ABSTRACT

Low-flow solar hot water heating systems employ flow rates on the order of 1/5 to 1/10 of the
conventional flow. Low-flow systems are of interest because the reduced flow rate alows
gndler diameter tubing, which is less codly to ingal. Further, low-flow systems result in
increesed tank dratification.  Lower collector inlet temperatures are achieved through

dratification and the useful energy produced by the collector is increased.

The disadvantage of low-flow systems is the collector heat remova factor, Fr, decreases with
decreasing flow rate. A serpentine collector has the potentid to perform better than a
conventiona header-riser collector in low-flow systems due to the earlier onset of turbulent flow
which enhances the interna heet transfer coefficient. The onset of turbulent flow is a function of

the tube diameter and flow rate per tube.

Many solar domestic hot water systems require an auxiliary electric source to operate apump in
order to circulate fluid through the solar collector. A photovoltaic driven pump can be used to
replace the standard dectricd pump. PV driven pumps provide an ided means of controlling
the flow rate, as pumps will only circulate fluid when there is sufficient radiation. The reduction
of paradtic pumping power can dso reduce on-pesk utility demand. The PV pump, if

adequately designed, decreases the system performance by a negligible amount.



There has been some confusion as to whether optimum flow rates exist in a solar domestic hot
water system utilizing a heat exchanger between the collector and the Storage tank, as
commonly employed for freeze protection. It was found that there exists thermd optimum or at
leest economicd optimum flow rates when it is conddered that low flow rates incur less
hydraulic costs. Peak performance was aways found to occur when the heat exchanger tank-
sde flow rate was approximately equd to the average load flow rate. For low collector-sde
flow rates a amdl deviaion from the optimum flow rate will dramaticdly effect system
performance. However, system performance is insendtive to flow rate for high collector-sde

flow rates.

Antifreeze solutions have temperature dependent properties such as density and specific hest.
The effect of large temperature dependent property variations experienced by ethylene glycol
and propylene glycal affect the optimum flow rate through the collector-sde of the heet
exchanger. The increased viscodty of the glycol a low temperatures impedes the onset of

turbulence, which is detrimenta to the heat exchanger UA.
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