ABSTRACT

The use of amulaions can greatly ad in optimizing the design of naturd convection heat exchangers
(NCHES) in solar domestic hot water (SDHW) systems. Fraser et d. (1992) presented a NCHE
modd that is used in the WATSUN solar smulation program, tha requires experimenta
measurements of the heat exchanger thermd performance and shear pressure lossess Two
TRNSY S models are here presented for aNCHE in a SDHW loop. The smple model, based on
Fraser et d.'s work, requires experimenta testing on the particular heat exchanger. The smple
modd can be used for optimizing SDHW sysem arameters (i.e. pipe lengths and diameters,
collector aress, tank volume etc.) excluding the NCHE itsdf which is represented by the
experimental curves. A detailed modd, based upon cross flow corrdations, requires geometric
specifications of the NCHE being smulated and is gpplicable to shdl and coil and counterflow
configurations. By varying heat exchanger geometric parameters (such as the number of helices,
diameters of helices, diameter and length of the heat exchanger shell) the detailed modd can be used
to desgn an optimum NCHE. Resullts comparing the detalled modd with Fraser et d.'s
experiments show reasonable agreement.  Using the detalled modd and the least cost savings
economic andyds, smulaions were peformed to discover the optima shel and coil NCHE
geometry. It was found that condderably reducing the heat exchanger sze led to enhanced
economic performance over a 10 year period of economic andyss. Coil spacing and tube diameter

had a lesser impact upon sysem performance than heat exchanger shdl length and number of



helices. Thermo Dynamics Inc. manufactures a shell and coil NCHE that contains 4 coils and is
0.635m. The optima heat exchanger design contains 2 helices and is0.45 m long. For a given st
of sysem parameters, a SDHW system containing the optimally designed heat exchanger would
save the consumer an extra $110 in initid equipment cost, and $52 over a 10 year period. Heat
exchanger designs were subject to variaionsin system parameters, such as collector area, hot water
draw, location and glycol flow rate. Although each set of system parameters suggested a different
optima design, overdl, the optima design found for the initid set of system parameters remained
adequate. As different economic assumptions will lead to differing optima heet exchanger lengths,
thiswork can serve as a guide for those who desire to optimize a shell and coil NCHE based upon

aprevailing st of economic assumptions.
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