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creases. On an annual basis, the disagreement is 9% for dry sandy

loam soil but this increases to 35% when the soil is one-hundred

percent saturated.
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1.0 INTRODUCTION

1.1 Background

The potential energy savings of constructing a building totally
or partially underground compared to the same structure built above
ground have attracted designers and researchers to earth sheltered
design and analysis. In the area of energy conservation, there are
geveral advantages to placing a structure below ground. Above-
ground structures experience unwanted energy losses or gains to OT
from the environment by air leakage and conductance [24]. The un-
desirable energy transfer from alr leakage is virtually non-existent
in underground structures. The heat transier from an earth sheltered
building by conduction is lower than above-ground structures because
the soil adjacent to the earth sheltered building thermally dampens
the severe remperature variations of the outside air. Furthermore,
this damping is more gignificant as the depth below grade increases
where a constant ground température ig achieved around ten meters
[161. Additional energy savings can be realized from an underground
building because its effective thermal mass encompasses part of the
adjacent soil. Buildings with a large thermal capacity, which are
partially heated by direct solar heat gain, prevent the interior
temperature from changing drastically over short time intervals.
Assuming this temperature variation is within or near the comfort

zone, heating and cooling requirements are reduced to a minimum.



flexibility, the energy analysis using a computer program was se-
lected.

In this study 2 computer program was developed which evaluates

the ground heat flow from a single stOLY earth sheltered dwelling,
a basement completely below grade, & slab of an above grade bulld-
ing, and a fully mixed, sengible energy, in-ground geasonal storage
tank. The progran meets the following requirements:

1. Both the heat transfer rate from the stated structures ToO
the adjacent soil and the heat transfer rate from the soil
to all neighboring boundaries must be modeled and avail-
able.

2. The program should be general and ipexpensive to use.

3. The required data for the program must be readily avail-
able and require minimal computational eifort for the
user.

4. The physical boundaries for the ground coupled structure
must be accurately modeled.

5. The program must be compatible with TRNSYS, a transient
gimulation program developed at the University of Wisconsin

. which predicts the thermal performance of systems under
transient conditions.

geveral existing programs meet some of these conditions, but not

all of them. For example, a program developed at the University of
Toronto by Hooper [9] et al. models the thermal performance of solar

space heating systems using annual heat storage. However, this pro-



1.2 Purpose

This thesis is divided into two peneral sections. The first
section, Chapter 2, describes the assumptions used and explains the
programming logic of the transient, ground heat transfer program
FARTH. The major thermal processes of the soil adjacent to the
below ground structure, which influence the structure's energy perfor—
mance, are simplified and expressed numerically for computer use.
gince EARTH is used in conjunction with TENSYS, compatibility of the
two programs is presented. 1In order to gain a clear understanding,

a complete sequential presentation of EARTH is described.

The second section, Chapter 3, presents gimplified techniques to
estimate the monthly ground heat transfer from basements and sensible
energy, fully mixed, seasonal stoTage tanks. Simulation of thermal
performance for a solary space heating system using a seasonal stor-
age tank 1is studied at a northern {ocation 1n the United States.
System performance is compared by calculating the tank heat loss in
two forms. First, the tank heat loss is approximated by a lumped
steady state model [22], then the tank heat loss is computed based
on a transient finite difference model of the soil surrounding the
tank. The steady state technigue assumes the ground heat loss flows
between the varying tank temperature and a fixed sink temperature
through a combined carth-insulation conductance. A method to esti-
pate the combined earth-insulation conductance is presented. The

thermal perfdrmance of a basement is studied at a northern and southe




2.0 EARTH, A GROUND COUPLING PROGRAM

2.1 Introduction

In this chaptex the Program EARTH, which determines the heat
flow for in-ground structures, 1s described. First, selection of
gsignificant soil characteristics are justified. Then a brief ex-—
planation of the necessary TRNSYS subprograms to be used with EARTH
for transient system evaluation is presented. A major portion of
the chapter is devoted to & sequential description of EARTH. Fin-

ally, simulation results as computed by EARTH ave compared te the

results determined by & ground coupling program developed at

another university.

In Section 2.2 the primary mechanisms which influence the thermal
behavior of the soil surrounding an underground structure are
analyzed. The analysis begins with the soil being non-isotropic and
non-homogeneous with transient, three dimensional, heat and mass
transfer. The gignificance of each thermal mechanism is evaluated.
As a result, the transient, heat transfer assumptions used in FARTH
are justified.

gection 2.3 discusses the required TRNSYS subprograms, compon-
ents, to be used with EARTH for performance evaluation of thermal
systems displaying transient behavior. The TRNSYS components for a
solar space heating system using an underground ceasonal storage

tank are presented. Also, the components required to predict ground




3. an on grade slab of an above ground structufre having a
fixed interior temperature where the ground heat loss
calculations are evaluated through the slab.

4. A one story earth sheltered dwelling having any desired
fixed interior temperature such that the ground encloses
all sides except one (for entrance from the outside).
Ground heat loss calculations are evaluated on the ceiling,
back wall (opposite the wall exposed to the ambient condi-
tions) and floor.

The program EARTH can be naturally divided into three parts.

The first part calculates values which are constant for the entire
gimulation, the second part calculates values that are comstant
during a time-step, and the third part calculates values which are
constant during a time—-step but may be needed several times during a
time-step for other TRNSYS [1] components. Fach part 1is explained in
detail.

Tn Section 2.5 the validity of EARTH 1is discussed. Thermal per-
formance results of a completely below grade hasement calculated by
EARTH are compared to the results computed by a ground coupled heat
tyansfer program developed at GCeorgia Institute of Technology-

The objective of this chapter ig to justify the heat transfer
modes used in FARTH and discuss the role of EARTH with respect TO
TRNSYS. Also, to present the progralb logic in a clear and concise

manner and to jllustrate the validity of EARTH.
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k(B) = k. (B) 2.2.2

This equation 1is used foxr all subsequent ground heat flow analyses.
5.2.2 Latent Heat of Fusion

The latent heat of fusion, namely the energy release during
freezing and thawing, has been studied by Hooper using a one dimen-
sional numerical model for soil below a snow covered layer. Although
latent heat of fusion in the soil with a snow cover reduces the frost
penetration depth and slightly dampens winter soil temperature ex-
tremes [6], the following result was concluded. "Although the in-
clusion of latent heat of fusion in the model changes the tempera-
rure of the soil, it makes less than one percent difference to the
yearly net heat transfer into the ground when the initial and final
goil temperatures are the same” [6]. Therefore, latent heat of fusion
will not be included in this ground heat flow study.
7.2.3 GroundwateT Transport Mechanisms

MOTISTURE MIGRATTION: The influence of moisture migration on
gsoil thermal conductivity was studied by Moench and Evans .[5] for
sandy loam solls at several soil moisture contents. Taklng measure-
ments at 24°C, the component of thermal conductivity due to moisture
movement never exceeded filve percent. gince the neighboring soil
temperature of the earth strucitures considered does not go signifi-
cantly higher than 24°C, 1t can be concluded that the impact of

moisture migration on changing the soil conductivity value is small.
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Appendix Two.
2.2.4 Classification

Based on the preceding analysis of the soil surrounding the
earth structure, determining the ground heat flow has been simpli-
fied. The heat flow can be evaluated mathematically by assuming the
earth structure-soil system represents a propogation boundary value
problem {11}, since the dependent variable, temperature, is a func-
tion of time and space variables. However, modeling the distri-
buted parameter, dynamic system in this manner involves three di-
mensional, partial diffgrential equations. Due to computational
expense and the preceding simplifications, the earth structure-soil
system 1is governed by the following two dimensional, conduction

heat transfer equation [15]):

of _ 3 (k3T 3 [karT
PO, 5 = <W3x>+ay <r~#——3y> 2.2.3

This equation represents the balance between the energy storage rate
of the soil on the left agide of the equatiom to the net rate of en-
ergy from conduction on the right side. To solve numerically, the
partial differential equations are reduced to an equivalent set of
equations in finite difference form. The space variables, x and v,
are subdivided, forming an earth grid. The temperature distribution
through the soil is calculated by assuming a constant temperature at

each grid point for a gpecified, brief time interval. Each grid
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ing inputs, and the number of derivatives OT rime dependent differ-
ential equations involved. The components of the system are linked
by interconnecting selected output of one component to input of
another component. For example, the fluid flow rate leaving a pump
(output) in a collector—-storage tank loop becomes the input fluid
flow rate to the solar collector.

DATA READER: gimulations use formated hour by hour Solmet TMY
weather data [191]. Specifically, data for global solar radiation
on a horizontal surface, dry bulb temperature and dew point tewper—
ature were utilized.

RADIATLION PROCESSOR: One of this component's capabilities is to
estimate the radiation incident on a tilted surface given horizontal
radiation values. The Erbs correlation [18] was selected to esti-
mate the iselation on the collector surface, where ground reflec—
tance, P latitude of the system, f), collector slope, B» and azimuth
angle, Y, were fixed during a gimulation.

FLAT PLATE SOLAR COLLECTOR: The net vate of useful energy

from a collector is expressed by the Hottel and Whiller equation [71:
QU = ACFI[HT(m) - UL(Ti - Tamb)} = (me) f(TO - Ti) 2.3.1

which states that the total rate of energy collected (QU) is the rate
of energy absorbed by the collector minus the rate of energy lost to
the environment. The collector is assumed to have constant optical
properties, 1o, overall loss coefficient, Yy, and collector effic—

iency factor, F', during a gimulation.
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is above a gpecified maximum, Tmax’ and will not operate if the

temperature difference 1is below a specified minumum value, Tmin.
When the collector—tank temperature difference is within the dead
bank, T .o to Tmin’ the pump is turned on if the fluid leaving the
collector 1s heating up and is turned off if the fluid is cooling
down .

PUMP: Necessary to maintain a mass flow rate, the pump in the
collector—storage tank loop establishes the fluid flow rate. In
this case the puip uses a specified maximum flow rate while on.

ENERGY/SPACE‘HEATING LOAD: Among other capabilities, this com-

ponent estimates the residential space heating load expressed by the

equation 13

QLOAD = UAh(Tt -T ) 2.3.3

amb

neglecting internal energy gains. The room temperature, Tr’ ig set

to 20°C, the varying air temperature is represented by Tamb’ and UAh
is the heating requirement of the residence, which remains constant
during the gimulation.
9.3.2 Time Step Teatures

The Solmet weather data [19] gged in the simulation for the
thermal systems described is available in one hour intervals. With
this weatheT data, a maximum time-step of omne hour can be used. How-
ever, accurate results, using g larger time gtep, can be obtained for

heat transfer predictions of a basement, slab or earth sheltered

dwelling. Because of this, & computational and cost caving proce~
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structure wall (if applicable) and at the ground surface.
Also, initial tempevrature for the earth structure, left houndary
condition nodes (if earth sheltered dwelling) and right bowmdary
condition nodes is required; an added option is to enter node num-
bers to obtain node temperature history print—-out. Tn order to de-
termine the dimensions of the earth structure and neighboring soil,
a hand drawn diagram is necessary. Except for the earth sheltered
dwelling shown in Figure 2,4,1, only palf of the earth styructure-
goil system must be drawn. A typical configuration,will have 70
parameters; however, 0O additional data cets are necessary. The
intention is toO input values that require minimal computational
effort for the user.

NODE NUMBERING INTEGER VARTABLE VALUES: Node numbering and
computation of thermal goil properties has eliminated the need for
the user to calculate the conduction and capacitance matrices.
Tmportant nodes are numbered internally, guch as cornet nodes, and
nodes near the boundaries. These node numbers are stored and used
to identify a specific 1ocation (x, y) on the earth grid. Node lo-
cation is essential o accurately aggign the conductance between
noedes.

CAT.CULATIONS: The earth grid ig divided into three major
sones, and each zone may have & different soil thermal conductivity
and capacity shown in Figures A.2.6 and 7 of Appendix Two. For a
specific zone all nodes are the same size. The program computes

four thermal capacities, On& for each of the three soil zones and
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one for the tank (if used) expressed by the equation:
CAP = pCpV 2.4.1

CAFP represents the thermal capacity, P rhe density, Cp the specific
heat, and V the node volume. Except for the tank, the earth struc-
ture temperature ig fixed at any desired value, whereby the capaci-
tance of the structure is not considered. Realistically, this fixed
temperature may be thought of as energy rate control. FEmergy rate
control assumes there is exactly enough energy added or removed from
the earth structure to maintain the fixed temperature. Since only
ground coupled heat transfer 1is considered for the basement, slab

or earth sheltered dwelling, the rate of energy required to maintain
a fixed temperature is equal to the rate at which energy ig leaving
the earth structure (aenv) to the adjacent soil.

Nineteen combinations of thermal conductances in EARTH symbol-
ized as COND1. . _CONDLY model all possible conductances encountered
by the large number of nodes in an earth grid. These values con—
sider conduction and convection at the following locations: the
ground surface, interior soil, imsulation, earth structure material,
and earth structure fluid, as shown in Figures 2.4,2 and 2.443.
Using finite difference, the oune dimensional lumped thermal con-

ductance, COND, is:

COND =% 2.4.2

Thermal conductivity is k, the node area on one face is A, and x 1is
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boundary, left houndary (earth sheltered dwelling), deep ground and
hrough 88 in Figure

ambient. These nodes correspond to nodes 73 T
2.4.1. The remaining grid points are jpitialized by equating the
initial temperature of a right boundary condition node to all nodes
in the corresponding YOW. This continues down the right boundary
umn of nodes until the entire earth grid is ipitialized.

condition col
e initialized by

Specifically, in Tigure 9.4.1 nodes 1 thorugh & ar
rature of node 74, nodes 9 through 16 by 75, and so on to

the tempe

62 through 72 being

initialized by the temperature of node 82.

nodes
GRID CHECK: 1f the results of a simulation are questionable,
selected internal program values £an be printed by placing & nega-
This checking procedure

tive sign in front of the f£irst parametet.
ors, [rom grid numbering and conduction calculation,

will allow ert
Togram values are

These ipternal P

to be detected casier and faster.

defined in Appendix Three.

9. 4,2 Firvst call in Time~5TLEP
1led only once during a time-

£ the prograd is cal

The second part o
ation method is emplo

ved.

step, slnce an explicit aumerical integtr
This part includes system,inputs and nodal temperature assigonment.
TNPUTS: The ipputs Lo the program consist of temperatures for
t, deep ground and dew point,‘and solar radiation oD a

the ambien
4 storage tank re-

horizontal surface for all structures. The burie
ass flow rates from the heat gource and load.

g temperatures and m

or earth sheltered dwe

quire
11ing requires & fixed

The slab, basement,
g energy rate control; also, the pasement uses &

temperature implyin
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explicit formulation was selected. Tor a given node, I, the neigh-
boring node temperature values are assigned in the second index, J.
Specifically, the two dimensional, temperature array (1, I for node
28 in Figure 2.4.1 1s assigned as follows: (1,1) is the temperatur®
of node 24, (1,2) is the temperaturé of boundary condition node 78,
(1,3) is the temperaturé€ of node 39 and (1,4) 18 the temperature of
node 27. There are always four nodes surrounding 2 grid point, ex—
cept for the earth structure, shown in Figuré€ 9 4.4, which generally
has mOre neighboring earth nodes. The earth structure is modeled as
a single node at & fixed temperature for the slab, bagement O earth
sheltered dwelling; 2 varying temperature for the stoYage tank.

As previously discussed, the soil temperature at the vertical
bhoundaries of the earth grid model undisturbed earth. Knowledge of
earth temperatures at various depths becomes unnecessary other than
an initial guess in the parameter 1ist. If the earth grid is made
large enough, the undisturbed earth approximation becomes accurate
for this two dimensional, temperature distribution analysis. The
earth grid is the proper gize if less than ten percent of its rotal
heat flow {s through these vertical boundaries (171

SOL*AIR_TEMPEBAIURE: gipilatr €O other earth nodes, the ground
surface nodes must have four neighboring nodes for temperature
agsignment . To account for radiation exchange, at the earth's sur-—
face, the sol-alir temperature, T _, as showd in Figure 2.4.6, is

sa

used. The sol-air temperature is described a5 [1l:
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That temperature of the outdeot air which, in the absence
of all radiation exchanges, would give the same rate of
heat entry imto the surface as would exist with the actual

combination of incident solar radiation, radiant energy

exchange with the sky and outdoor surroundings and convec-

tive heat exchange with the outdooY air.
A mathematical definition of the sol-air temperature, Tsa’ is derived
in Appendix One. 1n the prograim, this value is stored in the T(I,L)
location and 1is used for temperature evaluation between the ambient
and ground gurface nodes.
2.4.3 Tterative Call in Time-Step

This paxt of the progralm ig called several times during a time-
step, since other TRNSYS (1] components described in gection 2.3.1
use an iterative aumerical method to estimate the dependent variable.
This part includes the algorithm and heat transfef caloulations.

NON-STEADY STATE NUMERICAL METHOD: 1In prder ©O compute the heat
filow for the earth structure, the energy exchange between the earth
nodes must be determined. The diffetential heat transfer expression
(Equation 2.2.3) is solved numerically by epploying the forward dif-
ference approximation. This numerical rechnique is described in
terms of temperatur® for one nodal point, at a given X and y loca-
tion. Predicting the temperature profile through time for a single
node becomes [11]:

E rf
7 =T+ £(T,t)dt 2.4.7
€

3 . :
where T and tf are the new temperature and time values respectlvely.

T and € are the present temperature and time values respectively and
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conduction are modeled. The temperature for th
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At the ground gqurface the modes of heat transfer aré conduction,
convection and radiation. The new temperature for a node at the sur—

face 1is computed by the followlns expression 1271:
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qu = 0 g Ty~ T 2.4.16
and the energy rate to the l1oad 1s:
Bgupp ~ MO T T,) 2.4.17
Thus, the future tank temperature can be obtained by golving the
energy balance of Equation 2.4.13 for Tf.
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2.5 Comparing the Results of EARTH

To test the accuracy of the program, the enetrgy demand of 2
pasement 1ocated in Madison, Wisconsin is computed using EARTH.
These results are compared tO the computations using 2 ground heat
sfer program developed at Georgla Institute of Technology (G.I,T.)

insulation is

rran
wed at 20°C and

femperature is fi
t a thickness ot

The basement

[301.
ull length of the basement walls &

1aced overl the £
Bagenent

P
e 2.5.1.

0.076 meters (t

s shown in Figut

and other pertinent

hree inches), @

and soil specifications, poundary conditions

parameters are Misted in Table 2.5.1.
The program developed 10 G.1.T. assumes quasi—steady state, LWO
dimensional ground heat flow. Monthly averaged values are calcu-
lated on 2 oteady state basis. 1The temperature profile rhrough the
goil and pasement heat cransfer 1is evaluated using 3 finite element
ture distribution at the vertical earth

The tempera

formulation [287.
equation [281:

boundary of Figure 2.5.1 is computed using Flucker's
0.

Lg.ry =T * 1% 1896y ;. (0.1726t + 0.1896Y -1.54) 2.5.1
when T represents temperature, y the coil depth and t the day of
g from DecembeT 31.
ents of the basement as predicted by

y energy requirem
are shown 1D Figure 2.5.2.

using FARTH is tW

the yeal gtartin

The monthl
On an amual

e G.1.T. program

¢ heating demand

EARTH and th
enty two

computed basemen

calculatedusingt

pbasis the
percentgreaterthanthat heG.I.T.program. Furthermore,
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2.5.1 pagement parameters (Program Comparison Ccase)

TABLE
pasement dimensions {m)
Tloor thickness 0.15
Wall thickness 0.30
Helght 2.1
width 4.3
Temperature °¢)
T 20.0
room
Taeep ground 10.0
Convective heat rransfer coefficient CHJEL—*PQ
ﬂg hr °C
hroom 20.5
ham'b 94,0
Thermal conductivity Q*jglﬂ’ﬂ
m hr °C
k 4.8
concrete
k. 0.13
ins
ksoil 4,18
ﬂwﬂMICMmdjy(nga
m
1400.0

C il
(p p) s0l
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FARTH does not predict a cooling load in July as indicated by the
predictions using the G.I.T. program.

Each program usées a different approach to calculate ground heat
flow; therefore, the disagreement in the basement heat transfer can
be expected. There are two major differences hetween the programs.
FARTH considers the capacitance of the soil, whereas the G.1.7T.
program does not. Also EARTH computes the undisturbed earth temper-
ature profile using a oné dimensional; semi-infinite slab model, but
the G.I.T. program uses equation 2.5.1 to compute the temperature
distribution of this boundary. The influence of soil capacitance
on basement heat transfer is apparent in Figure 2.5.2. As indi-
cated by the predictions ueing EARTH, the presence of capacitance
results in the amplitude of rhe heat flow curve being dampened and
a two month phase shift to the right as compared to the quasi-steady

atate G.1.T. curve.
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goil at varying moisture contents. The tank ingulation thickness,
underground rank depth and water table are among the parameters
varied in the analysis.

Section 3.3 ipvestigates geveral steady state heat flow methods
ro predict the heat transfer between a completely below grade base—
ment and the surrounding s0il. The ateady state methods are compared
to the computer simulated heat flow calculated DY the program EARTH.
Comparisaons are apalyzed for & hagement in Madison, Wisconsin, and
Charleston, gouth Carolina, for three geparate soil conditions.

The basement is simulated with insulation of several thicknesses,
including 2Ze€r0s covering the walls.

The governing energy balance used in the ateady state methods
agsumes the pasement heat flow 1s simplified in the followlng
manner. 1The hasement heat cransfer is thermally driven by the
temperature potential between 2 fixed basement temperature, Tb’ and
a monthly varying earth temperature, T,- The heat Flows through a
jumped conductance, UA_g» which encompasses the basement insulation
and some fraction of the gurrounding soil. Two methods are developed
to approximate the monthly varying earth femperature and are referred
to as T,y and T - Replacing Tg» by each of these earth temperatureé
approximations, in the governing steady state energy balance defines
the first two steady state methods. 1In addition to approximating Tas
a techmique to estimate the overall conductance is presented. Using
this estimated conductance with each of the earth tenperature approx—

imations, two additional steady state methods are developed. Finally,
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ig assumed tO be a right circular cylinder with the height equal to

its diametel and the tank is well insulated [147. Fvaluation of the
storage tank heat loss rate using Equation 3.2.1 will be referred to
as the steady state model.

Using EARTH, the constant overall conductance for ground heat
loss, UASS, can be determined for the ip-ground seasonal storage tank.
The UA_g value 1is calculated by counstructing an earth grid from the
adjacent goil assuming there is one fixed temperature at the ground
surface, the yertical poundary and the deep ground with another fixed
temperature for the storage tank. The tank-soil system.with the de-
gired amount of insulation is shown in Figure 3.2.1 for half of the
tank and adjacent soil. When this configuration reaches equilibrium,
indicated when the tank heat loss rate does not change with time, the
UA g value can be readily calculated from Equation 3.2.1. Using the
described tank-soll system to find UASS, the assumption that the
earth's surface and the deep ground are fixed at the same tempera-
ture 1is based on the concept that on an annual average these two
temperatures are approximately equal [16]. Since the actual heat
flow from the storage tank BOeS only to the earth's surface and the
deep ground, the vertical boundary 1is placed far away from the stor—
age tank with a maximum of ten percent of the total heat flow leav-
ing the storage tamk crossing its boundaries, thereby causing minimal
error in the computation of the overall conductance. UASS.

When using EARTH to predict the storage tank ground heat loss

rate, the rank geomelry is rectangular, but it is assumed that the
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space heating system is also simulated.using TRNSYS, but the perfor-—
mance of the tank 1s calculated by the program FARTH rather than the
subprogram.called TYPEL In TRNSYS.

Comparing simulated performance of the space heating system with
the steady state model to the performance with the transient model
is calculated for two cases. Fach case 18 distinguished by the tank
parameters. The tank of the solatr space heating system,is tested
under the same load, weather conditions and water table depth, but
varying significantly jn the tank geometTy and soil conditions. The
unique physical parameters of case 0N&, purposefully selected €O
minimize the differences, are as follows:

1. Dry soil surrounding the storage tank

2. Well insulated storage tank

3, Storage tank buried deep in the soil

4. gmall storage tank gurface area (compared to case two)

Tor case WO, the physical parameters were selected tO magximize
the differences between the steady state model and the transient
model and are &8 follows:

1. Wet soll gurrounding the storage tank

2. Marginally ipsulated stoTrage tank

3, Storage tank buried below grade, but near the ground sur-

face

4. Large storage tank surface ared (compared to case one)

A complete 1ist of the solar space heating system paramelers is

found in Table 3.2.2.
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Solar space heating system performance using the steady state
model with the favorable paramelers of case one yielded good agree-
ment with the transient model. As shown in Figure 3.2.2a, the stor—
age tank temperature predictions are virtually the same throughout
the yeal. The annual fraction of energy supplied by the solar space
heating system LO the load differs by less than one percent; however,
monthly values vary as much as three percent, as {1iustrated in Tigure
3.2.2b. Compar ison of the storage tank ground heat loss in Figure
7.2.2c reveals 2 one percent anpual difference, but monthly values
have a maximum deviation of forty-six percent in March. This devia-
tion is mot toO significant since the storage tank ground heat loss
represents only five percent of the total energy leaving tank during
March; the remainder is supplied to the load.

The less favorable physical parameters of case LtwWo produce
noticeable Jifferences between the steady state model and the trans—
jent model. Although Figure 3,2.3a shows reasonable accuracy for
tank temperature prediction, the estimated fraction of the space
heating load supplied by the solar system chown in Figure 3.2.3b
reveals an anpual difference of three percent and a maximum monthly
gifference of gixteen percent in February. Storage tamk ground
josses vary by less than three percent apnually, but the maximum
monthly deviation is thirty-three percent in February as shown in
Figure 3.2.3c. This monthly difference is more significant than in
case one since the storage tank ground heat loss is thirty-eight

percent of the total energy leaving the storagé tank.
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conductance, UASS, via computer. The following section will present

a method to calculate UA_, by hand. However, evaluation of UAgq is

difficult since soil conditions are time and location dependent.

3.2.2 Estimation of the Ogverall Conductance for Steady State Heat
Loss (The shapefactor Model)

In order to agsign a value to the overall conductance UASS, used
in the steady state model, the individual contributions of the insu~
lation and the earth to this conductance will be evaluated. Consider
the lumped conductance separated into two conductances, a8 ghown in
Figure 3.2.4, assuming each conductance can be expressed in one
dimensional form. One conductance represents the tank insulation
for which properties are known, the other conductance represents
the earth which is a function of local thermal soll properties and
rime of yeal. The problem of estimating the combined ecarth-insula-
tion conductance ig reduced toO evaluating the earth conductance.

10 approximate the earth conductance consider the earth adja-
cent to the tank, excluding the insulation, to be enclosed by two
isotherms. The storage tank perimeter between the insulation and
soil 1s fixed at a temperature, TW, and the earth's surface, vertical
earth boundary and deep ground are fixed at another temperature, T,
as shown in Figure 3.2.1 except that the tamk igotherm is on the
outside of the jipnsulation. 1f accurate 1ines of constant tempera-
ture and heat flow can be drawn between the twWO isotherms, Tw_and T,
the conduction shape factor, S, can be evaluated. The number of

heat flow lamnes. M, and the number of temperature ipcrements between
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the isothermal boundaries, N, defines the ghape factor by the rela~

tionship [211:

g = M/N 3.2.2

From this graphical derivation approximating the earth's conduc-
tance, YA ,yth can be determined based on the shape factotr and the

thermal conductivity of the earth, kearth’ being expressed as:

UA (s) 3.2.3

=k
earth earth E

The advantage of using the shape factor to express the conductance
of the earth is simply that the shape factoT is not a function of
the soil properties, but merely the shape of the tank~soil system.
1f the geometric parameters are Known, guch as the water rable depth,
tank shape, and depth,buried in the soil, the shape factoT can be
computed.

As an alternative o graphical methods, the earth conductancé
can be calculated by using the prograi EARTH. This is done by
constructing an earth grid with the igothermal boundaries TW and TS
enclosing soil only and allowing this tank-soil systend to reach
equilibrium. The steady state energy flow rate, bearth’ of this

gystem is expressed as:

Qoarth UAearth(Tw - Tg) 3.2.4

and the earth conductance, TA , can be readily calculated.
earth
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mum value, but the agreement will improve as the UAins value continues
to increase-

The shapefactor model is compared to the steady state model for
a given stOrage tank size varying tank insulation thickness, soil
properties, water table depth, and tank depth below grade. Consider
a 250m3 rectangular seasonal storage tank having the dimensions Sm X
Sm % 10m buried 1.25 meters below the earth's surface with a water
table of ten meters. Since the geometric properties are fixed, only
one simulation using EARTH is required to determine the shapefactoT,
g, Therefore, the shapefactor conductance of Hquation 3,2.5, neces—
sary for the shapefactor model, 1is easily calculated for any insula-
tion thickness of soil conductivity. However, for the steady state
model, the combined earth-insulation conductance must be computed
by EARTH for every variation,investigated.

The difference between the 1umped conductance computed for the
shapefactor model to that computed fot the steady state model is
shown in Filgure 3.2,5a as 2 function of tank insulation thickness
for three goil conditions. Although at different tank insulation
thicknesses, all three soil conditions considered have a maximum
error of five percent for computing the overall conductance, UA g
using the shapefactor conductance, UA ¢~ Also, it has been observed
that this maximum error occurs when the contribution of the tank
insulation, as defined in Equation 3.2.6, to the total shapefactor

conductance, of Equation 3,2.5, is fifty percent. Thus, the approXx—
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imation of an isothermal outer tank wall used in the shapefactor
model is least accurate for this condition. The wet goil having a
large conductance needs only a thin layer of tank insulation to reach
the maximum error, whereas the dry soil having a much smaller con-
ductance requires 0.2 meters of insulation to reach the maximum
error. Since it is generally recommended to usée 0.2 to 0.3 meters
of insulation on the seasonal storage tapk [6, 9], and since most
soils surrounding a tank can be approximated by the twenty-five per-
cent saturated sandy loam soil, estimating the overall conductance,
UA_. s using the shapefactor conductance, UA_ ¢, yields an error of
about three percent.

The difference between the overall conductance and the shape-
factor conductance is also calculated for a tank with slightly dif-
ferent physical parameters. The tank has the same gize and depth
below the ground surface, but the water table depth is increased
from ten meters to nineteen meters, lessening the thermal influence
on the tank from the deep ground horizontal boundary as shown in Fig-
ure 3.2.5b. The earth grid constructed from the soil surrounding the
tank is larger than the earth grid used for the ten meter water table
condition, thereby decreasing the earth conductance used in the shape-
factor conductance and requiring more tank insulation to reach the
maximum deviation between the overall conductance, UASS, and the
shapefactor conductance UAan Comparing Figure 3.2.5a to Figure
3.2.5b, the maximum error values are shifted glightly to the right

because of this increased earth grid size. More noticeably, the
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Madison, Wisconsin, and the TwWO models are compared rwice. First,
the two models are evaluated when the gank is simulated uder the
condition of case ODE, and second, the two models are evaluated when
the tank is simulated under the conditions of case LWO; both cases are
discussed 1in Section 3.2.1.

For the favorable parameters of case one, the constant overall
conductance of the shapefactol model, UAg g is only 1.02 times the

overall conductance used in the steady state model UASS’ expressed

as:

UA_s = l.OZ(UASS) 3.2.8

Conparing the steady state model to the shapefacto¥ model to pre-
dict system,performance, case One reveals the storage tank temperas
ture, showd in Figure 3.2.82, beling virtually the same on an annual
average, but varying by three degrees celcius on & monthly basis.
The fraction of the heating 1load supplied by the solar space heat—-
ing systen differs by two percent annually; however, the monthly
yalues have 2 maximnum difference of eight percent in February as
indicated in Figure 3,2.8b. A direct comparison of the ghapefactoT
nodel to the steady state model can be made frowm storage ¢ank ground
heat 1088 predictions, illustrated in Figure 3.2.8c. Annually, the
difference is less than one percent, but montbly there is 2 five per—
cent maximut difference.

Tor the storage tank in case two having undesirable physical

parameters, the constant overall conductance for the shapefactor
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model is 1.2 times the overall conductance used for the ateady state

model, expressed as:

UAsf = (1.200UA 4 3.2.9

This increased disagreement between the jumped conductance values

is primarily due to the storage tank being nearetr LO the ground
suxrface, illustrated in Figure 3.2.7a, compared to case one.: Com~
paring the steady state model to the shapefactor model when uysed to
predict system.performance in case WO, the storage tank temperature
of Figure 3.2.9a differs by two degrees celcius annually and a maxi—
mum of fouTr degrees celcius monthly. The fraction of the load met
by solatr energy shows 2 seven percent anmual difference and a twenty
percent maximum.monthly difference, i1lustrated in Figure 3.2.9b.

Ag showm in Fipgure 3.2.9¢c, the storage tank ground heat loss 1is con~
sistently overpredicted by the shapefactof model compared to the
steady state model. Annually, the tank heat loss difference 18
rwelve percent with a maximum monthly deviation of seventeen percent
which occurs in March when twenty—elght percent of the energy leav-
ing the storage tank flows to the gurrounding soil. For annual
comparison, yeplacing the steady ctate model by the shapefactor
model yields reasonable gpace heating performance predictions. How-—
ever, the true test of the ghapefactof model is to compare it with
the transient model; this is discussed in the conclusion, Section
9,4, Also, direct numerical comparison of the solar space heating

system performance using the transient, ateady state and shapefactor
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models LO estimate the storage tank ground heat loss is listed in

Tables 3.4.1 and 3.4.2.

3.3 pasement

3.3.1 Determining & Representative Earth Tenperature ¢or the Steady
gtate Models

As described 1in Section<2.4, basement heat flow to and from the
adjacent ground can pe readily determined from the program EARTH.
In this gection, basement heat {low simulated by EARTH will be re-
ferred to as the transient model. pasement heat cransfer using the
fransient model will be compared to several simplified methods which
assume monthly steady state conditions. gipnce FARTH is 2 two dimen—
sional prograim, the heat flow between the ground, and front and back
walls of the basement 38 not considered. A1l steady state models used
for comparison do not consider this portion of the basement—ground
heat flow.

For all comparisons the basement temperature is held constant
at 20°Cs additional hasement parameters are found in Table 3.3.1.
gsince the thermal properties of soils for 2@ gpecific location can
vary with time, this basement analysis considers several soil condi-
tions at a given location. Sandy loam goll was selected and is
used when drys twenty-five percent gaturated and one hundred percent
gsaturated. Although gandy loam soil may mot he adject LO the basement,

the wide range of thermal properties for the three goil conditions en-
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With the overall conductance value calculated and the pasement
temperature given, proper estimation of the monthly representative
earth temperaturé, Tes meut be evaluated for Fgquation 3.3.1 to be &
vyalid model. Two methods are presented to approximateMTe.

AVERAGING: The first method to approximate the earth temperar
ture does not depend upon the thermal properties of the soil sur-—
rounding the basement. The earth temperature is expressed as the
average of the monthly average air temperature, Tmo’ and the annual

average air femperatule, Tenn’ for a gpecific location. This de-
finition for the earth remperature will be called Tav as defined in

the following yvelationship [231:

¥ =(r__+T /2 3.3.2
av mo ann

Approximating Te by T,y ig of interest since the necessary infor-
mation is readily available fyrom weather data [19]. Evaluating the
earth temperature by Equation 3.3,2 to be used for basement heat
transfer calculations was obtained from the residential heating load
program, F-LOAD version 3.1 [23]. Basement heat flow calculated by
Equation 3.3.1, but replacing T, by T, ¢ will be referred to as the
steady state averaging ($54) model.

UNDISTURBED pARTH: The second method to approximate Te includes
several characteristics of the earth surrounding the basement.
Furthermore, this method was not originally intended tO yield an
earth temperature for basement heat flow calculations. Tnstead this

temperature represents the monthly average remperature, Tu’ for a
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P = PO +ﬁ" X 3.3.5
Dt

Thus, Tu at any depth 1s defined in terms of four parameters, three
of which are location dependent, A, B, and PO, and one that 1s soil
dependent, D.

Varying all parameters for each basement-soil system and geo-
graphic location requires a large number of values for each of the
parameters. Tt is desirable to reduce the number of parameters, but
gtill provide a reasonable estimation of T,. The value of T, for
each location will always be influenced by the annual average earth
temperature, Aa‘ However, since this temperature may not be readily
available, the definition of Aawill be changed. In this study Aa is
equal to the annual average air temperature which can be easily de—~
teymined from weather data [19]. This new definition of A, is nearly
equal to the old definition, the average annual earth temperature
[16]. To eliminate D as a parameter, a thermal diffusivity of

m2 ft2
0.0023 e (0.025 ﬁ;f), as recomrended by Kusuda and Achenbach {161,
will be used regardless of soll type.

in order to reduce the aumber of independent variables even
further, a single soil depth will be assumed. The desired depth
must yield a temperature profile, Tu’ comparable to the actual
temperature profile, T,. The soil depth was selected by testing
several depths for two United States locations. T, is computed

at depths of 1.2, 1.8 and 2.4 meters in Madison, Wisconsin, and

Charleston, South Carolina, using thezAa,PO, and BO values, nearest
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tion is greatel than one hundred percent, the comparison is given by
che numbeT of times the estimated load is higher oY lower than the
transient model load calculations:

For dry soil conditions, the SSA model underpredicts the heating
1oad by thirty—-six and forty-five percent, compared to the calcula~
tions of the transient model, as showd in Figure 3.3.7a. The cooling
load requirement calculated by the transient model is small for the
non-insulated basement. However, the SSA model overpredicts this
joad to be eight times the transient model prediction. Also, the
insulated basement has 10 cooling requirement indicated from the
transient model, but the SSA model yields a cooling load. The SSUE
model underpredicts the heating load by twenty—seven and thirty-siz
percent, a8 shown in Figure 3,.3.7b, for the same dry soll case. The
cooling load, which was only predicted for the insulated hasement ,
is overpredicted by the gSUE model as being thirteen times the cooling
load calculated DY the transient model. 1n addition, the gSUE model
predicts & cooling jgad for the insulated basement even though the
transient model does not indicate this cooling demand .

1{ the soil moisture is increased to twenty-five percent gatur-
ation, both the basement heatling and cooling demands increase. Com—
paring rhe heating load predictions of the SS8A model to those of the
transient model reveals a sixteen percent and eighteen percent over—
prediction,illustrated in Figure 3.3.8a. The cooling load using the
gsA model overpredicts by twenty—two percent and a factor of 1.4 as

compared to the transient model computations. Heating load estima—
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tions by the S5UE model indicate a thirty-two and thirty-four percent
difference €O the load calculations of the transient model, shown in
Figure 3.3.8b. As for the cooling load, calculations indicate an
overprediction of twenty-one percent and a factor of 2.8 by the SSUE
model compared to the transient model. Thus, for twenty-five percent
saturated goil, the g5A model calculates basement 1pads more accur-
ately than the SSUE model.

1f the molsture content of the soil gurrounding the basement
ig increased from twenty-five LO one hundred percent gaturation, the
energy requirements of the basement increase. Annual heating needs
are overpredicted by thirty-two and twenty-eight percent using the SSA
model to the 1oad values calculated by the transient model as illus-
trated in Tigure 3.3.9a. The significant cooling lead predicted by
the SSA model differs by eighteen percent and a factor of four as
computed by the transieunt model. For the same soil conditions, the
heating load is overpredicted using the SSUE nodel by fifty-three
percent and forty-five percent in compariseon to the transient model
predictions, as shown in Figure 1,3.9b. The cooling demands are
overestimated by the gSUE model being forty-seven percent and a
factor of seven higher than the calculations of the transient medel.
Clearly, the gsa model 1s more accurate than the SSUE model for this
soil conditiomn O estimate both heating and cooling loads of the
basement.

Generally, of the two steady state models, mMOTE precise energy

regults for a bhasement in Madison are predicted by the SSUE medel,
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Both models hegin to severely overpredict the monthly fraction
of energy supplied to the space heating load by the solar system as
the tank parameters become less favorable. Therefore, approximating
the seasonal storage tank ground heat loss using either the steady
state model oT the shapefactor model should be used to evaluate
the performance of a solar space heating system,using geasonal heat
storage on an annual basis.

gection 3.3 of this chapter presents the four gimplified medels,
gSUE, SSA, SFUE and SFA, to evaluate the energy exchange between the
ground and a completely below grade basement. Basement heat trans-
fer as predicted by the simplified models is compared to the trans-
jent model caleulations. The simplified models evaluate basement
heat transfer by neglecting the soil thermal capacity and using the
steady state rate expression of Equation 3.3.1. The transient model
determines the basement ground heat flow by the transient finite dif-
ference program, EARTH.

Basgement heat flow using the $5A or SSUE model requires the use
of a computer oT programmable calculator. These two models are com=
pared to the transient model for pasement heatl flow in two United
States locations. The SSUE model yields more accurate results in
Madison, Wisconsin, while the SSA model provides more accurate re-
sults in Charleston, gouth Carolina.

Fach of the four simplified models is compared with the trans-—
jent model for the energy requirements of a basement in Madison. The

maximum heating 1oad deviation between any of the gimplified maodels




121

4.0 SUMMARY, CONCLUSIONS AND RECOMMENDATTONS

4.1 The Computer Prograil, EARTH

A ground coupled heat transfer program, known as EARTH, has
been developed. This program computes the energy exchange between
the soil and any one of the following earth structures during a
specific simulation:

1. A buried seagonal storage tank

5 A completely below grade basement

3, A slab at the ground surface for an above ground

building

4. A one story earth sheltered dwelling.

EARTH computes the heat transfer for these structures using a
transient, two dimensional, finite difference method in cartesian
coordinates. The heat flow crossing any wall of an earth structure
or crossing any of the physical boundaries 1is available to the user.
This program is compatible with TRNSYS. However, unlike other
TRNSYS subprograms, using EARTH requires a fhand drawn diagram of the
structure and the gqurrounding soil.

Calculation of the energy exchange between a structure and
the ground using EARTH is based on several assumptions. The pri-
mary thermal mechanisms of the apil near the earth structure are
simplified to the following heat transfer modes which are used in

EARTH:
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C. symmetrical, earth grid required is half of basement
or slab and surrounding soil.
3. FRarth Sheltered Dwelling
a. and b. same as "gasement or Slab'
C. nonsymmetrical, earth grid required is completed
structure and surrounding soil.
For all structures the capacitance offects of the soil are always
included.
The predictions using EARTH have been compared to the ground
coupling program developed at Georgia Institute of Technology
for basement heat transfer analysis [28]. These comparisons re-

veal the significance of soll capacitance effects.

4.2 Simplified Design Models

The performance of a solar space heating system using an under-
ground seasonal storage tank is simulated in Madison, Wisconsin.
Tank heat loss 18 predicted by two different simplified models;
both employ a steady state representation. The models are dis-
tinguished by the technique used to compute the combined earth-
insulation conductance. The first method, the steady state model,
requires a computer or programmable calculator to0 evaluate the con-
ductance. FoTr the second method, the ghapefactor model, the con-
ductance 1is estimated by 2 simple hand caleculation. System:perfor—

mance using the simplified models is compared to results calculated
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the transient model increases as the rank and soll parameters becomne
less favorable. Therefore, performance evaluation of the gsolar space
heating gystem using either of the simplified models must he analyzed
on an annual basis.

Analysis of four steady state models to predict basement heat
transfer to the ground have been presented and each of these models
ig compared to the transient model., Two methods to estimate the
monthly representative earth temperature, have been evaluated and
yield reasonably accurate temperature values. In the hasement
analysis the combined earth-insulated conductance is calculated
using a computer and by hand. Heatl flow predictions determined
by the models which use the computer calculated conductance yield
results that are closer to the transient model predictions.

Two models, which require a computer to determine the conduc-
tance, are compared to the transient model for basement heat flow
predictions in Madison, Wisconsin, and Charleston, South Carolina.
The first is the steady state averaging (55A) model which uses 2
simple method to calculate the monthly earth temperaturée. The
second, the steady state undisturbed earth (SSUE) model requires
moTe information to evaluate the temperature. Generally, the heat
transfer predicted by the SSUE model yields more precise results for
a basement in Madison, while the SSA model yields better results in
Charleston.

predictions by each of the four simplified models are compared

to transient model calculations for annual basement heat loss in
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4.3 Recommendations

RARTH allows a significant number af insulation arrangements
for a given earth structure-soil system. Because of this capability,
insulation design studies can be performed., Computations using
EARTH assume the thermal properties of the goil are fixed in time
for each zone. However, so0il thermal properties change during the
year. Because of this, allowing the soil properties to vary with
time in EARTH will yield additional heat transfer accuracy (although
predicting soil property variations with time is a complex task) .

For the tank study, the maximum deviation of the monthly pre-
dicted fraction of energy supplied by the solar system is too large
using the steady state or shapefactor models. The following re—
vision on the governing energy balance (Equation 3.2.1) will improve
monthly predictions. Replace the fixed earth temperature, Ts’ by a
monthly varying earth temperature as used in the basement analysis.

Tor the basement study, calculating the earth temperature,

Tu’ based only on the annual average air temperature, A, is the
ideal case. However, observing Figures 3,3.12a, b and c, the SSUE
model shifts from complete underprediction to complete overpredic-
tion of basement heat transfer as soil moisture increases. This
implies that the SSUE model and also Tu’ is a strong function of
the soil thermal diffusivity, 0. Therefore, Aa and D should be a
function of Tu. Since there is a wlde range of soil thermal

diffusivities, three values for D are selected. These values
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Energy balance at ground suxface, T Case 1:

g)

(0 YA + UlA (Tamb - Tg) + UZA (Tl - Tg) =0

snet

Separating terms:

Qener T U1Tamp T V2Ty - (U +Up) T, =0

Solving for Tg:

g
Ul + U2

Substituting for T, in equation one:

T = E% (anet R Ty 4 T
sa U U, + 0 -1 1
) 1 2
After cancelling:
8
_ anet UZ Tl Tl (Ul + UZ)
T =-SBE& g7 4= - + T
sa U amb U 1
1 1 U
1
Solving:
T =7 + anet
sa  amb U
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and between a load as shown in Figure A.2.5.

The ground is divided into three zones where the thermal proper-
ties of each zone are assumed constant with respect to time and temp-
erature, but may vary from zone to zone, as illustrated in Figures
A.2.6 and A.2.7. Various insulation arrangements surrounding the
earth structure may be used; Figure A.2.8 displays all possible
locations. Any insulation extending into the soil may vary in length
as determined by the finite incremental node length in the desired
horizontal or vertical direction. The insulation on the vertical
wall of the earth structure also has this incremental capability.

As for the earth structure floor or ceiling, the entire span is
assumed to be covered if insulation is desired.
MATHEMATICAL DESCRIPTION:

The explicit finite difference approximation, (Simple Fuler)
employed by this model uses the following energy balances.

The buried, sensible energy, fully mixed, seascnal storage

tank is represented by the emergy balance:

@ Tf._T ® . «
g Cpf AT Qenv + QU + Qgppp
where: Qenv - ?Ct,.(Tj N Tt) ~ground loss rate
éU = éh Cpf(TH - Tt) energy rate from heat source
qupp = m Cpf(TL - T.) energy rate to load

The earth sheltered dwelling, basement or slab all assume a fixed

earth structure temperature, Tes‘ The energy balance may be thought
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PARAMETER

NUMBER

10

11
12

13

DESCRIPTLON
or conduction calculations; see Appendix 3)
D2 - Vertical height of earth structure; enter zero for
slab case |
D3 - Vertical distance between bottom of earth structure
and water table (deep ground sink temperature)
D4 ~ Horizontal distance between right edge of earth
structure and right boundary condition nodes.
D5 — Horizontal distance of earth structure (only half-
width for symmetric cases: Tank, basement or glab)
D6 - Distance between left side of earth sheltered
dwelling and left boundary condition nodes enter
zero for symmetric cases: Tank basement or slab
DELY]l - Vertical nodal distance in zone one of grid
DELY2 - Vertical nodal distance in zone two of grid
DELY3 ~ Vertical nodal distance in zcne three of grid
DELX - Horizontal nodal distance of all zones in grid

LENGTH ~ Length of earth structure in "Z" direction ylﬁ%
X
VHC1 - Volumetric heat capacity (pCp) of soil in zone one

VHC2 - Volumetric heat capacity (pC_) of soil in zone two
P _

14

15

16

VHC3 -~ Volumetric heat capacity (pCp) of soil in zone
three
Df - Density of tank fluid

C_. — Capacity (specific heat) of tank fluid

pf




PARAMETER
NUMBER

30

31

32

33

34

YIN3 -

YING -

XIN5

YING -~

DINW -

fRE)
I
= ¢

DESCRIPTLON

vertical wall may extend in soil, zone 3, be-
tween regions four and five) or in soil, zone 3,
for slab case

Insulation thickness on floor of earth structure
adjacent to zone three

Tnsulation thickness (where insulation is spanned
horizontally): in soil between zones one and two
for tank and earth sheltered dwelling cases; on
ground surface for basement and slab cases
Tnsulation thickness (where insulation is spanned
vertically): in soll, zone three, between regions
five and six. Enter zero for symmetric cases;
tank, basement or slab.

Insulation thickness (where insulation is spanned
horizontally) on soil surface-left side. Enter
zero for symmetric cases: tank, basement, or
slab

Vertical insulation distance on earth structure

wall, Enter zero for slab case

35

DINHR3

— Horizontal insulation distance in soil between
zones one and two for tank and earth sheltered
dwelling case; on ground surface for basement

and slab cases
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TRNSYS COMPONENT CONFLGURATTON

INPUT

NUMEBER

DESCRIPTION

e}
|

h Tank case: temperature of fluid from heat source
Non-tank case: fixed temperature of earth structure

Tank case: mass flow rate from heat source

e
[

Non—tank case: fix at zero

=3
!

Tank case: temperature of replacement fluid
Basement case: fixed temperature of first floor
Farth sheltered dwelling or slab case: fix at zero
mo- Tank case: mass flow rate from load

Non-tank case: fix at zero
T - Temperature of environment (ambient)
dg ~ Deep ground temperature
Hhor - Total radiation on a horizontal surface

po - Dew point temperature

TRNSYS COMPONENT CONFIGURATION

OUTPUT
NUMBER DESCRIPTION
1 Th - Tank case: temperature to heat source
Non-tank case: fixed earth structure temperature
) .

mo~ Tank case: mass flow rate to heat source

Non-tank case: zetro



[
T
w0

OUTPUT
NUMBER DESCRIPTION
16 TEMP: — Instantaneous temperature of desired node number
T
¥
¥
T
t
15+m TEMPm - Instantaneous temperature of i b node number
NOTE: For Qenv’ Qt’ Qs and Qb positive heat flow
is into the earth structure
For Qrbc’ lec’ Qgsink and Qasink positive
heat flow is into earth grid
DERIVATIVE
NUMBER DESCRIPTION

- None
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APPENDIX THREE: GRID CHECK

Presented are selected internal wvalues as they appear in the

program which are used to detect error as discussed in Chapter Two.

BRMCP1l -~ Inverse of soil thermal capacity in zone one (pé V)l

P
RMCP2 - Inverse of soil thermal capacity in zone two (pC V)z

P
BMCP3 - Tnverse of soil thermal capacity in zone three ( é V)S

e P
BMCPF - Inverse of fluid thermal capacity for tank (a%fg £

P

NH1 - Number of rows in zone cne

NH2 - Number of rows in zone two

NH3 - Number of rows in zone three

NVl — Number of columns in region two or three or four
NVZ - Number of columns in region ome or five

NV3 - Number of columns in region six

DELY1 - Vertical node distance in zone one
DELY2? - Vertical node distance in zone two
DELY3 -~ Vertical node distance in zone three
NVIZ1 - NV1 4+ NVZ

NVT - NVI + NV2 + NV3
NHT - NH1 + NH2 + NH3
NNTE - Number of nodes in earth grid (excluding all boundary

condition nodes)
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NBCL3 - Last right boundary condition node number adjacent to zone
three

NESBCF - ¥First earth shelter (left) bhoundary condition node number
adjacent to zone three

NESBCL - Last earth shelter (left) boundary condition node number
adjacent to zone three

NNINW - Number of nodes that have vertical wall insulation

NNHR3 ~ Number of nodes horizontally insulated at top of region three

NNHR4 - Number of nodes horizontally insulated at top of region four
(slab case only)

NNVR4 - Number of nodes vertically insulated between regions four
and five of zone three

NNVR3 - Number of nodes vertically insulated between regions five
and six of zone three (earth sheltered dwelling only)

NNHR6 - Number of nodes horizontally insulated at top of region six
(earth sheltered dwelling only)

COng ~ Thermal conductivity values of the 19 combinations as

! defined in the program listing or as shown in Figures

! 2.4.2 and 2.4.3
COND19

NOTE: An earth grid sketch is found in appendix two

for all four earth structures
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SUBROUTINE TYPEV(TIME XIMsGUT« s DTHT s BAR THF

REAL HOOYH-BOOTL

DIMENSION XIM(2S)-OUT{I00) « THEN(Z00 s PARIZ00) s JHFDL10)
DIMENSTON TTC300:50) 00300500 003000 TOLDIIA0 !« T 300)
DIMENSION TSTART{2001DE{300)
CORKONSINATIREG TFIHAL «DELT

Levee PROBRAM EaRTH

£
o
&
.
£
g
L.
(Y
L
(M
L

"
HE

fie
{1
Ce

THIS I8 & TWD GIMEMNSIONAL TRAKSIEHT GROUND COUPLIHEG FPROGRSH
USIHG FINITE DIFFERENCE APPRDXIMATION: CONBUCTION THEOUSH
THE EARTH. KENUEETfﬁﬁ AT THE HALL INTERFALE ARD BRDUHD SUREADE
AHD BARTATION AT THE GROUND SURFACE. THIR FROBRAM CAN HODEL
FOUR CONFIGURATIOND OF E4RTH STRUDTURES REICH aRE:

Lo OME BTOEY EARTH SHELTERER DHELLING (E.8.0.3

2. GEAZDMAL BYORAGE THME

Ao DOMPLETELY BELOW GRANE RASERENT

4. BLARy OF AR AROVE GRADE BUTLDIHG,

UHE MODE EARTH STRUCTURE: UARIABRLE FaARTYH NBDE SI17E
Dle2-31VERTICAL HEIGHT ARDVE-ADJACENT.RELON EARTH STRUCTURE
BASEHENT STUDYD INPUT D1=0, SLAR STUBY! INFUT DI=0, AHDG BY=0.
BECDIIETAHEE FROH ETRUCTURE TO RIGHT 2.0, MODES
PELHIGTH OF EARTH BTRULCTYURE

LSIDISTANCE FROM E.8,8. TO LEFT B.O. MORESD
LEMGTHITHTRD SPALE VARTARLE QISTANCE
IFOINFQ(7).GE.QIBO TH 500
w9 FIRST CALL OF BIRULATION kR

FARAMETERE

Bl=aRBI(PARIL)
-‘-;fﬂﬁg 3%
=y
GRS}
"ﬂi’
LY
FARLT )
FARLE)
Fakoey
sPARLTR)
HETH=PAR{LL

MODE HUHBERING
RE ML SIZE=RT NORE §IFE
DELY BAME 1N Ri-a
MY1iHb. OF VERT. COLUMHE 1IN REGIODN 2:4 ¢ 4
HUZLHD, OF YERT. COLUHNE IN BEGION 1 % 5
HVZING. OF YERT. GOLUHES IH RFEINDN &
HHLIHG. OF HORIZ, ROWS IH REGION 1 % 2
HHZINO. OF HORIZ. ROHE 1N BEGION 3

HHAIRG. OF HORIZ. ROWS IN RESIOHS 4 & 5
ﬁthismwh@NEﬂE HEIGHT ZOME 1.2+3
HML=TFIY40LABFLY L+, 000
IFIRLER. O 0 =D
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TEARA EQ. 0. GHEBLE =0

HRLFLD RIGHT BOUNDARY CONDITION FIRET MODE ZOME 3
HECLI: R B.CLLART MODE 71
HECF2! RT. B.O.FIRST WOpeE 72
MBULZD RT. B.D.LAST KODE 72
MECFEL RT. B.C.FIRSY RODBE 23
HECLAS HT, B.CLLABT NODE 73
HEGBUF sNEBBCLIE.E. 0. B0, FIRST NORE.LAST NODE (LEFT SIDE)
HECFI=NHTETHL
HECLI=HRTET MM
IFARLLEG 0 0INBLF =0
TFORLEG . 0INRCLI=0
HEOFIHNTETHNHL+E
HECLZ=HNTETHHHL+HM2
TR B0 0. 0 INREF2=(
IFLDEER. 0, GINECLE=D
HECFE=pHTETNHIFRHELE
RECLESHNTETSNHIFMEZ$NHE
HEGROCF=HHTETHHHTHL
MEGRCL=MNTETHHHTINHE
TF{Ra.Ed. 0. 0 HESRCF =0
IFIDGEQ.OYHESRCL=0
LTECHUMBER OF TEMP. VALUES F0 BE ENTERED
LTHOIND, OF NODES FOR UHIOH ¥}HF§ HIGTORY IS5 FRINTED
LTI=PARCES)
LTMO=FAR(I®HLTI4L)
HI=8
HPeI@dl YIHLTHOGE
FHELY
CALL TYPECK{I:INFOrHI NP NE}
PARAKETERS (CONTINUED)
VHCL 2+ 30VOLUMETRIC HEAT CAPATITY OF GOILs ZOHES 1.2 AND 2
(REHGITYREPECEFIC HEAT)
RHOFIREMEITY OF FLUID
CAPFICAPALITY OF FLUID
TUDLITANK YOLUKE
THI»25 3, INCITHERMAL CUONDUCTIVITY ZOWE 1523 INSULATION:¥ALL
HAHEIHT . TR, COEFF. ANBIENT
HREGOHIHT TR, COEFF. RASEMENT
TRl o402 0MALL TRICKHESSE ADJACENT 70 ZOME 1:3,2
VIM1s 3o XIHZIIHBULATION THICKNESS ABJACENT TO ZOME 1:3¢9
RITEE MAY APPLY FOR DEPTHS BEVOND VERTICAL HaLL
TIHaTINBULATION THICKHERE BETHEEW RZ AND RY
FIHGDIMBUL . THICKNESE BETHEEHR RS AND Ré (E£.9.0. CABED
TINADIHEUL, THICKNESS BETHEEH RS AL AMBIENT
ODIRWDTHURAIVERT, IHSUL . DISTANCE 0N ¥ALL OF BASEMENTIINTO H4
ﬁIHHF?*HBFIEa THEULATIDN UISTANCE IH B33 OF R4 FOR SLAE CAGE
DINVRGIVERT, IHSUL. DISTANCE LEFT SIDE OF 85 (E.5.0, CARE
DINHREAITHA FE,» IHGUL . DISTANCE OF Hé (E.8.1, DASE:
YHOI=PAR{IZ)




