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Abstract	

Direct condensation of steam in liquids is used in industrial applications as an 
efficient process heating technique. Direct contact condensation heaters have a smaller 
footprint than plate and frame heat exchangers used in similar applications and have 
fewer issues with fouling. At certain conditions of the liquid and steam the process 
becomes unstable and dangerous. The steam condensation produces damaging noise and 
pressure fluctuations in the liquid with high frequency (3-8 kHz). This thesis details an 
experimental investigation into the causes of condensation noise and how the frequency 
of pressure fluctuation changes with the liquid temperature and flow rate. It was found 
that oscillation frequency is high (8 kHz) and the steam jet is stable at cold liquid 
temperature. Frequency decreases with increasing liquid temperature until the steam jet 
becomes unstable and forms bubbles that collapse at a lower frequency (2-4 kHz). The 
bubble collapse creates noise several orders of magnitude higher than stable steam jet 
condensation. The steam condensation is unstable due to the imbalance in the rate of 
steam supplied through the nozzle and the rate of steam condensed into the liquid. 
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1. Introduction	

Direct contact condensation is a technique used in industrial liquid heating 

applications and nuclear power plant pressure relief safety systems. Direct contact 

condensation is novel because the process directly mixes steam with the liquid to be 

heated, compared with common heat exchangers that transfer energy through a barrier. 

Direct contact condensation utilizes the latent and sensible energy present in the steam. 

Most heat exchangers only transfer the latent heat of the steam. Steam condensate must 

be returned to the boiler to be reheated and energy losses can occur. Direct contact 

condensation heaters avoid some common problems encountered when using 

conventional plate and frame heater exchangers including clogging when heating slurries 

and fouling due to buildup of baked on substances.   

In many applications steam injection is fairly straightforward and only simple 

calculations are required which quantify steam mass input necessary to raise the 

temperature of the process liquid by the desired amount. However, in some cases the 

steam injection process creates an incredibly loud screeching noise that makes it 

uncomfortable and sometimes even dangerous for employees to work near the equipment 

when it is operating. The noise is generated by hydrodynamic pressure fluctuations that 

can also damage process control and measurement equipment. The behavior of the steam 

injection can be broadly defined to be quiet and “stable” vs. loud and “unstable” 

depending on the process conditions.  

Many “regime maps” of direct contact condensation have been created which 

separate steam injection behavior into distinct regimes like chugging or condensation 

oscillation that are mapped to process parameters including steam mass flux and liquid 
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subcooling. It was found that the regime maps in the literature do not agree quantitatively 

with the results presented here, but qualitative trends are consistent. 

 This thesis focuses on understanding the behavior that creates noise in direct 

contact condensation and the transition from quiet to loud regime behavior. 

Understanding the transitionary behavior is critical to predicting the condensation regime 

at conditions that are not directly tested and for the design of equipment that can prevent 

or avoid undesirable behavior.  
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2. Background	

Direct contact condensation has been extensively studied beginning in the 1970’s 

and two major variations have been the focus of research: (1) injection of vapor into a 

quiescent pool of liquid and (2) injection of a vapor into flowing liquid. Most commonly 

the vapor and liquid are steam and water, but other applications including sodium vapor 

jet condensation have been studied [1]. The majority of the published research on direct 

contact condensation focuses on steam injected into quiescent pools of water. A type of 

safety cooling system in boiling water nuclear reactors rejects large amounts of heat from 

the reactor core by venting steam into water pools in an emergency event. 

  Kerney et al. was one of the first to complete a detailed, analytical study of sonic 

steam injecting into water in 1970. His work focused on correlating the jet penetration 

length with steam mass flux and condensation driving potential [2]. Many researchers 

after Kerney focused on aspects of direct contact condensation including jet penetration 

length, heat transfer coefficient, pressure oscillations, and mapping condensation 

regimes.  Work was already performed in the Multiphase Flow Visualization and 

Analysis lab at UW-Madison in 2011[3] that focused on the jet penetration length and 

temperature distribution of steam injected into crossflowing water. Further discussion on 

those topics is not included in this thesis. The work presented here is focused on 

understanding condensation stability and pressure oscillation changes during the 

transition between regimes of condensation behavior. 

This background section gives an overview of published literature on the two 

main topics of this thesis: (1) regime maps of condensation behavior and (2) pressure 
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oscillations created during the condensation process. An important consideration when 

analyzing published research is how drastically testing parameters and equipment 

geometry varies between experimental setups. Steam injection into pools is studied using 

nozzles oriented vertically downward, vertically upward, horizontally, or at various 

angles into pools of varying volume and through nozzles of varying diameter, length, and 

inlet geometry. Steam injection into flowing water is studied using nozzles oriented 

perpendicular to the flow, concurrent with the flow, or at various angles and through 

nozzles with varying diameters, lengths and inlet geometry. Due to the variations in test 

equipment the quantitative results from the literature generally did not agree well with 

the experimental data in this thesis. However, trends in oscillation frequency and 

magnitude found in the literature qualitatively matched the results presented in Chapter 

7. 

2.1. Regime	Maps	in	Literature	

A “regime map” is one of the common ways that data about direct contact 

condensation behavior is presented in the literature. A regime map is a system used to 

place varying steam injection behaviors into unique “bins” based on visual observations. 

The map indicates what behavior the steam condensation will have at various 

combinations of process conditions. Common process conditions used in maps include 

steam mass flux and water temperature. Regime names include various terms like 

“oscillatory bubble,” “condensation oscillation,” and “Oscillation-1” to describe the 

behavior of the steam jet. 



5 

Visual observations are used to describe the condensation due to the complex 

physics and large variety in behaviors that make quantitative comparison difficult. The 

qualitative nature of regime maps limits their usefulness, especially when the paper they 

are published in does not include good images of the described behaviors. Many papers 

use very similar terms like “oscillatory bubble” and “ellipsoidal oscillatory bubble” to 

differentiate regimes, but it is unclear what exactly these terms mean and how the 

behavior they describe is different. Additionally, the same regime name is often used to 

describe contradictory behavior in published papers by different research groups. 

2.1.1. Regime	Maps	of	Direct	Contact	Condensation	in	Quiescent	Pools	

Chan and Lee [4] presented one of the first regime maps to describe direct contact 

condensation. In their experiment steam was injected into a pool of water at atmospheric 

pressure and with “low” steam mass flux (0-175 kg/m^2-s). The map is defined by pool 

temperature and steam mass flux, both of which are commonly included parameters in 

most subsequent regime maps. Their rationale was that the steam mass flux provides a 

measure of the driving mechanism and the pool subcooling represents a measure of the 

condensation rate. The map published by Chan and Lee is shown in Figure 2-1.  
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2.1.3. Summary	of	Regimes	Discussed	in	Published	Literature		

Overall, regime descriptions in published literature are not always consistent and 

direct comparison is problematic. Minor variations in terminology are difficult to 

interpret due to the complex nature of the direct contact condensation behavior. 

However, four general condensation regimes are consistently present in the literature and 

will be used in this thesis: 

(1) Chugging: This regime occurs at low mass flux when the steam plume is able to fully 

condense and water periodically enters the steam nozzle before the steam plume 

reemerges.  

(2) Condensation oscillation: This regime occurs when a steam bubble is constantly 

seen at the nozzle exit and is continuously growing and shrinking while still attached to 

the nozzle exit. 

(3) Bubbling: This regime is characterized by the growth and detachment of steam 

bubbles. 

(4) Stable condensation: This regime is characterized by little variation in the steam 

plume volume. Stable condensation is sometimes split into more specific regimes based 

on jet plume shape. 

2.2. Pressure	Oscillation	in	Direct	Contact	Condensation	

The audible noise produced by the steam injection at stable and unstable 

conditions is of particular interest to the research sponsor due to its negative effects on 

equipment operators. Additionally, the pressure fluctuations that produce the noise can 

cause process equipment damage. Simpson and Chan were among the first to investigate 
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the pressure oscillations created by the steam injection [6]. Simpson and Chan included 

discussion on five trends seen in their experiment: 

 

1. Pressure oscillation frequency increases with increasing pool subcooling. 

2. Pressure oscillation frequency decreases with increasing injection tube 

diameter. 

3. Pressure oscillation amplitude increases with decreasing pool subcooling 

4. Pressure oscillation amplitude increases with increasing injection tube diameter 

5. Increasing pressure amplitude with increasing exit mass flux  

  

 These general trends are confirmed in nearly all subsequent studies on direct 

contact condensation. Nariai and Aya clarified that the pressure oscillations have the 

same frequency as the movement of the steam and water interface through the use of 

visual observation, but the behavior could not be proven quantitatively due to the testing 

equipment available [7]. Modern high speed cameras and pressure measurement devices 

allow for the pressure oscillation signals of the condensation regimes to be analyzed in 

detail.  

2.2.1. Pressure	Oscillation	in	the	Condensation	Oscillation	Regime	

Figure 2-5 shows a series of images of a steam plume in the condensation 

oscillation regime. The plume is shown to alternately grow and contract and bubble-like 

shapes are formed, but do not separate from the main plume. This volume change 
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3.1.2. Steam	Generator	

 An Infinity Fluids 480 V, 48 kW electric boiler is used as the saturated steam 

source. The temperature is controlled by a PID temperature controller interfaced to a K 

type thermocouple and is accurate to +/- 1 degree Celsius. This equates to an accuracy of 

about +/- 2.5 psi at the high end of the steam pressure range. A liquid over-pressure 

safety valve opens to drain at 100 psig. Due to pressure fluctuations about the set-point, 

the steam generator can produce steam up to about 95 psig.   The steam generator also 

has an emergency blow off valve at the vapor outlet which opens at 125 psig and 

exhausts steam through a hose attached to the drain stack. The feeder pump automatically 

controls liquid level in the steam generator body using a float switch. An override switch 

was installed to allow the pump to be turned on manually to fill the test section loop with 

deaerated water from the deaerator tank prior to testing. A set of valves was installed to 

switch the pump outlet flow for this purpose. The yellow handled ball valves shown in 

Figure 3-3 switch the flow and the red handled gate valve allows for controlling pressure 

output of the feeder pump when filling the process water loop. 
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wire power input is controlled by a PID temperature controller interfaced with a 

thermocouple touching the exterior of the steam piping and heating wire. A 

thermocouple measuring steam temperature directly was used initially, but the lag time 

between heat input and changing steam temperature was too great to be controllable. The 

current strategy is to set the heating wire PID controller to approximately 30 ˚C above 

the desired steam temperature. 

The resistive heating wire and a small amount of steam throttling allow for the 

steam to be superheated by several degrees Celsius. A small amount of steam superheat 

ensures that 100% vapor steam is being injected and allows for the determination of inlet 

steam specific enthalpy using the measured temperature and pressure. The specific 

enthalpy is subsequently used in an energy balance to calculate the rate of input steam 

mass. This energy balance was used to validate the condensate steam mass flow method 

mentioned in a later section. In the future, combining the energy balance method and 

condensate steam mass flow method could be used to test the effect of low quality steam 

on condensation stability. 

3.1.4. Steam	Pressure	and	Temperature	Measurement	

 The produced steam temperature is set using the steam generator, which in turn 

sets the steam pressure since the generator produces saturated steam. The steam pressure 

is measured just before the test section input using a Baumer high temperature pressure 

transmitter. The pressure transmitter has a range of 0-230 psi and accuracy of +/-0.25% 

of the full scale. The steam temperature was also measured using a type K thermocouple 

which has an uncertainty of +/-2.2 C.  
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3.1.5. Steam	Mass	Flow	Measurement	

 The steam mass flow is determined by measuring the mass flow rate of liquid 

water entering the expansion tank.  The steam mass flow measurement exploits the 

incompressibility of water to measure steam mass flow. A plot of process water loop 

pressure with time with a normal steam injection rate of 4.5 [g/s] and the expansion tank 

disconnected is shown in Figure 3-4. The process water loop has a volume of 

approximately 2 gallons. 

 

Figure 3-4. Sealed process water loop pressure over time with a 4.5 [g/s] steam injection 

rate. 

Figure 3-4 indicates that if the expansion tank were disconnected, with steam 

being injected, the process water loop pressure would increase at a theoretical rate of 

approximately 200 [psi/s]. However, with the expansion tank connected, process water 
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recorded with no steam injection and this correction was added to account for minor 

differences in the thermocouples (0.085 ˚C). 

Table 1. Steam Mass Flow Method Validation Study 

Run 
Number 

Mass Flow from Energy 
Balance [g/s] 

Liquid Steam Mass Flow 
Method [g/s] 

Percent Difference [%] 

1 1.271 1.228 3.441 

2 1.261 1.226 2.815 

3 1.254 1.246 0.64 

4 1.251 1.238 1.045 

5 1.252 1.242 0.802 

 

As Table 1 indicates, the maximum percent difference was 3.44% and the average was 

1.75%. The difference is likely due to the use of seven measured variables in the energy 

balance method. The values are similar enough to move forward with the liquid steam 

mass flow method. 

3.1.6. Deaerator	Tank	

A deaerator tank is used to remove air from the water in the tank by heating it. 

The deaerated water is used to feed the steam generator and is also used to fill the test 

section loop prior to beginning a testing session. The deaerator tank has a temperature 

controlled thermostatic valve which maintains the deaerator temperature at 

approximately 92 [˚C] by sparging in steam. Holding the water temperature at 92 [˚C] 

should decrease the dissolved oxygen by at least 90%. The solubility of oxygen in water 

as a function of temperature provided by engineeringtoolbox.com is shown in Figure 3-6. 
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3.2. 	Data	Acquisition	System	

A National Instruments cDAQ-9178 platform is used to record all of the experimental 

data. Table 2 indicates the measurement type, cDAQ card, and sampling rate for each 

data type. 

Table 2. cDAQ cards used and their sampling rates 

Data Type Measurement Type cDAQ Card Sampling 

Rate 

Pressure Transducers Voltage and Current NI 9207 1 kHz 

Thermocouple temperatures Voltage NI 9211 1 kHz 

Camera trigger and microphone signal Voltage NI 9215 100 kHz 

3.2.1. High	Speed	Camera	

The high speed video images presented in this thesis were taken using a Phantom 

V311 camera. The camera is capable of up to 3 billion [pixel/second] output. This 

equates to 3250 fps at 1280 x 800 resolution. Faster frame rates can be achieved at lower 

image resolution. Most high speed video data presented in this thesis was taken at 81,000 

fps and 128 x 200 resolution. This frame rate was chosen in order to capture 

approximately 10 images per cycle of the highest frequency steam plume oscillation 

discussed in a later section. The resolution allowed was then dictated by the camera’s 

pixel throughput limit. At 81,000 fps the exposure time for each image was 11.642 

microseconds. The camera trigger signal was measured by the data acquisition system 

which then automatically saved microphone data in sync with the camera images. This 

feature was not used in this thesis, but would be useful in the future to sync high speed 

pressure measurement with camera images. 
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 The Phantom V311 was equipped with a Nikon Micro-Nikkor 55mm macro lens. 

Several different lenses were experimented with and it was found that the Micro-Nikkor 

lens provided the best images qualitatively. Lighting of the steam plume was 

accomplished using a Dolan-Jenner MI-150 Fiber-Lite. The best images were captured 

when the overhead lab lights were turned off, a cardboard box was placed over the test 

section and camera to block incident light, and the fiber-lite was aimed at the steam 

plume such that extra light not reflected off of the plume passed through the rear window 

of the test section. 

3.2.2. Microphone	

Audio data presented in this thesis was recorded using an Audio-technica AT3527 

microphone and Symetrix 302 Dual Microphone Preamplifier. 

3.3. 	Visualization	Test	Section		

The work presented in this thesis required a redesign of the previously existing 

visualization test section. The original test section used large windows made of acrylic. 

This design was meant to visualize the steam being injected into the water as well as the 

jet of hot water created by the steam as it mixed with the water. The large window had 

relatively low pressure and temperature limits due to its size and the material properties 

of acrylic. The test section also leaked constantly due to its odd sealing interfaces. New 

specifications were developed along with Hydro-Thermal and a new test section was 

designed capable of continuous 100 [˚C] temperature exposure and 100 [psig] internal 

pressure. The new test section is shown in Figure 3-11. 
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4. Data	Processing	and	Analysis	Methods	

Three types of data were collected for each experimental test condition or “data 

point” in order to characterize the steam condensation behavior: Process conditions 

(temperatures and pressures), high speed video, and audio data.  

4.1. 	Process	Parameter	Measurements	

Process temperatures, pressures, and flow rates were measured continuously to 

ensure safe conditions while the test facility was operating. For the testing described in 

subsequent sections nominal values for desired process conditions were prescribed as 

part of the test plan. Actual, measured process conditions varied slightly from the 

nominal, prescribed values. For each data point, the 30 seconds of process condition data 

proceeding the high speed video capture were saved to verify that the condition was 

roughly steady state and to accurately characterize the data point conditions. A data point 

was considered to be sufficiently close to the prescribed condition and at steady state if 

the water temperature recorded was within +/- 0.5 [˚C] of the desired temperature for the 

30 seconds prior to the high speed video capture. An example of measured temperature 

data is shown in Figure 4-1. 
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Figure 4-1. Example measured water temperature data that meets the steady state 
condition requirement. 

Water temperature was chosen to determine whether a point was steady state because 

it was the parameter that was most difficult to control and was also the input that was 

varied most frequently during the testing. Steam pressure was automatically controlled 

by the steam generator PID controller. Water pressure was initially set manually and then 

was held at a relatively constant value by the air pressure regulator connected to the 

expansion tank. Water temperature and water flow rate were the two process variables 

with true manual control. Water flow rate stayed essentially constant after being initially 

set by manually operating the flow restriction valve (due to the relatively constant water 

pressure). However, water temperature needed to be actively monitored during testing 

and cooling water flow rate varied frequently. Through experience, the best method to 

control process water temperature was to slowly move between temperature data points 

by modulating the cooling water such that water temperature increased at a slow, steady 
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rate over time. This allowed for time to save high speed video recordings (~8 minutes) 

between each data point. Making large adjustments to the cooling water flow rate often 

caused overshooting of the desired temperature. 

4.2. High	Speed	Video	Acquisition	and	Analysis	

4.2.1. High	Speed	Camera	Output	

A Phantom V311 camera described in an earlier section was used to record high 

speed video for analysis. The camera natively outputs .cine files, which is the Phantom 

proprietary file type and includes detailed information about the time of video capture, 

frame rate, exposure time, etc. At the 81,000 Hz framerate and 128 x 200 resolution the 

camera could only record about 2.1 seconds of video on the built in RAM. It was 

determined that 1 second of recorded data was sufficient to represent each data point and 

reduce the time required to save each file during testing. At the 81,000 framerate even 

the fastest plume oscillations (~8 kHz) were captured thousands of times. Each .cine file 

was about 4 GB in size for 1 second of video and required about 8 minutes to save. One 

circumstance where more data would have been useful is in the flip-flop regime 

discussed in a later section. This regime was characterized by two distinct behaviors that 

alternated back and forth quickly, but with a time scale that was similar to the 1 second 

recording time. A longer data set would be valuable for understanding the frequency of 

oscillation for each behavior and the amount of time the plume spent exhibiting each 

behavior. 

It is recommended that in the future a solid state hard drive be purchased to allow 

more rapid transfer of recorded videos so that longer video recordings can be saved in a 
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reasonable amount of time. The solid state hard drive would act as a temporary and 

intermediate storage device for each testing session before the files are transferred to a 

larger and more economical disk drive overnight. The solid state hard dive would also 

make the next step in the process much faster, conversion of .cine files to .tiff. 

4.2.2. High	Speed	Video	File	Conversion	

Phantom .cine files can only be opened in the Phantom software. Before the high 

speed videos can be analyzed in MATLAB they need to be converted into individual .tiff 

files. Multipage .tiff files are more convenient to work with, but due to the size of the 

multipage .tiff files (4 GB) computer RAM space was a concern when manipulating the 

images. Phantom CV software was used to perform the conversion to .tiff files, which 

took approximately 20 minutes for each 1 second of video. The conversion was initially 

done in the background while performing other tasks. However, the file conversion time 

became a significant factor when the volume of data being collected increased towards 

the end of the project. The Phantom software batch convert function was then utilized to 

process file conversion overnight.  

4.2.3. Image	Files	in	MATLAB	

The individual .tiff files are imported into MATLAB and manipulated using the 

image processing toolbox. A .tiff image is imported into MATLAB and represented as an 

array of intensity values. Since the Phantom V311 records in greyscale, the intensity 

value of each pixel represents the degree of greyness of that pixel. Images are saved as 

16-bit .tiff files so each pixel has a possible value of 0 to 65,535 with 0 representing 

completely black and 65,535 representing completely white. Figure 4-2 shows an 
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reflects light, and many other factors. For this reason it is difficult to directly compare 

images from videos that are taken on different days. These factors also make it difficult 

to objectively define the steam plume edge. The definition of the steam plume edge is 

important for the plume volume oscillation magnitude and frequency determination 

discussed in a later section. A plot of the pixel intensity vs. horizontal spatial location is 

shown in Figure 4-3 for the bottom three rows of the magnified region in Figure 4-2. 

 

Figure 4-3. Plot of pixel intensity vs. horizontal location for the bottom rows of pixels shown 
in Figure 4-2. 

The previous figure shows the intensity value as a function of horizontal pixel 

location. The region on the left (i.e., pixels 1-2) has a small derivative and is distinctly 

steam while the region on the right (i.e., pixels 7-8) has a small derivative and is 

distinctly water. However, the steam plume edge region (i.e., pixels 2-7) has a relatively 
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larger and changing derivative. Arguments could be made for defining the plume edge at 

pixel location 2, pixel location 7, or somewhere in between, such as the position where 

the derivative of the intensity function is the largest. In this thesis the steam area is 

defined using an intensity filter for simplicity (discussed in the subsequent section). A 

future area of improvement is to utilize a more robust edge finding method such as 

defining the point of most positive and most negative derivative as the left and right 

plume edges, respectively. 

4.2.4. Image	Intensity	Filtering	

In order to extract data about the oscillation of the steam plume volume, a 

quantitative distinction must be made between the steam plume and surrounding water. 

One of the most basic methods used to do this is with an intensity filter. An intensity 

filter converts the array of intensity values representing the greyscale image into an array 

of binary values using a simple greater than logical expression. 

,ݔሺ݈݁ݔ݅ܲ	݂ܫ ሻݕ ൒ ,݁ݑ݈ܸܽ	݈݀݋݄ݏ݁ݎ݄ܶ ,ݔሺ݈݁ݔ݅ܲ ሻݕ ൌ 1 

Pixels with an intensity greater than or equal to the threshold value are given a binary 

value of 1 (steam) and pixels with an intensity of less than the threshold value are given a 

binary value of 0 (water). Determination of the threshold value is subjective. The same 

value cannot be used for all videos, especially from different testing days, due to the 

lighting factors discussed earlier. The influence of the threshold value choice on the 

results is discussed in a later section. The binary image resulting from the use of an 

intensity filter is shown in Figure 4-4. 
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Figure 4-5. Area variation of the steam plume over the one second of video collected. 

  

Figure 4-6. Area variation of the steam plume over a subset of time. 

Length and width variation of the plume as a function of time are obtained using 

a similar method. In this case the nnz() function is used to count the number of steam 
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frequencies and their magnitudes using Fourier analysis. Because the plume oscillation 

signals are derived from physical phenomena, the power spectrum output can be 

compared to the high speed videos to find the features that occur at the same frequency 

and therefore must be related to the specific frequency peaks. An example power 

spectrum from the transition regime is shown in Figure 4-10. This power spectrum 

calculation was performed on the function representing the width variation of the plume 

near the nozzle exit (plume base). The plot shown has a 150 point moving average 

applied to the frequency data to reduce noise and make the peak more visible; this is a 

common feature of most power spectrum plots in this thesis. 

 

Figure 4-10. Example power spectrum from the transition regime indicating width 
oscillation of 6500 [Hz]. 

The example in Figure 4-10 shows that, in the case described in the plot title, the 

plume oscillates in the width direction at its base at a rate of approximately 6500 [Hz]. 

Examples of power spectrums produced from the other steam plume regimes are 

discussed in the section: Regime Descriptions. The same transition regime example can 

be used to illustrate two key considerations in the visual oscillation frequency analysis: 
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(1) the influence of the choice of spatial location where the oscillation signal is extracted 

from and (2) the influence of threshold value choice. 

When describing the area variation of the steam plume it is obvious that the area 

described is simply the sum of all steam pixels in an image. However, describing the 

width variation of the plume is more nuanced and the choice of where along the steam 

plume you are talking about is non-trivial. For example, is the width variation at the base 

of the plume near the nozzle or at the tip of the plume and is the frequency of oscillation 

the same for both locations? An analysis of the influence of spatial location choice was 

conducted to answer this question. 

 Several of the video data sets were analyzed at varying distances away from the 

steam nozzle exit (heights). Locations were chosen in terms of fractional values of the 

nozzle diameter. Figure 4-11 shows an example of this study using a steam plume in the 

transition regime. A frame of the high speed video is shown on the left with blue lines 

indicating the vertical locations of the lines chosen to analyze. On the right is a plot 

showing a series of power spectrums of the width oscillation function determined at the 

locations indicated. 
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the height at which the width variation was the most distinct and could be determined 

most precisely. 

 The influence of threshold value choice on oscillation frequency determination 

was also studied. The result was the same: the oscillation frequency calculated was 

consistent regardless of the threshold value, but again the magnitude and obviousness of 

the peak varied. The plots in Figure 4-12 show how the power spectrums at various 

heights changed when the threshold value used for the intensity filter was varied between 

values of 10,000, 14,000, and 19,000. The plots show that the frequency peak is in the 

same location for each case even though the magnitude and sharpness of the frequency 

peak varied with intensity value. 

 The final consideration in this analysis is the uncertainty in oscillation frequency 

value. The frequency resolution output by the Fourier transform is equal to the sampling 

rate divided by the sample size; in this case 1 Hz (81,000 Hz / 81,000 samples = 1 Hz). 

However, the frequency peaks shown in Figure 4-12 have much wider distributions than 

1 Hz. Even though there is generally a defined peak for each case, the sharpness of the 

peak varies substantially depending on location choice and threshold value used in the 

intensity filter. Due to these considerations, it is difficult to determine if the distribution 

around the frequency peak is caused by an actual variation in the oscillation frequency or 

if it is caused by general uncertainty in the frequency determination method. For this 

reason, no frequency uncertainty is defined in this thesis. Furthermore, the frequency 

peak sharpness varies considerably between regimes. 
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4.3. Audio	Analysis	

For each data point 2 seconds of audio data was recorded using the Audio-technica 

microphone described previously. The audio signals were processed using the pwelch() 

MATLAB function to find the power spectrum in a similar way to the visual plume 

oscillation data. Examples of recorded audio data are presented in the Regime 

Descriptions section. The audio recording did not produce very interesting or easily 

interpreted results. The power spectrums produced were very noisy, likely due to 

background noise of the lab equipment and attenuation of the pressure fluctuations 

through the test section walls and air around the microphone. Bubble popping frequency 

in the unstable regime was distinguishable using the power spectrum, but the relatively 

small magnitude of the plume oscillations in the stable regime was indistinct. Refining 

the audio set-up or directly measuring water pressure fluctuations using a high speed 

pressure transducer is an important improvement that could be made to the experimental 

setup.  
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5. Initial,	Exploratory	Regime	Testing	

A set of tests with a broad span of process parameter values was conducted in 

early 2018 in order to validate the operation of the test facility and data acquisition 

system and to develop the data analysis methods discussed in the previous chapter. 

Another goal of this testing was to identify areas of interest for further study. A nozzle 

with a diameter 0.0935” diameter and nominal length to diameter ratio of near 1 was 

chosen because it is a common size used by the research sponsor. Steam pressure was 

fixed at 80 psig and water pressure, temperature and flow rate were each varied with 

high, medium, and low values. The conditions tested are shown below in Table 3.  

Table	3.	Initial	Text	Matrix	from	spring	2018	

Water Pressure = 60 psig Pressure Ratio = 0.765 

Water Flow Rate [L/min] 34 53 72 

Water Temperatures: 20 Ԩ 20 Ԩ 20 Ԩ 

 40 Ԩ 40 Ԩ 40 Ԩ 

 60 Ԩ 60 Ԩ 60 Ԩ 

Water Pressure = 45 psig Pressure Ratio = 0.611 

Water Flow Rate [L/min] 34 53 72 

Water Temperatures: 20 Ԩ 20 Ԩ 20 Ԩ 

 40 Ԩ 40 Ԩ 40 Ԩ 

 60 Ԩ 60 Ԩ 60 Ԩ 

Water Pressure = 30 psig Pressure Ratio = 0.458 

Water Flow Rate [L/min] 34.07 53 71.9 

Water Temperatures: 20 Ԩ 20 Ԩ 20 Ԩ 

 40 Ԩ 40 Ԩ 40 Ԩ 

 60 Ԩ 60 Ԩ 60 Ԩ 

 

 The nozzle diameter was 0.0935” with an 
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Figure 5-5. Regimes from the exploratory test matrix using similar format to published 

maps. 

 The data shown in Figure 5-5 is somewhat difficult to interpret due to the fact that 

the regime map data point nominal values are based on the pressure ratio between water 

and steam and not directly on steam mass flux. Only very general statements can be 

made about the behavior shown. The plume behavior is unstable at relatively low mass 

flux and high water temperature (to the left and above line 1). The plume behavior is 

generally stable at high steam mas flux and low water temperature (to the right and 

below line 2). The region between lines 1 and 2 contains all of the regimes and doesn’t 

have a readily discernable pattern. A major difference between the regime map in Figure 

5-5 and regime maps in literature (including Figure 2-1, Figure 2-2, and Figure 2-4) is 

the position of the stable regime. In almost all published regime maps the steam mass 

flux values in this set of experiments should result in a stable plume. The differences may 
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result from the simple, straight bore nozzle geometry with a short nozzle length or 

perhaps the trends in the other regime maps do translate well to the nozzles that are tested 

in this study because of their comparatively small diameter. 

The asymmetrical data points are interesting relative to two important points: (1) 

Much published research uses mass flux as the independent variable, which is controlled 

by tuning a flow control valve; this indirectly sets pressure ratio and (2) Data points 

having the same pressure ratio do not necessarily have the same steam mass flux. The 

majority of previous research directly set steam mass flux and indirectly set pressure 

ratio to accomplish the mass flux set-point. Because mass flux was the controlled 

parameter, the discussion of results usually focuses on which mass flux creates which 

condensation regime. However, it is interesting to flip this question the other way and 

ask: how does condensation regime behavior affect the mass flux? Figure 5-6 shows a 

plot of steam mass flux vs. water to steam pressure ratio for the 9 data points at the 9 

[gpm] water flow rate condition.  
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regime. This would indicate that the average measured pressure ratio value may be 

misleading. A varying pressure ratio and consequently varying steam mass flux is a 

major component to the explanation for the conditional instability given in the summary 

and is investigated further in Chapter 6. 

 

Figure 5-7. Condensation regime diagram plotted as water temperature vs. pressure ratio. 

 Figure 5-7 reformats the previous regime map into a map of water temperature vs. 

steam to water pressure ratio. This format appears more organized due to these being the 

set of independent parameters controlled in this testing. To the left and below line 1 the 

condensation behavior is stable, corresponding to low water temperature and a low 

pressure ratio. Above and to the right of line 2 the behavior is always unstable and this 

corresponds to a high water temperature and pressure ratio. The circles, A and B indicate 

areas of interesting behavior between lines 1 and 2. At these points the pressure ratio and 
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water temperature are the same, but the water flow rate changes and so does the 

condensation regime. It is clear that more data is needed to understand what is happening 

when the condensation changes regimes. The next chapter details testing conducted to 

understand the regime transition behavior with much higher resolution in data points. 
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6. Study	of	Stable	to	Unstable	Transition	Behavior	

The initial exploratory regime map testing described in Chapter 5 provided general 

information on the condensation regime behavior at a series of widely spaced testing 

points. Based on analysis of the exploratory test results, a more detailed set of tests was 

planned to answer the answer the question: How can regime transition behavior be 

quantified? The two major behaviors analyzed here are the volume oscillation frequency 

of the steam plume and the mass flux variation during condensation regime transition. 

A fixed pressure ratio of 0.47 was chosen for this set of experiments. This pressure 

ratio was the only pressure ratio from the previous testing shown in Figure 5-7 that 

exhibited behavior associated with all of the condensation regimes. The water flow rates 

chosen for testing were 12 [gpm], 14 [gpm], and 16 [gpm]. These flow rates were chosen 

because the 14 [gpm] case was the only flow rate in the initial exploratory study that 

resulted in the flip-flop regime. The water temperature was varied in increments of 5 [˚C] 

between 25 [˚C] and the equipment maximum of 80 [˚C] resulting in 12 temperature 

“steps.” The combination of 1 pressure ratio, 3 flow rates, and 12 temperatures resulted 

in 36 data points.  

In order to quantitatively compare condensation regimes, the plume volume 

oscillation frequency analysis method was developed with tools adapted from published 

literature [10], [5]. Measuring the oscillation frequency of the steam plume visually led 

to descriptions of pressure fluctuations created by the steam condensation and a link to 

oscillations of the steam and water interface as described in the literature [7]. Most 

published literature determines oscillation frequency of the steam plume through analysis 
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of measured pressure data and reference to visual frequency from videos is done 

qualitatively, by counting video frames. The oscillation frequencies seen in the 

experiments in this thesis are much higher than those in published literature (3-8 kHz in 

this experiment compared to 10-500 Hz in the literature) and are above the frequency 

resolution of most common pressure transducers. However, the Phantom V311 high-

speed camera used to record the videos used in this experiment was able to capture 

images at high enough frequency (81 kHz) to record the oscillation frequency data 

visually.  

 Through analysis of published literature it was determined that as the water 

temperature increases and the condensation behavior transitions from stable to unstable 

there is an associated increase in the magnitude of pressure oscillations created by the 

plume. Experimentation with frequency analysis of the area, width and length of the 

plume, along with observation of the high-speed videos, indicated that analysis of the 

width oscillation of the plume produced the most reliable and interpretable results. All of 

the frequency data presented in the following sections comes from analysis of the width 

oscillation of the steam plume. 

The area and length variation power spectra include other features not discussed here 

due to the difficulty associated with correlating them to observed behavior in the videos. 

The frequency peaks produced by the length and area frequency analysis do not exhibit 

consistent trends, which may be a consequence of the data analysis method. In particular, 

the definition of the plume length is difficult due to the tumultuous two-phase mixing 

region at the end of the plume. Published literature includes specific discussion on length 
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horizontal line. As the figure indicates, the bubble size isn’t consistent and this is also 

observed in the videos. Beginning at frame number 0 the bubble is not seen on the line. 

As the bubble moves upward the signal grows in magnitude until it reaches a peak 

indicating the center of the bubble. The signal decreases in magnitude as the bubble 

continues to rise and eventually passes the vertical position of analysis, returning the 

function to its minimum which is near frame 46 in this case, and the cycle repeats. This 

plot includes 1000 frames and at 81,000 [Hz] sampling frequency this represents 24.7 

[ms] of time. 49 periods are seen in this plot and this would indicate that a bubble event 

happens approximately every 0.5 [ms] (i.e., at 2000 [Hz]). 

 

Figure 6-2. Width oscillation along a horizontal line where the bubble separation occurs. 

The power spectrum associated with the unstable bubbling condensation case 

above indicates a calculated bubble separation frequency of 2047 [Hz]. Figure 6-3 shows 

a characteristic power spectrum plot from the unstable regime. Two obvious frequency 

peaks are always present on the power spectra. The first peak represents the frequency of 

the bubble separation. The second peak is always exactly twice the frequency of the 

bubble separation frequency. 
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analysis. A power spectrum of the width oscillation frequency of the plume in the stable 

condensation regime is shown in Figure 6-5. Two important characteristics are presented 

here and related to the frequency peak sharpness. (1) The relative flatness and non-

smoothness of the distribution makes the peak determination somewhat uncertain in this 

regime. (2) There is a relatively large distribution of frequencies that contribute to the 

peak when compared to the unstable bubbling condensation regime  

 

 

Figure 6-5. Power spectrum from the stable condensation regime. 

 This distribution of frequencies is likely due to the somewhat random oscillation 

behavior of the steam plume in this regime and this characteristic contributes to the 

stability. Pressure fluctuations occurring at a range of frequencies are less likely to 

become in phase and amplify each other. The distributed frequencies are clustered 

around a predominant frequency that generally decreases with increasing water 

temperature as discussed later in this chapter. The oscillation magnitude has no 

perceptible change with water temperature in this regime. 
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the peak indicates that the plume oscillation is occurring at a more consistent and less 

distributed frequency value. Furthermore, Figure 6-7 appears to indicate that the power 

spectra frequency peak becomes increasingly sharp with increasing water temperature. 

The collapsing of the oscillation frequency to a more defined value with higher 

magnitude contributes to the explanation of regime transition based on high frequency 

variation of pressure ratio mass flux as discussed in a later section. 

 

Figure 6-7. Power spectrum of the width oscillation in the condensation oscillation regime 
for the 16 [gpm] case showing increasing magnitude and decreasing frequency with 

increasing water temperature. 

6.1.4. Flip‐flop	Regime	

The flip-flop regime exhibits a combination of the condensation oscillation regime 

and unstable bubbling condensation regime. With no perceptible change in process 
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bubbling condensation behavior to condensation oscillation behavior at rate of up to 

several times in a second. This behavior is seen clearly on a plot of plume width vs. time 

as shown in Figure 6-8. 

 

Figure 6-8.  Width oscillation vs. time for a characteristic flip-flop regime example. 

 Figure 6-8 shows the distinct difference in plume oscillation magnitude of the 

unstable bubbling regime and the condensation oscillation regime. The figure also 

illustrates the very rapid transition between each regime and the frequency at which the 

transition happens. In this example, the plume behavior is in the bubbling condensation 

regime for an approximate total of 0.5 seconds and in the condensation oscillation regime 

for an approximate total of 1.5 seconds. The relative “duty cycle” of the time spent in 

each regime varies over test cases in the flip-flop regime and there are not enough data to 

draw definitive conclusions about it. A zoomed in portion of the data from Figure 6-8 is 

shown in Figure 6-9 to highlight the transition between regime behaviors. 
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Figure 6-9. Zoomed in portion from Figure 6-8 showing the transition region between 
regime behaviors. 

 Figure 6-9 illustrates the rapid regime transition. In this example the transition 

region indicated occurs over approximately 3 [ms]. During approximately 10 cycles of 

oscillation, the magnitude of the oscillation increases rapidly and unstable bubble 

formation behavior is observed. By isolating the sections of data representing each 

regime the oscillation frequency of both behaviors can be determined as shown in Figure 

6-10.  
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Figure 6-10. The difference in width oscillation frequency and bubble formation frequency 
when the two behaviors are isolated in a flip-flop regime example. 

6.1.5. Oscillation	Frequency	Behavior	during	Regime	Transition	

Combining the oscillation frequency analysis discussed in the preceding sections 

leads to the observation of a clear trend in the oscillation behavior that is summarized in 

Figure 6-11. 

 

Figure 6-11. Oscillation frequency as a function of increasing water temperature for all data cases. 
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 As seen in Figure 6-11, the trend of decreasing oscillation frequency with 

increasing water temperature is clearly observed. However, the effect of changing water 

flow rate is unclear. The change in magnitude of the water flow rate between the 12, 14, 

and 16 [gpm] cases likely changes the frequency by an amount that is too small relative 

to the uncertainty in the oscillation frequency to create discernable differences. This 

result matches the result seen by Simpson and Chan that pressure oscillation frequency 

increases with increasing pool subcooling [6]. 

6.1.6. Mass	Flux	Behavior	during	Regime	Transition	

Figure 2-1Figure 6-12 shows the variation in steam mass flow vs. water temperature. 

In general, the mass flux tends to decrease by about 10% as the steam plume transitions 

from the condensation oscillation regime to the unstable bubbling regime between 

approximately 60 [˚C] and 75 [˚C] 

 

Figure 6-12. Steam mass low rate vs. water temperature showing the decreasing mass flow 
rate during the transition to the unstable bubble separation regime. 
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6.1.7. Regime	Map	from	the	Study	of	Stable	to	Unstable	Transition	Behavior	

A map of the condensation regimes seen during the study of stable to unstable 

transition is shown in Figure 6-13. The regime transition behavior follows the trends 

discussed earlier. At low water temperature the condensation behavior is stable. As water 

temperature increases the steam and water interface oscillates with increasing magnitude 

and decreasing frequency in the transition (condensation oscillation regime). As water 

temperature increases further the plume presents as the flip-flop regime and the steam 

condensation transitions between condensation oscillation behavior and unstable bubble 

formation behavior. At high water temperatures the plume continuously forms bubbles 

that separate and detach from the main body. 

 

Figure 6-13. Regime map result from the study of stable to unstable regime transition.	
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7. Summary	and	Conclusions	

During direct contact condensation of steam in water crossflow oscillations of the 

steam plume volume create water pressure fluctuations and associated audible noise. 

Initial testing focused on evaluating the performance of the test facility and gaining an 

understanding of condensation behavior at a wide variety of parameter values. Further 

testing was conducted to understand how the oscillation frequency and magnitude 

changed during condensation regime transition by varying water temperature and water 

flow rate at a single pressure ratio. The analysis resulted in trends that qualitatively 

matched other published results, but differed quantitatively, which was likely due to 

differences in the geometry of the steam nozzle used in the experiment and the effect of 

crossflowing water. 

7.1. Comparison	to	Regime	Maps	in	Literature	

Comparison of the regime map from this thesis with those discussed in the 

background chapter results in general qualitative agreement. The regime map from Cho 

et al. is referenced most frequently in the literature. The data presented in chapter 6 used 

a fixed water-to-steam pressure ratio, fixed water flow rate, and varying water 

temperature. Since the fixed water-to-steam pressure ratio produced generally constant 

mass flux the trend in measured data from this set of experiments can be roughly 

represented by the arrow indicated in Figure 7-1 overlaid on the regime map from Cho et 

al. [12]. Note that the mass flux values measured in this set of experiments were much 

different than from Cho and the arrow placement is not representative of the true 

measured values (indicated in Figure 6-12). However, very similar trends in regime 
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behavior are observed related to the transition between stable condensation (SC), 

condensation oscillation (CO), and bubbling condensation oscillation (BCO) with 

increasing water temperature.  

Starting at low water temperature the plume behavior is in the stable regime. As 

water temperature increases and reaches about 40 [˚C] the behavior changes to the 

condensation oscillation regime. As water temperature increases further to around 80 

[˚C] the condensation behavior is in the bubbling condensation oscillation regime. This 

trend shows good agreement with the trends in Figure 6-13. The shift in mass flux at 

which the trend occurs is possibly due to the influence of flowing water present in this 

experiment and not Cho’s. 
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oscillation regime. The steam plume volume oscillates with greater magnitude and lower 

frequency as water temperature is increased. The increase in plume oscillation volume 

creates increased pressure fluctuation magnitude and louder noise. In this regime the 

oscillation frequency collapses onto a more defined value. Bubble-like waves are created 

along the steam plume in this regime, but do not break off of the main plume body. 

 

Figure 7-2. Oscillation frequency vs. water temperature for the 14 [gpm] case highlighting 
frequency behavior in the different condensation regimes 

At very high water temperature, the condensation behavior is unstable and large 

steam bubbles separate from the main steam volume and collapse. The bubble collapse 

events create large pressure fluctuations and very loud and uncomfortable screeching 

noise at several kHz. As water temperature increases further the frequency of bubble 
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separation decreases. Between the condensation oscillation regime and unstable 

condensation regime there is a regime where the steam behavior quickly alternates from 

condensation oscillation behavior to unstable bubble separation behavior and this is 

termed the flip-flop regime. This regime is seen visually and is audibly recognized by a 

“chirping” noise where the chirps represent the portion in the unstable bubbling regime. 

To the author’s knowledge this regime has not been reported in the literature. 

7.3. Proposed	Explanation	for	Plume	Volume	Oscillation	and	Frequency	
Behavior	

A general explanation for the plume oscillation instability is proposed here based on 

two key ideas:  

(1) The steam mass input rate is mainly controlled by the water-to-steam pressure 

ratio. The pressure ratio is influenced by pressure oscillations in the water that are 

induced by plume volume change. 

(2) The condensation rate of steam at the steam/water interface is mainly controlled 

by the condensation potential of the water and the surface area of the steam plume.  

Oscillations in the steam plume volume are created by an imbalance in the rate of 

steam mass input to the plume and the condensation rate of steam at the plume boundary. 

The condensation potential of the water is large at low water temperature and high water 

flow rate. The condensation rate can be roughly represented by a heat transfer rate given 

by the surface area of the plume multiplied by a convection coefficient and temperature 

difference between the steam and water. Condensation rate increases with an increase in 

surface area, an increase in the convection coefficient (higher water flowrate), or an 
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increase in temperature difference. Beginning with a case of large condensation potential, 

the plume behavior is stable and quiet. If the steam input rate is slightly higher than the 

steam condensation rate then the plume volume grows a little larger, which increases 

surface area and thus condensation rate. This increase in volume increases the local 

pressure ratio by increasing local water pressure [9] this decreases the steam input rate. 

Due to the high condensation potential of the water the magnitude of these fluctuations is 

kept small. 

As the condensation potential of the water decreases the steam plume surface area 

must grow increasingly larger to create enough increase in condensation rate to counter 

an imbalance in steam input rate, which also takes longer. The decreasing condensation 

potential creates increasingly larger and slower oscillations in steam plume volume. The 

increasing plume oscillation magnitude generates increasingly louder noise. At some 

critical frequency or amplitude the oscillations become large enough that vortex rotation 

behavior at the plume edge draws liquid water from the base of the plume into itself and 

bubbles pinch off from the main steam plume and collapse creating loud screeching 

noise. 
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