1 Different toolsfor Modeling

Two sgnificantly different approaches exist to modd a system. One gpproach is to
develop a modd that contains equations that make sense physicdly or equations that are
smple empirica reationships tha represent the behavior of the sysem wel. Another
completely different method uses Neura Networks. Neura Networks are big systems of
equations that generdly do not have a physcd meaning. The degree of freedom in these
networks allows the Network to adjust to the specific problem. Neural Networks and
relationship modds often stand in competition with each other. All approaches have their
advantages and disadvantages and it is therefore necessary to know the different

characteristics in order to choose the best possible approach to modd a system.



1.1 CurveFits

Curve fitting is a widely used procedure for modding. Curve fitting adjusts the values
of the function coefficients such that the function represents the data as well as possble. The
user hasto decide what kind of function best fits the data. The judgment can be pretty straight
forward for problems with only one independent and one dependent variable, y=1(x), with x
being a scdar. As soon as there is more than one independent variable it becomes very
difficult, or a lot of experience is needed, to find a functiond form that fits the data
satisfactorily. If a genera mechanitic relationship between the dependent and the independent

variableis known, this relaionship can adso be used.

Curve fitting is very useful for two Stuations. One is where no physicd rdaionship is
known and when the problem is only a function of one dependent variable, Y=1(x). The other
is where the generd physics of a problem is known but these relationships include physica
properties that are not known in advance. The only avalable information is data from
experiments. Usng data, the coefficients of ether function in the physicd reationship or the

function not representing physics are chosen such that the function represents the data.

Usng an example, the two different gpproaches for curve fitting are illustrated. One
approach will use afunction that does not represent a physica relationship, the other approach
uses knowledge about the physics represented by a mechanistic modd. The problem can be

described as follows: An object is mounted to a soring and oscillates around an equilibrium



(Fig. 1.1-1). Nether the mass nor the spring congtant nor the damping are known. The

available data are measurements of the displacement of the object at certain times.

Fig. 1.1-1 Oscillating mass on Spring
For the first gpproach an equation that appears to have the ability to fit the data
adequately has to be chosen. The data in (Fig. 1.1-2) has five locd maxima or minima. A
polynomia of order Sx has the ability to have as many as five maximaor minima (Eqn. 1.1-1).

This polynomid is therefore used as afit to the data
Displacement(t) = ag +a1*t+a_2*t2 +a3*t3 +a4*t4 +a5*t5 +a6*t6
t: time

Egn. 1.1-1
The reault of fitting this polynomid (Egn. 1.1-1) to the data is shown in Fig. 1.1-2).

The reault follows the trend of the data but does nat fit it exactly. The other curve in this figure



results from afit of the generd relationship (Egn. 1.1-2) to the data. This relationship is used

to mode oscillations for a known mass, spring congtant and damping coefficient.

Dispacelment(t) = C* exp(- d* t) * sin(wy * t+j 4)
_ damping
2 X¥mass

Wo = \/sprmgconstant
mass
C: Initia maximal Amplitude

] g Delay past last passing equilibrium

Egn. 1.1-2
The fit usng the physicd rdationship is better than the polynomid fit. The approach
using a polynomia should only be used if no mechanistic modd is available. As soon as a

mechanistic modd is available this should be used.

For the use of a mechanigtic modd with unknown properties, curve fitting is actualy

more atool to fit the physica propertiesto the data. It rather is a parameter fit than a curvefit.



fit without knowledae about physics
—— X=-0.41+7.19%t-1.84*f+0.17*t3-7.19E-03*t*+1.43E-04*P-1.08E-06*1

fit with knowledge about physics
e X=10.0*EXP(-5.99E-02*t)*SIN(20.0*t+1.09E-03)
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Fig. 1.1-2 Curve Fit for Polynomial and physical relationship

Curve fitting is a procedure that tries to find vaues for the coefficients in the function
such that the function closdly approximates the avalable data. The coefficients can be
coefficients of the polynomid or the coefficients in the physcd rdationship. Then the
coefficients of the equation are actualy physical properties. These properties are vaid not only
for the range of the avallable data, these properties are properties for the sysem. The
gpproach of usng the physica relationships result in anon-linear fit, it is necessary for the non-
linear fitting to have initid vaues for the coefficients. Usng these initid vaues the function
generdly will not fit the data exactly. A minimization of the error is necessary for alinear and a

non-linear fit to get a better fit of the data. As a measure of the error the Sum of Squares



(Egn. 1.1-3) is most commonly used. The Sum of Squares sums the squared differences

between the function values and the data a the points of the available data.

mn 8§ (yi - f(Xi))

coefficients ; _;

Egn. 1.1-3

In order to minimize the error, the coefficients have to be changed such that the sum of
suares is amalest. By changing the coefficients it is possible for a non-linear fit, that the sum
of squares reaches a minimum that is not the globa minimum but aloca minimum. This means
that there is a better selection of the vaues for the parameters but by changing the coefficients
a little the Sum of Squares increases. Good initid guesses of the parameters or ranges of
possible values of the parameters help such that the search converges to the globa minimum of
the sum of squares more easly. Using a physica reationship, where the coefficients have a
meaning, it is more eadly possible to come up with good initia guesses or with a range of
possible values for the coefficients. For the example (Fig. 1.1-1) it is known that the mass of
the object cannot be negative and the spring congtant and dl the other parameters neither.

Often it is possible to find ranges of parametersin the literature [CRC]

Extrapolation- Often it is desired to extrapolate over the range of the available data.
In the example of the oscillation of the object it can be interesting to determine after what time

the maxima amplitude of the displacement would be smdler than a certain maxima bound,



and this bound would not be within the range of the available data. For extrgpolation purposes
like this, usng the polynomid is inapproriate. The polynomid only fits the data in the range
where the data is available. Outside of this range the function vaues can be very inaccurate. In
(Fig. 1.1-3) the ability of the polynomid to extragpolate is shown. Based on physica reasoning
it could be expected that the displacement decreases as time increases. The vaues for the
digolacement of the polynomid for times higher than 40 deviate significantly from the expected.
Using the physicd rdationship for extrgpolation purposes, with the vaues for the properties
that resulted out of the curve fit, yield the expected result of the displacement depending on
time not only for the range of the available data but as well outside of this range (Fig. 1.1-3).
The values for the physical properties are properties for the system and therefore as well vaid
outsde of the range of the avalable data. Using a generd mechanigtic relationship for the
curve fitting yields better results for extrapolation than any other tool for modding, that are

discussed in the following sections of this chapter.
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Fig. 1.1-3 Extrapolating abilities of polynomial and mechanistic relationship

M easurement Errors- How to ded with measurement errors in data is a problem
for both curve fits of physicad modes and curve fits of functions that do not represent a
physica reationship. The problem can be mogt sgnificant when no physica reationship is
known. In the example of the oscilation of the mass, the decison of what kind of function was
chosen, was made based upon the number of maxima and minima. Since the changes in the
displacement were so large, it was very clear that these changes were not only measurement
errors. For smdler changesin the displacement it could have been that these changes could be
regarded only as measurement errors. In other examples it could be that the changesin values
that are actually measurement errors are regarded as true oscillations. This mistake can lead to

choosing a function that has the ability to follow the trend of each measurement error. It can



happen that the function will deviate at certain points from the expected heavily in order fit the
data at other points better. The user has to decide whether an oscillation is a measurement

error or if it representsthe redlity.

Some reaults of severd given functions with different abilities to follow each trend of
some arbitrary dataare shown in (Fig. 1.1-4). The dataillugtrates effects of noise in measuring
the value Y. The quadratic function is very smooth and interpolates the data nicdly. The
polynomid of order Sx assumes that the changes in the value of y are true trends and tries to
follow them. The behavior of the polynomid of order four lies in the middle of the other two
polynomias. By just looking &t the data it cannot be seen whether or not the data includes
noise or not. The changes in the values could be true trends or could be measurement errors
as well. If these changes are true trends the quadratic polynomia does not represent the data
very wdl. If the changes are measurement errors the polynomid of order six deviates from the
expected shape by much. It is therefore necessary to know whether or not the data is biased.
Based on this knowledge the choice of the function is easer but il difficult. For the use of a
mechanidtic reaionship, the concern about measurement errors is not that big since the

functiond form is given.
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Fig. 1.1-4 Using different functions for curve fit, for biased data



