reference, the constant average velocity case (i.e., a straight horizontal line of 

3.414 m/s), resulted in a 10.0% improvement over the base case – very close to the best non-constant 

velocity profile evaluated. Therefore, the characteristics of higher performing profiles in a spiral freezer 
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will have higher velocity early in the dwell time, but it is nearly equally beneficial to provide a relatively 

constant air velocity throughout the dwell time. The worst performing velocity profiles have relatively 

high periods (i.e., peaks) of velocity late and low velocity early in the freezing process, and can result in 

performance reductions greater than 10%. This type of temporal velocity profile should be avoided. This 

result agrees with the blast effect phenomenon described in Section 3.2.3.  

 

 
Figure 52: The optimized velocity profile is shown. 

  

 

The optimum velocity profile scaled to different average velocities continues along the Pareto front, 

implying that an effective air flow design will perform well at many different velocity magnitudes, as 

shown in Figure 53. 
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Figure 53: The optimized velocity profile is shown scaled along the Pareto front. 

 

3.5 Cyclical Variation 

The previous analysis was focused on a time-varying velocity profile with a relatively low frequency 

of velocity variation (i.e., relatively large time periods between velocity variations which is consistent 

with five points defining the velocity distribution). The actual velocity data from Figure 35 shows that 

there is a substantial higher frequency component in the temporal velocity fluctuations due to the product 

traveling in the helical path of the spiral where it experiences large velocity changes during each 

revolution of the spiral conveyor belt. There are as many oscillations in air velocity across the product as 

there are number of tiers of the spiral (typically over 30). This effect was introduced when explaining the 

CFD results in Section 3.1.2. Often the fluctuations in air velocity within the spiral are quite large relative 

to the mean velocity. The velocity profiles used in the Monte Carlo analysis and the resulting optimal 

profiles found are much smoother, which raises the question of their validity in an actual freezing system 

that unavoidably contains higher frequency velocity oscillations. To more clearly understand the effect of 

higher frequency velocity variation on freezing performance, a large amplitude sinusoidal oscillation was 

added to the optimum profile identified in the optimization analysis which corresponded to the tier-to-tier 

frequency of Plant 1. Figure 54 (left) shows the product temperature response for the smooth, ideal 

velocity case from Figure 52 while Figure 54 (right) shows the product temperature response for the same 
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average velocity but with the high frequency component added.  The impact to product temperature for 

the high frequency oscillation is minimal except at the surface of the product.  The belt speed optimizing 

algorithm determined that the dwell time with the smooth profile was 1% less than the case with the 

oscillations, which alternatively means less than 1% faster belt speed (i.e., product throughput) for the 

smooth case relative to the oscillating case. In other words, the higher frequency oscillations in air 

velocity experienced by the product as it travels around the helical spiral do not have a substantial effect 

on overall freezing system performance; rather, the velocity variation over a much longer time scale is 

more important.  

 

 
Figure 54: The left figure shows a smooth optimal velocity profile and the associated product temperature. 

A large, high frequency oscillation is added to the velocity in the right figure. 

 

 

3.6 Optimization Techniques on an Overall System 

An energy model of a spiral freezer within a food production plant was developed to account for key 

thermal loads, variable compressor efficiency as a function of suction pressure and condensing 

temperature, fan power scaling with the cube of airflow (CFM), and variable product throughput. Table 8 

provides a summary of the thermal loads and their respective contributions to the model under operating 

conditions of approximately 144 products per minute, a condensing temperature of 35°C (95°F), and a 
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freezer temperature of -34.5°C (-30.1°F). This load analysis is based on the foundational work of Tyler 

Young (2023), with modifications to incorporate the flexibility of variable load capabilities. 

 

 

Table 8: General energy balance. 

General energy balance/load calculations 

Source kW % 

Heat leak through floor 1.1 0.2 

Infiltration (air changes) 58.7 10.9 

Fan motor heat 18.6 3.5 

Fan energy 121.7 22.6 

Product load  332.3 61.8 

Transmission through walls 5.3 1.0 

Total: 537.7   

 

As illustrated in Table 8, the primary contributors to the energy balance of the system are the product 

load and fan energy. To accurately represent the refrigerant-side dynamics, a variable efficiency two-

stage refrigeration system model was developed, as depicted in Figure 55. This model transitioned 

between single-stage and two-stage operation at a specified evaporator temperature, and this trajectory is 

denoted by the green line in the figure. This approach ensures that the system consistently operates at 

optimal efficiency based on the prevailing conditions.  
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Figure 55: Inefficiency of single and two-stage ammonia refrigeration systems as a function of evaporator 

temperature. 

In Figure 55, inefficiency is represented by the amount of electrical energy required to deliver the 

necessary cooling capacity. As the evaporator temperature decreases, inefficiency increases, indicating a 

proportional decline in system efficiency and more energy consumption per unit of cooling. The 

compressor modeled in this analysis is a Frick RWF II 177 ammonia compressor, with its performance 

parameters derived using Frick’s Coolware software (Frick, 2023). 

Hundreds of combinations of conditions were evaluated using the thermal model, leveraging the 

Monte Carlo simulation techniques from Section 3.3. These simulations incorporated variations in air 

velocity within the spiral freezer, air delivery temperature, and resultant product throughput. Assuming 

evaporator capacity is not a limiting factor, the results are presented in Figure 56. The left panel illustrates 

that achieving maximum throughput requires maintaining the freezer temperature (i.e., evaporator 

temperature) as low as possible, with air velocity having the most significant impact on throughput 

beyond a threshold evaporator temperature. The right panel of Figure 56 indicates that the energy cost per 

hour of facility operation remains relatively stable when lowering the evaporator temperature; however, 

increasing fan speed to deliver higher air velocities significantly raises energy costs. This highlights the 

importance of optimizing baffling to improve air delivery to the products without increasing fan power. 
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Figure 56: The results of an energy analysis on a spiral blast freezer showing the operating envelope subject 

to common constraints. 

Optimizing the overall energy performance of a spiral freezer requires balancing multiple factors, 

including air velocity, evaporator temperature, and system efficiency. While maintaining a lower 

evaporator temperature can significantly enhance product throughput, the feasibility of implementing 

such changes is constrained by the interconnected nature of refrigeration systems in food production 

plants. Since spiral freezers often share a common refrigerant supply at a plant-level suction pressure, 

reducing the evaporator temperature for a single freezer would often necessitate a plant-wide adjustment 

of suction pressure which may not be practical for a wide range of facilities without significant capital 

investment. This adjustment would incur additional energy costs across the facility, magnifying the 

financial implications of such a change. Conversely, controlling air velocity within an individual spiral 

freezer is a more practical and probably more cost-effective solution, as it can be independently managed 

using variable frequency drives (VFDs) on fans (assuming the fans have this capability).  

The analysis demonstrated that air velocity has the largest impact on throughput beyond a certain 

evaporator temperature, but increasing fan speed also raises energy consumption exponentially due to the 

cubic relationship between fan power and air velocity. This reinforces the need for improved airflow 

management, such as baffling strategies, to enhance air delivery without relying on increased fan power. 
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Ultimately, while lowering evaporator temperature offers performance gains, its broader implications on 

plant operations and costs make air velocity optimization within individual freezers an enticing strategy 

for enhancing efficiency. 

3.7 Phantom I Field Testing 

Thus far, the analyses and findings presented in Chapter 3 have been primarily theoretical. The 

development and deployment of a heat transfer instrument, the Phantom I, were pivotal in validating key 

aspects of this work. Certain results, such as the significant cyclical variations in velocity within a spiral 

freezer, appeared to contradict established literature, underscoring the need for anchoring the theoretical 

analysis with empirical verification. Additionally, the “velocity profiles” predicted by the CFD 

simulations for Plant 1 were untested hypotheses requiring experimental substantiation. The "blast effect," 

which highlighted the critical importance of product flow and airflow direction within a spiral freezer, 

especially when there was an airflow imbalance, was never mentioned in any other study to the author’s 

knowledge. The Phantom I was required as a crucial tool to bridge the gap between the theoretical 

predictions of this research and real-world observations. Placing a device within an actual operating spiral 

freezer in a food processing facility to verify the accuracy of the model predictions would provide 

significant validation and strengthen the credibility of these new findings. 

3.7.1 Measured HTC Compared to Model 

The Phantom I was prepared for deployment on-site at Plant 1 in a controlled environment maintained 

at approximately 50°F. Once fully prepared, the Phantom’s core heater was activated, and the aluminum 

pseudo food product was allowed to reach a temperature of around 100°F (reflecting the typical product 

temperature at the infeed to the spiral freezer) before being carefully placed inside the operational spiral 

freezer. The results from Phantom I’s inaugural field deployment, with no data scaling, filtering, or 
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adjustments, are presented in Figure 57 along with the predicted heat transfer coefficient using velocities 

from the CFD model. 

 

Figure 57: The results of measured heat transfer coefficient and calculated heat transfer coefficient in a 

spiral freezer. 

The results show that the heat transfer coefficients predicted by the CFD modeling align qualitatively 

and generally with the actual measurements. Notably, this represents the first known measurement of heat 

transfer coefficients conducted throughout a low temperature spiral freezing system using a dimensionally 

similar surrogate product, marking an advancement in the field. The results are highly repeatable, with 

many different runs in the same spiral freezer, operating at identical conditions, appearing very similar to 

one another. The Phantom I was used in six (6) freezing systems across five (5) different food processing 

facilities, and this comparative analysis will be shown in Chapter 3.9, but the agreement between the 

model and one of the other plants is shown in Figure 58, underscoring the reproducibility of the data.  
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Figure 58: The Phantom I measured data compared to the CFD model. 

As Figure 58 shows, there is strong agreement between the Phantom I’s measured heat transfer 

coefficient and that predicted by the CFD velocity converted to heat transfer coefficient by equations 

shown in Chapter 2.  

3.7.2 Uncertainty and Error Bars 

An accuracy study (in addition to the one shown in Chapter 2.8) was conducted on measured data 

from a spiral freezer at a different plant utilizing the pseudo-product. This uncertainty analysis, 

incorporating a 5% error in heat flux (as specified in the heat flux sensor product literature) and a 

conservative estimate of a 3°F error in thermocouple measurements, yielded the results shown in Figure 

59. Although the heat transfer coefficient varies significantly depending on the Phantom's position within 

the spiral, due to its proximity to and distance from the fans, the measured values fall within a calculated 

uncertainty range of 6 to 8%, consistent with uncertainty methods outlined in ASME PTC 19.1 (ASME, 

2013).  
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Figure 59: Uncertainty analysis on the phantom product in a spiral freezer from a plant is shown on the 

left. The right view is a magnified version of the graph showing a typical peak and a trough taken from the 

data. 

As illustrated in Figure 59, including error bars for the Phantom data in every graph would provide 

minimal additional insight due to the behavior of the data. However, an 8% uncertainty can be assumed 

for all Phantom data presented subsequently in this work.  

3.7.3 Energy Calculations from Phantom I 

The Phantom serves as a valuable tool for estimating the heat transfer provided by a spiral freezer to a 

product. The electrical power supplied to the Phantom is primarily dissipated through convection within 

the spiral freezer, while the Phantom simultaneously undergoes a global temperature decrease, but then 

stabilizes with a maintained ΔT. These combined effects represent the net energy removal from the 

Phantom, offering a practical measurement for benchmarking the performance of air blast freezing 

systems across different food processing facilities. Figure 60 presents the results from two separate runs 

of the Phantom within an operational spiral freezer. 
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Figure 60: Comparing the power in watts (i.e., electrical and thermal) that the phantom is consuming and 

also the integral of this (i.e., the total overall energy transfer experienced by the product). 

 

Figure 60 illustrates that after a few minutes, the thermal energy removed from the Phantom stabilizes 

at approximately 120 W in both Runs #1 and #2. These runs were conducted in the same spiral freezer 

under comparable operating conditions, including similar product loading configurations, targeted air 

temperatures, and belt speeds. The total energy removed, measured in joules, is primarily influenced by 

the dwell time. For a dwell time of approximately 1700 seconds, the Phantom experiences a net energy 

removal of around 200 kJ in both cases. 

It is important to note that the Phantom has a constant supply of electrical energy, introducing an 

internal energy generation term that causes its temperature to remain elevated within the spiral freezer. 

This internal energy generation prevents direct comparison of the results shown in Figure 60 with actual 

food products. However, the Phantom’s temperature response over time suggests that the heat removal for 
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food products may be of a similar magnitude. The temperature of the Phantom does decrease within the 

spiral freezer from Plant 1 from around 100°F (38°C) to 30°F (-1°C). 

A method that can be used to use the Phantom data to compare different freezers is to integrate the 

measured heat transfer coefficient (h), along with the temperature difference (ΔT) between the surface of 

the Phantom (Ts) and measured temperature inside the freezer (T∞), shown in the following equation: 

 𝑖𝑛𝑡(𝐻𝑇𝐶∆𝑇) =  ∫ ℎ(𝑇𝑠 − 𝑇∞)
𝑡=𝑑𝑤𝑒𝑙𝑙

𝑡=0

𝑑𝑡 

 

(72) 

It was determined that if the surface temperature Ts was held constant, the result of this more closely 

matches energy balances from the MATLAB model. If Ts = 30°F (-1.1°C) is used, an example of this 

integrated heat transfer coefficient is shown in Figure 61.  

 
Figure 61: The heat transfer coefficient measured by the Phantom; then multiplied by ΔT and integrated 

as a function of time in a spiral freezer.  

The total integrated heat transfer coefficient shown in Figure 61 is 1093 kJ/m2. This can be used to 

compare the relative performance of spiral freezers. Other metrics that have been used are the time-
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averaged heat transfer coefficient ℎ̅ (in this case 20.2 W/m2-K), along with the time-averaged temperature 

T∞ (-35.1°F /-37.3°C). The last metric used is a simper version of Equation 72 and is simply the average 

heat transfer coefficient (ℎ̅) multiplied by the average ΔT: 

 ℎ̅∆𝑇 =  ℎ̅(𝑇𝑠 − 𝑇∞) 
 

(73) 

 

If Ts of 30°F (-1.1°C) is used, Eq. 73 produces a ℎ̅∆𝑇 of 729 W/m2 in this example. These metrics will 

be used to compare 5 plants in Section 3.9 in more detail.  

3.7.4 Phantom Data Versus MATLAB Model 

Data collected from the Phantom, including temperatures and the measured heat transfer coefficient, 

were integrated into the 1-D heat transfer model. For this analysis, the thermal properties of aluminum, 

such as density, thermal conductivity, and heat capacity, were used in place of food properties. The 

resulting comparison between the modeled and actual temperatures is shown in Figure 62. All three 

Phantom runs in the figure are from the same spiral freezer from Plant 1 with close to the same operating 

conditions.  
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Figure 62: Comparing the phantom modeled temperature to the actual temperature. 

The 1-D model demonstrated strong agreement with the temperatures observed during the Phantom's 

operation inside the wind tunnel discussed in the next section, providing validation for this modeling 

approach. Variations among the three runs can be attributed to differences in experimental setup. Run 1 

was conducted with the spiral belt fully loaded with product, while Run 2 was the same spiral only 

partially-loaded with product. In Run 3, the Phantom was cooler due to residual thermal effects from a 

previous run through the spiral and short turnaround time for a second run. Additionally, discrepancies in 

the temperature profiles could result from the Phantom's positioning relative to other products on the 

spiral belt. Airflow disruptions caused by neighboring products may have also influenced the heat transfer 

experienced by the Phantom, introducing potential measurement variability. 
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3.7.5 Belt material 

The Phantom I is equipped with a recessed heat flux sensor on its bottom side intended to gather data 

in order to evaluate heat transfer differences between stainless steel and plastic belts in spiral blast 

freezers. As introduced in Section 2.3.4, numerous factors influence the heat transfer occurring between a 

product's bottom surface and the belt, including the belt's open area, material thermal conductivity, air 

velocity around and through the belt, and contact conditions. Modeling this intricate process requires 

substantial assumptions, making this evaluation highly complex and impractical. Furthermore, variations 

in belt design, operational conditions, and freezer configurations across plants complicate direct 

comparisons of absolute heat transfer values.  

Instead, a comparative metric—the ratio of heat transfer from the bottom of the Phantom to that from 

the top—was used to evaluate a known plastic belt (Blue Acetal Intralox 2600 series) and a stainless steel 

belt. This approach eliminated the need to account for plant-specific variations and focused on relative 

performance under similar operating conditions. Figure 63 illustrates this ratio for two plants: one with a 

plastic belt and the other with a stainless steel belt in their spiral freezers. 
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Figure 63: The ratio of heat through the bottom of the Phantom versus the top for different belt materials. 

The results in Figure 63 show that the stainless steel belt consistently facilitates greater heat transfer 

through the bottom of the Phantom compared to the plastic belt throughout the 20-minute observation 

period. On average, the stainless steel belt achieved 7% more heat transfer than the plastic belt. This 

difference highlights the impact of belt material on thermal performance, with stainless steel's superior 

thermal conductivity contributing to greater heat transfer. These findings underscore the importance of 

considering belt material in the design and operation of spiral freezers, particularly for applications where 

rapid and uniform freezing is critical. Other pros and cons of each belt material were discussed in Section 

2.3.4. 

3.7.6 Coil Defrost 

Coil defrosting is a critical operational function in spiral blast freezers, designed to remove ice buildup 

from evaporator coils while maintaining the necessary temperature within the freezer space. During a 

defrost cycle, the targeted coil is typically heated using refrigerant hot gas that can have refrigerant supply 
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temperatures on the order of 100°F (38°C). To isolate the defrosting coil and minimize its impact on the 

freezer when defrosting during production, today’s spiral freezers utilize dampers on one or both sides of 

the evaporator coil to “close off airflow” through the coil and reduce parasitic heat load to the spiral.  In 

some freezer designs, the specific fan associated with the defrosting coil is also turned off in attempts to 

block air flow through the defrosting evaporator. Despite these measures, a defrost cycle can release 

substantial heat and moisture back into the spiral freezer, potentially impacting the thermal environment. 

Most of the melted ice from the defrosting coil drains into a heated drain pan and is removed from the 

system via a gravity drain tube; however, residual heat and moisture may still influence the internal air 

temperature and product conditions. Therefore, defrost sequence control and operation are critical to 

sustaining high spiral freezer performance during production periods.  

Due to the limited number of temperature sensors typically installed in a spiral freezer, accurately 

measuring the impact of a defrost cycle on the overall temperature distribution within the freezer space 

and its effect on the product is challenging. The Phantom, equipped with precise measurement 

capabilities, offers a unique advantage in capturing the temperature effects of a defrost cycle as 

experienced by the actual product. As shown in Figure 64, the Phantom’s air thermocouple recorded the 

temperature variations during a defrost event, with time stamps provided by the freezer's programmable 

logic controller (PLC). While the timing of defrost cycles is usually well-documented, their thermal 

impact on the product inside the spiral freezer often remains unknown (or denied). 
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Figure 64: A defrost cycle captured by the Phantom's air thermocouple. 

In this specific instance, the defrost cycle lasted approximately 20 minutes and resulted in a 

measurable temperature rise of at least 3°F (1.7°C). In other cases, temperature increases as large as 7°F 

(3.9°C) have been observed using the Phantom. These measurements highlight the potential variability in 

thermal impact caused by defrosting and underscore the importance of understanding these effects to 

ensure consistent product quality and optimal freezer performance. The ability of the Phantom to quantify 

these variations provides valuable insights that can inform operational adjustments and improve overall 

freezer efficiency.  It is also noteworthy that the freezer’s air temperature after the defrost was 

substantially below the air temperature prior to defrost reflecting the enhanced evaporator capacity 

following the removal of accumulated frost on the coil. 

3.8 Phantom Wind Tunnel Results 

As noted in Section 2.7, Phantom II was built to better understand the effects of directional airflow 

over a flat plate as opposed to uniform and parallel flow assumed in many of the heat transfer correlation 

for flat plates.  Figure 65 shows the experimental setup of the Phantom II used in the wind tunnel, 

highlighting the top three heat flux sensors, bottom three heat flux sensors, the center of each of these sets 
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of three sensors, the angle of air impingement as defined in this study, the direction of airflow, and the 

bottom of the wind tunnel for reference (not to scale).  

 

Figure 65: The top heat flux sensors, the bottom heat flux sensors, and the center of each set of sensors, 

along with the impingement angle of the Phantom II in the wind tunnel.  

The air velocity within the wind tunnel used to gather data from Phantom II was varied between 1 and 

9 m/s, and the flat plate was pitched at angles ranging from 0° to 90° relative to the airflow direction, as 

illustrated in Figure 66. The heat transfer coefficient on the top (leeward) surface of the plate exhibited an 

initial increase in magnitude as the pitch angle increased up to approximately 5°, followed by a decline as 

the angle continued to rise. These findings represent the average of the three measured heat transfer 

coefficients on the top of the plate. The initial increase is attributed to flow separation effects occurring at 

the leading rectangular face of the flat plate, which result from its finite thickness and blunt leading edge 

which differs from a traditional flat plate that has a thin or knife-like leading edge.  

At a pitch angle of approximately 20°, the heat transfer coefficient stabilized and became nearly 

independent of the pitch angle, remaining at a reduced magnitude compared to the lower angles of attack. 

This "dead zone" indicates a regime where the influence of angle on the heat transfer coefficient 

diminishes, and air velocity emerges as the dominant factor affecting overall heat transfer performance. 
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This behavior underscores the complex interplay between pitch angle, flow separation, and velocity in 

determining the heat transfer characteristics of the flat plate. 

 

 
Figure 66: Heat transfer coefficient of a flat blunt object at various angles and velocities. 

3.8.1 3-D Data Results 

A total of 20,000 data points were collected in the wind tunnel across a range of pitch angles from 0° 

to 90° and Reynolds numbers between 0 and 90,000. Based on observations from Figure 66, which 

revealed that critical changes in the top surface’s heat transfer coefficient predominantly occur at angles 

below 20°, testing efforts were concentrated on collecting data in this region. Conversely, as Figure 66 

demonstrated, beyond a 20° angle of air impingement, the heat transfer coefficient exhibited minimal 

variation with angle at a constant Reynolds number. Consequently, less sampling was conducted in this 

range, as the heat transfer coefficient in this region was largely influenced by Reynolds number alone. 

The targeted data collection strategy and the resulting distribution of sampled data points are illustrated in 

Figure 67. 
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Figure 67: Map of the testing domain of angle range and Reynolds number. 

 

A 3-D representation of the Nusselt number (Nu) as a function of angle and Reynolds number (Re) 

was generated and is shown in Figure 68. The influence of angle on the Nusselt number becomes more 

pronounced with increasing Re, as evidenced by the broadening ridge on the graph with larger angles. 

While the slight increase in Nusselt number on the top side of the plate between 0° and 5°, observed in 

Figure 66, is present, it is less significant on this absolute scale when viewed within the context of the 

larger dataset. Beyond 20°, Nu on the top side becomes consistently flat, indicating a reduced sensitivity 

to angle of impingement. However, even within this flat region, the Nu remains strongly dependent on Re, 

highlighting the dominant role of velocity in determining heat transfer performance at higher angles. The 

bottom side of the plate sees a Nu maximum at around 28° and generally much higher magnitude than the 

top side of the plate.  
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Figure 68: Nusselt number as a function of angle and Reynolds number for the top (left) and the bottom 

(right). 

 

3.8.2 Heat Transfer Coefficient 

Re numbers based on the average of all three sensors between 5,000 and 90,000 were achieved in the 

wind tunnel and the average of the three top heat transfer coefficients was recorded at various angles of 

attack shown in Figure 69.  
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Figure 69: Average of the three heat transfer coefficients on top of the plate as it is pitched into the wind 

source as a function of velocity/Reynolds number at various angles. 

 

 

Beyond a narrow likely laminar region, the heat transfer coefficient exhibits an almost linear scaling 

with Re for data collected at each angle. At low Re, angles between 12° and 90° produced similar heat 

transfer coefficients, while angles between 40° and 90° showed diminished heat transfer coefficients 

above a Re of approximately 20,000, aligning with the observations in Figure 66. Below a Re of 

approximately 15,000, the effect of angle on heat transfer coefficient was relatively minor. However, for 

Re values exceeding 15,000, the influence of angle became significantly more pronounced. Notably, at Re 

values greater than 20,000, the 5° angle consistently produced the highest overall heat transfer coefficient 

compared to other angles, suggesting a potential optimal configuration for heat transfer with this "blunted 

flat plate" geometry. 

Figure 70 presents the heat transfer coefficient as measured exclusively by the top and bottom center 

heat flux sensors. The top center sensor, being less affected by flow separation at the edges of the blunt 
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plate, does not exhibit an optimal heat transfer coefficient at intermediate angles. Instead, it shows a 

maximum heat transfer coefficient at 0°, followed by a sharp decline up to approximately 20°. Beyond 

this angle, the heat transfer coefficient enters the same "dead zone" observed in Figure 66, where further 

changes in angle have little to no effect. Figure 70 (right) shows the measured heat transfer coefficient of 

the center bottom of the plate as the plate is pitched into the wind stream. Interestingly, the bottom sensor 

measures a much higher heat transfer coefficient than the forward sensor as was also shown in Figure 68. 

There appears to be a maximum reached around 28°. This increased heat transfer coefficient is probably 

due to airflow eddies created by separating air flowing around the plate increasing turbulent intensity at 

the backside surface of the plate and rapidly removing thermal energy, but more studies would have to be 

done on the backside to determine the reason for this effect. 

 

 
Figure 70: Center heat transfer coefficient on top of the plate (left) and bottom of the plate (right) as it is 

pitched into the wind source as a function of Reynolds number at various angles using just the center heat 

flux sensors. Note that the y axes in these graphs have different scaling from one another. 

3.8.3 Nusselt Number 

Using data from the center top heat flux sensor, the relationship between Re and Nu across a range of 

angles from 5,000 to 90,000 Re is presented in Table 9. This "heat map" highlights the significant effects 

of low angles of attack, particularly when combined with high Re values, on Nu. To accurately capture the 

rapid changes in Nusselt number at low angles, the bin size is reduced below 28°. A two-dimensional 
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interpolation function or piecewise curve fit, which will be shown in the Appendix, can be employed to 

efficiently "look up" Nusselt numbers as a function of both Reynolds number and angle for further 

analysis or modeling purposes. 

 

Table 9: Measured Nusselt number as a function of Reynolds number and Angle for the center top sensor. 

 
 

 

 

An insightful metric for evaluating heat transfer performance is the ratio of Nu at a given angle to the 

Nusselt number measured under a zero-angle condition. This ratio, referred to as the Nusselt number 

reduction ratio, or Nurr, provides a relative measure of the impact of angle on heat transfer efficiency. 

This is shown in Equation 74, where Nu is at a certain angle, and 𝑁𝑢0° is from the zero-angle condition: 

 𝑁𝑢𝑟𝑟 =
𝑁𝑢

𝑁𝑢0°
 (74) 

 

Table 10 presents these reduction ratios for the top center sensor, revealing that the largest deviations 

from the zero-angle Nusselt number occur at angles exceeding 19°, particularly at higher Re.  
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Table 10: The Nusselt number reduction ratio (Nurr) as a function angle and Re for the center top sensor. 

 
 

The data for the bottom center heat flux sensor is shown in Table 11. The maximum around 28° for this 

backside center heat flux sensor is clearly visible.  

 

Table 11: The Nusselt number reduction ratio as a function angle and Re for the center bottom sensor. 

 
 

 
 

3.8.4 Heat Transfer Coefficient Tables 

Although specific to this experimental setup, Table 12 provides the average of all three top heat 

transfer coefficients as a function of angle and velocity for angles ranging from 0° to 90°. This 
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relationship enables the determination of the heat transfer coefficient for a given velocity and airflow 

angle impinging on a flat plate. Such a table offers a practical tool for estimating heat transfer coefficients 

using vectorized velocity data from CFD simulations, bypassing the need for solving computationally 

intensive energy equations within the CFD framework. This approach facilitates more efficient 

integration of heat transfer considerations into CFD analyses.  

 

Table 12: Average heat transfer coefficient for all three sensors on the top (leeward) side of the plate as a 

function of measured velocity and angle. 

 
 

Table 13 presents a reduction ratio (HTCrr) in the average of three top heat transfer coefficients. In this 

case, HTC is at a certain angle, and 𝐻𝑇𝐶0° is at the zero-angle condition, as shown in Equation 75: 

 𝐻𝑇𝐶𝑟𝑟 =
𝐻𝑇𝐶

𝐻𝑇𝐶0°
 (75) 

 

However, these values differ slightly due to the averaging of data from multiple sensor sets used to 

measure and calculate heat transfer coefficients, temperatures, and thermal properties. This table retains 

the slight local maxima captured originally at slight angles in Figure 66. 

 

 

9.0 64.0 68.8 68.4 64.5 60.7 58.1 55.1 52.5 47.5 31.1 34.0 33.3 31.9 32.3 32.1 32.6 32.6 32.3 33.5 33.7

8.0 57.5 59.9 60.0 56.2 53.3 50.6 48.1 45.4 36.4 28.9 29.7 29.7 29.8 29.7 29.7 29.8 29.8 29.7 30.5 30.9

7.0 50.7 54.5 54.0 50.9 47.9 45.5 43.3 39.9 30.1 27.0 27.7 27.8 27.8 27.9 27.7 27.9 28.0 27.7 28.5 29.6

6.0 43.8 48.8 48.6 45.5 43.2 40.7 38.5 34.2 26.4 24.5 25.0 25.3 25.8 25.8 26.1 26.4 26.2 26.1 26.5 27.8

5.0 39.3 43.5 43.2 40.3 38.2 36.0 33.7 28.0 23.5 22.7 22.8 23.2 23.9 23.9 24.1 24.7 24.5 24.1 24.6 25.9

4.0 35.7 38.6 38.2 35.9 34.0 31.7 28.9 23.0 21.5 21.1 21.3 21.4 21.7 22.1 22.5 22.8 22.7 22.3 23.3 24.2

3.0 31.4 33.2 33.0 31.1 29.4 26.5 23.1 19.2 18.9 19.0 19.3 19.5 19.6 20.1 20.3 20.6 20.7 20.3 21.3 22.2

2.0 25.1 27.4 26.8 25.4 23.8 20.0 16.9 16.2 16.5 16.6 17.4 17.3 17.4 18.0 17.8 17.7 17.7 17.9 18.6 19.1

1.0 18.2 17.5 17.2 16.3 15.4 13.5 12.8 12.8 13.3 13.3 14.1 14.0 13.7 14.1 14.0 14.0 14.1 14.8 15.1 14.6
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Table 13: Heat transfer coefficient reduction ratio (HTCrr) as a function of velocity and angle. 

 
 

Table 14 presents the inverted version of Table 12, illustrating velocity as a function of heat transfer 

coefficient and angle. This format enables the estimation of velocity based on the output from heat flux 

sensors combined with a known or predicted impingement angle. This approach is particularly useful for 

interpreting experimental data or validating computational predictions in scenarios where direct velocity 

measurements are not feasible. Note that some cells in the table remain empty, corresponding to heat 

transfer coefficients that would require velocities exceeding 10 m/s to achieve. These values are outside 

the operational range of the experimental setup. 

 

Table 14: Velocity as a function of heat transfer coefficient and angle. 

 

9.0 1.00 1.07 1.07 1.01 0.95 0.91 0.86 0.82 0.74 0.49 0.53 0.52 0.50 0.50 0.50 0.51 0.51 0.50 0.52 0.53

8.0 1.00 1.04 1.04 0.98 0.93 0.88 0.84 0.79 0.63 0.50 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.53 0.54

7.0 1.00 1.08 1.07 1.01 0.95 0.90 0.86 0.79 0.59 0.53 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.56 0.58

6.0 1.00 1.12 1.11 1.04 0.99 0.93 0.88 0.78 0.60 0.56 0.57 0.58 0.59 0.59 0.60 0.60 0.60 0.60 0.61 0.63

5.0 1.00 1.10 1.10 1.03 0.97 0.92 0.86 0.71 0.60 0.58 0.58 0.59 0.61 0.61 0.61 0.63 0.62 0.61 0.63 0.66

4.0 1.00 1.08 1.07 1.01 0.95 0.89 0.81 0.64 0.60 0.59 0.60 0.60 0.61 0.62 0.63 0.64 0.64 0.63 0.65 0.68

3.0 1.00 1.06 1.05 0.99 0.93 0.84 0.73 0.61 0.60 0.60 0.61 0.62 0.62 0.64 0.65 0.66 0.66 0.65 0.68 0.71

2.0 1.00 1.09 1.07 1.01 0.95 0.79 0.67 0.64 0.66 0.66 0.69 0.69 0.69 0.72 0.71 0.71 0.71 0.71 0.74 0.76

1.0 1.00 0.96 0.94 0.89 0.84 0.74 0.70 0.70 0.73 0.73 0.77 0.77 0.75 0.77 0.77 0.77 0.77 0.81 0.83 0.80
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3.8.5 Flow Separation and Edge Effects 

 

As the blunt-faced flat plate was pitched into the wind tunnel's air stream, the average top heat transfer 

coefficient initially increased up to a pitch angle of 5° before sharply decreasing as the pitch angle 

increased further. This behavior was hypothesized to result from flow separation at the leading edge of 

the finite-thickness plate. Subsequent analysis using CFD, some of which is shown in Figure 71, supports 

this hypothesis. At slight pitch angles, the flow separation at the leading edge diminishes, leading to 

increased heat transfer due to a smaller separation region. 

To further investigate, a simple experiment was conducted using a “D”-shaped rubber seal along the 

leading edge, designed to streamline the edge similar to an airfoil. When the wind tunnel test was 

repeated with this adjustment, the deviation in heat transfer between 0° and 5° pitch angles was 

significantly reduced, though this is not shown here. These findings align with classic aerodynamics 

literature on airfoil streamlining, such as the work by Talay (1975), further validating the role of leading-

edge separation in the observed heat transfer behavior. 

 

 
Figure 71: Flow separation reduction of a flat, blunted object as it tilts into an air stream at a mild angle. 
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Figure 72 shows the test apparatus in a wind tunnel using smoke (vaporized propylene glycol) and a 

laser light source plane parallel to the flow of air to track the flow streamlines of air over the plate. The 

same effect of flow separation diminishing at slight angles is observed. 

 

 
Figure 72: Flow separation reduction of a flat, blunted plate in a wind tunnel as it is pitched at a mild angle. 

 

The sharp decrease in the top heat transfer coefficient past 5° is likely due to the flow stagnation and 

buildup of pressure on the front side of the plate, resulting in diminished heat transfer at angles more 

severe than around 12°. This is shown by a CFD model in Figure 73, where an energy equation was 

solved in CFD to estimate heat transfer coefficient as a plate is tilted 45°. As is shown, the heat transfer 

coefficient is reduced as the plate is tilted at more severe angles. The bottom surface was not investigated, 

but further CFD modeling would be useful here to determine reasons for the back surface experiencing 

significantly higher heat transfer coefficients.  
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Figure 73: A flat, blunted object tilting into an air stream at a 45° angle. 

 

3.8.6 Wind Tunnel Data Application 

CFD analysis provided three-dimensional velocity vectors throughout the interior of a spiral blast 

freezer, enabling the calculation of both the magnitude and angle of airflow over food products as a 

function of position and dwell time within the freezer. This velocity data, combined with the findings 

presented in this work (Table 12), can be used to estimate the heat transfer coefficient as a function of 

product position during the freezing process. Heat transfer coefficients can be concurrently measured 

directly in situ using a Phantom device, outfitted with batteries, a protective enclosure, and the data 

monitoring system previously described in Section 2.6, and physically conveyed through a spiral freezer.  

The same spiral freezer (from Plant 1) used for the in situ measurements was modeled in ANSYS 

Fluent to simulate airflow and heat transfer characteristics. Both the measured and CFD-simulated heat 

transfer coefficient data sets are compared in Figure 74. The CFD results were initially interpolated 

assuming horizontal airflow (no angle of impingement), followed by interpolation with the inclusion of 

the airflow angle, offering a more comprehensive representation of heat transfer behavior within the spiral 

freezer. The velocity data from the CFD was also propagated through the flat plate correlations 

established by Leinhard (2020) to see the comparison.  
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Figure 74: Measured heat transfer coefficient, and heat transfer coefficient predicted by using CFD angular 

velocity data to interpolate Table 12. 

 

 

Figure 74 shows that when the effects of airflow angle are added, the predicted heat transfer 

coefficient captures more variation that exists in the measured heat transfer coefficient. Each of the cases 

were ran through the thermal model introduced in Chapter 2 and the results are shown in Table 15. 

 

Table 15: Measured and modeled heat transfer coefficient as a function of time experienced by a product 

in a spiral blast freezer. 

Data profile 

Freezing 

time (s) Belt speed (products/min) Deviation (%) 

Measured 1455 138.4 0 

CFD interpolation (no angle) 1496 134.6 2.9 

CFD interpolation (with angle) 1585 127.0 8.4 

Flat plate 1791 112.3 19.0 
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Original Dittus-Boelter 2110 97.4 29.6 

 

Table 15 highlights the discrepancies in predicting product belt speed using different methodologies. 

Conventional flat plate correlations resulted in a 19.0% deviation from the measured product belt speed 

obtained using the Phantom II. In contrast, velocity data from CFD simulations without accounting for 

airflow angle achieved the highest accuracy, with only a 2.9% deviation from measured values. 

Incorporating airflow angle into the CFD model did not enhance accuracy and instead increased the 

deviation to 8.4% when compared to the measured heat transfer coefficient data. One reason this might 

have a higher deviation is that, in reality, the attack angle of air on the product might be different than 

what the CFD had predicted based on the porous media used in this research versus structural tiers in an 

operating spiral and other geometrical considerations (including product shape). Despite this, both CFD 

interpolation approaches demonstrated significantly better performance than the traditional flat plate 

correlation, emphasizing the importance of more advanced modeling techniques. 

The wind tunnel experiments and accompanying CFD analyses have provided valuable insights into 

the relationship between airflow dynamics and heat transfer performance over blunt-faced flat plates, with 

direct implications for understanding airflow within spiral blast freezers. Key findings demonstrated that 

pitch angle and Reynolds number significantly influence heat transfer, with optimal performance 

occurring at low pitch angles and higher Reynolds numbers. Beyond 20° pitch, the heat transfer 

coefficient became insensitive to angle, underscoring the dominance of velocity in this regime. 

This work also underscores the practicality of combining experimental data from the Phantom device 

with CFD-generated velocity fields to estimate heat transfer coefficients throughout a freezer's 

operational envelope. The ability to measure and model heat transfer coefficients in situ offers a powerful 

tool for benchmarking and optimizing spiral freezer performance.  

 

 



142 

 

3.9 Phantom I Field-testing Results 

This section details the field application of the Phantom I designed to directly measure the thermal 

performance of five operating spiral blast freezers in situ. Measurements collected by the Phantom II are 

supplied as boundary conditions to the established 1-D thermal model, facilitating a detailed assessment 

of the comparative thermal performance of the freezers. This approach validated existing CFD and 

thermal models and served as a novel benchmark for evaluating spiral blast freezer performance.  

3.9.1 Benchmarking five Spiral Freezers 

Figure 75 presents the air temperature profiles over time for five spiral blast freezers from different 

plants, highlighting significant variability across locations. The data has been truncated at 1500 seconds 

enabling a consistent time window between the different freezers for ease of comparisons across plants.  

Plant 2 had the coldest air, with an average temperature of approximately -38°F (-39°C), while Plant 1 

recorded the warmest, averaging around -14°F (-26°C). Plants 3, 4, and 5 had air temperatures of similar 

magnitude, approximately -25°F (-32°C). From a performance perspective, lower air temperatures are 

preferable as they enable faster freezing of products. However, achieving lower air temperatures 

necessitates lower suction pressures within the refrigeration system, resulting in increased energy 

consumption. Therefore, optimal freezer performance requires a careful balance between air temperature 

and airflow to achieve the desired throughput efficiently. 
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Figure 75: Air temperature as a function of dwell time from all five spiral freezers. 

 

 

Figure 76 presents the measured heat transfer coefficients for all five spiral freezers, revealing distinct 

patterns across the plants. The data presented used an 8-point moving average to smooth out significant 

oscillations in the raw data, facilitating clearer visualization over the full 1500-second collection period. 

Plants 1 and 5 exhibited relatively high heat transfer coefficients at the start of the cooling process, which 

gradually tapered to moderate values by the end. As discussed in Chapter 3.4, this is considered an 

optimal heat transfer profile for blast freezers. Greater air velocity early in the cooling process leads to 

enhanced freezing efficiency. 
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Figure 76: Heat transfer coefficient measured by the device inside five different spiral freezers. 

 

Plants 2, 3, and 4 begin with lower heat transfer coefficients. While Plants 2 and 4 show some 

recovery by the end of the process, Plant 3 maintains a consistently low value of around 20 W/m²-K (3.8 

Btu/hr-ft²-°F), which Chapter 3.4 would identify as the least desirable profile among the five facilities. 

Despite Plant 2 having the coldest air temperature, it does not exhibit an ideal heat transfer profile, while 

Plant 5, with the most favorable velocity profile, only maintains moderate temperatures. An analysis will 

determine whether air temperature or airflow delivery plays a more critical role in overall freezer 

performance. 

3.9.2 ODE Simulation 

To evaluate the performance of each spiral blast freezer, the measured heat transfer coefficients and 

corresponding temperatures were applied as boundary conditions in a 1-D thermal model of a food 

product within a spiral freezer and the product temperature was allowed to come to its natural equilibrium 

by the end of the simulation (i.e., belt speed was not maximized). Initial analyses integrated the heat 
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transfer coefficient directly, but doing so missed the blast effect introduced in Section 3.2.3, and the 

freezer performance predictions were subsequently incorrect. Instead, the correct results of the 1-D model 

are presented in Figure 77, which also displays the saturation pressure of ammonia (R717) corresponding 

to the measured temperatures for reference. The calculated center temperature of the food product upon 

exiting the freezer is included in the figure. 

Among the freezers, Plant 5 demonstrated the best performance, achieving optimal results with 

moderate temperatures and an ideal heat transfer coefficient profile. Although Plant 2 exhibited a less 

favorable heat transfer coefficient profile, its low air temperatures enabled it to perform nearly as well as 

Plant 5 by the end of the simulation. In contrast, Plant 1, despite having a promising heat transfer 

coefficient profile, was close to being the poorest performer due to its higher air temperatures throughout 

the process. 

 

 
Figure 77: Simulated food center temperature as a function of time using a 1-D thermal model. 

 
When the temperatures across all five plants are intentionally equalized, the evaluation becomes solely 

dependent on airflow velocity (heat transfer coefficient), as shown in Figure 78. Interestingly, with the 
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temperature originally, becomes the worst performer. As might be expected, Plant 5 remains the top-

performing spiral freezer, taking full advantage of the blast effect. Notably, Plant 1 performs nearly as 

well as Plant 5 under these conditions, highlighting the significant impact of velocity (in turn heat transfer 

coefficient) magnitude and profile on freezer performance. 

 

 
Figure 78: Simulated food center temperature as a function of time using a 1-D thermal model with 

temperature fixed to the same value for all five plants. 

 

 
In the next analysis, the heat transfer coefficient is held constant across all five plants, allowing only 

the air temperature to vary based on the measured temperatures within each spiral freezer, which is shown 

in Figure 79. This isolates the effect of air temperature from the heat transfer coefficient. The simulations 

are then repeated. The performance of the spiral freezers is directly correlated with air temperature that 

was illustrated in Figure 75. Plant 2, which recorded the lowest air temperature, achieved the lowest food 

center temperature, making it the top performer. In contrast, Plant 1, with the highest air temperature, was 

the poorest performing spiral freezer. 
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Figure 79: Simulated food center temperature as a function of time using a 1-D thermal model with heat 

transfer coefficient fixed to the same value for all five plants. 

 

3.9.3 Integrated Heat Transfer Coefficient 

An energy balance analysis in MATLAB can be conducted on the measured data presented in Figure 77 

in the thermal model to quantify the total cooling delivered to a product as a function of its dwell time 

within a spiral freezer, providing a comprehensive comparison of the performance across the five plants. 

This is the only method that adequately captures the blast effect. The results of this analysis are depicted 

in Figure 80, demonstrating that the relative performance differences among the freezers align with the 

variations observed in Figure 77.  
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Figure 80: Integrated overall energy balance on the data for each of the five spiral freezers per product. 

Alternatively, without using MATLAB, the integrated heat transfer coefficient method presented in 

Section 3.7.3 by Equation 72 can be used to compare the five plants. If the surface temperature of the 

product is kept at Ts = 30°F (-1.1°C), the integrated heat transfer coefficient for each plant is shown in 

Figure 81. The performance ranking in Figure 81 agrees with the results from Figure 80. For reference, 

this integrated heat transfer coefficient is on a per area basis, and the surface area of the Phantom II is 

approximately 0.1025 m2. 

 

Figure 81: Integrated heat transfer coefficient multiplied by ΔT for 5 plants. 
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The time-averaged heat transfer coefficient and air temperature for each of the 5 plants are shown in 

Table 16. The integrated heat transfer coefficient metric is shown in the table as well, which predicts the 

total performance of a freezer. An even simpler metric shown is simply the average heat transfer 

coefficient, ℎ̅, multiplied by the average ΔT, which also produces the same performance ranking as the 

other methods in this example.  

 

 

Table 16: Average heat transfer coefficient, air temperature, and integrated heat transfer coefficient metrics 

for all 5 plants. 

 
  Average T∞  int(HTC*ΔT)(kJ/m2) (𝒉̅*ΔT)(W/m2) Rank 

Plant 1 25.6  -13.6°F (247.8K) 930 620 4 

Plant 2 20.2  -35.0°F (235.9K) 1093 729 2 

Plant 3 20.0  -24.3°F (241.9K) 898 602 5 

Plant 4 23.4  -25.0°F (241.5K) 1072 715 3 

Plant 5 27.5  -22.6°F (242.8K) 1198 802 1 

 

This benchmarking study demonstrates the effectiveness of the Phantom pseudo product for evaluating 

the thermal performance of dynamic air blast freezers by measuring heat transfer coefficients and air 

temperatures in situ. The ability to gather real-time data while the device moves through the freezer 

alongside products allows for a comprehensive comparison of five spiral blast freezers across different 

facilities.  

The results emphasize the importance of both airflow velocity (as indicated by the heat transfer 

coefficient) and air temperature in determining freezer efficiency. Freezers with higher air velocities early 

in the cooling process, such as Plant 5, achieved optimal performance despite moderate air temperatures. 

Conversely, Plant 2, with the coldest air temperature but suboptimal velocity profiles, still performed 

𝒉̅ (W/m
2
-K) 
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well, highlighting that temperature alone does not guarantee superior performance. These findings 

demonstrate the need to balance airflow delivery and air temperature for optimal energy and thermal 

efficiency.  

 

Chapter 2.6 showed the Phantom’s video measuring capability as well, which was not discussed 

further in this section, but was valuable in evaluating the five plants shown. The inclusion of video 

footage when benchmarking freezers from the onboard action camera provided valuable insights into 

operational anomalies, such as excessive frost buildup, uneven belt transitions, and sanitation issues. This 

visual feed, combined with thermal data, enhances the diagnostic capabilities of the system by identifying 

defrost events and operational irregularities in real-time.  

 

4 Conclusions and Recommendations 

This section summarizes the research outcomes and provides recommendations for advancing the 

knowledgebase in areas that include air blast freezing and external forced convection heat transfer over 

flat plates. The conclusions portion of this chapter reviews how the originally established research goals 

were met through advanced thermal modeling, innovative measurement tools, and the application of 

optimization techniques that aimed to improve the thermal performance of low temperature air blast 

freezing systems. Limitations are discussed, including challenges in modeling diverse freezer 

configurations and the resource demands of CFD simulations, offering ideas for future refinement. 

Recommendations emphasize developing more generalized models, enhancing measurement 

technologies, exploring baffling strategies, and fostering industry collaboration to establish freezing 

system performance benchmarks. These efforts ensure both scientific and practical advancements in 
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freezing system efficiency.  Recommendations intended to expand correlations for forced air convection 

over flat plates at varying pitch angles for both leading and trailing sides of the plate are provided. 

4.1 Results and Implications 

This research aimed to advance the state-of-the-art in low temperature air blast freezing systems by 

first understanding the thermal performance of existing freezing systems and then utilizing modern tools 

such as commercial CFD software and first-principles numerical modeling techniques for the food 

products to assess whether significant freezer performance improvements could be achieved.  A 

dimensionally-similar instrument was created to actually measure the air-side performance of a large-

scale spiral blast freezer.  Measured data included surface heat flux, surface temperatures, center 

temperature, and local air temperature. The findings achieved strongly align with these objectives, 

offering significant progress in both theoretical modeling and practical applications. 

The food product thermal model developed during this study incorporated temperature-dependent 

properties and velocity-specific heat transfer coefficients to capture the effects of varying external 

conditions of air velocity and air temperature on the overall freezing time of the product. A differentiator 

in the implementation of the 1-D food product model in the present research compared to past research is 

the application of varying surface heat transfer coefficients and air temperatures. Thermal conductivity 

and heat capacity were modeled to a level of detail that could capture the behavior of phase transitions 

with properties changing as the modeled water in the product froze as a function of decreasing 

temperature. A Gaussian-type function was used to model the product’s heat capacity to reflect the 

expected thermal behavior during phase-change but to also maintain sufficient functional “smoothness” 

so the model could be rapidly solved with no significant loss in accuracy. With a robust and fast-solving 

product thermal model, Monte Carlo simulations were used to a significant parameter space leading to 

optimal results lying along a Pareto front. The overall framework developed for evaluating freezer 
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performance under varying operating conditions will allow other researchers to apply these techniques to 

improve the design of new freezing systems or existing freezing systems in operation. 

The Phantom device developed during the present research provided a means to measure the in situ 

performance of blast freezing systems, and as a means of gathering data should modification to a freezing 

system be deployed with the intent of improving its thermal performance.  The ability for the Phantom to 

gather in situ thermal measurements in an actual operating freezing system side-by-side with product was 

a key contribution that enabled gathering data local to the food products themselves as opposed to 

measurements made a fixed location within the freezer enclosure.  The Phantom devices provided high-

resolution data on heat transfer coefficients, temperature profiles along the same path as product 

experiences, and useful video footage, validating critical aspects of the thermal model and enabling direct 

comparisons between theoretical predictions and real-world performance. This innovation bridged a 

critical gap in the understanding of blast freezing systems and underscored the practical applicability of 

the research findings. 

Optimization techniques were developed and further improved. Computational tools, including Monte 

Carlo simulations and iterative airflow refinements, identified strategies to improve throughput and 

energy efficiency. For example, optimized velocity profiles demonstrated measurable improvements in air 

delivery to products, reducing energy consumption while maintaining or enhancing freezing rates. 

Optimization was applied to a total spiral freezer thermal model to attempt to understand the interplay 

between belt speed, air temperature, air velocity, and overall freezing system operating (energy) cost. 

These insights offer a clearer pathway for industrial implementation, emphasizing the potential for 

targeted modifications to yield significant improvement in thermal performance. 

The integration of iterative CFD analyses and confirmation using in situ measurements facilitated the 

establishment of predictive velocity-dependent heat transfer coefficients. These coefficients were 
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experimentally validated to quantify the effects of velocity magnitude and airflow angle in a wind tunnel 

in myriad realistic operating ranges, which were then captured in tables and functions. These correlations 

bridged the gap between theoretical predictions and real-world conditions, enabling more accurate 

modeling of airflow dynamics and the influence on freezing performance. More importantly, these 

techniques established a blueprint to quantify potential improvements for future designers and users of 

spiral freezers. 

Multiple additional engineering strategies were developed to guide the design and operation of spiral 

blast freezers. Best practices such as enhanced airflow targeting using the blast effect, and early-stage 

airflow optimization were identified. Conversely, inefficiencies linked to excessive late-stage airflow 

were highlighted for avoidance. These strategies provide industry stakeholders with practical solutions to 

enhance system performance, reduce operational costs, and improve energy efficiency. 

Overall, this research met and, in many cases, exceeded its initial objectives. The validated thermal 

modeling, innovative measurement tools, and practical optimization strategies developed in this study 

offer a comprehensive approach to improving spiral blast freezer performance. These outcomes contribute 

significantly to improving the modeling and the optimization of spiral blast freezers. 

4.2 Limitations and Challenges 

This research faced several limitations and challenges, many of which stemmed from the inherent 

complexity of industrial spiral blast freezers and the need to balance detailed analysis with practical 

applicability. One key limitation was the reliance on computationally intensive CFD simulations to model 

airflow and heat transfer dynamics. While these simulations yielded detailed velocity profiles and heat 

transfer coefficients, they require substantial computational resources and expertise, which may not be 

readily available to all facilities. The high computational cost also limits the frequency and scale at which 

these simulations can be employed, potentially hindering their application in small or resource-
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constrained facilities.  The large scale of air blast freezing systems also necessitated simplification such as 

the application of porous media models for complex geometric features including the spiral belt and 

evaporator coils.  In addition, the flow and energy analysis were uncoupled.  With greater computing 

power, the energy equation could be included along with the discretized three-dimensional Navier-Stokes 

equation.  Coupling this solution to the food product within the CFD computational domain presents 

further difficulties – particularly when considering the product itself would represent a moving boundary 

problem to be solved. 

Additionally, in a spiral freezer there is a known large chimney effect where hot, humid air rises off 

the product. Attempting to capture this would make an already complex modeling process even more 

difficult, and it is unclear whether this could be captured using CFD or with other means. In reality, the 

result of this chimney effect is that that typically the upper coils in a spiral freezer must inherently defrost 

more and see a disproportionate amount of latent load. None of this was considered in this research due to 

the complexity it would have added, but it remains a concern. 

The angular Phantom data, while new and insightful, was generated in a wind tunnel that was not 

originally developed for operating at low air (wind) velocities. Also, with air impinging around the entire 

flat plate, it is not necessarily clear why the bottom heat transfer coefficient was so high, and whether 

there might have been a virtual effect that could have produced this due to ΔT or heat removal anomalies. 

A focus was made on understanding the top heat flux sensors to focus the research bandwidth, since this 

surface is more directly coupled to the air velocity in practice (while the bottom surface is typically 

resting on a more complicated resistance network). This was the first study of its kind, and more 

development here is necessary.  The Phantom II was a rectangular flat plate, but the embedded heater 

resulted in the overall thickness of the flat plate being somewhat of a “bluff body.”  Further refinements 
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to this type of device should pursue strategies to supply heat but with a thinner “knife-edge” profile to 

minimize flow separation at the leading edge of the plate.  

Lastly, the lack of direct industry-wide benchmarks for spiral freezer performance made it difficult to 

contextualize the findings against broader standards. For example, existing resources assigned extremely 

varying, vague, and constant heat transfer coefficients to different types of spiral blast freezer depending 

on the product, but these are “rules of thumb,” rather than rigidly arrived upon known factors. While this 

research developed a robust methodology for assessing and comparing freezer systems, the absence of 

universally accepted benchmarking techniques underscores the need for continued collaboration between 

academia and industry to establish comprehensive performance standards: what is good? 

4.3 Future Research Ideas 

Other future research in the field of spiral blast freezers could focus on addressing the above-

mentioned limitations identified in this work while expanding the applicability across diverse operational 

settings. One priority is to develop generalized models capable of accounting for variations in product 

packaging, different geometries, airflow patterns, and thermal properties. This would improve the 

relevance of predictive models across different freezer designs and food products, enabling a wider range 

of facilities to adopt these advancements. For example, if there was a certain style of freezer that was 

known to develop certain characteristics, designers could be more confident in starting with this. By 

incorporating real-world data, future models could provide more accurate and actionable insights for 

optimizing freezing performance. 

Additionally, further refinement of measurement technologies like the Phantom devices is crucial. 

Miniaturization, improved thermal insulation, and the integration of more versatile data logging systems 

such as reliable hot wire anemometers would enhance their usability in harsh freezer environments. It is 

difficult finding an omnidirectional anemometer small enough to fit inside of spiral freezer that can 
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withstand the extremely cold temperatures while reliably logging data. No solution was found in this 

study. These advancements would allow for more comprehensive in situ monitoring, enabling researchers 

to capture detailed thermal and airflow data with minimal disruption to production. Expanded field testing 

in a broader range of spiral freezer configurations and operational conditions would also help validate 

these findings and refine methodologies. 

Optimizing airflow management remains a promising avenue for future work. Studies could explore 

various baffling designs, fan placements, and other airflow control mechanisms to achieve higher energy 

efficiency and throughput. Incorporating insights from the blast effect, which highlights the importance of 

targeted airflow during early stages of freezing, could refine strategies for managing airflow intensity and 

distribution. The use of new tools such as artificial intelligence in analyzing belt speed, actively 

monitoring exiting product temperature, airflow patterns, defrost cycles, and overall system performance 

offers potential for real-time optimization. These tools could identify optimal configurations for specific 

production scenarios and adapt to changing operational conditions, further enhancing system efficiency. 

Additional research is needed to address moisture effects – particularly for unpackaged products that 

have high moisture content or are susceptible to the effects of moisture loss.  In these cases, the effects of 

moisture loss from the product will have a direct impact on the reduction in saleable weight but, 

potentially, product quality as well.  A compounding issue is the effects that moisture liberated from the 

product has on the refrigeration system performance.  Moisture that leaves the product is deposited on 

surfaces within the spiral freezer’s environment but particularly on evaporator surfaces.  This moisture 

accumulation significantly degrades evaporator performance which directly impacts product freezing 

capability.  Strategies that can encourage “crust freezing” to minimize moisture loss has the potential to 

pay dividends on both the product and freezer side. 
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In summary, future research should aim to build upon the methodologies and findings of this study by 

exploring advanced modeling techniques, refining measurement technologies, and expanding field 

applications. These efforts will not only enhance the performance and sustainability of spiral blast 

freezers, but also support the broader goals of energy efficiency, environmental stewardship, and 

collectively shared practical knowledge in industrial food processing. 
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6 Appendix 

 

Figure 82: Top center heat flux sensor highlighted. 

 

A correlation equation is developed from the data in Table 10, Nusselt number reduction ratio (Nurr) of 

the top center heat flux sensor shown in Figure 82. Nurr is the Nu reduction ratio as a function of the 

coefficients in Table 17, Re, and θ.  Relative to the measured data, the R2 = 89.54%, maximum error = 

29.7%, average error 8.1%, and standard deviation is 6.1%. 

 𝑁𝑢𝑟𝑟 = 𝐴 + 𝐵 𝑅𝑒 + 𝐶 𝑅𝑒2 + 𝐷 𝑅𝑒3 + 𝐸 𝜃 + 𝐹 𝜃2 + 𝐺 𝜃3 + 𝐻 𝑅𝑒 𝜃
+ 𝐼 𝑅𝑒 𝜃2 + 𝐽 𝑅𝑒2𝜃 + 𝐾 𝑅𝑒2𝜃2 

(76) 

 

Table 17: Coefficients for Nurr Equation 76. 

Coefficient Value Description 

A 1.149835 Constant term 

B -6.617989E-06 Linear term for Re 

C 1.509135E-10 Quadratic term for Re 

D -1.00087E-15 Cubic term for Re 

E -0.023862 Linear term for θ 

F 0.0005610169 Quadratic term for θ 

G -3.566097E-06 Cubic term for θ 

H -3.513375E-07 Interaction term for Re and θ 

I 3.080172E-09 Interaction term for Re and θ2 

J 2.254790E-12 Interaction term for Re2 and θ 

K -2.321617E-14 Interaction term for Re2 and θ2 
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Table 18: Nusselt number reduction ratio equation (Equation 76) error versus experimental data.  

 
 

Bottom Center 

 

 
Figure 83: Bottom center heat transfer coefficient sensor. 

 
Table 19: Bottom center Nusselt number reduction ratio. 

 
 

 𝑁𝑢𝑟𝑟 = 𝐴 + 𝐵 𝑅𝑒 + 𝐶 𝑅𝑒2 + 𝐷 𝑅𝑒3 + 𝐸 𝜃 + 𝐹 𝜃2 + 𝐺 𝜃3 + 𝐻 𝑅𝑒 𝜃
+ 𝐼 𝑅𝑒 𝜃2 + 𝐽 𝑅𝑒2𝜃 + 𝐾 𝑅𝑒2𝜃2 

(77) 
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Relative to the measured data, the R2 = 82.64%, maximum error = 37.2%, average error 8.2%, and 

standard deviation is 6.5%. 

Table 20: Coefficients for Nurr Equation 77. 

Coefficient Value Description 

A 0.992776 Constant term 

B -8.849169E-06 Linear term for Re 

C 2.069088E-10 Quadratic term for Re 

D -1.361317E-15 Cubic term for Re 

E 4.340437E-02 Linear term for θ 

F -1.290504E-03 Quadratic term for θ 

G 9.428362E-06 Cubic term for θ 

H 3.373336E-07 Interaction term for Re and θ 

I -5.939648E-09 Interaction term for Re and θ2 

J -1.695769E-12 Interaction term for Re2 and θ 

K 3.421033E-14 Interaction term for Re2 and θ2 

 

Table 21: Nusselt number reduction ratio equation (Equation 77) error versus experimental data. 
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MATLAB Code: 

 
%   ODEsolver.m 
% Creates plots Temperature vs Time given a velocity distribution, 
%Temperature of the crust at various times throughout the thickness of the 
%product, and then temperature of the center of the product as a function 
%of vertical position inside the spiral freezer  
clear; 
close all; 
tic 
belt = 141.6247; 
T_infinity =238.706; %Default air temperature value in K - by default 

temperature is constant 
N = 40;                 %number of nodes (-) 
t_sim = 2*5000;           %simulation time (sec) 1800 is default 
% flag = 4; %default  
flag = 4;               %property model 6 is raw chicken wings/breasts 

(sphere), 5 is aluminum, 4 is dough food symmetrical 1D, 8 is chicken package 

with resistance on bottom, 9 is symmetrical chicken 
hm = 1;                 %htc multiplier 
reltol = 1e-6; 
name = "spiral_midlane_existingEA.csv"; %Column 1 is time in seconds, column 

2 is velocity  

  
[time,T, dim1,xi_new_l,asdf] = dTdtEngine(N,t_sim,flag, hm, name, belt, 

reltol,[],[],T_infinity); 

                               
figure 
hold on; 
grid on 

  

  
T_f = (T-273.15)*(9/5)+32;  %Converting temperature to F 
tes0r = T_f(time<xi_new_l,floor(N/2)); %xi_new_1 is the time that the pizza 

is in the spiral based on belt speed -  
%this is selecting those times/temperatures 

  
dist = length(time); %determining the length of the temperature matrix 
if flag == 8 
T_target = 26 
else 
T_target = 10 
end 
if flag == 6 
T_low = T_f(length(time),1)   
else 
T_low = T_f(length(time),floor(N/2)) 
end 
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deltaT = abs(T_target-T_low) 
dims = linspace(21,0,dist); %stretching the temperature data over 21 vertical 

feet in the spiral 
set(gca, 'XDir','reverse') 

    
if flag == 6 
plot(dims,T_f(:,1)) 
else 

  

plot(dims,T_f(:,floor(N/2))) 
end 
ylabel('Temperature of product center (F)','FontSize',12,'FontWeight','bold') 
xlabel('Vertical position inside spiral 

(feet)','FontSize',12,'FontWeight','bold') 

  
figure 
hold on 
grid on 
Toft=readtable("tempdata2.csv"); 
x_temp =table2array(Toft);           %converting the table to an array 
xi_T = x_temp(:,1);                    %column 1 of time 
yi_T = x_temp(:,2);                    %column 2 of temperature 
T_infinityK = interp1q(xi_T,yi_T,time); 
T_infinityF = (T_infinityK-273.15)*(9/5)+32; 
plot(time, T_infinityF) 

  
ylabel('Temperature of the air inside the spiral 

(F)','FontSize',12,'FontWeight','bold') 
xlabel('Time (s)','FontSize',12,'FontWeight','bold') 
toc 

 

____________________________________________________ 

 

 
%  dTdtEngine.m 
%This is the dTdt function engine that calls ODE113 or ODE45 

  
function [time,T,dim1,xi_new_l,asdf] = dTdtEngine(N,t_sim,flag, hm, name, 

belt, reltol, xi1, yi1,T_infinity) 

  
%User supplied temp. By Default, this is deactivated in dTdt_functionv.m 
Toft=readtable("tempdata2.csv"); %Column 1 is time, column 2 is temperature 

in K 
x_temp =table2array(Toft);           %converting the table to an array 
xi_T = x_temp(:,1);                    %column 1 of time 
yi_T = x_temp(:,2);                    %column 2 of temperature 
T_ini = 311.5;        %initial temperature(K) Default - all models 
if flag ==6 
L = 0.03175;            %Radius of a chicken wing (m)     
elseif flag == 8 
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L = .0508;              %thickness of chicken package (2 inches) 
elseif flag == 9 
L = 0.015875;           %same thickness as pizza, but made out of chicken 
else 
L = 0.015875;           %dough product thickness(m) 
end 
rho = 533.8;            %density of pizza crust (kg/m^3) 
c = 2376;               %specific heat capacity of non frozen pizza crust 

(J/kg-K) NOT USED 
T_m = 239;            %temperature of the plastic/nylon in K - not used by 

default 
Rc = .037;               %Contact resistance between the crust and the nylon 

belt (K-m^2/W) - not used by default 
belt_d = 140;   %default belt speed (products/min)  

  
if name=='tempplot' 
xi = xi1;                    %column 1 of time 
yi = yi1;                    %column 2 of velocity 
else 
Voft=readtable(name); 
x_vel =table2array(Voft);           %converting the table to an array 
xi = x_vel(:,1);                    %column 1 of time 
yi = x_vel(:,2);                    %column 2 of velocity 
end 

  
%Scaling time based on belt speed 
lng = length(xi);   %Length of the time vector that comes in 
lng_n = (belt_d/belt)*xi(lng); %New xi length 
xi_new = linspace(0,lng_n,lng)'; 
xi_new_l = xi_new(lng);     %Largest value of belt-scaled time 
t_sim = xi_new_l+10;    %simulation time is 10 seconds longer than the pizza 

is in the freezer 

  
%Setup grid 
y = zeros(1,N); 
for i = 1:N 
    y(i) = (i-1)*L/(N-1);   %position of each node (m) 
end 

  
OPTIONS = odeset('RelTol',1e-6, 'MaxStep',1); %Max time step set to 0.01 and 

tolerance lowered by 1000x" 
[time,T] = 

ode113(@(time,T)dTdt_functionv(time,T,L,name,rho,c,T_infinity,T_m,hm,Rc,flag, 

xi, yi, belt, xi_T, yi_T),[0,t_sim],T_ini*ones(N,1),OPTIONS); 

  
%Plotting routine (i.e., plot only 10 lines of temperature) 
[rows,~] = size(T);      %number of rows in temperature matrix 
T_f = (T-273.15)*(9/5)+32;  %Converting temperature to F 
T_c = (T_f-32)/1.8;  %Temperature in celsius 

  
if name=='tempplot' 
lng = length(xi);   %Length of the time vector that comes in 
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lng_n = (belt_d/belt)*xi(lng); %New xi length 
xi_new = linspace(0,lng_n,lng)'; 
xi_new_l = xi_new(lng);     %Largest value of belt-scaled time 
T_f1 = T_f(:,floor(N/2)); 
dim1 = time(nnz(T_f1)-nnz(T_f1<=10)); 
disp(append('Velocity profile: ',name)); 
display(append(' Freezing time (Mid temp <= 10F): ',num2str(dim1), ' 

seconds')); 
else 

     
plotline = 5;              %number of lines to plot 
rowsfloor = floor(rows/plotline); %Rounding down 
figure 
hold on; 

  
if flag == 6 
plot(y,T_c(1,:),'linewidth',2); 
grid on 
xlabel('Position in food [m]','FontSize',12,'FontWeight','bold') 
ylabel('Temperature [C]','FontSize',12,'FontWeight','bold') 
for i = 1:(plotline-2) 
plot(y,T_c(i*rowsfloor,:),'linewidth',2) 
end 
plot(y,T_c(rows,:),'linewidth',2) 
legend('Time = 0', 'Time = 0.25', 'Time = 0.5', 'Time = 0.75', 'Time = 1') 
else  

  
% Find the index corresponding to y = 0.008 
start_idx = find(y >= 0.008, 1); 
% Extract the portion of y and T_c starting from y = 0.008 
y_right = y(start_idx:end); 
T_c_right = T_c(:, start_idx:end); 
% Plot the first temperature profile 
plot(y_right, T_c_right(1, :), 'linewidth', 2); 
grid on 
xlabel('Position in food [m]', 'FontSize', 12, 'FontWeight', 'bold'); 
ylabel('Temperature [C]', 'FontSize', 12, 'FontWeight', 'bold'); 

  
% Plot subsequent temperature profiles 
hold on; 
for i = 1:(plotline - 2) 
    plot(y_right, T_c_right(i * rowsfloor, :), 'linewidth', 2); 
end 

  
% Plot the last temperature profile 
plot(y_right, T_c_right(rows, :), 'linewidth', 2); 
% Adjust x-axis limits to start at 0.008 
xlim([0.008 max(y_right)]); 
% Add a legend 
legend('Time = 0', 'Time = 0.25', 'Time = 0.5', 'Time = 0.75', 'Time = 1'); 
end  
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figure 
hold on; 
grid on 
plot(time,T_f(:,1)) 
plot(time,T_f(:,floor(N/4))) 
plot(time,T_f(:,floor(N/2))) 
plot(time,T_f(:,floor((3/4)*N))) 
plot(time,T_f(:,N)) 
tim = linspace(0,xi_new_l,10000)'; 
yyaxis right; 
plot(tim,velocity(tim, name, xi, yi,belt)) 

  
asdf = velocity(tim, name, xi, yi,belt); 
if flag == 6 
legend('x/R = 0 (center)', 'x/R = 0.25', 'x/R = 0.5 (mid radius)', 'x/R = 

0.75', 'x/R = 1 (surface of sphere)', 'Velocity (m/s)') 
else 
legend('x/L = 0 (bottom)', 'x/L = 0.25', 'x/L = 0.5 (center)', 'x/L = 0.75', 

'x/L = 1 (top)', 'Velocity (m/s)') 
end 
xlabel('Time [s]','FontSize',12,'FontWeight','bold') 
yyaxis left; 
ylabel('Temperature [F]','FontSize',12,'FontWeight','bold') 
yyaxis right; 
ylabel('Velocity [m/s]','FontSize',12,'FontWeight','bold', 'color', 'black') 

  
T_f1 = T_f(:,floor(N/2)); 

  
dim1 = time(nnz(T_f1)-nnz(T_f1<=10)); 
disp(append('Velocity profile: ',name)); 
display(append(' Freezing time (Mid temp <= 10F): ',num2str(dim1), ' 

seconds')); 

  
c_nodes = heatcap(T(length(T),:), flag); 
rho_nodes = density(T(length(T),:),flag); 
v_nodes = zeros(N,1); 
v_nodes(2:N-1) = 1; 
v_nodes(1) = 0.5; 
v_nodes(N) = 0.5; 
bulk_n = zeros(N,1); 
bulk_d = zeros(N,1); 
for i = 1:N 
bulk_n(i) = c_nodes(i)*rho_nodes(i)*v_nodes(i)*T(length(T),i); 
bulk_d(i) = c_nodes(i)*rho_nodes(i)*v_nodes(i); 
end 
bulk_numerator = sum(bulk_n,"all"); 
bulk_denomenator = sum(bulk_d,"all"); 
T_bulk = bulk_numerator/bulk_denomenator; 
T_bulk_f = (T_bulk-273.15)*(9/5)+32; 

  
display(append(' Equalized Bulk Temperature: ',num2str(T_bulk_f), ' F')); 
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T_c = (T_f-32)*(5/9); 

  
figure 
hold on; 
grid on 
if flag == 6 %Chicken 
plot(time,T_c(:,N),'color',[0, 0.5, 0],'linewidth',2) 
plot(time,T_c(:,floor(N/2)),'linewidth',2) 
plot(time,T_c(:,1),'linewidth',2) 
else %Pizza crust   
plot(time,T_c(:,1),'linewidth',2) 
plot(time,T_c(:,floor(N/4)),'linewidth',2) 
plot(time,T_c(:,floor(N/2)),'linewidth',2) 
end 

  
tim = linspace(0,xi_new_l,10000)'; 
yyaxis right; 
ylabel('Velocity [m/s]','FontSize',12,'FontWeight','bold', 'color', 'black') 
plot(tim,velocity(tim, name, xi, yi,belt),'color','blue') 

  
if flag == 6 
legend('x/R = 1 (surface of sphere)','x/R = 0.5 (mid radius)' ,'x/R = 0 

(center)' , 'Velocity') 
else 
legend('x/L = 0, 1 (top, bottom)', 'x/L = 0.25, 0.75', 'x/L = 0.5 (center)', 

'Velocity (m/s)') 
end 

  
xlabel('Time [s]','FontSize',12,'FontWeight','bold') 
yyaxis left; 
ylabel('Temperature [C]','FontSize',12,'FontWeight','bold') 

  
figure  
plot(time,htc(time,hm,name, xi, yi, belt)) 
xlabel('Time [s]','FontSize',12,'FontWeight','bold') 
ylabel('Heat Transfer Coefficient [W/m^2-

K]','FontSize',12,'FontWeight','bold') 

  
end 
end 

  

 

 

____________________________________________________ 

 
%  dTdt_functionv.m 
%This is the dTdt function in cartesian and radial coordinates 

  
function [dTdt] = dTdt_functionv(time,T,L,name,~,~,T_infinity,T_m,hm,Rc,flag, 

xi, yi,belt, xi_T, yi_T) 
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h=htc(time,hm,name, xi, yi,belt); 

  
%User supplied heat transfer coefficient 
% h = htc_given(time); 

  
%User supplied temperature vs time 
% T_infinitytest = t_gettemp(time,xi_T,yi_T) 
% T_infinity = interp1q(xi_T,yi_T,time);   %1D interpolation - use this for 

  

%Inputs 
[N] = length(T); 
DELTAy = L/(N-1);   %distance between adjacent nodes (m) 
dTdt = zeros(N,1);  %initialize the dTdt vector  
rho = density(T,flag)'; %Density 
c=heatcap(T, flag)' ; %Heat Capacity 

  
if flag == 6 
j = 1:N; 
r(j) = (((j-1)*L)/(N-1)); 
% This is the code for chicken wings & individual breasts 
dTdt(1) = 

(4*pi.*(conductivity((T(1)+T(2))/2,flag)').*(r(1)+DELTAy/2)^2.*(T(2)-

T(1))/DELTAy)./(rho(1).*(c(1).*(4/3).*pi.*(DELTAy/2).^3)); 
dTdt(2) = 

(4*pi.*(conductivity((T(1)+T(2))/2,flag)').*(r(1)+DELTAy/2)^2.*(T(1) - 

T(2))/DELTAy + (T(3) - 

T(2))./((1./(4.*pi.*(conductivity((T(3)+T(2))/2,flag)'))).*(1./r(2)-

1./r(3))))./(rho(2).*c(2).*((4/3).*pi.*(r(2)+DELTAy/2).^3 - (4/3).*pi.*(r(2) 

- DELTAy/2)^3));  
i=3:(N-1); 
dTdt(i) = (4*pi.*(conductivity((T(i-1)+T(i))/2,flag))'.*(T(i-1)-

T(i))./(1./r(i-1)-1./r(i))' + 

4*pi*(conductivity((T(i+1)+T(i))/2,flag))'.*(T(i+1)-T(i))./(1./r(i)-

1./r(i+1))')./(rho(i).*c(i).*((4/3)*pi.*(r(i)'+DELTAy/2).^3-(4/3)*pi.*(r(i)'-

DELTAy/2).^3)); 
dTdt(N) = (4*pi.*(conductivity((T(N-1)+T(N))/2,flag)').*(T(N-1)-

T(N))./(1./r(N-1)+1./r(N)) + h*4*pi.*L.^2.*(T_infinity-

T(N)))./(rho(N).*c(N).*((4/3)*pi.*r(N).^3 - (4/3)*pi.*(r(N-1)+DELTAy/2).^3)); 

  
elseif flag == 8 
%This is for packaged chicken in polystyrene, 3 mm thick, Rpoly = 
%0.1[m^2-K/w], Rtotal = 0.15[m^2-K/W] - chicken package base assumed to be 
%1 m^2 
R_poly=0.1; 
dTdt(1) = 

((2.*conductivity((T(1)+T(2))/2,flag)')./(DELTAy.^2.*(rho(1)).*(c(1))).*(T(2)

-T(1))+(2.*(T_infinity-T(1)))./(DELTAy.*rho(1).*c(1).*((1/h)+R_poly))); 
i=2:(N-1); 
dTdt(i) =  

conductivity((T(i+1)+T(i))/2,flag)'./(DELTAy.^2.*((rho(i))).*(c(i))).*(T(i+1)

-T(i)) + conductivity((T(i-

1)+T(i))/2,flag)'./(DELTAy.^2.*(rho(i)).*(c(i))).*(T(i-1)-T(i)); 
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dTdt(N) = ((2.*(conductivity((T(N-

1)+T(N))/2,flag)')./((DELTAy.^2.*(rho(N)).*c(N))))).*(T(N-1)-T(N)) + 

(2.*h.*(T_infinity-T(N)))./(DELTAy.*rho(N).*c(N)); 

  
else 
% This is the code for dough/pizza crust/chicken disk (standard algorithm - 

symmetrical) 
dTdt(1) = 

((2.*conductivity((T(1)+T(2))/2,flag)')./(DELTAy.^2.*(rho(1)).*(c(1))).*(T(2)

-T(1))+(2.*h.*(T_infinity-T(1)))./(DELTAy.*rho(1).*c(1))); 
i=2:(N-1); 
dTdt(i) =  

conductivity((T(i+1)+T(i))/2,flag)'./(DELTAy.^2.*((rho(i))).*(c(i))).*(T(i+1)

-T(i)) + conductivity((T(i-

1)+T(i))/2,flag)'./(DELTAy.^2.*(rho(i)).*(c(i))).*(T(i-1)-T(i)); 
dTdt(N) = ((2.*(conductivity((T(N-

1)+T(N))/2,flag)')./((DELTAy.^2.*(rho(N)).*c(N))))).*(T(N-1)-T(N)) + 

(2.*h.*(T_infinity-T(N)))./(DELTAy.*rho(N).*c(N)); 
end 
end 

  

  

____________________________________________________ 
 

 
 %   BeltSpeedOptimizer.m 
%This determines the optimum belt speed to minimize delta T given a 
%velocity distribution and a guess for belt speed 
clear; 
close all; 
flag = 4;               %property model 6 is raw chicken wings/breasts 

(sphere), 5 is aluminum, 4 is dough food symmetrical 1D, 8 is chicken package 

with resistance on bottom, 9 is symmetrical chicken 
belt = 100;             %Belt speed 
T_infinity =238.706; %Eric's default value 

  
name ="spiral_midlane_existingEA.csv"; 

  
%name ="spiral_midlane_existingEA.csv"; 
opts = optimset('fminsearch'); 
opts.TolFun = .001; 
opts.TolX = .001; 
[xMin, fMin, Flag, Output] = 

fminsearchcon(@(belt)belt_speed_optimizer(belt,name,T_infinity,flag),belt,5, 

[], [],[],[],opts); 

  

  

 

____________________________________________________ 
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%  belt_speed_optimizer.m 
%this is a function that must be called from somewhere else. Input is belt 
%speed and output is delta T of the product at the exit of the freezer. It 
%is used by an optimization routine like Fminsearchcon to minimize the 
%delta T by varying the belt speed  
function [deltaT,belt,time] = belt_speed_optimizer(belt,name, 

T_infinity,flag) 
N = 40;                 %number of nodes (-) 
t_sim = 2*5000;           %simulation time (sec) 
hm =1;                 %htc multiplier 
reltol = 1e-6; 
if flag == 8 
T_target = 26;  
else 
T_target = 10;  %Target freezing temperature 
end 

  
[time,T, dim1,xi_new_l] = dTdtEngine_noplot(N,t_sim,flag, hm, name, belt, 

reltol, [],[],T_infinity); 

  
T_f = (T-273.15)*(9/5)+32;  %Converting temperature to F 
if flag == 6 
T_low = T_f(length(time),1); 
else 
T_low = T_f(length(time),floor(N/2)); 
end 
deltaT = abs(T_target-T_low); 
display(append(' Temperature delta T: ',num2str(deltaT), ' @ a belt speed of 

',num2str(belt))); 
close all; 
end 

 

 

____________________________________________________ 

 
%  dTdtEngine_noplot.m 
%This is just like dTdtEngine except with no plots 

  
function [time,T,dim1,xi_new_l] = dTdtEngine_noplot(N,t_sim,flag, hm, name, 

belt, reltol, xi1, yi1,T_infinity) 
tic 
T_ini = 311.5;   %initial temperature(K) 
if flag ==6 
L = 0.03175;            %Radius of a chicken wing (m)     
elseif flag == 8 
L = .0508;                  %thickness of chicken package (2 inches) 



173 

 

elseif flag == 9 
L = 0.015875;           %same thickness as pizza, but made out of chicken 
else 
L = 0.015875;           %dough product thickness(m) 
end 

  
rho = 533.8;            %density of pizza crust (kg/m^3) 
c = 2376;               %specific heat capacity of non frozen pizza crust 

(J/kg-K) NOT USED 
T_m = T_infinity;            %temperature of the plastic/nylon  
Rc = .037;               %Contact resistance between the crust and the nylon 

belt (K-m^2/W) 
belt_d = 140;   %default belt speed  

  
if name=='tempplot'  
xi = xi1;                    %column 1 of time 
yi = yi1;                    %column 2 of velocity 
else 

  
Voft=readtable(name); 
x_vel =table2array(Voft);           %converting the table to an array 
xi = x_vel(:,1);                    %column 1 of time 
yi = x_vel(:,2);                    %column 2 of velocity 
end 

  
lng = length(xi);   %Length of the time vector that comes in 

  
lng_n = (belt_d/belt)*xi(lng); %New xi length 
xi_new = linspace(0,lng_n,lng)'; 
xi_new_l = xi_new(lng);     %Largest value of belt-scaled time 
t_sim = xi_new_l+10;    %simulation time is 10 seconds longer than the pizza 

is in the freezer 

  
%Setup grid 
y = zeros(1,N); 
for i = 1:N 
    y(i) = (i-1)*L/(N-1);   %position of each node (m) 
end 

  
OPTIONS = odeset('RelTol',1e-6, 'MaxStep',10); %Max time step set to 0.01 and 

tolerance lowered by 1000x" 
[time,T] = 

ode113(@(time,T)dTdt_functionv(time,T,L,name,rho,c,T_infinity,T_m,hm,Rc,flag, 

xi, yi, belt),[0,t_sim],T_ini*ones(N,1),OPTIONS); 

  
[rows,~] = size(T);      %number of rows in temperature matrix 
T_f = (T-273.15)*(9/5)+32;  %Converting temperature to F 

  
if name=='tempplot' 
lng = length(xi);   %Length of the time vector that comes in 
% lng_n = ((belt_d-belt)/belt_d)*xi(lng) + xi(lng);    %New xi length 
lng_n = (belt_d/belt)*xi(lng); %New xi length 
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xi_new = linspace(0,lng_n,lng)'; 
xi_new_l = xi_new(lng);     %Largest value of belt-scaled time 
T_f1 = T_f(:,floor(N/2)); 
dim1 = time(nnz(T_f1)-nnz(T_f1<=10)); 
disp(append('Velocity profile: ',name)); 
display(append(' Freezing time (Mid temp <= 10F): ',num2str(dim1), ' 

seconds')); 
else 

     
T_f1 = T_f(:,floor(N/2)); 
dim1 = time(nnz(T_f1)-nnz(T_f1<=10)); 
disp(append('Velocity profile: ',name)); 
display(append(' Freezing time (Mid temp <= 10F): ',num2str(dim1), ' 

seconds')); 
end 
toc 
end 

 

____________________________________________________ 

 
%   conductivity.m 
%Food thermal conductivity calculations 

  
function [k] = conductivity(temp,flag) 
%Conductivity as a function of temperature 
%This has been smoothed out over the freezing range 
%The freezing point is at 271.7 (K)  
%Conductivtiy frozen: 0.2259 (W/m-K) 
%Conductivity non frozen: 0.1602 (W/m-K) 
% flag = 4; 
if flag == 1 
lt = length(temp);    
k(1:lt) = .3; 
elseif flag == 2  
lt = length(temp);    
k(1:lt) = .2259; 
k(temp>=265) = .2; 
k(temp>=271.7) = .18; 
k(temp>=276) = .1602; 
elseif flag == 3 %flag 3 is the same as flag 2 - flag 3 is used for heat 

capacity 
lt = length(temp);    
k(1:lt) = .2259; 
k(temp>=265) = .2; 
k(temp>=271.7) = .18; 
k(temp>=276) = .1602; 
elseif flag == 4 || flag == 7 || flag == 10 %flag 4 is from Cleland (2019) 
R = 8.314;  %"Gas constant" 
M_w = 18.01528; %"Molecular weight of water" 
L_w = 333.550;  %"Latent heat of fusion of water" 
x_tw = 0.346081917;     %"Mass fraction of total water" 
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x_bw = x_tw./10;    %"Bound water - estimate is 10%" 
xj = 0.625146427;   %"Solids other than water and fat" 
Mj = 50000; %"Estimated molecular weight of solids" 
tempc = temp-273.15; 
T_if_K = 1/((1/273.15) - (R/(M_w*L_w))*log(((x_tw-x_bw)/M_w)/((x_tw-

x_bw)/M_w+xj/Mj))); 
T_if = T_if_K-273.15; 
x_ice(tempc>T_if) = 0; 
x_ice(tempc<=T_if) = (x_tw-x_bw).*(1-T_if./tempc(tempc<=T_if)); 
x_w = x_tw-x_ice; 
x_f = 1-x_tw-xj; 
Void_f = 0.5405; 
kwater = 5.7109E-1 + 1.7625E-3.*tempc(:)' - 6.7036E-6.*tempc(:)'.^2; 
kfat = 1.8071E-1 - 2.7604E-4.*tempc(:)' - 1.7749E-7.*tempc(:)'.^2; 
kcarb = 2.0141E-1 + 1.3874E-3.*tempc(:)' - 4.3312E-6.*tempc(:)'.^2; 
kair = 2.4125E-2 + 7.9976E-5.*tempc(:)'- 3.4657E-8.*tempc(:)'.^2; 
kice = 2.2196- 6.2489E-3.*tempc(:)'+ 1.0154E-4.*tempc(:)'.^2; 
rho_water = 9.9718E2+3.1439E-3.*tempc(:)'-3.7574E-3.*tempc(:)'.^2; 
rho_carbs = 1.5991E3-3.1046E-1.*tempc(:)'; 
rho_fat = 9.2559E2-4.1757E-1.*tempc(:)'; 
rho_ice = 9.1689E2-1.3071E-1.*tempc(:)'; 
x1 = 1./((x_w./rho_water)+(xj./rho_carbs)+(x_f./rho_fat)+(x_ice./rho_ice)); 
V_w = (x_w./rho_water).*x1; 
V_c = (xj./rho_carbs).*x1; 
V_fat = ( x_f./rho_fat).*x1; 
V_ice =(x_ice./rho_ice).*x1; 
k_I = (kwater.*V_w+kfat.*V_fat+kcarb.*V_c)./((1-V_ice)); 
G = (kice-k_I).^2./((kice+k_I).^2 + kice.*k_I./2); 
F = (2./G-1+2.*(1-V_ice)-sqrt((2./G-1+2.*(1-V_ice)).^2-8.*(1-V_ice)./G))./2; 
k_II = kice.*(2.*kice+k_I-2.*(kice-k_I).*F)./(2.*kice+k_I+(kice-k_I).*F); 
V_air = Void_f; 
k = (3.*Void_f - 1).*kair+(3.*(1-V_air)-1).*k_II+sqrt(((3.*V_air-

1).*kair+(3.*(1-V_air)-1).*k_II).^2+8.*k_II.*kair)./4; 
elseif flag == 5 
%Conductivity of aluminum 6061     
lt = length(temp);    
k(1:lt) = 167; 
% k(1:lt) = 50; 

     
elseif (flag == 6) || (flag == 8)|| (flag == 9) 

  
%Conductivity of Chicken 
    %Conductivity in W/m-K 
R = 8.314;  %"Gas constant" 
M_w = 18.01528; %"Molecular weight of water" 
L_w = 333.550;  %"Latent heat of fusion of water" 
x_tw =   0.77 ;     %"Mass fraction of total water" 
x_bw = 0.7;     %"Bound water - estimate is 10%" 
xj = 0.1675;    %"Solids other than water and fat" 
Mj = 50000; %"Estimated molecular weight of solids" 
tempc = temp-273.15; 
T_if_K = 1/((1/273.15) - (R/(M_w*L_w))*log(((x_tw-x_bw)/M_w)/((x_tw-

x_bw)/M_w+xj/Mj))); 
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T_if = T_if_K-273.15; 
x_ice(tempc>T_if) = 0; 
x_ice(tempc<=T_if) = (x_tw-x_bw).*(1-T_if./tempc(tempc<=T_if)); 
x_w = x_tw-x_ice; 
x_f = 1-x_tw-xj; 
Void_f = 0; 
kwater = 5.7109E-1 + 1.7625E-3.*tempc(:)' - 6.7036E-6.*tempc(:)'.^2; 
kfat = 1.8071E-1 - 2.7604E-4.*tempc(:)' - 1.7749E-7.*tempc(:)'.^2; 
kcarb = 2.0141E-1 + 1.3874E-3.*tempc(:)' - 4.3312E-6.*tempc(:)'.^2; 
kair = 2.4125E-2 + 7.9976E-5.*tempc(:)'- 3.4657E-8.*tempc(:)'.^2; 
kice = 2.2196- 6.2489E-3.*tempc(:)'+ 1.0154E-4.*tempc(:)'.^2; 
rho_water = 9.9718E2+3.1439E-3.*tempc(:)'-3.7574E-3.*tempc(:)'.^2; 
rho_carbs = 1.5991E3-3.1046E-1.*tempc(:)'; 
rho_fat = 9.2559E2-4.1757E-1.*tempc(:)'; 
rho_ice = 9.1689E2-1.3071E-1.*tempc(:)'; 
x1 = 1./((x_w./rho_water)+(xj./rho_carbs)+(x_f./rho_fat)+(x_ice./rho_ice)); 
V_w = (x_w./rho_water).*x1; 
V_c = (xj./rho_carbs).*x1; 
V_fat = ( x_f./rho_fat).*x1; 
V_ice =(x_ice./rho_ice).*x1; 
k_I = (kwater.*V_w+kfat.*V_fat+kcarb.*V_c)./((1-V_ice)); 
G = (kice-k_I).^2./((kice+k_I).^2 + kice.*k_I./2); 
F = (2./G-1+2.*(1-V_ice)-sqrt((2./G-1+2.*(1-V_ice)).^2-8.*(1-V_ice)./G))./2; 
k = kice.*(2.*kice+k_I-2.*(kice-k_I).*F)./(2.*kice+k_I+(kice-k_I).*F); 
else   
k = .3; 
end 

  

 

 

 

 

 
%   density.m 
%Food density functions 

  
function [rho] = density(temp,flag) 
% flag = 4; 
if flag ==1  
rho = zeros(1,length(temp)); 
rho(:) = 690; 
% rho = 533.8;            %density of pizza crust (kg/m^3) 
elseif flag == 2    
rho = zeros(1,length(temp)); 
rho(:) = 690; 
% rho = 533.8;            %density of pizza crust (kg/m^3) 
elseif flag == 3 
rho = zeros(1,length(temp)); 
rho(:) = 690; 
% rho = 533.8;            %density of pizza crust (kg/m^3) 
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elseif flag == 4 || (flag == 7) || (flag == 10)  
rho = zeros(1,length(temp)); 
rho(:) = 533.8; 
%Variable density: 
%This density is from Cleland (2019)     
% Void_f = 0.5405; 
% R = 8.314;    %"Gas constant" 
% M_w = 18.01528;   %"Molecular weight of water" 
% L_w = 333.550;    %"Latent heat of fusion of water" 
% x_tw = 0.346081917;   %"Mass fraction of total water" 
% x_bw = x_tw/10;   %"Bound water - estimate is 10%" 
% xj = 0.625146427; %"Solids other than water and fat" 
% x_f = 1-x_tw-xj; 
%   
% Mj = 50000;   %"Estimated molecular weight of solids" 
%   
% tempc = temp-273.15; 
%  
% T_if_K = 1/((1/273.15) - (R/(M_w*L_w))*log(((x_tw-x_bw)/M_w)/((x_tw-

x_bw)/M_w+xj/Mj))); 
% T_if = T_if_K-273.15; 
%    
% x_ice = (x_tw-x_bw).*(1-T_if./tempc); 
% x_w = x_tw-x_ice; 
%  
% rho_water = 9.9718E2+3.1439E-3.*tempc-3.7574E-3.*tempc.^2; 
% rho_carbs = 1.5991E3-3.1046E-1.*tempc; 
% rho_fat = 9.2559E2-4.1757E-1.*tempc; 
% rho_ice = 9.1689E2-1.3071E-1.*tempc; 
%   
% rho(tempc<T_if) = Void_f*(1./(xj./rho_carbs(tempc<T_if) + 

x_f./rho_fat(tempc<T_if) + x_w(tempc<T_if)./rho_water(tempc<T_if) + 

x_ice(tempc<T_if)./rho_ice(tempc<T_if))); 
% rho(tempc>=T_if) = Void_f*(1./(xj./rho_carbs(tempc>=T_if) + 

x_f./rho_fat(tempc>=T_if) + x_tw./rho_water(tempc>=T_if))); 
elseif flag == 5 
%This is the density of Aluminum 6061 for testing the phantom out  
rho = zeros(1,length(temp)); 
rho(:) = 2700; %2700 kg/m^3 
elseif (flag == 6) || (flag == 8) || (flag == 9) 
%This is the density of chicken breast 
rho = zeros(1,length(temp)); 
rho(:) = 1150; %kg/m^3 
end 
end 

  

 

 
 

%   heatcap.m 
%Food heat capacity functions 
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function [c] = heatcap(temp, flag) 
%Specific heat capacity as a function of temperature 
%This has been smoothed out over the freezing range 
%The freezing point is at 271.7 (K) 
%Heat capacity frozen: 1982 (J/kg-K) 
%Heat capacity non frozen: 2376 (J/kg-K) 
% flag = 4; 
if flag ==1 
    lt = length(temp);    
c(1:lt) = 2376; 
elseif flag == 2 
    lt = length(temp);    
c(1:lt) = 1982; 
c(temp>=265) = 2114; 
c(temp>=271.7) = 2245; 
c(temp>=276) = 2376; 
elseif flag == 5 
%Specific heat for 6061 aluminum 
lt = length(temp);    
c(1:lt) = 896; 
elseif flag == 7 %flag 5 uses Cleland (2019) for heat capacity  
%     Below Code is from Cleland(2019). It works fine 
tempc = temp-273.15;   
R = 8.314;  %"Gas constant" 
M_w = 18.01528; %"Molecular weight of water" 
L_w = 333.550;  %"Latent heat of fusion of water" 
x_tw = 0.346081917;     %"Mass fraction of total water" 
x_bw = x_tw/10;     %"Bound water - estimate is 10%" 
xj = 0.625146427;   %"Solids other than water and fat" 
x_f = 1-x_tw-xj; 
Mj = 50000; %"Estimated molecular weight of solids" 
T_if_K = 1/((1/273.15) - (R/(M_w*L_w))*log(((x_tw-x_bw)/M_w)/((x_tw-

x_bw)/M_w+xj/Mj))); 
T_if = T_if_K-273.15; 
x_ice = (x_tw-x_bw).*(1-T_if./tempc); 
c_w = 4.1289-5.3062E-3.*tempc+9.9516E-4.*tempc.^2; 
c_ice = 2.0623+6.0769E-3.*tempc; 
c_fat = 1.9842 + 1.47339E-3.*tempc - 4.8008E-6.*tempc.^2; 
c_carbs = 1.5488 + 1.9625E-3.*tempc-5.9399E-6.*tempc.^2; 
c(tempc<T_if) = 

1000*(c_carbs(tempc<T_if).*xj+x_f.*c_fat(tempc<T_if)+x_ice(tempc<T_if).*c_ice

(tempc<T_if)-(L_w+(c_w(tempc<T_if)-

c_ice(tempc<T_if)).*tempc((tempc<T_if))).*(x_tw-

x_bw).*(T_if./tempc((tempc<T_if)).^2)); 
c(tempc>=T_if) = 

1000*(c_carbs(tempc>=T_if).*xj+x_f.*c_fat(tempc>=T_if)+x_tw.*c_w(tempc>=T_if)

); 
elseif flag == 4  
%Dough 
%simplifed hybrid continuous function using Cleland and Gaussian 
sigma = 1; 
mu = 273.075; 
%c = (1./(sigma.*sqrt(2.*pi)).*exp((-1/2).*((temp-

mu)./sigma).^2)).*113100+2460; 
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c = (1./(sigma.*sqrt(2.*pi)).*exp((-1/2).*((temp-

mu)./sigma).^2)).*101587+2097; 
c = c'; 
elseif (flag == 6) || (flag == 8)|| (flag == 9) 
%Chicken 
%simplifed hybrid continuous function using Cleland and Gaussian 
sigma = 1; 
mu = 273.075; 
c = (1./(sigma.*sqrt(2.*pi)).*exp((-1/2).*((temp-

mu)./sigma).^2)).*256410+3490; 
c = c'; 
elseif flag == 10 
alpha=-10;   %Skewness 
mu = 273.05;    %Mean 
sigma = .2;   %Standard deviation 
PHI_1 = (1./((2.*pi).^(1./2)).*exp(-((temp-mu)./sigma).^2./2)); 
% temp 
PHI_2 = (1./2).*(1+erf((alpha.*(temp-mu)./sigma)./(2).^(1./2))); 
c = (2.*PHI_1.*PHI_2.*600000)+2000; 
c = c'; 
else 
c = 2376; 
end 

 
 

 

 
%   htc.m 
function [h] = htc(time,hm,name, xi, yi, belt) 
%hm is a multipler for heat transfer coefficient 
h_ini = hm*23.85; 
v_ini = 5; 
vel2 = velocity(time,name,xi,yi,belt); 
h = ((vel2.^.8)./(v_ini.^.8)).*h_ini; 
end 

 
 

 

 
%   velocity.m 

  
function [vel,xi_new,yi] = velocity(time,~,xi,yi,belt) 
belt_d = 140;   %Default belt speed - Old default 
lng = length(xi);   %Length of the time vector that comes in 
lng_n = (belt_d/belt)*xi(lng); %New xi length 
xi_new = linspace(0,lng_n,lng)'; 
xi_new_l = xi_new(lng);     %Largest value of belt-scaled time 
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%THIS OVERRIDES SIMULATION TIME 
vel = interp1q(xi_new, yi, time);   %1D interpolation 
vel(time>xi_new_l) = 0;             %times above 1696 produce velocity of 0 
vel(time<0) = 0;                %times below 0 have velocity of 0 
end 

  

  

 

 
 

 

 
 %   htc_given.m 
function [h] = htc_given(time) 
time = time'; 
hfile=readtable("htc_given.csv"); %Column 1 is time, column 2 is htc 
hdata =table2array(hfile);           %converting the table to an array 
xi_H = hdata(:,1);                    %column 1 of time 
yi_H = hdata(:,2);                    %column 2 of htc 
h= interp1q(xi_H , yi_H, time);   %1D interpolation 
end 

  

 

 

 
%   t_gettemp.m 

  
function [t_inf] = t_gettemp(time,xi,yi) 
t_inf = interp1q(xi, yi, time);   %1D interpolation 
end 
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Python Code: 

 
 

#Top Center Nusselt # 

 

import numpy as np 

import matplotlib.pyplot as plt 

from mpl_toolkits.mplot3d import Axes3D 

from matplotlib import cm 

from scipy.interpolate import RegularGridInterpolator 

 

# Hardcoded data 

angles = np.array([0, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 28, 36, 45, 53, 61, 

69, 78, 90]) 

reynolds_numbers = np.array([0, 10000, 20000, 30000, 40000, 50000, 60000, 70000, 

80000, 90000]) 

nusselt_numbers = np.array([[76.04882096, 98.51562896, 94.05231856, 81.68445007, 

71.63887862, 69.97936162, 69.17408537, 68.76791426, 67.4430397, 67.81077159, 

69.9415664, 69.91426982, 69.98515959, 70.93433068, 71.08318543, 72.66406589, 

72.91434499, 69.78478976, 71.16791718, 78.19220472], [121.1275764, 128.7300981, 

121.531302, 109.6555114, 101.3176735, 93.67775505, 86.79533717, 84.35484345, 

83.31261736, 84.35628072, 85.23359653, 86.75522709, 89.03501832, 90.48929356, 

92.80792758, 94.12438671, 94.39686434, 93.15647613, 93.0760682,  

100.7307953], [166.462072, 172.2888075, 164.2729303, 150.5900656, 141.1781931, 

130.320458, 113.4223926, 101.5501298, 100.9336398, 101.8984435, 102.0264798, 

104.1675242, 107.8106179, 111.901294, 120.1741019, 123.5694738, 124.8427092, 

128.0822433, 127.078063, 136.5879143], [210.4894467, 212.8234745, 213.6980503, 

201.9544497, 192.2361844, 184.2856446, 168.0356534, 137.0042556, 124.1704269, 

123.7555695, 123.0588658, 124.0102125, 126.1328937, 128.4278585, 133.4261413, 

135.506113, 135.4467852, 137.41926, 135.9251315, 159.7640661], [270.3085986, 

261.1634321, 268.676303, 255.1110167, 243.7198439, 235.3245474, 221.6093464, 

186.090905, 155.1889251, 145.4443844, 144.810108, 145.7061736, 147.0414514, 

147.7057215, 151.4423757, 154.3830581, 155.1080982, 155.5397208, 154.7208989, 

163.8652311], [327.7847662, 309.5207135, 316.2190078, 303.0994547, 289.6164256, 

278.0460372, 263.9036842, 238.7847607, 190.5752531, 167.4748153, 161.4510229, 

161.1576003, 164.5461628, 166.1473542, 170.3307348, 173.7136066, 173.0444459, 

177.7705325, 177.4899193, 190.2788693], [381.0804939, 358.1696747, 355.774736, 
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337.4844013, 316.1519504, 315.3866048, 302.817899, 283.9640078, 224.1091986, 

182.8058893, 175.1775441, 174.4810249, 178.1228135, 181.5854674, 183.9229998,  

186.9437225, 186.4152951, 186.2657498, 185.0540469, 204.8951177], [433.2374606, 

406.9117965, 395.2905122, 364.0123421, 339.4868418, 344.0345985, 347.8352918, 

329.4010084, 271.9165935, 205.8247904, 191.9051819, 189.6545326, 189.4426237, 

193.4889871, 198.0761377, 204.4939398, 204.0099147, 201.5642698, 199.7070109, 

213.4987844], [484.7330233, 451.7485502, 434.9680863, 405.6714798, 388.4061164, 

384.1354189, 375.6717019, 355.3976791, 315.0464291, 218.3280494, 202.9265969, 

201.4546766, 199.4949225, 203.9365821, 207.0904009, 203.2201595, 203.9080046, 

203.1607297, 201.4773368, 204.8943774], [500.565, 466.2845965, 447.0629314, 

424.9371293, 407.6717659, 394.0720283, 378.9085752, 360.7971008, 329.3762308, 

220.8485539, 205.0372779, 204.2713105, 203.4258462, 208.2874353, 209.5271759, 

206.6125788, 204.5802476, 203.882994, 202.8403535, 203.0706892]]) 

 

# Create a meshgrid for the angles (X-axis) and Reynolds numbers (Y-axis) 

X, Y = np.meshgrid(angles, reynolds_numbers) 

 

# Create the interpolator 

interpolator = RegularGridInterpolator((reynolds_numbers, angles), 

nusselt_numbers) 

 

# Function to interpolate Nusselt number 

def interpolate_nusselt(reynolds, angle): 

    point = np.array([reynolds, angle]) 

    return interpolator(point) 

 

# Example: Interpolate for a specific angle and Reynolds number 

example_reynolds = 90000    

example_angle = 69 

interpolated_value = interpolate_nusselt(example_reynolds, 

example_angle).item()  # Extract scalar value 

 

print(f"Interpolated Nusselt number at Reynolds {example_reynolds} and angle 

{example_angle}°: {interpolated_value:.2f}") 

 

# Plotting the data using the specified settings 

fig = plt.figure(figsize=(10, 8)) 

ax = fig.add_subplot(111, projection='3d') 

 

# Plot the surface 

surf = ax.plot_surface(X, Y, nusselt_numbers, cmap=cm.turbo, linewidth=0, 

antialiased=False) 
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# Adding labels and a color bar 

ax.set_xlabel('Angle (degrees)') 

ax.set_ylabel('Reynolds Number') 

ax.set_zlabel('Nusselt Number') 

fig.colorbar(surf, shrink=0.5, aspect=10) 

 

# Show the plot 

plt.show() 

 

 

 
 

 

 
#Top Center Nusselt Number Reduction Ratio 

 

import numpy as np 

import matplotlib.pyplot as plt 

from mpl_toolkits.mplot3d import Axes3D 

from matplotlib import cm 

from scipy.interpolate import RegularGridInterpolator 

 

# Hardcoded data 

angles = np.array([0, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 28, 36, 45, 53, 61, 

69, 78, 90]) 

reynolds_numbers = np.array([0, 10000, 20000, 30000, 40000, 50000, 60000, 70000, 

80000, 90000]) 

nusselt_numbers = np.array([[1.0, 1.295426119, 1.236736052, 1.074105411, 

0.942011693, 0.920189961, 0.909601023, 0.904260098, 0.886838729, 0.8916742, 

0.919692975, 0.91933404, 0.920266201, 0.932747277, 0.934704635, 0.95549234, 

0.958783372, 0.917631449, 0.935818811, 1.028184313], [1.0, 1.062764583, 

1.003333061, 0.905289404, 0.836454229, 0.773380909, 0.71656133, 0.696413203, 

0.687808836, 0.696425069, 0.703667976, 0.71623019, 0.735051596, 0.747057741, 

0.766199823, 0.777068192, 0.779317701, 0.769077356, 0.768413527, 0.831609104], 

[1.0, 1.035003382, 0.986849006, 0.904650914, 0.848110271, 0.782883791, 

0.681370785, 0.610049656, 0.60634617, 0.612142107, 0.612911269, 0.625773324, 

0.647658753, 0.672232975, 0.721930831, 0.742328101, 0.749976903, 0.769437997, 

0.76340551, 0.820534748], [1.0, 1.011088574, 1.015243537, 0.959451663, 

0.913281817, 0.875510139, 0.79830916, 0.650884202, 0.589912838, 0.58794192, 

0.584631998, 0.589151686, 0.599236188, 0.610139181, 0.633885183, 0.643766778, 
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0.643484922, 0.652855819, 0.645757465, 0.759012238], [1.0, 0.966167682, 

0.993961363, 0.94377692, 0.901635557, 0.870577365, 0.819838316, 0.688438718, 

0.574117604, 0.538067916, 0.535721426, 0.539036399, 0.543976226, 0.546433677, 

0.560257337, 0.571136319, 0.573818587, 0.575415365, 0.572386153, 0.606215385], 

[1.0, 0.944280349, 0.964715388, 0.924690486, 0.883556698, 0.84825796, 

0.805112718, 0.728480348, 0.581403631, 0.510929221, 0.492551941, 0.491656773, 

0.50199454, 0.506879426, 0.51964201, 0.529962416, 0.527920952, 0.542339214, 

0.541483124, 0.580499428], [1.0, 0.939879318, 0.933594717, 0.88559873, 

0.829619872, 0.827611515, 0.794629754, 0.745154928, 0.588088874, 0.479704137, 

0.459686462, 0.457858714, 0.467415195, 0.476501606, 0.482635566, 0.490562297, 

0.489175642, 0.488783217, 0.485603566, 0.537668868], [1.0, 0.939235024, 

0.912410741, 0.840214375, 0.783604542, 0.794101687, 0.802874459, 0.760324391, 

0.627638693, 0.475085396, 0.442956114, 0.437761158, 0.43727203, 0.446611858, 

0.457199932, 0.472013522, 0.470896294, 0.465251249, 0.460964319, 0.492798531], 

[1.0, 0.93195332, 0.897335369, 0.836896725, 0.801278431, 0.792468019, 

0.775007445, 0.733182313, 0.649938036, 0.450408862, 0.4186358, 0.415599241, 

0.411556285, 0.42071939, 0.427225691, 0.419241417, 0.420660435, 0.419118814, 

0.415645989, 0.422695314], [1.0, 0.931516579, 0.893116641, 0.848914985, 

0.814423234, 0.787254459, 0.756961784, 0.72077972, 0.658008912, 0.441198553, 

0.409611695, 0.408081489, 0.406392469, 0.416104672, 0.418581355, 0.41275874, 

0.408698666, 0.407305733, 0.405222805, 0.405682957]]) 

 

# Create a meshgrid for the angles (X-axis) and Reynolds numbers (Y-axis) 

X, Y = np.meshgrid(angles, reynolds_numbers) 

 

# Create the interpolator 

interpolator = RegularGridInterpolator((reynolds_numbers, angles), 

nusselt_numbers) 

 

# Function to interpolate Nusselt number 

def interpolate_nusselt(reynolds, angle): 

    point = np.array([reynolds, angle]) 

    return interpolator(point) 

 

# Example: Interpolate for a specific angle and Reynolds number 

example_reynolds = 90000   

example_angle = 69 

interpolated_value = interpolate_nusselt(example_reynolds, 

example_angle).item()  # Extract scalar value 

 

print(f"Interpolated Nusselt number reduction ratio at Reynolds 

{example_reynolds} and angle {example_angle}°: {interpolated_value:.2f}") 
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# Plotting the data using the specified settings 

fig = plt.figure(figsize=(10, 8)) 

ax = fig.add_subplot(111, projection='3d') 

 

# Plot the surface 

surf = ax.plot_surface(X, Y, nusselt_numbers, cmap=cm.turbo, linewidth=0, 

antialiased=False) 

 

# Adding labels and a color bar 

ax.set_xlabel('Angle (degrees)') 

ax.set_ylabel('Reynolds Number') 

ax.set_zlabel('Nusselt Number') 

fig.colorbar(surf, shrink=0.5, aspect=10) 

 

# Show the plot 

plt.show() 

 

 

 
 

 

 
#Bottom Center Nusselt # 

 

import numpy as np 

import matplotlib.pyplot as plt 

from mpl_toolkits.mplot3d import Axes3D 

from matplotlib import cm 

from scipy.interpolate import RegularGridInterpolator 

 

# Hardcoded data 

angles = np.array([0, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 28, 36, 45, 53, 61, 

69, 78, 90]) 

reynolds_numbers = np.array([0, 10000, 20000, 30000, 40000, 50000, 60000, 70000, 

80000, 90000]) 

nusselt_numbers = np.array([[70.0079476, 98.11492728, 101.659664, 99.9335189, 

97.3299138, 92.64254767, 86.10043664, 81.77822578, 81.54554468, 84.23949977, 

87.22713366, 94.13774453, 99.73461816, 96.54746939, 97.02912972, 88.31021496, 

72.03550415, 72.89386971, 73.34900178, 82.11062992], [114.6798613, 134.3271681, 

143.9130329, 143.2701639, 134.7277826, 131.0693008, 135.3121396, 135.7181655, 
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140.9266772, 147.9621483, 156.231167, 165.087854, 171.785596, 162.4952857, 

147.2001387, 119.1534985, 90.76882506, 90.23464208, 89.97065251, 108.3562109], 

[172.1057795, 187.5479277, 198.8227287, 190.4504786, 182.0000847, 184.2755403, 

193.360646, 200.7790023, 213.3199525, 223.4213537, 233.9327136, 245.8565327, 

258.5364681, 240.5103083, 215.0486279, 172.7285629, 138.2053576, 141.163937, 

137.3467918, 160.1649668], [229.268757, 240.0994037, 261.6432746, 258.7829544, 

264.034794, 275.9104149, 280.4922993, 284.4103075,  

291.3401307, 302.3254654, 318.6064625, 347.9441732, 377.285066, 343.8743523, 

278.2455822, 202.5266827, 163.2218154, 159.4268487, 157.0256084, 201.0163114], 

[288.3991183, 300.9587266, 335.0954417, 341.2155888, 356.8254736, 374.4292996, 

378.7005824, 379.616082, 385.1194117, 402.8517492, 421.3637722, 469.9583464, 

509.5132805, 454.2866048, 347.0255041, 251.6503068, 198.7084049, 190.850979, 

188.5618982, 207.8316706], [341.3566812, 360.6687684, 401.3137177, 423.8044845, 

452.5711121, 471.6715028, 464.1790799, 466.9402763, 484.2651731, 504.1455989, 

516.5187934, 576.0497713, 644.6501254, 567.7580264, 423.4225738, 298.7453569, 

242.4844753, 238.5383439, 236.2405616, 256.7399598], [391.7893497, 417.7643303, 

457.2357181, 464.7267132, 495.483107, 519.0032341, 516.6564941, 534.9804687, 

547.6369382, 568.9577452, 607.3507911, 674.2347123, 729.1411077, 655.3539141, 

486.1819129, 309.9939991, 269.6124166, 258.7976345, 247.2025463, 283.0125439], 

[440.177483, 471.5086736, 507.8596498, 506.9776511, 515.2769284, 541.9850385, 

573.6424762, 615.8341022, 633.7338738, 658.886937, 704.4170374, 780.510657, 

840.9442474, 772.6034266, 549.1478321, 358.959175, 319.2477816, 303.5589543, 

278.7358382, 304.1786089], [486.9879961, 522.0611065, 556.5123701, 595.2634721, 

615.496989, 643.1796949, 657.8834991, 667.8986396, 677.6548379, 709.0828589, 

748.7462238, 833.5261198, 904.3859359, 799.0662766, 587.274101, 498.4603694, 

392.222442, 338.3430593, 306.8792839, 296.5979104], [506.2878571, 542.8933656, 

582.0447141, 624.6057373, 669.0426793, 695.9427346, 695.7492244, 692.8675008, 

698.7683122, 727.2664642, 773.3610452, 860.535192, 920.5064143, 810.2802824, 

591.2547068, 558.9963924, 483.2264012, 404.5973008, 349.9398814, 317.8056919]]) 

# Create a meshgrid for the angles (X-axis) and Reynolds numbers (Y-axis) 

X, Y = np.meshgrid(angles, reynolds_numbers) 

 

# Create the interpolator 

interpolator = RegularGridInterpolator((reynolds_numbers, angles), 

nusselt_numbers) 

 

# Function to interpolate Nusselt number 

def interpolate_nusselt(reynolds, angle): 

    point = np.array([reynolds, angle]) 

    return interpolator(point) 

 

# Example: Interpolate for a specific angle and Reynolds number 

example_reynolds = 90000    
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example_angle = 69 

interpolated_value = interpolate_nusselt(example_reynolds, 

example_angle).item()  # Extract scalar value 

 

print(f"Interpolated Nusselt number at Reynolds {example_reynolds} and angle 

{example_angle}°: {interpolated_value:.2f}") 

 

# Plotting the data using the specified settings 

fig = plt.figure(figsize=(10, 8)) 

ax = fig.add_subplot(111, projection='3d') 

 

# Plot the surface 

surf = ax.plot_surface(X, Y, nusselt_numbers, cmap=cm.turbo, linewidth=0, 

antialiased=False) 

 

# Adding labels and a color bar 

ax.set_xlabel('Angle (degrees)') 

ax.set_ylabel('Reynolds Number') 

ax.set_zlabel('Nusselt Number') 

fig.colorbar(surf, shrink=0.5, aspect=10) 

 

# Show the plot 

plt.show() 

 

 
 

 

 

 
 

#Bottom Center Nusselt # Reduction Ratio 

 

import numpy as np 

import matplotlib.pyplot as plt 

from mpl_toolkits.mplot3d import Axes3D 

from matplotlib import cm 

from scipy.interpolate import RegularGridInterpolator 

 

# Hardcoded data 
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angles = np.array([0, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 28, 36, 45, 53, 61, 

69, 78, 90]) 

reynolds_numbers = np.array([0, 10000, 20000, 30000, 40000, 50000, 60000, 70000, 

80000, 90000]) 

nusselt_numbers = np.array([[1.0, 1.401482698, 1.452116045, 1.427459629, 

1.390269493, 1.323314721, 1.229866602, 1.168127742, 1.164804104, 1.203284808, 

1.245960447, 1.344672252, 1.424618512, 1.379092984, 1.385973065, 1.26143128, 

1.028961805, 1.041222778, 1.047723927, 1.172875834], [1.0, 1.171323078, 

1.254911118, 1.249305347, 1.174816407, 1.142914713, 1.179911957, 1.183452473, 

1.228870314, 1.290219108, 1.362324346, 1.439554008, 1.497957828, 1.416947002, 

1.28357444, 1.039009789, 0.791497513, 0.786839477, 0.784537507, 0.944858231], 

[1.0, 1.089724751, 1.155235631, 1.106589675, 1.057489674, 1.070710936, 

1.123498854, 1.166602324, 1.239470012, 1.298162992, 1.359237989, 1.42851991, 

1.502195155, 1.397456314, 1.249514273, 1.003618608, 0.803025662, 0.820216133, 

0.798037069, 0.930619339], [1.0, 1.047239959, 1.141207716, 1.128731877, 

1.15163879, 1.203436606, 1.223421381, 1.240510531, 1.270736294, 1.318650955, 

1.389663671, 1.517625767, 1.645601742, 1.499874457, 1.21362189, 0.883359274, 

0.711923498, 0.695371017, 0.684897543, 0.876771497], [1.0, 1.043549399, 

1.161915625, 1.183136727, 1.237262706, 1.298302511, 1.31311283, 1.316287249,  

1.335369588, 1.396854996, 1.461043899, 1.629541551, 1.766695001, 1.575201088, 

1.203282126, 0.872576547, 0.689004897, 0.661759925, 0.653822728, 0.720639064], 

[1.0, 1.056574511, 1.175643366, 1.241529778, 1.325801243, 1.381755591, 

1.359806635, 1.367895524, 1.418648586, 1.476888037, 1.513135151, 1.687530384, 

1.888494238, 1.663239824, 1.240410975, 0.875170674, 0.710355147, 0.698795005, 

0.692063682, 0.752116405], [1.0, 1.066298333, 1.167044787, 1.186164743, 

1.264667116, 1.3246997, 1.3187099, 1.365479866, 1.397784137, 1.452203194, 

1.550197298, 1.720911283, 1.861053927, 1.672720084, 1.240926823, 0.791226202, 

0.688156574, 0.660553011, 0.6309578, 0.722358952], [1.0, 1.07117854, 1.153761084, 

1.151757349, 1.170611738, 1.231287513, 1.303207225, 1.399058621, 1.439723517, 

1.49686652, 1.600302298, 1.773172611, 1.9104663, 1.755208879, 1.247560026, 

0.815487363, 0.725270587, 0.689628539, 0.633235113, 0.691036277], [1.0, 

1.072020482, 1.142764041, 1.222337053, 1.26388534, 1.32073008, 1.35092344, 

1.371488917, 1.391522673, 1.456058187, 1.537504476, 1.711594796, 1.857101085, 

1.64083362, 1.205931369, 1.023557815, 0.805404743, 0.694766733, 0.630157799, 

0.609045629], [1.0, 1.072301771, 1.149631985, 1.233696856, 1.321466968, 

1.374598906, 1.374216692, 1.368524825, 1.380179877, 1.436468313, 1.527512529, 

1.699695499, 1.818148315, 1.600433965, 1.167823203, 1.10410784, 0.954449913, 

0.799144785, 0.691187585, 0.627717389]]) 

 

# Create a meshgrid for the angles (X-axis) and Reynolds numbers (Y-axis) 

X, Y = np.meshgrid(angles, reynolds_numbers) 

 

# Create the interpolator 
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interpolator = RegularGridInterpolator((reynolds_numbers, angles), 

nusselt_numbers) 

 

# Function to interpolate Nusselt number 

def interpolate_nusselt(reynolds, angle): 

    point = np.array([reynolds, angle]) 

    return interpolator(point) 

 

# Example: Interpolate for a specific angle and Reynolds number 

example_reynolds = 90000    

example_angle = 69 

interpolated_value = interpolate_nusselt(example_reynolds, 

example_angle).item()  # Extract scalar value 

 

print(f"Interpolated Nusselt number reduction ratio at Reynolds 

{example_reynolds} and angle {example_angle}°: {interpolated_value:.2f}") 

 

# Plotting the data using the specified settings 

fig = plt.figure(figsize=(10, 8)) 

ax = fig.add_subplot(111, projection='3d') 

 

# Plot the surface 

surf = ax.plot_surface(X, Y, nusselt_numbers, cmap=cm.turbo, linewidth=0, 

antialiased=False) 

 

# Adding labels and a color bar 

ax.set_xlabel('Angle (degrees)') 

ax.set_ylabel('Reynolds Number') 

ax.set_zlabel('Nusselt Number') 

fig.colorbar(surf, shrink=0.5, aspect=10) 

 

# Show the plot 

plt.show() 
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EES Code: 
 
 
"Phantom Calculations" 
 
$ifnot parametrictable 
T_fluxa1 =95[F]  "Temperature of heat flux sensor 1-A 
measured in F" 
T_fluxa2 =95[F]  "Temperature of heat flux sensor 1-B 
measured in F" 
T_fluxa3 = 95 [F]  "Temperature of heat flux sensor 1-
C measured in F" 
T_fluxb1 = 95 [F]  "Temperature of heat flux sensor 2-A 
measured in F" 
T_fluxb2 = 95 [F]  "Temperature of heat flux sensor 2-B 
measured in F" 
T_fluxb3 = 95 [F]  "Temperature of heat flux sensor 2-
C measured in F" 
T_infinity = 72[F]  "Ambient temperature sensor"  
  
U_inf=5[m/s] 
  
mAa1 = 4.3 
mAa2 = 4.3 
mAa3 = 4.3 
mAb1 = 4.3 
mAb2 = 4.3 
mAb3 = 4.3 
  
voltage = 0.054 
time = 1 
 angle = 0[degrees] 
T_top_average = 80[F] 
$endif 
  
Fluid$ = 'Air' 
  
S_calib_a1 = .001270[millivolt/(W/m^2)] "Calibration sensitivity variable for 
Sensor A-1: SN = 27410" 
S_calib_a2 = .001270[millivolt/(W/m^2)] "Calibration sensitivity variable for 
Sensor A-2: SN = 27411" 
S_calib_a3 = .001280[millivolt/(W/m^2)] "Calibration sensitivity variable for 
Sensor A-3: SN = 27412" 
S_calib_b1 = .001300[millivolt/(W/m^2)] "Calibration sensitivity variable for 
Sensor B-1: SN = 27413" 
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S_calib_b2 = .001250[millivolt/(W/m^2)] "Calibration sensitivity variable for 
Sensor B-2: SN = 27415" 
S_calib_b3 = .001280[millivolt/(W/m^2)] "Calibration sensitivity variable for 
Sensor B-3: SN = 27367" 
  
T_fluxtop_c = ConvertTemp(F,C,T_fluxtop) 
  
"Heat Flux Sensor A - 1"  "#SN = 27410" 
V_readinga1 = ((mAa1-4)/16)*50[millivolt] "Converting Milliamp signal to 
millivolts (based on transmitter scaling)" 
T_ca1 = ConvertTemp(F,C,T_fluxa1) 
 "Convert temp to C" 
Sa1 = (.00334*1[1/C]*T_ca1+0.917)*S_calib_a1 "Sensitivity equation" 
{Sa1 = (.00334*1[1/C]*T_fluxtop_c+0.917)*S_calib_a1 "Sensitivity equation"} 
Fluxa1 = V_readinga1/Sa1-Q_rad  "Heat flux measured by sensor" 
DELTATa1 = ((T_fluxa1-T_infinity)/1.8[F/K]) "Delta T" 
{DELTATa1 = ((T_fluxtop-T_infinity)/1.8[F/K]) "Delta T"} 
  
htca1 = Fluxa1/DELTATa1  "Heat transfer coefficient" 
  
"Heat Flux Sensor A - 2"  "#SN = 27411" 
V_readinga2 = ((mAa2-4)/16)*50[millivolt] "Converting Milliamp signal to 
millivolts (based on transmitter scaling)" 
T_ca2 = ConvertTemp(F,C,T_fluxa2) 
 "Convert temp to C" 
Sa2 = (.00334*1[1/C]*T_ca2+0.917)*S_calib_a2 "Sensitivity equation" 
{Sa2 = (.00334*1[1/C]*T_fluxtop_c+0.917)*S_calib_a2 "Sensitivity equation"} 
Fluxa2 = V_readinga2/Sa2-Q_rad  "Heat flux measured by sensor" 
DELTATa2 = ((T_fluxa2-T_infinity)/1.8[F/K]) 
 "Delta T" 
{DELTATa2 = ((T_fluxtop-T_infinity)/1.8[F/K]) 
 "Delta T"} 
htca2 = Fluxa2/DELTATa2  "Heat transfer coefficient" 
  
"Heat Flux Sensor A - 3"  "#SN = 27412" 
V_readinga3 = ((mAa3-4)/16)*50[millivolt] "Converting Milliamp signal to 
millivolts (based on transmitter scaling)" 
T_ca3 = ConvertTemp(F,C,T_fluxa3) 
 "Convert temp to C" 
Sa3 = (.00334*1[1/C]*T_ca3+0.917)*S_calib_a3 "Sensitivity equation" 
{Sa3 = (.00334*1[1/C]*T_fluxtop_c+0.917)*S_calib_a3 "Sensitivity equation"} 
Fluxa3 = V_readinga3/Sa3-Q_rad  "Heat flux measured by sensor" 
DELTATa3 = ((T_fluxa3-T_infinity)/1.8[F/K]) "Delta T" 
{DELTATa3 = ((T_fluxtop-T_infinity)/1.8[F/K]) "Delta T"} 
htca3 = Fluxa3/DELTATa3  "Heat transfer coefficient" 
  
"Heat Flux Sensor B - 1"  "#SN = 27413" 
V_readingb1 = ((mAb1-4)/16)*50[millivolt] "Converting Milliamp signal to 
millivolts (based on transmitter scaling)" 
T_cb1 = ConvertTemp(F,C,T_fluxb1) 
 "Convert temp to C" 
Sb1 = (.00334*1[1/C]*T_cb1+0.917)*S_calib_b1 "Sensitivity equation" 
Fluxb1 = V_readingb1/Sb1-Q_rad  "Heat flux measured by sensor" 
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DELTATb1 = ((T_fluxb1-T_infinity)/1.8[F/K]) "Delta T" 
htcb1 = Fluxb1/DELTATb1  "Heat transfer coefficient" 
  
"Heat Flux Sensor B - 2"  "#SN = 27415" 
V_readingb2 = ((mAb2-4)/16)*50[millivolt] "Converting Milliamp signal to 
millivolts (based on transmitter scaling)" 
T_cb2 = ConvertTemp(F,C,T_fluxb2) 
 "Convert temp to C" 
Sb2 = (.00334*1[1/C]*T_cb2+0.917)*S_calib_b2 "Sensitivity equation" 
Fluxb2 = V_readingb2/Sb2-Q_rad  "Heat flux measured by sensor" 
DELTATb2 = ((T_fluxb2-T_infinity)/1.8[F/K]) "Delta T" 
htcb2 = Fluxb2/DELTATb2  "Heat transfer coefficient" 
  
 "Heat Flux Sensor B - 3"  "#SN = 27367" 
V_readingb3 = ((mAb3-4)/16)*50[millivolt] "Converting Milliamp signal to 
millivolts (based on transmitter scaling)" 
T_cb3 = ConvertTemp(F,C,T_fluxb3) 
 "Convert temp to C" 
Sb3 = (.00334*1[1/C]*T_cb3+0.917)*S_calib_b3 "Sensitivity equation" 
Fluxb3 = V_readingb3/Sb3-Q_rad  "Heat flux measured by sensor" 
DELTATb3 = ((T_fluxb3-T_infinity)/1.8[F/K]) "Delta T" 
htcb3 = Fluxb3/DELTATb3  "Heat transfer coefficient" 
  
"Averaging the current top and bottom sensors to get new values for all variables used below" 
T_fluxtop = (T_fluxa1 + T_fluxa2 + T_fluxa3)/3 
T_fluxbot = (T_fluxb1 + T_fluxb2 + T_fluxb3)/3 
  
Fluxtop = (Fluxa1 + Fluxa2 + Fluxa3) / 3 
Fluxbot = (Fluxb1 + Fluxb2 + Fluxb3) / 3 
  
"Calculating (estimating) the radiation heat transfer" 
A_pizza = (0.31[in]*12[in]*4+12[in]*12[in])*Convert(in^2, m^2)  "upper and lower surfaces of the 
plate and the thickness" 
   
sigma = 5.67E-8[W/m^2-K^4]   "Stefan boltzmann constant" 
epsilon = .1   "Estimated emissivity" 
R_rad = 
1/(A_pizza*epsilon*sigma*((ConvertTemp(F,K,T_fluxtop))^2+(ConvertTemp(F,K,T_infinity))^2)*((Conve
rtTemp(F,K,T_fluxtop)+ConvertTemp(F,K,T_infinity)))) "Radiation resistance" 
Q_rad = (ConvertTemp(F,K,T_fluxtop)-ConvertTemp(F,K,T_infinity))/R_rad/A_pizza"Radiation heat 
transfer per area on the plate" 
  
P = 1 [atm] * Convert(atm,Psia) "assuming atmospheric pressure" 
L = 12 [in] * Convert(in,ft) 
{u_inf = 5 [m/s] * convert(m/s, ft/min) "how are we planning to calculate air velocity"} 
  
  
  
{"Heat transfer correlation from MATLAB Model (dittus boelter relationship)" 
  
hm = 1.25 
h_ini = hm*22.5 
v_ini = 5 
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"Just using htca1 to solve backwards for vel2, but vel2 can be sent here and htc can be solved for" 
{htca1 = (vel2^0.8)/(v_ini^0.8)*h_ini} 
vel2 = 685.8384615 [ft/min] 
u_inf = vel2 
  
//CALCULATED HTC 
 Call external_flow_plate(Fluid$, T_infinity, T_fluxa1,  P, u_inf, L: tau_a1, h_forced_a1, C_f_a1, 
Nusselt_forced_a1, Re_forced_a1) 
 Call fc_plate_horizontal1(Fluid$, T_fluxa1, T_infinity, P, L: h_nat_a1, Nusselt_nat_a1, Ra_nat_a1) 
  
 Call external_flow_plate(Fluid$, T_infinity, T_fluxa2,  P, u_inf, L: tau_a2, h_forced_a2, C_f_a2, 
Nusselt_forced_a2, Re_forced_a2) 
 Call fc_plate_horizontal1(Fluid$, T_fluxa2, T_infinity, P, L: h_nat_a2, Nusselt_nat_a2, Ra_nat_a2) 
  
 Call external_flow_plate(Fluid$, T_infinity, T_fluxa3,  P, u_inf, L: tau_a3, h_forced_a3, C_f_a3, 
Nusselt_forced_a3, Re_forced_a3) 
 Call fc_plate_horizontal1(Fluid$, T_fluxa3, T_infinity, P, L: h_nat_a3, Nusselt_nat_a3, Ra_nat_a3) 
  
 Call external_flow_plate(Fluid$, T_infinity, T_fluxb1,  P, u_inf, L: tau_b1, h_forced_b1, C_f_b1, 
Nusselt_forced_b1, Re_forced_b1) 
 Call fc_plate_horizontal1(Fluid$, T_fluxb1, T_infinity, P, L: h_nat_b1, Nusselt_nat_b1, Ra_nat_b1) 
  
 Call external_flow_plate(Fluid$, T_infinity, T_fluxb2,  P, u_inf, L: tau_b2, h_forced_b2, C_f_b2, 
Nusselt_forced_b2, Re_forced_b2) 
 Call fc_plate_horizontal1(Fluid$, T_fluxb2, T_infinity, P, L: h_nat_b2, Nusselt_nat_b2, Ra_nat_b2) 
  
 Call external_flow_plate(Fluid$, T_infinity, T_fluxb3,  P, u_inf, L: tau_b3, h_forced_b3, C_f_b3, 
Nusselt_forced_b3, Re_forced_b3) 
 Call fc_plate_horizontal1(Fluid$, T_fluxb3, T_infinity, P, L: h_nat_b3, Nusselt_nat_b3, Ra_nat_b3) 
  
//COMBINED HTC CALCULATIONS 
htc_combined_a1 = (((max(h_nat_a1, h_forced_a1)^3) + 
(min(h_nat_a1,h_forced_a1)^3))^(1/3))*convert(Btu/hr-ft^2-R,W/m^2-K) 
htc_combined_a2 = ((max(h_nat_a2, h_forced_a2)^3) + 
(min(h_nat_a2,h_forced_a2)^3))^(1/3)*convert(Btu/hr-ft^2-R,W/m^2-K) 
htc_combined_a3 = ((max(h_nat_a3, h_forced_a3)^3) + 
(min(h_nat_a3,h_forced_a3)^3))^(1/3)*convert(Btu/hr-ft^2-R,W/m^2-K) 
htc_combined_b1 = ((max(h_nat_b1, h_forced_b1)^3) + 
(min(h_nat_b1,h_forced_b1)^3))^(1/3)*convert(Btu/hr-ft^2-R,W/m^2-K) 
htc_combined_b2 = ((max(h_nat_b2, h_forced_b2)^3) + 
(min(h_nat_b2,h_forced_b2)^3))^(1/3)*convert(Btu/hr-ft^2-R,W/m^2-K) 
htc_combined_b3 = ((max(h_nat_b3, h_forced_b3)^3) + 
(min(h_nat_b3,h_forced_b3)^3))^(1/3)*convert(Btu/hr-ft^2-R,W/m^2-K)} 
  
"Non-Dimensional Analysis" 
L_a1=12[in]/4*1*Convert(in,m) 
L_a2=12[in]/4*2*Convert(in,m) 
L_a3=12[in]/4*3*Convert(in,m) 
L_b1=L_a1 
L_b2=L_a2 
L_b3=L_a3 
  
"Film Temperatures" 



194 

 

T_film_a1=ConvertTemp(F,K,(T_fluxa1+T_infinity)/2) 
T_film_a2=ConvertTemp(F,K,(T_fluxa2+T_infinity)/2) 
T_film_a3=ConvertTemp(F,K,(T_fluxa3+T_infinity)/2) 
T_film_b1=ConvertTemp(F,K,(T_fluxb1+T_infinity)/2) 
T_film_b2=ConvertTemp(F,K,(T_fluxb2+T_infinity)/2) 
T_film_b3=ConvertTemp(F,K,(T_fluxb3+T_infinity)/2) 
  
"Film Densities" 
rho_a1=density('air',T=T_film_a1,P=Po#) 
rho_a2=density('air',T=T_film_a2,P=Po#) 
rho_a3=density('air',T=T_film_a3,P=Po#) 
rho_b1=density('air',T=T_film_b1,P=Po#) 
rho_b2=density('air',T=T_film_b2,P=Po#) 
rho_b3=density('air',T=T_film_b3,P=Po#) 
  
"Film Viscosities" 
mu_a1=viscosity('air',T=T_film_a1) 
mu_a2=viscosity('air',T=T_film_a2) 
mu_a3=viscosity('air',T=T_film_a3) 
mu_b1=viscosity('air',T=T_film_b1) 
mu_b2=viscosity('air',T=T_film_b2) 
mu_b3=viscosity('air',T=T_film_b3) 
  
"Film Conductivities" 
k_a1=conductivity('air',T=T_film_a1) 
k_a2=conductivity('air',T=T_film_a2) 
k_a3=conductivity('air',T=T_film_a3) 
k_b1=conductivity('air',T=T_film_b1) 
k_b2=conductivity('air',T=T_film_b2) 
k_b3=conductivity('air',T=T_film_b3) 
  
"Reynold's Numbers" 
Re_a1=U_inf*L_a1*rho_a1/mu_a1 
Re_a2=U_inf*L_a2*rho_a2/mu_a2 
Re_a3=U_inf*L_a3*rho_a3/mu_a3 
Re_b1=U_inf*L_b1*rho_b1/mu_b1 
Re_b2=U_inf*L_b2*rho_b2/mu_b2 
Re_b3=U_inf*L_b3*rho_b3/mu_b3 
  
Nus_a1=htca1*L_a1/k_a1 
Nus_a2=htca2*L_a2/k_a2 
Nus_a3=htca3*L_a3/k_a3 
Nus_b1=htcb1*L_b1/k_b1 
Nus_b2=htcb2*L_b2/k_b2 
Nus_b3=htcb3*L_b3/k_b3 
 
Nus_a_avg = (Nus_a1+Nus_a2+Nus_a3)/3 
Re_a_avg = (Re_a1+Re_a2+Re_a3)/3 
 
Nus_b_avg = (Nus_b1+Nus_b2+Nus_b3)/3 
  
  
"Correction calculations" 
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{V_anem = 1.277[m/s] "Velocity measured from anemometer"} 
  
V_anem = U_inf+.001[m/s] "Velocity measured from anemometer" 
  
T_fluxa1_k = ConvertTemp(F,K, T_fluxa1) 
T_infinity_K = ConvertTemp(F,K, T_infinity) 
P_kpa = p*Convert(psi,kPa) 
L_m = L*Convert(ft,m) 
  
  
T_fluxtop_K = ConvertTemp(F,K,T_fluxtop) 
  
CALL External_Flow_Plate(Fluid$, T_infinity_K, T_fluxtop_K,  P_kpa, V_anem, L_m: tau_a1, 
h_forced_top, C_f_a1, Nusselt_forced_a1, Re_forced_a1) 
CALL FC_Plate_Horizontal1(Fluid$, T_fluxtop_K, T_infinity_K, P_kpa, L_m: h_nat_top, Nusselt_nat_a1, 
Ra_nat_a1) 
htc_combined_top = (((Max(h_nat_top, h_forced_top)^3) + (Min(h_nat_top,h_forced_top)^3))^(1/3)) 
  
h_top_average = (htca1+htca2+htca3)/3 
h_bot_average = (htcb1+htcb2+htcb3)/3 
 

 

 
 
 
"Dough thermal properties" 
 
FUNCTION heatcap(T) 
  
mf_w = 0.3461[-] "Mass fraction of water" 
{mf_w = 1[-] "Mass fraction of water"} 
  
  
  
R = 8.314 "Gas constant" 
M_w = 18.01528 "Molecular weight of water" 
L_w = 333.550 "Latent heat of fusion of water" 
x_tw = 0.346081917  "Mass fraction of total water" 
x_bw = x_tw/10  "Bound water - estimate is 10%" 
xj = 0.625146427 "Solids other than water and fat" 
x_f = 1-x_tw-xj 
  
Mj = 50000 "Estimated molecular weight of solids" 
  
  
T_if_K = 1/((1/273.15) - (R/(M_w*L_w))*Ln(((x_tw-x_bw)/M_w)/((x_tw-x_bw)/M_w+xj/Mj))) 
T_if = T_if_K-273.15 
  
x_ice = (x_tw-x_bw)*(1-T_if/T) 
x_w = x_tw-x_ice 
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c_w = 4.1289-5.3062E-3*T+9.9516E-4*T^2 
c_ice = 2.0623+6.0769E-3*T 
c_fat = 1.9842 + 1.47339E-3*T - 4.8008E-6*T^2 
c_air = 1.0051+8.64629E-7*T+4.87E-7*T^2 + 8.0004E-9*T^3 + 5.4E-11*T^4 
c_carbs = 1.5488 + 1.9625E-3*T-5.9399E-6*T^2 
  
c_e = c_carbs*xj+x_f*c_fat+x_ice*c_ice-(L_w+(c_w-c_ice)*T)*(x_tw-x_bw)*(T_if/T^2) 
  
 IF (T<T_if) THEN 
heatcap := c_carbs*xj+x_f*c_fat+x_ice*c_ice-(L_w+(c_w-c_ice)*T)*(x_tw-x_bw)*(T_if/T^2) 
  
ENDIF 
IF (T>=T_if) THEN 
heatcap := c_carbs*xj+x_f*c_fat+x_tw*c_w 
  
ENDIF 
  
  
END 
  
FUNCTION densityp(T) 
  
 Void_f = 0.5405 
R = 8.314 "Gas constant" 
M_w = 18.01528 "Molecular weight of water" 
L_w = 333.550 "Latent heat of fusion of water" 
x_tw = 0.346081917  "Mass fraction of total water" 
x_bw = x_tw/10  "Bound water - estimate is 10%" 
xj = 0.625146427 "Solids other than water and fat" 
x_f = 1-x_tw-xj 
  
Mj = 50000 "Estimated molecular weight of solids" 
  
  
T_if_K = 1/((1/273.15) - (R/(M_w*L_w))*Ln(((x_tw-x_bw)/M_w)/((x_tw-x_bw)/M_w+xj/Mj))) 
T_if = T_if_K-273.15 
  
x_ice = (x_tw-x_bw)*(1-T_if/T) 
x_w = x_tw-x_ice 
  
  
rho_water = 9.9718E2+3.1439E-3*T-3.7574E-3*T^2 
rho_carbs = 1.5991E3-3.1046E-1*T 
rho_fat = 9.2559E2-4.1757E-1*T 
rho_air = 1.3180-4.8312E-3*T-1.1237E-5*T^2-3.428E-7*T^3 
rho_ice = 9.1689E2-1.3071E-1*T 
  
  
rho_solid = 1/(xj/rho_carbs + x_f/rho_fat + x_w/rho_water + x_ice/rho_ice) 
densityp = rho_solid*Void_f 
  
  
 IF (T<T_if) THEN 
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rho_solid:= 1/(xj/rho_carbs + x_f/rho_fat + x_w/rho_water + x_ice/rho_ice) 
densityp := rho_solid*Void_f 
  
ENDIF 
IF (T>=T_if) THEN 
rho_solid:= 1/(xj/rho_carbs + x_f/rho_fat + x_tw/rho_water ) 
densityp := rho_solid*Void_f 
  
ENDIF 
  
  
END 
  
FUNCTION kwater(T) 
kwater := 5.7109E-1 + 1.7625E-3*T - 6.7036E-6*T^2 
END 
  
FUNCTION kfat(T) 
kfat:= 1.8071E-1 - 2.7604E-4*T - 1.7749E-7*T^2 
END 
  
FUNCTION kcarb(T) 
kcarb:= 2.0141E-1 + 1.3874E-3*T - 4.3312E-6*T^2 
END 
  
FUNCTION icefract(T_if,T,x_tw, x_bw) 
  
IF T > T_if THEN 
icefract := 0 
ENDIF 
IF T <= T_if THEN 
icefract := (x_tw-x_bw)*(1-T_if/T) 
 ENDIF 
END 
  
FUNCTION kice(T) 
kice =  2.2196- 6.2489E-3*T+ 1.0154E-4*T^2 
  
END 
  
FUNCTION kair(T) 
kair =  2.4125E-2 + 7.9976E-5*T- 3.4657E-8*T^2 
  
END 
  
  
R = 8.314[J/mol-K] "Gas constant" 
M_w = 18.01528[g/mol] "Molecular weight of water" 
L_w = 333.550[J/g] "Latent heat of fusion of water" 
x_tw = 0.346081917  "Mass fraction of total water" 
x_bw = x_tw/10  "Bound water - estimate is 10%" 
xj = 0.625146427 "Solids other than water and fat" 
Mj = 50000[g/mol] "Estimated molecular weight of solids" 
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1/(T_if_K) = (1/273.15[K]) - (R/(M_w*L_w))*Ln(((x_tw-x_bw)/M_w)/((x_tw-x_bw)/M_w+xj/Mj)) 
T_if = ConvertTemp(K,C,T_if_K) 
  
 x_ice = icefract(T_if, T, x_tw, x_bw) 
$ifnot parametrictable 
T = -20[C] 
 $endif 
T_kelvin = ConvertTemp(C,K,T) 
T_F = ConvertTemp(C,F,T) 
  
{x_ice = (1.105*x_tw)/(1+.7318/ln(T_if-T+1[C]))} 
{x_ice = (x_tw-x_bw)*(1-T_if/T)} 
x_w = x_tw-x_ice 
  
rho_water = 9.9718E2+3.1439E-3*T-3.7574E-3*T^2 
rho_carbs = 1.5991E3-3.1046E-1*T 
rho_fat = 9.2559E2-4.1757E-1*T 
rho_air = 1.3180-4.8312E-3*T-1.1237E-5*T^2-3.428E-7*T^3 
rho_ice = 9.1689E2-1.3071E-1*T 
  
x_f = 1-x_tw-xj 
Void_f = 0.5405 
  
  
  
1/rho_solid = xj/rho_carbs + x_f/rho_fat + x_w/rho_water + x_ice/rho_ice 
rho_e = rho_solid*Void_f 
  
{1/rho_solid = xj2/rho_carbs + x_f2/rho_fat + x_w2/rho_water + x_ice2/rho_ice+Void_f/rho_air} 
  
c_w = 4.1289-5.3062E-3*T+9.9516E-4*T^2 
c_ice = 2.0623+6.0769E-3*T 
c_fat = 1.9842 + 1.47339E-3*T - 4.8008E-6*T^2 
c_air = 1.0051+8.64629E-7*T+4.87E-7*T^2 + 8.0004E-9*T^3 + 5.4E-11*T^4 
c_carbs = 1.5488 + 1.9625E-3*T-5.9399E-6*T^2 
  
c_e = c_carbs*xj+x_f*c_fat+x_ice*c_ice-(L_w+(c_w-c_ice)*T)*(x_tw-x_bw)*(T_if/T^2) 
c_unfrozen = c_carbs*xj+x_f*c_fat+x_w*c_w 
  
  
{c_e2 = c_carbs*xj+x_f*c_fat+x_ice*c_ice-(L_w+(c_w-c_ice)*T1)*(x_tw-x_bw)*(T_if/T1^2)} 
  
{h = integral(c_e,T,-5,-0.07466)} 
T2 = -1 
h = heatcap(T2) 
rhop = densityp(T2) 
  
k_w = kwater(T) 
k_f = kfat(T) 
k_c = kcarb(T) 
k_air = kair(T) 
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(x_w/rho_water)*x1+(xj/rho_carbs)*x1+( x_f/rho_fat)*x1+(x_ice/rho_ice)*x1 = 1 
  
V_w = (x_w/rho_water)*x1 
V_c = (xj/rho_carbs)*x1 
V_fat = ( x_f/rho_fat)*x1 
V_ice =(x_ice/rho_ice)*x1 
  
k_I = (k_w*V_w+k_f*V_fat+k_c*V_c)/((1-V_ice)) 
  
check = x_w + x_f+ xj+x_ice 
  
k_ice = kice(T) 
  
G = (K_ice-K_I)^2/((k_ice+k_I)^2 + k_ice*k_I/2) 
F = (2/G-1+2*(1-V_ice)-Sqrt((2/G-1+2*(1-V_ice))^2-8*(1-V_ice)/G))/2 
k_II = k_ice*(2*k_ice+k_I-2*(k_ice-k_I)*F)/(2*k_ice+k_I+(k_ice-k_I)*F) 
  
 V_air = Void_f 
  
k_IV = (3*Void_f - 1)*k_air+(3*(1-V_air)-1)*k_II+Sqrt(((3*V_air-1)*k_air+(3*(1-V_air)-
1)*k_II)^2+8*k_II*k_air)/4 
  
Dia_pizza = 11.5*Convert(in,m) 
Area_p = pi*(dia_pizza/2)^2 
th_pizza = (5/8)*Convert(in,m) 
Vol = Area_p*th_pizza 
  
rho_pp = 533.8 [kg/m^3] 
mass = Vol*rho_PP     
  
mass2 = 19*Convert(oz,kg) 
vol2 = (pi*(11.2/2)^2*(5/8))*Convert(in^3,m^3) 
rho2 = mass2/vol2      
 
 
 
 
 

 

 

 

 
"Chicken properties" 
 
FUNCTION icefract(T_if,T,x_tw, x_bw) 
  
IF T > T_if THEN 
icefract := 0 
ENDIF 
IF T <= T_if THEN 
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icefract := (x_tw-x_bw)*(1-T_if/T) 
 ENDIF 
END 
 
 
FUNCTION kwater(T) 
kwater := 5.7109E-1 + 1.7625E-3*T - 6.7036E-6*T^2 
END 
  
FUNCTION kfat(T) 
kfat:= 1.8071E-1 - 2.7604E-4*T - 1.7749E-7*T^2 
END 
  
FUNCTION kcarb(T) 
kcarb:= 2.0141E-1 + 1.3874E-3*T - 4.3312E-6*T^2 
END 
 
FUNCTION kice(T) 
kice =  2.2196- 6.2489E-3*T+ 1.0154E-4*T^2 
  
END 
  
FUNCTION kair(T) 
kair =  2.4125E-2 + 7.9976E-5*T- 3.4657E-8*T^2 
  
END 
 
R = 8.314[J/mol-K] "Gas constant" 
M_w = 18.01528[g/mol] "Molecular weight of water" 
L_w = 333.550[J/g] "Latent heat of fusion of water" 
x_tw = mf_w "Mass fraction of total water" 
x_bw = 0.7 "Bound water - estimate is 70%" 
xj = S "Solids other than water and fat" 
Mj = 50000[g/mol] "Estimated molecular weight of solids" 
 
 
$ifnot parametrictable 
T = -40[C] 
$endif 
 
mf_w = 0.77 "Mass fraction of water chicken breast" 
 
W = mf_w 
 
Fat = 6.2 
Protein = 53.4  
water = (Fat+Protein)/(1-W) 
 
F = Fat/(protein+water+Fat) 
S = protein/(protein+water+fat) 
 
T_f = (-1.8  + W)  "Initial freezing temperature" 
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I = (W-0.25*S) *(1 - (T_f/(-20)))  "Ice mass fraction when fully frozen"  
  
  
rho = 1/(W/1000 + S/1300 + F/850) "Density  in kg/m^3, no void fraction" 
  
k = rho*(W/1695 + S/5306 + F/4722) "Thermal conductivity W/m-K of unfrozen material, no 
void fraction" 
 
v_p = ((W-I)/1000 + S/1300 + F/850)/(I/920 + (W-I)/1000 + S/1300 + F/850) 
  
k_p = ((W-I)/1695 + S/5306 + F/4722)/((W-I)/1000 + S/1300 + F/850) 
  
G = (2.4-k_p)^2/((2.4+k_p)^2 + 1.2*k_p) 
  
C = ((2/G) - 1 + 2*v_p - Sqrt(((2/G)-1+2*v_p)^2 - 8 *v_p/G))/2 
  
k_s = 2.4*((4.8+k_p - 2*(2.4-k_p)*C)/(4.8+k_p+(2.4-k_p)*C)) "Thermal conductivity of frozen pizza crust 
W/m-K" 
  
c_l = 4180*W + 1400*S+1900*F "Specific heat capacity of unfrozen material J/kg-K, no 
void fraction" 
  
c_s = 4180*(W-I)+1940*I+1400*S + 1900*F "Specific heat capacity of frozen matertial J/kg-K" 
  
 
rho_eff = 1.15[g/cm^3]*Convert(g/cm^3, kg/m^3) "Density of chicken from the internet" 
 
 
V = PI*(11.2[in]/2)^2*(5/8)[in] 
W_pizza = 19*Convert(oz,kg) 
  
rho_kg = rho*1[kg/m^3] 
V_m = V*Convert(in^3,m^3) 
 
V_m1 = W_pizza/rho_kg 
  
Void_fraction = ((V_m-V_m1)/V_m) 
  
epsilon = 1-W_pizza/(V_m*rho_kg) 
  
{rho_eff = rho*(1-epsilon) "Effective density kg/m^3 with Void fraction"} 
  
k_eff = k*((2*k+.03-2*epsilon*(k-0.03)))/(2*k+0.03+epsilon*(k-0.03)) "Effective thermal conductivity W/m-K 
of unfrozen material w/Void fraction" 
   
k_eff_s = k_s*((2*k_s+.03-2*epsilon*(k_s-0.03)))/(2*k_s+0.03+epsilon*(k_s-0.03)) "Effective thermal 
conductivity W/m-K of frozen material w/Void fraction" 
 
k_w = kwater(T) 
k_f = kfat(T) 
k_c = kcarb(T) 
k_air = kair(T) 
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rho_water = 9.9718E2+3.1439E-3*T-3.7574E-3*T^2 
rho_carbs = 1.5991E3-3.1046E-1*T 
rho_fat = 9.2559E2-4.1757E-1*T 
rho_air = 1.3180-4.8312E-3*T-1.1237E-5*T^2-3.428E-7*T^3 
rho_ice = 9.1689E2-1.3071E-1*T 
 
1/(T_if_K) = (1/273.15[K]) - (R/(M_w*L_w))*Ln(((x_tw-x_bw)/M_w)/((x_tw-x_bw)/M_w+xj/Mj)) 
T_if = ConvertTemp(K,C,T_if_K) 
 
 x_ice = icefract(T_if, T, x_tw, x_bw) 
 
 
T_kelvin = ConvertTemp(C,K,T) 
 
  
{x_ice = (1.105*x_tw)/(1+.7318/ln(T_if-T+1[C]))} 
{x_ice = (x_tw-x_bw)*(1-T_if/T)} 
x_w = x_tw-x_ice 
 
x_f = 1-x_tw-xj 
Void_f = 0 
 
1/rho_solid = xj/rho_carbs + x_f/rho_fat + x_w/rho_water + x_ice/rho_ice 
rho_e = rho_solid*Void_f 
 
(x_w/rho_water)*x1+(xj/rho_carbs)*x1+( x_f/rho_fat)*x1+(x_ice/rho_ice)*x1 = 1 
 
V_w = (x_w/rho_water)*x1 
V_c = (xj/rho_carbs)*x1 
V_fat = ( x_f/rho_fat)*x1 
V_ice =(x_ice/rho_ice)*x1 
 
k_I = (k_w*V_w+k_f*V_fat+k_c*V_c)/((1-V_ice)) 
  
k_ice = kice(T) 
 
G1 = (K_ice-K_I)^2/((k_ice+k_I)^2 + k_ice*k_I/2) 
F1 = (2/G-1+2*(1-V_ice)-Sqrt((2/G-1+2*(1-V_ice))^2-8*(1-V_ice)/G))/2 
k_II = k_ice*(2*k_ice+k_I-2*(k_ice-k_I)*F1)/(2*k_ice+k_I+(k_ice-k_I)*F1) 
  
V_air = Void_f 
  
k_IV = (3*Void_f - 1)*k_air+(3*(1-V_air)-1)*k_II+Sqrt(((3*V_air-1)*k_air+(3*(1-V_air)-
1)*k_II)^2+8*k_II*k_air)/4 
 
 
 

 


