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The objective of the work is to develop methods for minimizing the energy costs of chilled

water systems through optimal control. The general approach includes the following tasks: ) pro-

posing a system of parametric models that represent the real chilled water system, ) determining

model parameters from measured data, and ) subjecting the system of parametric models to an

optimization algorithm.

A comprehensive approach for determining the optimal control for any general chilled water

system is developed. The general system presents a difficult problem for parameter estimation and

optimization because of discontinuous variables and nonlinear relationships between input and

output variables. Various methods for parametric estimation and control optimization are pre-

sented and demonstrated on simulated and actual plant models.

The actual plant model consists of interconnected component models, including an electric

motor driven chiller, a steam turbine driven chiller and associated steam condenser, and a multi-

cell cooling tower. Different parameter estimation methods using measured plant data are applied

and compared. Optimal supervisory control is determined through application of the simulated

annealing method to the model. The dependence of optimal control settings upon independent

variables (e.g. chilled water return temperature and ambient wet bulb temperature) is investi-

gated. Cost savings of optimal over conventional control strategies are calculated and compared.
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 

Introduction

.  Motivation

Energy used to maintain comfortable living and working environments represents a large frac-

tion of total energy usage. According to the United States Department of Energy (DOE), energy

consumption in commercial and residential buildings represented % of the United States total

energy use in  [DOE]. Associated with the very large energy requirements are large energy

costs. For example, a large central heating and chilled water plant serving the University of Wis-

consin-Madison campus has annual fuel costs exceeding  million. Consequently, there is great

interest in minimizing energy costs.

In an effort to reduce energy costs, the performance of compressors, fans, heat exchangers and

other components used in heating and cooling systems has been greatly improved. However, even

if these devices operate at their limiting thermodynamic efficiency, more can be done to reduce

energy costs. Maximizing individual component efficiency does not necessarily result in the col-

lection or system of components operates at minimum cost. Another opportunity for minimizing

energy costs lies in the supervisory control of the system of components. Heating and cooling sys-

tems are typically controlled to maintain temperature and humidity levels. Since there may be





many control settings that meet these environmental requirements, there exists an opportunity to

find a set of optimum supervisory control settings that minimize energy costs. The means of deter-

mining these optimum control settings is the goal of this work.

.  HVAC System Description

A heating, ventilating and air conditioning (HVAC) system may be generally described as a

system for transporting heat and moisture into or out of conditioned spaces. In usual practice, the

moisture transport is associated with either humidification or dehumidification of an air stream

by evaporation or condensation. Thus, the moisture transport can also be included as a heat trans-

port process associated with the phase change (i.e. latent heat or latent load). HVAC systems also

function to ventilate conditioned spaces, diluting indoor air contaminants with filtered outdoor

air. Although any general HVAC system that heats, cools or ventilates may be the object of opti-

mal control, this work focuses on the more complex cooling or “air conditioning” systems. The

methods developed are general, however, and are applicable to optimal control of heating and

ventilating systems as well. 

At any level of complexity, from a window unit to a large scale chilled water plant, the primary

system function is to move heat (e.g. a cooling “load”) between some conditioned space and some

lower temperature sink. Heat enters the conditioned space from any number of sources and must

be removed at the same rate in order to maintain comfortable conditions. The source of cooling

(or heat sink) may be a chilled water coil or an evaporator of a vapor compression refrigeration

cycle. Heat transferred to an evaporator of a refrigeration cycle is further transported to the envi-

ronment along with energy input to the cycle.

In moving the heat from the spaces to the lower temperature sinks and to the environment,

heat is exchanged between different fluids. Consider the system shown in Figure .., used to pro-

vide chilled water for cooling a conditioned space. The heat entering the conditioned space is

transported via a moist air stream to the chilled water at the chilled water coil. Next, the heat is

transported via the chilled water to the refrigerant at the chiller evaporator. Then the heat is

rejected, along with the energy input of the compressor, to water moving through the condenser.
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The resulting additional heat in the condenser water is rejected to the environment by transfer to

an airstream moving through the cooling tower. 

Discounting any natural convection driven loops, at every stage of the heat transport process a

work input is required to move the fluid. Energy costs associated with operating the system

  ..:  System for cooling a conditioned space. Energy consuming components are marked 
with an asterisk (*). The combined system of compressor, condenser, expansion 
valve and evaporator constitute a “chiller”.
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include not only the cost of energy input for the cooling cycle, but also all the fans and pumps

used to transport heat through the system. For systems with widely distributed flows, the pump-

ing and fan costs can easily be as much as the costs for operating the compressor.

.  System Optimization–A Simplified Example

Although the cooling load for the conditioned spaces is fixed for any given environmental

conditions, the flow rates of the working fluids in the transport loops are not. An equivalent

amount of heat may be transported at a higher or lower flow rate with a corresponding decrease or

increase in temperature difference. In a system capable of variable flow rates, the opportunity for

optimization lies by finding the flow rates which minimize total energy costs.

Considering a single fluid loop, minimum pumping cost occurs at the lowest flow rate at

which the load can be transferred at the heat exchangers. However, the temperature difference in

any single loop cannot change independently of the other energy consuming components. Lower

pumping costs may require larger costs in other loops. The dependence of cooling cycle energy

costs upon pumping or fan costs can be explained by considering the simple system in

Figure ...  The temperature differences of the evaporator, condenser and the cooling cycle are

given in relationship to one another. The temperature of the conditioned space Tspace, the ambient

(outdoor) temperature Tamb, and the space cooling load , are fixed, while the evaporator

and condensing temperatures (Tevap ,Tcond) can vary. 

For this system, the total energy cost is the sum of three component costs: the evaporator fan,

the cooling cycle compressor and the condenser fan. The relationships between temperature dif-

ferences and component energy costs are given by simplified models shown in the figure. Com-

pressor power is given in terms of the condensing and evaporating temperatures, as in a Carnot

refrigeration cycle. For constant specific heat and constant effectiveness, heat transfer at the evap-

orator and condenser is proportional to the product of air mass flow rate and the difference in

incoming fluid temperatures. Fan power has a simple cubic dependence upon air mass flow rate.

Note that for the evaporator and condenser fans, as their energy input decreases, the flow rates

decrease, and to maintain the same heat transfer, the temperature differences must increase. The

Q̇evap
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converse is true for the cooling cycle - an increase in temperature difference over which the cycle

must transport heat corresponds to an increase in energy input and therefore energy costs. The

optimization problem for this example system is to find what combination of evaporator and con-

denser flow rates (or equivalently, evaporator and condenser fan powers) result in the total system

energy cost being minimized.

The inverse relationship between the power input to the fans and power required for the ther-

modynamic cycle yields a convex dependence of total power upon either fan power. The refrigera-

tion cycle is more efficient when operating over smaller temperature differences. However, to

achieve the lower temperature differences in the heat exchangers, the flow rates and therefore the

pump and fan power must be larger. A contour plot representative of the total power in terms of

  ..:  Relationship between component power and temperatures in a simple vapor 
compression refrigeration system.
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evaporator and condenser fan power is given in Figure ... The optimum operating point occurs

where an incremental increase in fan cost is equivalent to the incremental reduction in cooling

cycle power cost.

.  Summary

The objective of this thesis is to develop a means for determining values of controlled variables

that minimize total energy costs for a general chilled water system. A general system represents a

much more difficult optimization problem than shown in the example. Major difficulties include

matching model predictions to real system performance and solving a multidimensional, con-

  ..:  Dependence of total power (evaporator fan, compressor and condenser fan) upon 
evaporator and condenser fan power.

9.8
9.8

9.99.9

10.0

10.010.0

9.7

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

co
nd

en
se

r 
fa

n 
po

w
er

 (
kW

)

evaporator fan power (kW)

contours of total power (kW)





strained optimization problem with both continuous and discrete variables. Some of these diffi-

culties are described in the review of published reports on HVAC system optimization given in

Chapter . Methods for modeling and model parameter estimation are given in Chapter . These

methods are applied to finding parameter estimates for chilled water plant model in Chapter .

The supervisory optimal control problem and methods of its solution are discussed in Chapter .

Optimal supervisory control for a chilled water plant on the University of Wisconsin campus is

explored in Chapter . Conclusions and recommendations are discussed in the final chapters. 




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 

Literature Review

.  Introduction

Optimization or minimization of operating costs associated with HVAC systems has been

addressed in the technical literature only in recent years. To some extent, the knowledge and tech-

nology for implementing at least some form of optimal control has existed since the advent of

commercial air conditioning and refrigeration earlier this century. However, reports concerning

optimal control of HVAC systems are not found in the literature dated prior to the mid-s. As

the primary if not sole driving force behind the implementation of any new technology is eco-

nomic, the “energy crisis” of the early s no doubt spurred the increased interest in minimizing

energy costs.

Presented here is a review of literature that addresses optimal control applied to the operation

of HVAC systems. Much work has also been published on the application of optimization meth-

ods in the general area of process control and on application to specific non-HVAC systems. Work

not specifically related to HVAC systems is reviewed as necessary to support the proposed meth-

odology.




.  Optimal Control Applied to HVAC Systems

The paper by Zimmer discusses a basic approach of proposing a parametric model, determin-

ing the model parameters and subjecting the model to an optimization method for minimizing

costs associated with a system of chillers. [Zim] The proposed application included multiple

chillers driven by differing energy sources with differing costs. Quadratic models of individual

chiller operating cost in terms of load were used with a minimization method given by Nelder and

Mead [Nel] to determine optimal loading of the chillers. The Nelder-Mead method is a down-

hill search method for multidimensional minimization involving only function evaluations. Zim-

mer modified the original Nelder-Mead method to handle constraints by using a penalty

function. Coefficients for the models of chiller costs in terms of load were fit from data collected

from the subject system. The chiller loads were constrained to be between some given maximum

and minimum; however, the approach did not consider the possibility of changing the on/off sta-

tus of a chiller. Also, the models for costs did not account for variations in condenser temperature

or flow rates. The primary conclusion drawn was that it is sometimes best to operate the chillers at

equal incremental costs when not limited by the maximum or minimum load constraints. Incre-

mental cost is described as the resulting increase in chiller energy cost for an increment in chiller

load. Reduction in annual energy costs were anticipated to be only -% for the application of the

given optimization methodology.

In some reports, general recommendations toward reducing chiller system energy are pre-

sented as resulting in an “optimized” system. Such a report is given by Lipták in which a number

of heuristic optimization rules are given, many of which appear to be shortsighted. [Lip] For

example, he advocates minimizing chiller COP by running at a maximum feasible chilled water

temperature and minimizing the cooling tower water temperature. The corresponding increases in

pump and fan power are neglected. A number of credible suggestions are offered however, such as

recovering heat from the condenser and discriminating between the chilled water loads to deter-

mine the maximum chilled water set point.

A rare report of actual implementation of optimization methods to a refrigeration system is

given by Chun and Norden. [Chu] The report details the operation, management and control
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of a large (, ton) chilled water system supporting a large textile plant. Again, the basic

approach included using a parametric model in an optimization algorithm. For this application,

chiller power was modeled by a linear combination of five measured variables. The Nelder-Mead

simplex algorithm was used to determine the chilled water supply temperatures for the individual

chillers that minimize total system operating costs. In order to determine the model parameters,

factorial experiments were run with each of the dependent variables varied over a range of condi-

tions. If the difference between predicted and actual compressor work exceeded some limit, the

models were updated with another set of experiments.

The Nelder-Mead simplex algorithm was modified for their problem to handle constraints by

adding a penalty, equal to the square of the constraint violation, to the objective function. Mini-

mization was done only in terms of chilled water temperatures (continuous variables) and did not

consider different combinations of operating chillers (integer variables). Chun’s report did provide

an estimate of the potential savings by optimizing systems of chillers. A comparison of annual

energy usage for the refrigeration system showed a .% decrease after implementing the optimi-

zation strategy.

Methods for improvement rather than optimization of chiller energy usage are presented by

Thielman. [The] Recommendations are made for varying chilled water supply and condenser

water supply temperatures based on external forcing variables, such as load and wet bulb tempera-

ture. However, the dependence of compressor power upon chilled water and condenser water

temperatures and flows is not investigated. These ideas are centered on reducing chiller power

consumption rather than total system power. Using an energy management and control system

(EMCS) to sequence the operation of multiple chillers is advocated. It is assumed that the optimal

schedule for sequencing as a function of load is known a priori.

A multilevel optimization approach is used by Enterline [Ent] where groups of components

are optimized without considering the dependence between the components. For example, the

optimum chilled water set point is the maximum temperature that can meet all required loads.

This local optimization does not consider the resulting increase in pumping costs. A coordinating

or supervisory controller determines the optimum chilled water temperature from a proposed
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model relating chiller power and chilled water pumping power. An on-line control strategy is used

where the gradient of chiller plus pump power with respect to chilled water temperature is contin-

uously evaluated. This gradient is an input to the supervisory controller, which then determines

the optimal chilled water set point. However, the supervisory controller did not account for

pumping and fan costs on the condenser side of the chiller. Optimal load allocation among paral-

lel chillers was determined with quadratic models of individual chiller utility cost in terms of load.

The quadratic cost models were of limited use, as they did not account for the dependence of

chiller costs on evaporator or condenser temperatures.

Hackner investigated optimal control for a specific building and supporting chilled water

plant by simulation. [Hac] The study included finding optimum combinations of some discrete

control variables such as number of operating chillers or speeds of cooling tower fans. Optimal

chilled water supply temperatures and supply air temperatures were determined by running the

simulation over a wide range of conditions. The run of , combinations required to deter-

mine the optimum conditions was considered impractical for performing on-line control given

the computational power available at the time. Resulting energy reduction was reported to be %

compared to operating the plant with fixed set points.

Johnson advocated using programmable controllers to reset system set points such as chilled

water and condenser water temperature and implementation of a chiller sequencing schedule.

[Joh] The optimal chiller sequence schedule in terms of load is derived in the manner of Hack-

ner. [Hac] The thrust of Johnson’s work gives some means of exploiting the capabilities of pro-

grammable controllers in reducing system energy costs. The means of determining optimal values

of set points used by the programmable controllers is not investigated.

Spethman demonstrated how to find the optimum combination of chillers and their respec-

tive loads from performance graphs.[Spe] Methods are shown for cases of both similar and dis-

similar chiller characteristics. An algorithm is proposed for finding the minimum cost for

operating three chillers with dissimilar characteristics. However, this algorithm could not be

extended to the general case. Auxiliary pumping and fan costs were not included in the analysis.
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A simulation of a . million square foot commercial facility was used by Lau to determine

optimal control strategies for the specific case. [Lau] Models for the building’s multiple chiller

chilled water plant were fit with real system data. The optimum conditions for minimizing plant

energy costs were found by exercising the simulation over ranges of five variables: wet bulb tem-

perature, chilled water load, cooling tower fan speeds, condenser pump flow and number of oper-

ating chillers. Optimization of these variables demonstrated a .% reduction in energy costs

compared to existing control practices at the plant. However, the chilled water supply temperature

was not considered in the global type search.

Braun [Bra] presented two approaches or methodologies for finding optimal values of con-

trol variables in a chilled water system. A modular, component based method is given where the

cost functions of individual models are assumed to be quadratic. Other component output vari-

ables are assumed to be linear functions of inputs. It is assumed that the sum of the component

costs is quadratic in terms of the control variables, and ordinary gradients are used to define the

optimum values of these variables. Equality and inequality constraints are incorporated with

Lagrangian multipliers. The general functions presented for the component models include dis-

crete or non-continuous dependent variables. As the gradient methods used cannot be applied to

the nonsmooth functions resulting from the discrete variables, a combinatorial approach is rec-

ommended. The optimization problem is solved in terms of the continuous variables for every

feasible combination of discrete variables and the combination yielding the minimum cost is

selected.

The quadratic cost function and linear output models are extended to the case of nonlinear

optimization through an iterative technique. The quadratic and linear models then represent local

approximations to the nonlinear models. Under an assumption of convexity, this method is

shown to converge to the optimum.

A second approach to the problem of determining optimum control variables considers the

collection of components as a single system where the system cost is modelled as quadratic in the

controlled and uncontrolled variables. The uncontrolled variables are considered to be measurable

inputs that affect the performance of the system such as chilled water load and wet bulb tempera-
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ture. This formulation somewhat simplifies the optimization problem, as an analytical expression

of the optimum can be derived by equating the Jacobian of the system cost function to zero. Dis-

crete variables are again considered in a combinatorial sense where the analytical expression for

zero gradient is evaluated for all feasible combinations.

Braun gives two methods for estimating the parameters used in the quadratic system model.

The first is to apply regression methods to measured data of total power consumption and con-

trolled and uncontrolled variables. A set of experiments could be made to exercise the system over

the expected range of operating conditions. If the quadratic cost function can be accurately fit

only in a region near the optimum, it is suggested that experimental runs be made in the vicinity

of the predicted optimal control. However, the predicted optimal control is dependent upon

external forcing variables such as load and wet bulb temperature. Determining the quadratic

model parameters for all expected ranges of wet bulb and load would constitute an extensive task.

Another approach to estimating the parameters is to construct a (computer) simulated system

comprised of mechanistic models for each component. The determination of parameters used in

the mechanistic models can be found from data taken over a limited range of conditions. Here, it

is assumed that the mechanistic models are accurate representations of the real components and

the parameters fit from data taken over any region of operation should be nearly constant over all

operating regions. The simulation is then exercised over all ranges of operation and the parameters

used in the system based optimization are fit from simulation data.

The near optimal control methodologies given earlier by Braun [Bra] are applied in finding

the optimum control for cooling towers in a chilled water system. [Bra] Linear models of opti-

mum air flow in terms of fractional chiller load are derived. It is shown that optimal tower air flow

is strongly dependent upon chilled water load and only weakly dependent upon wet bulb temper-

ature. Further assuming that the chilled water load may depend somewhat on ambient air wet

bulb temperature, Braun makes a case for determining an approximate optimum tower air flow

rate in terms of chiller load only. A number of simulations were run showing the approximate

optimum system power consumption was within % of the actual optimum. However, because of

the relatively “flat” dependence of total system power upon air flow near the optimum, the
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approximate optimal airflows differed from the true optimum by up to %. Braun recommends

the model parameters be fit from design data or determined from experimental data. For the case

of multiple chillers, different optimal control models must be made for every possible combina-

tion of operating chillers. 

Ulleberg used the second methodology of Braun’s [Bra] described above to determine opti-

mal values of controlled variables in an emulated HVAC system. [Ull] A quadratic model of

total system power in terms of controlled and uncontrolled variables is proposed. The strategy

used was to first operate the emulator over a learning period during which data was taken to fit

the quadratic model parameters. During the learning period, the controlled variables were varied

over a range of values in order to improve the fit of the parametric model. However, it was dem-

onstrated that the resulting parametric model did not adequately predict the optimal control vari-

ables over all ranges of operation. Parameters fit from data taken mostly at intermediate loads

resulted in significant model error when used to predict optimal controls at high loads. For the

particular emulated system, the quadratic model was inadequate for approximating optimal con-

trol values.

The problem of optimizing a multiple chiller, multiple cooling tower chilled water plant was

cast in terms of a mixed-integer nonlinear programming problem (MINLP) by Olson. [Ols]

The integer variables were the status (e.g. on/off, off/low/high) of the chillers and cooling tower

fans, while others, such as chilled water and condenser water temperatures, were assumed to be

continuous variables. Sequential quadratic programming (SQP) was used to solve the nonlinear

problem in terms of the continuous variables and a heuristic algorithm was used to determine the

integer variables. Empirical models relating chiller and fan power were used to link the depen-

dency of the controlled variables to the total system power (the objective function.) The SQP

approach sometimes drove the empirical models to be evaluated beyond their intended region of

applicability. In order to keep the optimization algorithm from examining these infeasible areas,

artificially high objective function values were returned to the optimization algorithm if the

inputs to the models were outside reasonable ranges.
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The possible integer combinations of cooling tower fans are arranged by Olson in a sequential

order of increasing fan power and corresponding increase in air flow, in the same manner as

Braun. [Bra] A similar ordered sequence of chiller combinations is set up based upon the sum

of maximum power consumption of the chiller combination. The solution method is to evaluate

the nonlinear problem (given in terms of the continuous variables) by SQP for a given integer

combination of cooling tower fans and chillers. However, the heuristic approach used is to com-

pare total system power while searching up or down the integer sequences. The authors implicitly

assume that their ordering of sequenced fans or chillers would yield a convex objective function if

the integers were relaxed to continuous variables. This is likely in the case of the ordered cooling

tower fans, but may not be true for the order of chiller combinations. The fans can only move air

at the discrete increments given in the sequential ordering. The chillers, however, can operate at

less than the full power draw that was used in ordering the sequence of chiller operation.

Olson used the optimization algorithm in a number of simulations, and the dependence of

optimized total system power as a function of load was studied. It was demonstrated that the opti-

mal power could be closely approximated by a linear model in terms of cooling load. 

MacArthur presented a method for determining and implementing the optimal values of con-

trol variables using dynamic predictive models. [Mac] A multivariable predictive controller is

developed and tested by simulation. The predictive controller uses dynamic models relating the

change in process output to changes in controller inputs. Parameters for the dynamic models are

obtained by auto-regressive methods (ARMA). A receding horizon control (RHC) algorithm is

presented which minimizes control action in keeping the subject system near the requested set

points. Another optimization problem is formulated in which total system cost is to be mini-

mized. The system cost is given in terms of process outputs and the dependence of system cost

upon control variables is then determined using the predictive capabilities of the controller. It is

shown that directly implementing a set of control variables that give optimal costs at steady state

does not minimize energy use integrated over the transient response. The dependence of the cost

function upon the state variables changes as the state changes. Rather than minimizing the control

action, the resulting costs are minimized by applying the receding horizon control method.
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Essentially, dynamic information on the subject system gathered and used by the predictive

controller is used to determine minimum steady state operating conditions. The dynamic capabil-

ities of RHC to minimize controller action is then extended to minimizing a cost function given

in terms of measured outputs. It is not clear whether the dynamic model is adequate for determin-

ing the steady state minimum over a wide range of operating conditions. If the model is only valid

near the current operating range, the resulting behavior would be similar to direct search methods

where approximate local gradients tend to drive the system downhill in terms of the cost function.

The method was applied to a simulated residential building with a variable speed heat pump.

The multivariable controller manipulated heat pump rpm and air flow to the residential space.

Personal comfort, as quantized by a statistically based model given in terms of temperature and air

velocity as well as other environmental factors, is the controlled variable. Heat pump COP is the

objective to be minimized. The simulations demonstrated a % decrease in integrated energy

consumption over a  hour period. However, costs for the air handler fan were not included in

the objective function.

Austin developed optimal control strategies for a chilled water plant serving a pharmaceutical

manufacturing plant. [Aus] The chilled water plant has six chillers and a six cell cooling tower.

The plant serves both process cooling requirements and comfort cooling requirements. Con-

denser water from the cooling tower serves the chillers and other process heat rejection require-

ments. A collection of constant speed and variable speed pumps are used in the condenser water

loop and the chilled water loop.

The plant’s six indivual chillers were each modeled using a polynomial with power as a qua-

dratic function of load and entering condenser temperature. Cooling tower fan power was mod-

eled as a quadratic function of cooling tower exit water temperature and total heat rejected.

Individual equations of cooling tower fan power were fit for a series of wet bulb temperatures. The

collection of models were used to determine optimal loading and optimal condenser water tem-

perature as a function of total plant load and outdoor wet bulb temperature. The models were fit

using manufacturer’s data.
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Several simplifications and assumptions were made in the analysis. The chiller operation was

limited to sequentially loading each chillers. Beginning with a single chiller, as plant chilled water

load increased, another chiller was not added until the first chiller was at maximum load. The

analysis did not consider partially loading multiple chillers. In earlier work, Braun [Bra] dem-

onstrated that optimal loading of like multiple chillers occurs when the chillers are evenly loaded.

With sequential loading, no two chillers ever have equal fractional loading (with respect to nomi-

nal chiller load). Chilled water supply temperature from each chiller was essentially fixed at . °C

( °F). Combinations having chillers supplying different chilled water supply temperature that,

when mixed, resulted in the required . °C were not explored. 

.  Summary

The work to date which addresses optimized control of HVAC systems demonstrates a com-

mon objective pursued by different methodologies. Some employ mathematical optimization

techniques while others use global searches through a range of operating conditions. The systems

subject to optimization varied as well, from specific to more general arrangements. The value of

the existing literature to current work lies mainly in its demonstration of the potential savings in

using optimal control and in the recognition of difficulties in solving the problem. One pervasive

problem is that of solving the optimization problem with integer or discrete variables such as on/

off status of chillers or cooling tower fans.

The foundation of knowledge for building a structure in which to solve any generally posed

chilled water system optimization problem is present in the systems science and process control

literature. The means of solving the problem are addressed in mathematical science literature. Lit-

erature from these areas will be reviewed as appropriate when used in support of the work. 
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Parameter Estimation

In this work, a system model is created for use as a predictive tool in optimization studies. The

model must predict system performance with some measure of accuracy in order for the optimiza-

tion results to be valid. The parameter estimation problem for the multicomponent chilled water

system can be viewed in general terms as a nonlinear, multivariate minimization problem in

which a set of parameters that minimize the difference between model predictions and observed

system measurements is sought. In this chapter, methods of estimating model parameters are pre-

sented and compared by solving an example problem having known parameter values. 

.  Model Choice Considerations

For optimization studies, a model need only predict variables that contribute to the objective

function, such as those having energy costs. Consider a general model of a multivariate system, 

..

where y is a vector of dependent variables associated with costs, c is a vector of controlled variables

and x a vector of independent or forcing variables. The equation could represent any given func-

tional forms such as a set of polynomial equations or a neural network. Alternately, the equation

y f x c= ( , )




could represent a set of mechanistic equations, such as conservation laws and transport equations

derived from theory. If the different model types were equally accurate in predicting the system

responses over the widest possible range of values of independent and control variables, then rela-

tive computational speed may suggest the best model type. However, there are distinct advantages

in using mechanistic models for the HVAC (chilled water) systems addressed in this work.

Fitting parameters to arbitrarily selected equations or arbitrarily configured neural networks

falls under a general classification of curve fitting. [Bar74] Due to the arbitrary nature of the equa-

tions, curve fitting can only be used for summarizing data and interpolation between data values.

The results cannot in general be used for extrapolation and do not generally provide any insight

into the nature of the process. For example, derivatives (∂f /∂x) from an arbitrary function which

fit the data may not be representative of the true nature of the process. Results of Ulleberg’s

[Ull] implementation of Braun’s method [Braa] for optimizing an HVAC system demon-

strate problems associated with predicting a minimum using derivatives of a curve fit to discrete

data. Ulleberg’s curve fit was made with data taken largely over a limited region of system opera-

tion. Not only did the curve fit provide an inaccurate model in regions where only a small number

of points were taken, but the derivatives of the curve in these regions were of opposite sign com-

pared to that given by theory. Similar problems were encountered by Curtiss et al. in a study of

adaptive control using an artificial neural network (ANN) transient model of a hot water coil.

[Cur] The ANN coil model response to an increase in hot water flow rate wrongly predicted an

immediate decrease in outlet air temperature. This decrease lasted only a relatively short period

before the coil responded as expected with an increase in air temperature. But, because a predic-

tive controller responds to the rate and direction of predicted change in air temperature (deriva-

tive control), the actuator’s initial response would be in the wrong direction. To correct this,

certain weights in the neural network (neural network weights are analogous to parameters in a

model composed of a system of nonlinear equations) were constrained to be either less than or

greater than zero, which effectively forced the correct direction in the short term response and

resulted in a realistic process model. In this case, knowledge of the process physics was required to

make a usable process model.




Fitting data to equations derived from mechanistic theory is termed model fitting. Models

derived from theory can be extremely useful for predicting system behavior in regions of opera-

tion lacking data. The derivatives of a well fit mechanistic model should closely represent real sys-

tem behavior. Theoretical models are useful in optimization applications since the optimum may

not occur in a region rich in experimental data points. The advantage of model fitting over curve

fitting may be diminished if many data are available for system operation near the optimum for

given values of independent variables.

In engineering practice, there is no distinct division between models derived from theory and

arbitrary curve fits. Parametric models that closely approximate “true” behavior, yet are not

derived from theory, may be postulated for a given process. For example, the asymptotic behavior

of the fluid temperature exiting a heat exchanger as a function of flow rate may be captured with a

variety of exponential functions. There is some measure of arbitrariness in the choice of the para-

metric function, but the behavior of the process may be well matched. 

.  Parametric Models

..   Multivariate Model Representation

A system model can be defined as a system of interconnected components. Figure .. shows

a system model consisting of five generic components.  For an individual component with multi-

ple inputs and outputs, the relationships are more compactly shown in terms of vectors rather

than a series of scalar variables. For example, the dependence between inputs, outputs and param-

eters for the first component can be described in terms of either scalar variables or vector variables:

..

In the above vector equation, y has elements y1 and y2, and similarly  and

. Keeping with convention, vectors are column vectors, and the transpose is denoted

when written in row format. The vector form of Equation .. can be used to describe the input/

y f x x

y f x

1 1 2 1 2

2 2 1

= ( )
=

= ( )
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( , )
,

β β

β
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      x = [ , ]x x1 2
T

  ββ = [ , ]β β1 2
T




output relationship of a group or system of components as well as that of a single component. For

example, the composite system in Figure .. can be represented by

..

The more compact vector notation for model input/output relationships will be used throughout

this work.

..   Multiresponse Regression Models

In regression analysis, the system model is altered to account for the differences between

model predictions and measured data. The differences between the observed dependent or

response variables, , and the model predicted values, 

  ..: Block diagram showing interconnections of a multicomponent system.
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
  

are defined as the 

 

residuals

 

, . A multiresponse regression

model takes the form

 

..

 where is a vector of  q  independent input or predictor variables (also called

regressor variables), and  is a vector of 

 

p

 

 parameters. Equation 

 

..

 

describes the relationship between a single observation of 

 

y 

 

and 

 

x

 

 for a given 

    

ββββ

 

. The relationship

between an entire data set of 

 

i

 

 = 1,...,

 

n

 

 observations is described in index or matrix notation as

 

..

 

where 

 

Y

 

 and 

 

R

 

 are 

 

n

 

 

 

×

 

 

 

m

 

 matrices and 

 

X

 

 is an 

 

n

 

 

 

×

 

 

 

q

 

 matrix of independent input variables. For a

set of fixed and known 

 

Y

 

 responses and 

 

X

 

 independent variables, the residuals can be considered a

function of the parameter estimates,

 

..

 

It is useful to note that residuals are distinguished from errors in that error is defined as the

difference between the measured value, , and the 

 

true

 

 (although usually unknown) value, , of a

variable,

 

..

 

and residuals are defined as the difference between the measured and predicted value, 

 

y

 

:

 

..

 

In theory, for an exact model of the process, there is a set of true parameters and a corresponding

set of true response values. Much of the underlying statistical theory of parameter estimation

includes certain assumptions about the statistical properties of the errors. However, since the exact

model and true parameter values for most problems are unknown, the errors are unknown. In the

practice of parameter 

 

estimation

 

, the residuals represent estimates of the errors where the statistical

properties of the residuals are estimates of corresponding properties of the errors. For example, the

unknown errors may be assumed to follow a certain distribution before applying a parameter esti-
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

                          
  

mation technique. The distribution of the resulting residuals can be used to assess the validity of

the error distribution assumption.

 

.  

 

Parameter Estimation Methods

 
The quality of fit given by any parameter estimation method depends upon the statistical

nature of the data. If a correct model and error free data were available, then only a few data

points would be needed to determine the parameters. For example, to fit an 

 

n

 

th

 

 order polynomial,

only 

 

n 

 

+1 different data points are needed to precisely determine the 

 

n 

 

+1 coefficients. However,

error free data is rarely available and consequently the quality of a fit is influenced by the nature of

errors present in the data. In this section, the methods of least squares and maximum likelihood

estimation are discussed after a brief review of a few probability concepts.

 

..   Probability Review

A brief review of certain probability concepts is useful before considering the statistical ideals

associated with parameter estimation. Given a random variable ξ able to take on any value in a

continuous distribution, a cumulative probability density function (pdf ) of ξ can be defined.

..

The curve shown in Figure .. is an example of a cumulative probability density function. For

some given value of x, F(x) denotes the probability that the random variable ξ is less than or equal

to x. The probability is bound between zero and one, tending toward zero as x decreases and

increasing toward one as x increases.

  ..: Example cumulative probability density function.
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

                             
For a differentiable F(x), a probability density function (pdf ) can be defined:

..

The relationship between the pdf, p(x), and the random variable ξ is illustrated by considering the

graph of an example pdf in Figure .. and the following equation:

..

The probability that ξ is between values a and b is equivalent to the area beneath the curve

between a and b.

Probability density functions are used to define an expected value or expectation of functions

of the random variable.

..

The expectation of the random variable ξ is the mean of the variable, 

..

  ..: Example probability density function (pdf ).
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
and the variance (square of the standard deviation from the mean) is

..

The approach for the univariate probability density function can be extended to the multi-

variate case, and joint probability density functions can be defined. However, the definitions

above suffice to illustrate parameter estimation concepts. Although the probability distribution

p(x) can take on any functional form, a normal distribution, described below, is often assumed in

parameter estimation analysis.

In many applied regression techniques the validity of the results is conditional upon the distri-

bution of the errors. For example, it is shown that estimates by least squares will yield the “best”

parameter estimates if the errors follow a normal (Gaussian) distribution. A normal distribution

of a random variable x (univariate) is given by the function 

..

with mean µ and variance σ2. A multivariate normal distribution of an n dimensional random

vector x has the form

..

with a mean µµµµ and covariance matrix V. 

..   Parameter Estimation by Least Squares

The true values of the parameters are unknown and must be estimated using the data. The

most common estimation procedure is that of least squares (LS). For a system with a single

response variable, y, a set of parameter estimates is found which minimizes (finds the “least” value
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
of ) a sum of squares of the residuals. The least squares minimization problem for a single response

model can be stated as 

..

For a multiresponse model, the least squares problem above can be extended to include a sum of

squared residuals for all m responses

..

or, equivalently in matrix notation, the trace (sum of the diagonal elements) of the product of the

residual matrix and its transpose

..

Equations .. and .. represent an unweighted or evenly weighted least squares criterion.

Each vector of residuals influences the fit equally. However, in many applications, not all of the

measurements are made with equal accuracy. Some responses may be a more precise measurement

than others. For example, steam flow rate measurements may exhibit more variance than measure-

ments of cooling tower water temperature.

The relative influence of individual vectors of residuals upon the least squares solution can be

affected by incorporating weighting factors. A weighted least squared problem is formed by incor-

porating an m × m matrix of weighting factors W into Equation ...

..

The weighting matrix W may be a diagonal matrix (off diagonal entries are 0) of positive diagonal

elements where the wii entry weights the sum of squares of residuals corresponding to the i th

response. Alternatively, W can be a symmetric positive definite matrix where the off diagonal

entries (wij, i≠j) contribute by weighting the product of residuals from the i th and j th responses. 
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
Using statistical theory, it can be shown that if the model is correct and the errors follow a

normal (Gaussian) distribution, then the solution of the least squares problem will yield the “best”

parameter estimates. [Sen] Solving the single response least squares problem in Equation ..

with data from a normal distribution will yield a best set of parameter estimates. However, the

extended formulation for the multivariate case given in Equation .. (unweighted least squares)

will not result in the best set of parameter estimates unless the errors in each of the m response

variables demonstrate exactly the same variance (the covariance matrix V would be diagonal with

all diagonal elements equal). If the response variables have unequal variances, a weighted least

squares formulation (Equation ..) must be used where the weighting matrix W is given by the

inverse covariance matrix, .

In general, the errors and consequently the covariance matrix are unknown. However, the

weighted least squares problem may be solved with an estimate of the covariance matrix. A two-

stage procedure can be employed where the unweighted least squares problem is first solved.

[Kan] Then the weighted least squares problem is solved with an estimate of the covariance

matrix  generated from the residuals of the unweighted problem. The approximate covariance

matrix is given in terms of the residuals as follows:

..

..   Other Estimation Methods

There are a number of methods for quantifying the difference between model predictions and

observations other than using sum of squares. Some methods such as maximum likelihood esti-

mation (MLE) consider the distribution of the residuals. For example, consider a single response

model, where the residuals follow a probability density function, p(r). For a given set of data, the

residuals are dependent upon the parameter values, r = r (ββββ). The most probable or likely parame-

ter values are those that result in residuals which maximize the pdf, p(r). If the residuals are

assumed to follow a normal distribution, the results of maximum likelihood estimation are the

same as weighted least squares where weighting matrix is the inverse of the covariance matrix. The

    V −1

    ̃V

Ṽ n R R= −1 T




maximization of probability density function is also used in Bayesian estimation, where a prior

probability density function is assumed for the parameters and the residuals. 

..   The Determinant Criterion

Box and Draper approached the multiresponse estimation problem using probabilistic argu-

ments (Bayesian estimation). [Box65] It was demonstrated that given a data set Y, the probability

that a set of parameter estimates, ββββ, is the set of true parameter values is inversely proportional to

a measure of the residuals as follows:

..

The probability is maximized when the determinant of  is minimized. Bates and Watts

derive the same criterion using a maximum likelihood argument. [Bat88] Also, Bates and Watts

point out that geometrically,  corresponds to the square of the volume of the m dimensional

parallelepiped spanned by the residual vectors and minimizing the determinant corresponds to

minimizing this volume.

..   Linear Dependencies in RTR

While the determinant criterion provides a means for weighing residuals according to vari-

ance, its computation can sometimes be problematic. For example, if one vector of residuals (a

column of R) happens to be linearly dependent (or nearly linearly dependent) with another resid-

ual vector, then  will not be full rank and the determinant will be zero (or a very small num-

ber). Any minimization algorithm will either fail or halt at this apparent minimum. Similar

problems are faced when using the two step weighted least squares method where the covariance

matrix is estimated from the inverse of . If not of full rank, the inverse of  is not

defined.

Linear dependencies among residuals can be caused by linear dependencies in the responses.

Such dependencies among the measured variables can occur in many HVAC system components.

For example, consider the counterflow heat exchanger in Figure ... The inlet and outlet tem-

peratures are measured and an estimate of the overall heat transfer parameter, UA, is to be deter-
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
mined from the temperature measurements. The mass flow rates and fluid specific heats are

known and assumed to be constant. An Ntu-effectiveness model can be used to represent the heat

exchanger and an estimate of the heat exchanger’s overall heat transfer coefficient, UA, is desired.

The cold stream outlet temperature is given in terms of the inlet temperatures,

..

and similarly, the hot stream outlet temperature is given by

..

where  is the minimum capacitance rate and the effectiveness, ε, is given in terms of the

ratio of capacitance rates, Ntu and UA:

..

..

..

  ..: Inlet and outlet temperatures for a counter flow heat exchanger.
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
The overall heat transfer coefficient UA can be estimated using either measurements of Tho

and Equation .. or measurements of Tco and Equation .. (along with Equations .. and

..). Qualitatively, one might expect that using both measured outlet temperatures with Equa-

tions .. and .. in a multiresponse regression technique would result in a better estimate of

UA. However, assuming that the overall heat transfer coefficient, UA, does not significantly vary

with temperature, the residuals associated with Tco and Tho are linearly dependent. The depen-

dency arises from the energy balance about the heat exchanger, 

..

or, solving for Tho in terms of Tco 

..

Using Equation .., the residual or difference between a measured value ( ) and predicted

value ( ) of Tho is a linear function of the residual in Tco 

..

Consequently, the R n × 2 residual matrix for this example will only have rank=1 and the determi-

nant of  will be zero for any value of UA used to predict the outlet temperatures.

Energy and mass balances are often used in HVAC component models to predict dependent

variables. Care must be used to find and remove any linear dependent responses from the residual

matrix when using multiresponse regression techniques to determine system parameters. Box et al.

[Box] discuss the problems associated with linear dependencies among responses and suggest

procedures for determining the dependencies. McLean et al. [McL] extend the work of Box et

al. in the detection of linear relationships in the residuals.
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
.  Parameter Identifiability Problems

..   Overparameterization

In some cases of nonlinear estimation, the parameter values at a problem solution are not

unique. This problem will occur if the model function is specified with too many parameters

(overparameterized). An example of a non unique solution can be demonstrated with the simple

model below, a nonlinear function in terms of the parameters β1 and β2:

..

While there may only be a single value of the product β1 β2 that minimizes the residuals, there is a

continuum of possible values of β1 and β2. The minimization algorithm will show no preference

for one combination over another. Equation .. explicitly demonstrates how problems of param-

eter identifiability can arise. However, in a general system of nonlinear model equations, potential

problems with parameter identification may not be so obvious.

Overparameterization is not always the result of a bad model. Parameter identification prob-

lems can occur in exact models when a fit is made with limited data. For example, consider the

model below with a single response y and two independent (regressor) variables x1 and x2, and

three parameters, β1, β2 and β3:

..

If the independent variable x2 varied little or not at all in the data set used for the regression anal-

ysis, good estimates for β2 and β3 cannot be determined. Use of a model with these parameters to

extrapolate predictions over different values of the independent variable would yield questionable

results.

Even if an independent variable is measured over a broad range, a nonlinear model may still

suffer from parameter identifiability problems. For example, the two curves shown in Figure ..

are generated from the following equation:

..

y β1β2 x=

y β1x1 β2x2

β3+=

y β1 1 xβ3–( )exp β2x( )exp+=




The only difference between the curves is that the value of β3 in the solid curve is . and in the

dashed curve is .. Clearly, data taken anywhere in the range of  will not allow a close

estimate of β3. Overparameterization problems are exhibited in the example problem and dis-

cussed in Section .. below. 

The TRNSYS cooling tower model used in this work includes a type of effectiveness/number

of transfer units (Ntu) relationship used in the mass transfer rate equation. The outlet water tem-

perature depends upon the inlet air wet bulb temperature, the inlet water temperature and an

effectiveness defined in terms of Ntu. The Ntu is dependent upon the mass flow rates of air and

water through the tower and upon two parameters, c and n:

..

If the data available for estimating the cooling tower parameters have constant or near constant

water and air flow rates, then the effect of either c or n upon the tower outlet water temperature

could not be discerned independently. Thus c and n cannot be uniquely identified. 

  ..: Plot of Equation .. for β3=. (solid line) and β3=. (dashed line).
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
Even if multiplicative parameters such as in Equation .. were not present in any individual

model equation, the same redundancy in parameters can occur in estimation using a composite

model. For example, one output of a component modeled as  is used as an input to

another component ( ) having an output . If the output of the first compo-

nent, y1, is not measured, the residuals corresponding to the output of the second component are

effectively used to determine both parameters β1 and β2 during the regression. The two compo-

nents are equivalent to a single component where , just as in Equation ..

Seber and Wild describe a measure indicative of parameter identifiability problems. [Seb89]

For a univariate response model, y = f (x, ββββ ), and a data set of n observations of x and y, a vector

representation of the predicted n responses as a function of ββββ is formed

..

The derivative of the vector f(ββββ) with respect to p parameters (ββββ = [β1,β2,...,βp]) is the matrix

..

The matrix elements correspond to the first order terms of a linear approximation to f(ββββ) about ββββ

(truncated Taylor Series). Linear dependencies within the matrix product  are indicative of

parameter identifiability problems. Unless the data are error free and the model exact, the matrix

 will not be identically singular (det  = 0). However, the determinant may be very

close to 0 and the matrix is then described as ill-conditioned.

..   Parameter Variance

Another indication of parameter identifiability problems is large variances in the parameter

estimates. Parameter estimates are functions of random variables and possess a certain distribu-
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
tion. The distribution of the estimates depends both upon the model and upon the distribution of

the random variables. For models with multiple parameters, a variance-covariance matrix, Vββββ, of

the parameter estimates can be defined. If multiple sets of data taken at equivalent values of inde-

pendent or regressor variables are available, the parameter estimation problem can be solved with

each data set. The set of resulting parameter estimates from the multiple (replicated) data will not

be equal, but will demonstrate some random error and an associated variance. For m sets of repli-

cated data, m parameter estimates can be found. The estimated mean of the distribution of

parameter estimates is

..

and the covariance matrix is estimated as

. ..

In cases where replicated data are not available, statistical properties of model parameters may

be estimated by simulating a set of experiments. [Bar] Given a model, a set of “true” response

data can be calculated with a given set of input variable values. Computer generated pseudoran-

dom numbers can be used to add random error to the responses values, creating sets of “noisy”

data. The sets of contaminated data can be used to determine multiple estimates of parameters.

Mean values, a covariance matrix, and parameter bias can then be calculated. These methods are

applied to the example problem and discussed in Section ...

A parameter covariance matrix can also be estimated from geometric features of the mini-

mized objective function (e.g. a sum of squares). Rather than examining the changes in parameter

estimates due to small changes in the data over multiplicative data sets, expressions are derived for

parameter variance based upon the effect of small differential changes in a given data set. A small

change in measured values will cause some change in the objective function. The change in the

objective function would cause its minimum location (i.e. the parameter estimates) to change as

well. From these ideas of small differential changes, expressions for an estimated covariance matrix

ββ ββ=
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
in terms of the curvature of the objective function can be derived. [Bar] The derivations usually

include assumptions about the distribution of errors in the data and how well a linearized model

approximates the nonlinear model at the objective function minimum. Bard states that for a wide

class of maximum likelihood estimates with normal distributions, the covariance matrix is approx-

imately equal to the inverse of the objective function Hessian matrix. The Hessian matrix is a sec-

ond order measure of curvature in multidimensional functions. For an objective function φ

dependent upon parameters , the Hessian is defined as

..

Elements of the Hessian matrix for a quadratic function (e.g. a sum of squared residuals objective

function associated with a linear parametric model) would be constant. A “good” fit for the

parameter estimates is essential for a reasonable estimate of the parameter covariance matrix via

the inverse Hessian. An overparameterized model will result in an objective function surface hav-

ing an ill conditioned Hessian matrix at the minimum with a meaningless inverse.

..   Parameter Identification Problems Summary

The occurrence of parameter identifiability problems does not necessarily negate the use of

the parameter estimates. Whether or not the parameter estimates result in a model that can pre-

dict the measured data with good accuracy can be judged by evaluating the residuals associated

with each response. The estimated parameters may still yield a model with adequate predictive

capabilities. However, the individual component parameters possessing identifiability problems

should be limited to use with the original composite system model with which the regression was

made. If nearly “true” parameter estimates are required for use with individual component models

in different composite systems, parameter variance should be examined. Large variance in param-
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
eters may also bring into question the relative advantage of mechanistic models over curve fits for

predicting responses outside the range of the measured data used in the fit (extrapolation). For

example, the variance in parameter β3 in Equation .. (plotted in Figure ..) would be large if

fit with the regressor data (x) greater than three and would not be suitable for predictions when x

is between zero and two.

.  Example Chilled Water Plant

..   Chilled Water System Simulation with TRNSYS

Before addressing the problem of parameter estimation, a means of modeling a multicompo-

nent system will be discussed. A transient system simulation program, TRNSYS [Kle], was

developed at the University of Wisconsin Solar Energy Laboratory for investigating the perfor-

mance and behavior of thermal energy systems. The program is modular so that a number of indi-

vidual component models may be linked to form a system. The modular feature of TRNSYS

allows any general chilled water system to be simulated. Numerous HVAC system component

models such as chillers, cooling towers, pumps, fans and heat exchangers have been written for use

with TRNSYS. Component models can be modified or new ones written to suit individual appli-

cations. Dynamic or state equations are incorporated into components that model thermal stor-

age elements, such as chilled water storage tanks and building structures. Many TRNSYS

component models incorporate mechanistic design equations derived from first principles of heat

or mass transfer and thermodynamics. Component outputs, y, are given as a function of the

inputs, x, and a set of parameters, β (i.e. y = f (x;β)). 

..   Example System Description

The use of multiresponse regression techniques are illustrated here with an example chilled

water system model. The model consists of four components as shown in Figure ...This exam-

ple system represents a steam driven chiller, a cooling tower and a surface condenser. Separate

chiller and steam turbine components represent the steam driven chiller. The system function is to

cool a flow of water, , from some relatively warm chilled water return temperature, Tchwr , to

a prescribed chilled water supply temperature, Tchws . The chiller compressor is driven by a steam

turbine that exhausts to a surface condenser. A cooling tower is used to reject heat from the

  ̇mchw




chiller’s refrigerant condenser and the steam condenser to the environment. For this example, five

variables are categorized as independent and eight variables as dependent. Independent variables

include ambient air wet bulb and dry bulb temperatures, Twb and Tdb, steam inlet pressure for the

turbine, pin, and chilled water supply and return temperatures, Tchws and Tchwr. Dependent vari-

ables include steam flow rate, , turbine exhaust enthalpy and pressure, hexh and pexh, cool-

ing tower outlet temperature, Tcws, chiller condenser water outlet temperature, Tcdwo, chiller

power, Pcomp, surface condenser hot well and water outlet temperatures, Thw and Tcwr . 

  ..: Block diagram showing interconnections in the example chilled water system.

    ̇msteam
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The models for the turbine, chiller, cooling tower and surface condenser used to model an

actual plant are described in Chapter 

 



 

. All but the chiller model use mechanistic equations.

Chiller power is modeled by a second order parametric equation in terms of entering water tem-

peratures and the chiller load. The equation has been shown to closely match the predictions of a

detailed mechanistic model. [Bra

 



 

]

A total of 

 

 

 

parameters are used in the four component models. The objective in this example

regression problem is to determine estimates for the parameters from a set of simulated measured

data. Desirable parameter estimates will result in a composite system model that can closely pre-

dict the dependent variables over a range of independent variable (regressor) values. Both

unweighted and weighted least squares methods as well as the determinant criterion will be used

to estimate the parameters. The data set used in the example was generated by the composite

model with a set of selected parameter values. The “true” data were then “contaminated” with

noise following a multivariate normal distribution (Equation 

 

..

 

) with a zero mean and selected

covariance matrix 

 

V

 

. 

Measurements for all dependent variables would rarely be available in an actual plant. Of the

eight dependent variables defined for this example, it is assumed that two are not measurable: the

compressor power and the enthalpy of the turbine exhaust. The multivariate regression is per-

formed with the remaining six dependent variables. The set of test data consists of 

 



 

 (hourly)

responses. All independent variables were varied with periodic functions to simulate periodic

weather changes. A separate data set (not used in the regression analysis) is used to evaluate the

predictive capabilities. The independent variables in the separate set were varied over ranges not

encountered in the data set used for the fit.

 

..   

 

Minimization Algorithms Used

 

Solution of the parameter estimation problem involves minimizing some quantity such as a

sum of squares or the determinant of the 

 

R

 

T

 

R

 

 matrix. There are numerous algorithms available for

finding minima, each with its own advantages depending upon the attributes of the function to

be minimized. For this example study, three different algorithms were used to minimize either a

sum of squares objective function or the determinant objective function.




  

A sequential quadratic programming (SQP) minimization algorithm included in the Numeri-

cal Algorithms Group (NAG) Library was used on both the sum of squares and determinant for-

mulations. [NAG91] Sequential quadratic programming is an often used method for solving

nonlinear constrained optimization problems. Quadratic programming refers to a method of

finding the minimum of a quadratic function with linear constraints, for example

 

..

 

where 

 

G

 

 is a symmetric and positive definite matrix. Sequential quadratic programming attempts

to solve a general nonlinear minimization problem (with linear or nonlinear constraints) by solv-

ing a sequence of quadratic programming subproblems that approximate the original problem.

Various algorithms exist for implementing the general strategy of sequential quadratic program-

ming. Boggs and Tolle present a review of the basic SQP method and some of its popular imple-

mentations. [Bog95]

A software package that uses the Levenburg-Marquart algorithm was also used on the sum of

squares problem formulation. The package, ODRPACK, was developed explicitly for regression

problems by the Applied and Computational Mathematics Division of the National Institute of

Standards and Technology. Since the computation of a least squares objective function is internal

to the software package, this method was not used with the determinant formulation of the

regression problem.

The Levenberg-Marquardt algorithm uses elements of two other minimization algorithms,

linearization and steepest descent. If the model outputs were linear in terms of the parameters, as

in linear regression problems, the objective function surface (a sum of squares of residuals) would

be second order with respect to the parameters. For example, the surface of the sum of squares

objective function, 

 

φ

 

, for a two parameter (

 

β

 

1

 

 and 

 

β

 

2

 

) linear regression problem would be a parab-

oloid in the three dimensional space spanned by {

 

β

 

1

 

,

 

β

 

2

 

,

 

φ

 

}. In a linearization algorithm, the non-

linear model responses are approximated by a Taylor series truncated after the first derivative term.

min ( )
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The resulting approximate sum of squares surface at a given point is an 

 

n

 

 

 

dimensional paraboloid

cotangent with the original objective function surface. Just as a point and first derivative of a

parabola in two dimensions, , uniquely define the value of 

 

x

 

 at the parabola

minimum (assuming a convex parabola, 

 

β

 

2

 

 > 0), the function value and derivatives with respect to

the parameters uniquely define the minimum point of a strictly convex quadratic function in

higher dimensions. After the function is evaluated at the initial parameter guess, 

    

ββββ

    

0000

 

, and deriva-

tives calculated at this initial point, the value of 

    

ββββ

 

 at the minimum of the approximating parabo-

loid is calculated. Derivatives and the function value can then be calculated at this new point and

another estimated minimum point found. This process is continued until a minimum is reached.

Steepest descent methods require computation of derivatives of the objective function at the

initial guess and use the gradient at that point to determine a direction of steepest descent. The

function is minimized along this line of steepest gradient until a minimum (on the line) is found.

Another gradient is calculated from the minimum and the line minimization performed again

iteratively until the minimum is found. 

In a sense, the linearization method provides a direction away from a current point to the

minimum point of the approximating quadratic surface. The steepest descent method also pro-

vides a direction toward a new point. Briefly, the Levenberg-Marquardt method makes use of

both sources of directional information to select a “best” direction, and also determines an appro-

priate step size in that direction. The algorithm has been found to work well in solving many non-

linear parameter estimation problems. A detailed description of the Levenberg-Marquardt

method can be found in the text by Gill, 

 

et al

 

. [Gil

 



 

]

A derivative free method of optimization, the Nelder-Mead algorithm, was also used to solve

both the sum of squares and determinant formulations. The particular algorithm used is available

in the public domain and coded in FORTRAN90. [Mil

 



 

] The Nelder-Mead algorithm uses only

function evaluations to “fall downhill” on a multidimensional function surface. For an 

 

n

 

 dimen-

sional function, 

 

n

 

+1 points on the function surface form the vertices of a geometrical simplex. For

example, four points on the surface of a three dimensional bowl shaped surface form the vertices

of a tetrahedral simplex. The simplex falls downhill, shrinking or expanding its shape as new ver-

y β2x
2

β1x β0+ +=



 



                                         
tices (function values) are computed according to the algorithm rules. The algorithm is advanta-

geous where the function surface may be nonsmooth because computation of derivatives or

estimates of derivatives are not required. The Nelder-Mead is a well known algorithm and descrip-

tions can be found in most texts on numerical minimization methods. [Gil]

..   Parameter Identifiability Problems with the Cooling Tower Model

In the effectiveness-Ntu model used in the TRNSYS cooling tower model (a detailed descrip-

tion of the cooling tower model is given in Section ..), Ntu is defined as

..

where Vmax is a maximum volumetric flow rate, ρair is the air density and fair indicates the fraction

of maximum volumetric flow rate. It is common to describe relative air flow rate in cooling towers

by fractional fan speed (roughly equivalent to fractional volumetric flow rate) rather than explic-

itly by air mass flow rate, hence fair is used as a component model input variable. Initially, it could

be assumed that these three parameters, c, n and Vmax are to be determined by parameter estima-

tion. However, examining Equation .., the parameter Vmax could be factored out and com-

bined with c,

..

and thus unique values of c and Vmax cannot be determined from regression. This parameter iden-

tifiability problem does not limit the utilization of the predictive model as Vmax can be fixed and a

value of c estimated.

The particular configuration of the cooling tower model used in the example is a four cell

tower where the overall leaving water temperature is the mixed temperature of the individual cells.

It is assumed that the entering water flow is uniformly distributed over all cells at a constant rate.

Individual cell leaving water temperatures are found with individual Ntu calculations since not all
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
cells may have the same air flow rates (e.g. two cells with fans fully on and two others with their

fans turning at half speed). However, the same c, n and Vmax are assumed for each Ntu calculation. 

To identify unique estimates of c and n, measurements at differing air flow rates must be avail-

able. The exponent n quantifies how cooling tower performance depends upon the ratio of water

to air mass flow rates. If the ratio is constant in the data used with the parameter estimation pro-

cedure, the exponent n cannot be estimated independent of the coefficient c. Again, one of the

parameters, for example n, could be fixed and the remaining parameter estimated in the regression

problem. In this example, the air and water flow rates are constant over all data used in the fit, but

of the four individual cells, two operate at full fan speed and two at half fan speed. Ideally, with

error free measurements of input or output variables, a unique value of n could be determined.

A parameter estimation analysis was performed on just the cooling tower component (rather

than the composite system), where the sum of squared differences between measured and model

predicted values of cooling tower water outlet temperature were minimized. Two estimation runs

were performed to find estimates of c and n, one using error-free or “noiseless” measured data and

the other using the noisy data. The sequential quadratic programming (SQP) minimization rou-

tine arrived at the “true” parameter values of c = . and n = -. when the problem was solved

with the error-free data. However, when the cooling tower outlet water temperature measure-

ments containing the normally distributed noise (with a standard deviation of .°C) were used,

the algorithm arrived at c = . and n = -. . Examining the sum of squares objective function in

terms of c and n plotted in Figure .., it is evident that the surface is relatively flat with respect to

n. The enlarged view of the surface near the minimum in Figure .. shows a very shallow convex

depression. When the noisy data were included in the analysis, the shallow depression of the

“true” minimum (with respect to n) was not discernible to the minimization algorithm. Typically

with overparameterization, the minimum of the objective function (e.g. a sum of squares) occurs

on a curve or higher dimensional surface rather than at a point. For example, in Figure .. the

minimum appears to occur along a curve on the floor of the surface. The higher dimensional sur-

face corresponds to ill-conditioning in the  matrix given in Equation ...    ′ ′F FT




  ..: Objective function surface in terms of parameters c and n for the cooling tower 
parameter estimation example.

  ..: Enlargement of objective function surface in Figure ...
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
In the comparative parameter estimation runs made with the example composite chilled water

system, only thirteen parameters were estimated, the values of Vmax and n fixed to reduce parame-

ter identifiability problems discussed above. 

..   Starting Values

The general regression problem is a multivariate nonlinear minimization problem which

requires initial guesses for the unknown parameters. Many minimization algorithms used on non-

linear functions can at most only guarantee a local minima in a convex region that includes the

starting point. A global minimum corresponding to the best parameter estimates will only be

found if the initial guess is in a convex region containing the global minimum. 

Reasonable values for initial parameter estimates may be obtained for mechanistic component

models derived from theory. For example, an estimate of the overall heat transfer coefficient used

in the condenser model could be calculated using the known size, geometry (number of tubes and

passes) and flow rates of the condenser. Frequently, for modeling purposes, a curve fit rather than

a mechanistic model can provide for a more computationally simple model, able to closely match

the mechanistic model’s predictive capability. For example, Braun [Bra] demonstrated how a

simpler quadratic model can closely match a more detailed mechanistic chiller model. Braun’s

chiller model includes a curve fit of chiller power as a quadratic function of inlet temperature dif-

ference and evaporator heat load and is used in the TRNSYS chiller component. However, start-

ing values for parameters in component models which use curve fits cannot be explicitly

calculated. The starting values used for the six coefficients (α-α5) in the example problem are

parameters known to be good estimates for a different chiller. [Bra] Guess values for the other

components were taken from nominal values found for similar type equipment. Starting values

for all variables along with inclusive limits are given in Table ...

..   Explanation of Tables of Regression Results

Results from applying ordinary (unweighted) least squares, weighted least squares and the

determinant criterion methods with the various minimization algorithms are tabulated in

Tables .. through Tables ..  and discussed in Section .. below. The parameter estimation

problem is solved for twenty four different combinations of estimation method, response set and




minimization algorithm. Results from the twenty four separate runs are tabulated, with the runs

grouped according to three different categories: the estimation method, the number of responses

used in the objective function and the minimization algorithm. These categories are indicated in

the three left columns.

Four tables of results are presented in Section ... Table .. lists the results from runs using

the ordinary least squares objective function including sums of squared residuals over all six

responses. Table .. lists results for ordinary least squares using four and three responses in the

sums of squared residuals. Table .. lists results from runs using a weighted least squares objec-

tive function and sums of squared residuals over six, four and three responses. Table .. lists

results from runs using the determinant criterion with six, four and three responses.

Four residual quantities are given for comparison. The first column of results is a scaled sum

of squared residuals for all six responses which is a relative indication of how well the regression

fits all the measured data. For the example problem considered, steam mass flow rate is the only

variable associated with energy costs and its residuals are considered separately. Three measures of

 ..:  Parameter Starting Values and Bounds

parameter starting 
value

lower 
limit

upper 
limit

β1 0.700 -2.0 2.0

β2 0.100 -1.0 1.0

β3 0.100 -1.0 1.0

α0 0.1107 -25.0 25.0

α1 0.3198 -25.0 25.0

α2 0.4662 0.0 25.0

α3 -0.0956 -25.0 25.0

α4 0.2152 0.0 25.0

α5 -0.0656 -25.0 25.0

ηm 0.720 0.10 1.10

UA 16.000 1.0e-5 500.0

fhw 0.100 0.0 1.0

c 1.100 0.01 10.0




steam mass flow rate residuals tabulated in the next three columns are the sum of squared residu-

als, standard deviation of residuals and mean of the residuals. 

For each run, two different sets of residuals quantities are tabulated. An “F” in the left column

indicates the residuals (measured value minus predicted) are from the data ( observations)

used in the solving the parameter estimation problem. A “P” in the left column indicates the pre-

sented results are from comparing predicted values with true values (differences between predicted

values and true values are termed errors rather than residuals) over another  observations not

used in the fit. A broader range of independent variable values were used to generate these addi-

tional observations, and the tabulated error quantities give a relative indication of how well the

model can predict responses that must be extrapolated beyond the region of the data used in the

fit.

Also, for each run, the thirteen parameter estimates determined in the regression are tabulated

in the right columns. The parameter entries span two rows, the corresponding variable names (β1,

β2, etc.) are indicated in the table heading.

The top two lines of entries in each table are residual (and error) quantities that would corre-

spond to a perfect fit of model to data. The parameter values in the top two lines are those used to

generate the data set used in the fit and the additional  observations used for the predictive

comparisons (“P” results). The data used in the fit (the first  observations) were “contami-

nated” with noise from a multivariate normal distribution to produce a set of simulated data mea-

surements. The residuals with quantities tabulated for the fit set, “F”, are the differences between

the predicted response values using the true parameters and the simulated measurements. For the

steam flow rate, the added noise came from a distribution having a zero mean and a standard devi-

ation of . These values are evidenced in the tabulated standard deviation of . and mean of

-. (.% of the mean steam flow rate) over the  observations of simulated steam flow rate. 

Model predictions over the additional  observations, data set “P”, are compared with true

response values (without noise) rather than with noisy simulated measured data as is done for pre-

dictions over the fit period, data set “F”. Errors from a regression producing a perfect fit would all




be zero over data set “P”, hence the entries of ~0 for comparison at the top of the tables.

..   Method Comparisons

The ordinary least squares method was used with three different minimization algorithms and

three different sets of responses for comparison. Regression results using six responses in the sum

of squared residuals objective function are given in Table .. and results using four and three

responses are given in Table ... The reduced number of responses is used to evaluate the effect

of possible collinearity among the responses upon the regression results.

Collinearity among the responses will cause degeneracy in the RTR matrix used in the

weighted least squares and determinant criterion methods and subsequently will result in an

unsuccessful regression. While ordinary least squares is not as accurate as weighted least squares in

multiresponse estimation problems, collinear responses with ordinary least squares will not result

in failure during solution. Ideally, in a least squares formulation, responses should be weighted

according to their variance, but disproportionate weighting caused by collinearity may not

strongly influence the regression results. 

The two responses removed for the four-response runs were the temperature leaving the hot

well, Thw , and the temperature of the chiller condenser leaving water, Tcwo . Considering small

heat losses from the hot well to the ambient environment, the hot well temperature can be esti-

mated with an energy balance about the surface condenser and will vary near linearly with the sur-

face condenser outlet water temperature, Tcdwo , which is already used as a response. Leaving

water temperature from the chiller condenser, Tcwo , can also be determined from an energy bal-

ance about the chiller, and will vary linearly with chiller compressor power. Although chiller

power is not a measured response in the example system, steam mass flow (a measured response)

rate can vary near linearly with chiller power and as a result demonstrate the same linearity with

the chiller condenser outlet water temperature. The exhaust pressure was additionally removed in

the three response runs, leaving one response each from the cooling tower, the surface condenser

and the combined chiller/steam turbine components.




Using the ordinary least squares method (results given in Tables .. and Table ..), both

the Levenburg-Marquardt (ODRPACK) and sequential quadratic programming (SQP) algo-

rithms performed successfully using the set of six, four or three responses. The Nelder-Mead sim-

plex algorithm did not perform as well, arriving at parameter estimates which yielded a sum of

squared residuals (scaled) over fifteen times greater than those resulting from the Levenburg-Mar-

quardt algorithm ( . vs. . ). Over the data used in the fit (data set “F”), the Levenburg-

Marquardt algorithm using four responses resulted in both the smallest total sum of squared resid-

uals over all responses ( . ) and the smallest sum of squared residuals for steam flow rate

( . x  ). Using the same algorithm but with three responses yielded the smallest standard

deviation of steam flow residuals ( . ). Considering the predictive performance over parameter

set “P”, the sequential quadratic programming method with three and six responses gave the best

results.  

Considering all  runs, using the weighted least squares method with the Levenburg-Mar-

quardt method and four responses (pexh, ,Tcdwo, Tcwi) resulted in the lowest sum of squares

(. x  ) for the steam flow rate over the fit data set “F”. Results for all the weighted least

squares runs are given in Table ... The results from the weighted analysis showed only slight

improvement over the results of the unweighted least squares using the same method and same

four responses. The least steam flow sum of squares residuals over the predicted period came from

using the ordinary least squares analysis with the SQP algorithm and the same four responses

mentioned above ( . ).  

In the weighted least squares category, using the Levenburg-Marquardt algorithm, using four

responses showed a very slight improvement over using six. However, using three responses

resulted in larger residuals. The SQP method did not result in a good fit for the six and four

response cases, but did arrive at a reasonable result for the three response case. The poorer fit is

due to unreasonable weights in the weighting matrix. The weighting matrix is the inverse of the

RTR matrix at the solution to the ordinary least squares problem for the same number of

responses. The RTR matrices at the solution to the six and four response SQP runs were ill condi-

  ̇msteam




 ..:  Example System Regression Results - Ordinary Least Squares, Six Responses
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d4

scaled sum 
of squared 
residuals 
or errors 
over all 

responses

sum of 
squared 
residuals 
or errors 
for steam 
flow rate
(kg/hr 
x106)

standard 
deviation 
of steam 

flow 
residuals 
or errors 
(kg/hr) 

mean of 
steam 
flow 

residuals 
or errors 
(kg/hr) 

β1 β2 β3 UA fhw c

α0 α1 α2 α3 α4 α5 ηm

residual and 
parameter 

“true” values

F 184.4 2.46 101.2 -8.28 0.50 0.15 0.10 11.00 0.50 1.70

P ~0 ~0 ~0 ~0 7.336e-2 -0.3259 0.5744 -3.888e-2 0.3321 0.3684 0.850

or
di

na
ry

 le
as

t s
qu

ar
es

si
x 

re
sp

on
se

s

SQ
P

F 888.3 12.30 210.7 83.76 0.6962 5.228e-2 4.210e-2 16.1915 0.1056 1.2820

P 814.1b 11.35b 217.7 8.89 -7.360e-2 1.819e-2 0.4425 2.831e-2 0.4674 0.1993 0.6942

SQ
P*

F 329.6 4.61 138.7 6.63 0.7288 4.640e-2 -5.329e-2 10.1154 0.6055 1.2430

P 971.3 13.59 202.6 -125.46 -0.1235 0.1321 0.3984 0.1808 0.3807 -4.337e-4 0.4623

LM

F 364.6d 4.83d 142.0 -7.11c 0.7350 9.881e-3 5.173e-3 7.6104 0.1000 1.4264

P 1,055.2 14.61 234.9 -76.84 3.344e-2 -0.2055 0.7258 -5.869e-2 0.5868 -2.299e-2 0.9390

N
M

F 5659.0 79.10 539.2 -200.13 0.7580 0.2281 3.525e-2 10.379 8.746e-2 1.4366

P 3713.0 51.97 412.2 -217.65 -4.190e-2 -0.2095 0.5722 0.2053 0.1567 0.7078 0.730

 1 Estimation Method: Ordinary least squares (OLS), weighted least squares (WLS) or determinant criterion (DET)

 2 Number of responses used in objective function: Six – pexh , msteam , Tcdwo , Thw , Tcwi , Tcwo 
Four – pexh , msteam , Tcdwo , Tcwi 
Three – msteam , Tcdwo , Tcwi 

 3 Minimization algorithm used: Sequential quadratic programming (SQP), Levenburg-Marquardt with ODRPACK (LM), Nelder-Mead (NM).

An asterisk (*) indicates error free data were used in the fit.
 4 Predictions were compared either set “F” – the 240 noisy data points use in the fit, or set “P” – another 240 data points (true values) not used in the fit.

 a, b, c, d indicate the “best” four results in each category of residuals. Error free data sets (*) were not included in the ranking.




 ..:  Example System Regression Results - Ordinary Least Squares, Four and Three Responses
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scaled sum 
of squared 
residuals 
or errors 
over all 

responses

sum of 
squared 
residuals 
or errors 
for steam 
flow rate
(kg/hr 
x106)

standard 
deviation 
of steam 

flow 
residuals 
or errors 
(kg/hr) 

mean of 
steam 
flow 

residuals 
or errors 
(kg/hr) 

β1 β2 β3 UA fhw c

α0 α1 α2 α3 α4 α5 ηm

residual and 
parameter 

“true” values

F 184.4 2.46 101.2 -8.28 0.50 0.15 0.10 11.00 0.50 1.70

P ~0 ~0 ~0 ~0 7.336e-2 -0.3259 0.5744 -3.888e-2 0.3321 0.3684 0.850

or
di

na
ry

 le
as

t s
qu

ar
es

fo
ur

SQ
P

F 887.6 12.30 226.2 -17.17 0.6554 0.2558 9.871e-2 11.5903 9.434e-2 1.4056

P 1054.8 14.76 160.6 -189.21 -4.068e-2 0.1412 0.4471 -8.409e-2 0.5062 0.3234 0.8947

SQ
P*

F 2728.8 38.09 397.0 41.20 0.7201 2.532e-2 2.318e-2 15.837 9.952e-2 1.108

P 2447.3 34.13 361.1 -111.24 -0.2172 0.3540 0.4733 0.1204 0.5987 -0.3096 0.7207

LM

F 340.2a 4.53b 137.5c -8.34 0.7458 1.717e-2 7.749e-3 7.5287 0.1000 1.5319

P 900.8c 12.49c 218.3 -67.78 3.109e-2 -2.175 0.7495 -4.555e-2 0.5932 1.176e-3 0.6452

LM
* F 648.8 8.93 192.9 -12.4 0.65624 1.210e-2 8.147e-3 11.099 0.1000 1.3057

P 1766.6c 24.67 281.5 -154.9 -3.159e-4 -7.592e-3 0.5335 -0.1199 0.5846 -4.093e-2 0.8804

th
re

e

SQ
P

F 503.0 6.86 168.9 -12.85 0.5513 0.1126 6.359e-2 19.1319 0.1350 1.1295

P 443.2a 6.11a 139.0 -78.87 0.1563 -0.3790 0.4691 -0.2389 0.4089 0.5889 0.1000

SQ
P*

F 2883.9 40.33 410.7 -7.11 0.8081 0.1929 -5.428e-2 14.702 2.154e-2 1.1122

P 12127.4 169.72 726.7 -425.81 0.3585 -5.208e-2 0.5870 -0.8235 0.9859 0.1424 0.2760

LM

F 424.7 5.77 131.9a 2.72a 0.7386 1.255e-2 7.298e-3 9.8109 0.1000 1.2906

P 1122.7 15.66 236.9 -96.90 1.442e-3 -0.1194 0.6680 -5.876e-2 0.6015 -2.976e-2 0.8063




tioned (determinant approximately equal to zero) and the matrix inversion resulted in a meaning-

less weighting matrix.

The determinant criterion may not be well suited for a general multivariate, multiparameter

nonlinear regression problem as evidenced in the results given in Table ... The volume of an n

dimensional parallelpiped which represents the objective function (see Section ..) could prema-

turely “collapse” along an edge if two or more responses approached collinearity. For example,

during the minimum search, one or more parameters could possibly take on values which cause

one response to be nearly collinear with another. Any region in the parameter space which may

give rise to collinearity in the responses will correspond to a local minimum of the determinant

objective function. The Nelder-Mead minimization algorithm (a derivative free downhill search

technique) performed much better than the SQP algorithm when using the determinant crite-

rion. The resulting residual measures were on the same order as using the Nelder-Mead algorithm

and the ordinary least squares objective function. However, the SQP algorithm outperformed the

Nelder-Mead algorithm when using the sum of squares objective function. This difference gives

some indication that the multidimensional objective function surface of the determinant criterion

is more troublesome to minimization algorithms which evaluate derivatives than the correspond-

ing sum of squares surface.       

Overall, the ordinary least squares method and either the Levenburg-Marquardt or sequential

quadratic programming methods yielded the best results for the example regression problem.

Weighted least squares did not demonstrate any significant improvement over ordinary least

squares. The determinant criterion was comparatively unsuccessful in solving the example prob-

lem. 

For comparison purposes, the ordinary least squares regression runs were also performed with

error-free measured data (runs marked with an asterisk were made with error-free data). Using the

SQP algorithm, the six response case with error-free data resulted in very small residuals, (stan-

dard deviation of steam flow residuals was . ) but the four and three response cases were rela-

tively unsuccessful (standard deviations of steam flow residuals of about  ). Also, using the

Levenburg-Marquardt algorithm (ODRPACK) and four response variables, smaller residuals




 ..:  Example System Regression Results - Weighted Least Squares
es

ti
m

at
io

n 
m

et
ho

d1

nu
m

be
r 

of
 r

es
po

ns
es

 u
se

d2

 m
in

im
iz

at
io

n 
al

go
ri

th
m

3  

 d
at

a 
se

t c
om

pa
re

d4
scaled sum 
of squared 
residuals 
or errors 
over all 

responses

sum of 
squared 
residuals 
or errors 
for steam 
flow rate
(kg/hr 
x106)

standard 
deviation 
of steam 

flow 
residuals 
or errors 
(kg/hr) 

mean of 
steam 
flow 

residuals 
or errors 
(kg/hr) 

β1 β2 β3 UA fhw c

α0 α1 α2 α3 α4 α5 ηm

residual and 
parameter 

“true” values

F 184.4 2.46 101.2 -8.28 0.50 0.15 0.10 11.00 0.50 1.70

P ~0 ~0 ~0 ~0 7.336e-2 -0.3259 0.5744 -3.888e-2 0.3321 0.3684 0.850

w
ei

gh
te

d 
le

as
t s

qu
ar

es

si
x

SQ
P

F 30590.8 427.99 1316.7 238.33 0.6746 4.319e-2 3.035e-2 16.0585 0.1058 1.1332

P 43492.3 608.72 1517.17 492.55 1.413e-2 0.1189 0.5672 -0.2123 0.3945 0.1824 0.7128

LM

F 358.9c 4.72c 140.31d -8.29 0.6504 1.296e-2 4.233e-3 6.9875 0.3480 1.4943

P 1049.2 14.47 232.66 -80.04 2.727e-2 -0.1732 0.6322 -4.154e-2 0.5066 -1.608e-2 1.0840

fo
ur

SQ
P

F 6219.8 86.89 589.8 -125.24 0.6746 4.319e-2 3.035e-2 16.0585 0.1058 1.1332

P 8513.0 119.07 669.8 -222.25 1.141e-2 0.1189 0.5672 -0.2127 0.3945 0.1824 0.7128

LM

F 353.4b 4.47a 136.5b -7.75d 0.7135 2.056e-2 6.828e-3 6.3299 0.1000 1.3643

P 973.7d 13.22d 222.2 -77.26 3.110e-2 -0.2000 0.6896 -4.2628 0.5492 1.178e-3 0.8264

th
re

e SQ
P

F 430.8 5.81 155.4 12.78 0.7504 5.794e-3 2.829e-2 29.5745 0.1136 1.3538

P 965.1 13.35 215.2 -97.53 6.116e-2 -0.1743 0.5526 -0.2221 0.6313 0.2979 0.7104

LM

F 403.9 5.45 150.9 -5.26b 0.7646 1.324e-2 7.264e-3 8.5527 0.1000 1.3433

P 1071.3 14.91 232.0 -92.26 1.438e-3 -0.1313 0.6970 -4.736e-2 0.6100 -2.844e-2 0.8293




 ..:  Example System Regression Results - Determinant Criterion
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d4

scaled sum 
of squared 
residuals 
or errors 
over all 

responses

sum of 
squared 
residuals 
or errors 
for steam 
flow rate
(kg/hr 
x106)

standard 
deviation 
of steam 

flow 
residuals 
or errors 
(kg/hr) 

mean of 
steam 
flow 

residuals 
or errors 
(kg/hr) 

β1 β2 β3 UA fhw c

α0 α1 α2 α3 α4 α5 ηm

residual and 
parameter 

“true” values

F 184.4 2.46 101.2 -8.28 0.50 0.15 0.10 11.00 0.50 1.70

P ~0 ~0 ~0 ~0 7.336e-2 -0.3259 0.5744 -3.888e-2 0.3321 0.3684 0.850

de
te

rm
in

an
t c

ri
te

ri
on

si
x

SQ
P

F 21837.5 305.54 838.6 756.87 0.6498 7.171e-2 -7.537e-2 15.8981 0.1640 1.3980

P 26320.4 368.39 1020.2 706.05 -1.621e-2 0.2495 0.3549 -4.729e-2 0.4588 -0.2095 0.8997

fo
ur

SQ
P

F 71032.1 993.92 1864.1 -825.12 0.6712 2.056e-2 1.525e-2 15.8295 0.1081 1.1150

P 112512.3 1574.72 2532.6 -417.2 0.1147 4.997e-2 0.5289 7.979e-2 0.2797 -0.1696 0.7134

SQ
P*

F 666016.4 9322.51 1004.1 -6151.41 0.7024 3.655e-2 2.671e-2 15.9853 0.1039 1.1291

P 630616.5 8827.01 1307.2 -5922.62 0.1485 0.2386 0.5661 -7.426e-3 0.3292 -8.863e-2 0.7188

N
M

F 2153.4 30.02 299.0 -189.86 0.7710 0.1322 0.1341 11.9100 0.1009 1.4172

P 4230.0 59.20 334.0 -368.26 0.1417 -0.1279 0.2462 -0.4925 0.6938 1.0023 0.7022

th
re

e

SQ
P

F 317793.2 4447.89 1625.84 -3987.55 0.7052 1.557e-2 4.046e-4 16.7804 0.1030 1.1164

P 301312.1 4217.32 2204.87 -3568.04 0.1410 0.3420 0.4731 -5.321e-2 0.2642 -3.113e-2 0.7186

SQ
P*

F 300897.4 4211.42 1280.47 -3989.3 0.7024 3.655e-2 2.671e-2 15.9853 0.1039 1.1291

P 281882.0 3945.4 1772.86 -3648.2 0.1485 0.2386 0.5661 -7.426e-3 0.3292 -8.863e-2 0.7188

N
M

F 1582.4 22.02 297.64 -59.49 0.7705 0.1881 0.1286 11.7419 0.1023 1.3994

P 5672.8 79.40 481.67 -315.91 0.1874 -0.1639 0.5500 -0.5695 0.9577 0.4867 0.6909




resulted from the data set which included error. Although not proven here, the added noise in the

responses may result in more accurate gradients of the objective function. For example, consider a

single response case where β* represents the true value of β and  represents the true response val-

ues over i = 1,...n observations of independent and response variables x and y.

..

The measured response variable y includes a random error ε from a normal distribution with a

zero mean.

..

The sum of squares objective function for the error free case is

..

and the corresponding objective function for the responses measured with error is

..

The first derivatives of the respective objective functions are

..

and

..

At the minima, where β = β* , the first derivatives are zero. However, for the error-free case, the

 term approaches zero toward the minima, and can cause the sum in Equation ..

to fall below the minimization algorithm tolerance at a value of β further from the minima than

the value of β that results in Equation .. falling below the same tolerance. There is some small
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
calculated error between the true data set containing  and the TRNSYS calculated values of y at

β* because a slightly looser convergence tolerance is used in the regression runs than is used in

generating the true data set. This may have contributed to the success of the six response run

using error-free data, as more of the error due to the looser tolerance is accumulated for six

responses than for four.

..   Residual Plots

One measure of success in parameter estimation is to compare the estimated values with their

true values. However, the ultimate objective of the regression procedure is to obtain parameters

that result in a composite model with good predictive qualities. Some individual parameter esti-

mates can have significant error due to overparameterization (see Section .), but the combina-

tion of parameters found in the regression can still produce a composite model with good fit. The

model predictive capabilities resulting from the various parametric estimation methods can be

better judged by evaluating the residuals associated with the dependent variables. If the example

system model were to be used in a cost optimization algorithm, the model would be judged solely

by how well it could predict the one variable associated with energy costs, the steam mass flow

rate. The total sum of squares of residuals for steam flow rate gives one relative indication of how

well a particular model fits the data; however, the distribution of the residuals should also be con-

sidered. The standard deviation and mean values of steam flow residuals are adequate for describ-

ing a normal distribution; however, without assuming normality, the distribution can be

conveniently judged by examination of residual plots.   

Residuals resulting from a successful regression should support the assumptions made in the

analysis. For example, if the minimized sum of squares or minimized  determinant is to

result in the best fit, the residuals should possess a normal distribution with a zero mean. Calcu-

lated steam flow rate values “contaminated” with normally distributed errors to simumlate instru-

ment noise are plotted against the true values in Figure ... The distribution of residuals from a

successful regression should be similar to that of the errors. The steam flow residuals from the

regression run having the smallest sum of squares demonstrate very good results and are plotted in

Figure ... The residuals have a standard deviation of ., very close to the standard deviation

    ̂y

R
T
R




in the error (), and a mean of -. corresponding to distribution centered close to zero.

A plot of steam flow residuals from the regression run having the smallest sum of squares of

residuals over the predictive period “P” is shown in Figure ... A “perfect” fit would arrive at the

true parameter values and the model predictions would be equivalent to the true values (error val-

ues would be zero). The plot of steam flow rate errors shows a tight band, but with a deterministic

curvature. While the regression run found a reasonable minimum of squared residuals over the fit

period (the standard deviation of residuals for this run was  ), all thirteen estimated parameters

did not approach their true values. The curvature is indicative of a failure in the model to account

for some nonlinear dependence. For a linear model with a single regressor (independent variable),

the curvature would indicate that a quadratic term with respect to the regressor should be added

to the model. For the multiresponse nonlinear example at hand, any set of parameters not identi-

cal to the true values can result in some amount of curvature, and the curvature present in

Figure .. does not necessarily indicate a quadratic term should be added to one of the model

equations. For example, another regression run which demonstrated the best fit over the initial

 observations (“F” data set) yielded a different curvature over the predictive “P” data set. The

periodic shape to the band of points in Figure .. is due to the forced periodic variation in the

regressor variables.           

Qualitatively, this multiresponse, nonlinear parameter estimation problem is almost certain to

have some level of parameter identification problems. It is difficult for any minimization algo-

rithm to arrive at precisely a local minima when the objective function surface exhibits “flat”

regions in all of the thirteen dimensions. Some statistical measures of parameter variance for the

model and minimization method are presented in Section .. below.  

Plots of measured and predicted values versus time of steam flow rate or other response vari-

ables would also aid in comparing the regression results. However, for most of the runs showing

relatively small standard deviation in steam mass flow rates, curves of predicted and measured val-

ues overlap each other and are indistinguishable in a plot scaled over the range of steam flow rate.

For example, a comparatively large steam flow rate residual of  is only % of the mean steam




  ..: Error vs. “true” steam flow rate values over the initial  points of simulated 
measured data. The random error has a standard deviation of .

  ..: Residuals (measured - predicted values) of steam flow rate for the initial  data 
points. Estimation method used weighted least squares with the Levenberg-
Marquardt minimization algorithm and four responses in the objective function. 
The residuals have a standard deviation of ..
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
  ..: Steam flow rate errors vs. predicted values over the second set of  
observations. Parameter estimates used in generating these data are from the 
application of ordinary least squares and the SQP algorithm.

  ..: Steam flow rate errors vs. predicted values over the second set of  
observations. Parameter estimates used to generate these residuals are the result of 
using four regressor variables in a weighted least squares objective function and 
the Levenburg-Marquardt algorithm (ODRPACK).
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
flow rate. Any run resulting in a standard deviation of steam flow residuals less than about 

could be considered successful, yielding reasonably accurate steam flow rate predictions.

..   Example Problem Parameter Variance Estimates

In addition to the data used in the earlier example problem, one hundred sets of simulated

replicated data were used to obtain one hundred sets of parameter estimates. The same ordinary

least squares method with six responses using the SQP algorithm was used in each case with the

same starting values for the parameters. Each data set contains errors drawn from a multivariate

pseudorandom number generator where the errors follow a multivariate normal distribution with

a given covariance matrix. Parameter bias and variance were then computed as outlined in

Section ... The resulting statistical properties are a function of both the model and the estima-

tion procedure. It has been demonstrated that, in general, nonlinear estimation problems will

nearly always have biased parameters. [Box] The mean, bias, and standard deviation (square

root of variance) of the example problem parameter estimates are given in Table ... 

All parameter means demonstrate significant bias, and most demonstrate significant standard

deviation. The two parameters showing relatively small standard deviation are the overall heat

transfer coefficient, UA, and the coefficient c used in the cooling tower Ntu (Equation ..).

These two parameters can be estimated with a single observation and cannot contribute to over-

parameterization (see Section ..). For example, the coefficient c is the only parameter estimated

for the cooling tower component model and could be calculated from a single observation of inlet

and outlet cooling water temperature measurements.

Overparameterization is possible with the multiple parameters used in the steam turbine and

chilled water plant models and, to some extent, is demonstrated by the relatively large values of

standard deviation for these variables. The steam turbine and chiller component models are mech-

anistic models in part, but both make some use of curve fits and the α and β parameters in

Table .. are coefficients in those curve fits. To reduce the variance, some parameters could be

fixed or the models rewritten to use different curves. However, the application of the resulting

models may be limited to the regression problem at hand and not apply to other cases where the

plant is operated over different ranges of independent variables. 




..   Outliers

To examine the influence of “bad” data points, approximately five percent of the data was

replaced with data with very large error. These large error data points were random values taken

from a normal distribution having an extremely large variance. In some cases, the values were

physically impossible, such as cooling tower water temperatures above °C or subzero chilled

water temperature values. Data demonstrating very large error are called “outliers,” since on plots

comparing regression predictions to measured data, they would lie noticeably far removed from

the regression results. Six runs were made to compare the relative influence of outliers in each of

the six response variables. Results of the runs are given in Table ...  Steam flow rate residuals

during the predictive period were shown to be most sensitive to outliers within hot well tempera-

ture measurements, Thw , and least sensitive to outliers in chiller condenser leaving water temper-

ature, Tcwo . Hot well temperature is strongly dependent with the saturation temperature (and

 ..:  Parameter Variance and Bias Estimates for the Example Problem

parameter mean value true value bias
bias as a 

percent of 
true value

standard 
deviation

standard 
deviation as 
a percent of 
true value

β1 0.6680 0.5000 0.1680 33.61 0.0669 13.37

β2 5.072e-2 0.1500 -0.0993 -66.18 0.0557 37.10

β3 2.425e-2 0.1000 -0.0758 -75.75 0.0243 24.33

α0 9.807e-2 0.0734 0.0247 33.68 0.0518 70.59

α1 -0.1869 -0.3259 0.1390 -42.64 0.0999 -30.66

α2 0.5140 0.5744 -0.0604 -10.52 0.1078 18.77

α3 -0.2460 -0.0389 -0.2072 532.81 0.1044 -268.40

α4 0.5656 0.3321 0.2335 70.30 0.0830 24.99

α5 0.2973 0.3684 -0.0711 -19.31 0.1032 28.01

ηm 0.7158 0.8500 -0.1342 -15.78 0.1423 16.74

UA 16.4295 11.0000 5.4295 49.36 0.2729 2.48

fhw 0.1626 0.5000 -0.3374 -67.47 0.1256 25.19

c 1.3301 1.7000 -0.3699 -21.76 0.0760 4.47




therefore steam exhaust pressure) in the surface condenser. The large error introduced into the hot

well measurements resulted in steam flow rate residuals even larger than those added to the steam

flow rate data in a separate run. During the fit period, steam flow rate residuals were most affected

by the large errors in the surface condenser leaving water temperature, Tcond, which again is

strongly dependent on turbine exhaust pressure. As an example of the variance of the parameter

estimates, the run with large errors in chiller condenser leaving water temperature, Tcwo , resulted

in smaller residuals than the identical run without large errors in any of the variables.

Overall, the outliers did influence steam flow rate predictions to varying extent for five of the

six responses. However, the magnitude of the outliers was large enough that they could have been

identified and removed by examining a plot of residuals. For example, in Figure .. residuals for

the hot well temperature are plotted against their predicted values. Ten of the twelve outliers are

immediately apparent and the remaining two can be picked out upon closer examination. In an

actual application, the observations which include these outliers could be removed and the regres-

sion run again. One robust regression method for the single response case includes only the small-

est m out of n residuals used in the sum of squares computation where m is greater than half of n.

For the multidimensional case, however, an observation that includes an outlier for one response

may have good data for other responses and the decision to remove the observation from the

regression is not as straightforward.

Missing data values could be considered to be additional parameters and their values esti-

mated by solution of the regression problem. This may be impractical for a large amount of miss-

ing data. Stewart et al. describe a slightly more complicated approach derived from Bayesian

theory. [Ste] 

Problems with missing data are minimal with chilled water plants as numerous observations

are generally available. Most measured variables are recorded at a constant rate (e.g. hourly data)

as an aid in monitoring plant operation. Where partial observations represent a small fraction of

the available data, their removal will not significantly affect regression results. Making use of

incomplete observations takes on a greater importance when they comprise a significant portion






 ..:  Example System Regression Results - Outliers Included in Data
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
of the data set and when the data are rare or expensive to remeasure, for example, data taken in an

experimental setting.

.  Summary

This chapter presents an approach for creating and evaluating a predictive model of a chilled

water plant. The plant model was constructed using the TRNSYS simulation program and mech-

anistic component models. Various multiresponse regression techniques were used to solve the

parameter estimation problem for an example system. 

The different approaches and solution methods were applied to the chilled water plant model

using simulated measured data. The simulated data was created using the model and a known set

of parameters. A given series of independent variable data was input to the model to generate a

series of responses. The model computed responses were then contaminated with noise to simu-

late observations of actual measured data.

  ..: Plot of residuals of hot well temperatures resulting from regression. Twelve 
outliers, evident in the plot, were included in the measured data.
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
The influence of using different sets of response variables in the estimation problem was

investigated. Using more responses than just those for which predictions are needed (e.g. cost

associated responses) can result in a better predictive model. However, adding responses that can

be collinear with other responses is detrimental.

Methods including ordinary and weighted least squares and a residual matrix determinant cri-

terion were used to frame the problem. Different minimization algorithms for solving the estima-

tion problem were applied and the results compared. For the example system studied, using

ordinary least squares with sequential quadratic programming minimization is an effective

method for solving the parameter estimation problem. Using weighted least squares or the deter-

minant criterion did not demonstrate any significant improvement in fit compared to ordinary

least squares.








 

Parameter Estimation - 

Walnut Street Plant

In this chapter, methods presented in Chapter  are applied to data taken from an operating

chilled water plant. A plant model is created and the various parameter estimation approaches dis-

cussed in Chapter  are applied and compared. A set of model parameters that result in the best fit

of measured data is found for use in subsequent plant optimization studies (Chapter ).

.  Central Plant Description

A chilled water plant on the University of Wisconsin-Madison campus serves as a model for

applying the methods of parametric estimation and optimal supervisory control. A schematic rep-

resentation of the plant is shown in Figure ...  The plant includes four large centrifugal com-

pressors, three driven by steam turbine and one by electric motor. Design loads for the chillers are

, tons for each of the two smaller steam driven compressors and , tons for the remaining

steam and electrically driven compressors. Five two-cell cooling towers are used to reject heat to

the environment. Chilled water pumps (CHP) draw from the chilled water return (chwr) header,




  ..: Walnut Street chilled water plant schematic.
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
pumping the water though the evaporative heat exchanger and into the chilled water supply

(chws) header. The chilled water pumps are designed primarily to meet the pressure drop through

the evaporator rather than provide a pressure differential between the main distribution supply

and return chilled water line. Large main distribution pumps (not shown on the schematic) main-

tain pressure between the supply and return lines sufficient for distribution throughout the cam-

pus.

Condenser water pumps (CWP) circulate water between the refrigerant condenser and the

cooling towers. For the steam driven turbines, a “surface condenser” is placed between the refrig-

erant condenser and the cooling tower. This heat exchanger is used to condense the steam turbine

exhaust before returning the condensate to the boilers. Turbine exhaust pressures are normally

subatmospheric with a saturated steam temperature around °C. 

The five cooling towers (CT) are grouped into two sets. Cooling towers #, # and # nor-

mally serve chiller # and chiller #. Cooling towers # and # normally serve chillers # and #.

However, piping connections allow for condenser water from one group to be cooled by cooling

towers in the other group. It is not possible to connect any given chiller condenser to any cooling

tower as multiple towers receive flow from a common header. For example, condenser water from

chillers # and # flows into a common pipe before being split between cooling towers #, # and

#. If chillers # and # are both operating, the flow is normally split such that ⅔ of the condenser

water from each chiller flows to cooling towers # and # respectively. The other ⅓ from each

chiller is mixed and enters cooling tower #. Cooling towers #, # and # have individual sumps

while cooling towers # and # share a common sump. All cooling towers have two cells each and

one fan per cell. Four towers have two speed (off/low/high) fans and one tower (CT #) has a set

of single speed (on/off ) fans.

Chillers # and # and cooling towers # and # are recent additions to the Walnut Street

plant and are better instrumented than the older components. Also, design data such as pump

curves and cooling tower performance data are available for the newer components. Due to the

greater availability and confidence in data, the parametric estimation studies and optimization

studies in this work only consider these newer components of the Walnut Street Plant.




.  Data Measurements

Various system measurements are recorded at two hour intervals by plant personnel. The pro-

cedure includes reading a gauge or digital display and recording the measurement by hand on a

log sheet. A representative copy of a log sheet recording observations for the electric chiller on July

,  is shown in Figure ... The resulting data are subject not only to measurement error but

also to human error in reading and transcription. All of the recorded measurements are not

observed at the same moment in time. The operator walks through the plant, recording necessary

measurements along the way. This walking tour is done over a  to  minute period, depending

upon the operator’s duties during the tour and number of data points read. Only some of the

measurements entered into the log are used in the model. Many measurements significant to plant

maintenance requirements are recorded, such as bearing oil temperatures and cooling tower water

pH. 

For the electric chiller, measured electric power is approximated from the recorded “motor

amps.” Power draw for a three phase electric motor can be estimated from

..

where E is the line to line voltage potential (volts) and I is the line current (amps) and pf is the

power factor, which is dependent upon the phase difference between voltage and current in alter-

nating current (AC) devices. Measurements of line voltage at the motor are not recorded, but

remain fairly constant at the rated line voltage of  volts. A constant power factor of . is

assumed.

Inlet and outlet pressures at the pumps are used along with manufacturer’s pump curves to

estimate chilled and condenser water flow rates. Chilled water supply and return temperatures as

well as chiller condenser entering and leaving water temperatures are directly recorded. Measure-

ments of steam mass flow rate and inlet and exhaust pressures at the turbine are recorded on a

steam chiller log similar to the electric chiller log. Also, the condenser water temperature at the

inlet and outlet to the surface condenser as well as the condensate temperature in the hot well are

recorded. 

P E I pf= 3




  ..: Log sheet for chiller # (electric motor driven) on July , .




Outdoor wet and dry bulb temperature measurements and the fan speeds for the individual

cooling tower fans are recorded near the bottom of the log. The outdoor air wet bulb temperature

is measured with a fixed alcohol in glass thermometer outside the facility, shaded from the sun.

Since outdoor air is not forced over the bulb, the measured wet bulb temperatures will likely be in

error with high readings during light winds. Overall, the accuracy and precision of the measured

data are far from what is desired in a laboratory setting, but typical of operating chilled water

plants. 

Data taken over July and August of  were used for this study. A few observations were

unrecorded or incomplete, and were removed from the data set. The data set represents approxi-

mately  days of operating data. There are  observations, made at two hour intervals. The data

set was partitioned into three parts, which will be referred to as Periods I, II and III. The first 

observations (Period I) are used in the regression analysis to determine parameter estimates. The

next  observations (Period II) are used to compare the predictive capabilities over data not used

in the fit. During these first  observations, both the steam electric chillers are operating. But

during the final  observations (Period III), only the steam turbine is operating. Condenser

water flow rate increases for the steam turbine when it is operated alone, and the predictive capa-

bilities can be further compared for this change in operating conditions.

.  TRNSYS Walnut Street Plant Model

Individual TRNSYS component models of chillers, heat exchangers and a cooling tower are

combined in a TRNSYS “deck” of the Walnut Street Plant, where the connections between out-

puts of one component and inputs of others are defined. A wiring diagram showing the connec-

tions defined in the deck is given in Figure ...  Independent (regressor) variables include wet

and dry bulb temperatures, Twb and Tdb, chilled water return temperatures entering the chiller

evaporators, Tchws # and Tchws #, the chilled and condenser water mass flow rates ,

,  and  and the turbine inlet steam pressure, pin. The independent variables are

indicated by a bold line and the dependent variables by a thin line. The dashed lines indicate con-

trol variables, defined separately from independent and dependent variables when used in optimal

supervisory control analysis. However, for the purposes of parameter estimation, the control vari-

  ̇mchw #3

  ̇mchw #4   ̇mcw #3   ̇mcw #4




  ..: Walnut Street TRNSYS model wiring diagram showing input and output 
connections of the component variables.
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ables are considered independent variables. Control variables include the discrete fan speeds for

the individual cooling tower fans 

 

γ

 



 

, 

 

γ

 



 

, 

 

γ

 



 

 and 

 

γ

 



 

 and the chilled water supply temperatures,

 

T

 

chws #

 



 

 and 

 

T

 

chws #

 



 

.

All outputs of each component are dependent variables. Chiller output variables include com-

pressor power, 

 

P

 

comp

 

, and condenser water outlet temperature, 

 

T

 

cwo

 

. Dependent variables from

the steam turbine component include steam mass flow rate  and steam exhaust enthalpy,

 

h

 

exh

 

. Surface condenser outputs include condenser water outlet temperature, 

 

T

 

cdwo

 

, hot well

water temperature, 

 

T

 

hw

 

, and exhaust pressure, 

 

p

 

exh

 

. The electric chiller condenser outlet flow and

surface condenser outlet flow are mixed before entering the cooling tower and their mixed tem-

perature is designated as the condenser water return temperature, 

 

T

 

cwr

 

 , and the combined con-

denser water flow rate is . Cooling tower outputs include fan motor power 

 

P

 

ct fans

 

 and the

temperature of the cooling tower outlet water supplied to the chiller condensers, 

 

Tcws.

.  Component Models

..   Chiller Model

The TRNSYS chiller component model predicts compressor power consumption, Pcomp , and

leaving temperature of the condenser water, Tcwr . Input variables to the chiller model include

entering chilled water temperature, Tchwr , a set point for the leaving chilled water temperature,

Tchws , entering condenser water temperature, Tcws , and both chilled and condenser water flow

rates,  and . A diagram of the chiller model is shown in Figure ...

Mechanistic models of the compressor, evaporator, condenser and expansion device could be

combined to represent the chiller model. However, Braun [Bra] developed an empirical model

of a centrifugal chiller that closely matches predictions of mechanistic models. This quadratic

model, Equation .., is used in the TRNSYS chiller component subroutine. Six parameters

( α1−6 ) are used to relate compressor power, Pcomp, to a load  and temperature difference

between leaving condenser and chilled water flows (Tcwr - Tchws ):

..

msteam
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where x and y represent the load and temperature difference, scaled by their design values:

 ..

A mechanical efficiency parameter, ηm represents the fraction of energy input to the prime mover

which is actually input to the refrigeration cycle. The sum of compressor energy and load is used

along with condenser flow rate and specific heat to determine leaving condenser water tempera-

ture, Tcwr:

 ..

For the electrically driven chiller, Pcomp represents the electrical energy consumption of the

motor. For the steam driven chiller, Pcomp represents the energy input to the compressor provided

by the steam turbine, modelled as a separate component.

  ..: Diagram of TRNSYS chiller component model.
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
..   Steam Turbine Model

The steam turbine component model uses input and exhaust pressures, along with required

power from the chiller component, to determine steam flow rate and exhaust enthalpy. From an

energy balance (assuming an adiabatic process), turbine power is the product of the steam mass

flow rate and the enthalpy change across the turbine. Turbine power can also be expressed in

terms of an isentropic efficiency and the isentropic change in enthalpy from the inlet to exhaust

pressure,

..

where the isentropic efficiency is given as the ratio of the actual change in enthalpy to the change

if the exhaust steam left with the same entropy as the inlet steam conditions. 

For the turbine model, isentropic efficiency is modeled as a linear function of pressure ratio

and turbine power,

..

where pr, scale and Pscale are used to scale the pressure ratio and power respectively. Although not a

purely mechanistic model derived from theory, manufacturers’ curves of turbine efficiency dem-

onstrate a dependence upon the pressure across the turbine and the turbine power. [Hic] These

curves usually show a nonlinear (approximately quadratic) dependence; however, here it is

assumed that a linear model will yield an adequate representation. Modeling isentropic efficiency

with a quadratic model would require nine parameters versus three for the linear model. A nine

parameter quadratic model used in some preliminary regression analyses was found to contribute

to overparameterization problems as discussed in Section ...
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
Given the power required, the inlet steam conditions and the exhaust pressure, Equation ..

is solved for steam mass flow rate, 

..

and the exhaust enthalpy is then calculated from an energy balance, assuming an adiabatic pro-

cess:

 ..

..   Heat Exchanger (Surface Condenser) Model

The surface condenser was modeled with a TRNSYS heat exchanger component. A diagram

of the turbine and surface condenser combination is shown in Figure ... An effectiveness-

NTU relationship is used to model the heat transfer. The following effectiveness expression for a

condensing heat exchanger was used to model the condensing portion of the surface condenser:

..

The overall heat transfer coefficient is assumed to be constant although it probably varies with

flow rate and fluid temperatures. However, it is reasonable to assume a near constant UA in this

application as the condenser water flow is nearly constant and the condensing temperature does

not vary widely.

The effectiveness is the ratio of actual heat exchanged to the maximum possible heat exchange

if the entering condenser water were heated to the saturated steam temperature. However, the

steam exhaust enthalpy rather than the saturated steam temperature is available as an input from

the steam turbine component. The steam saturation temperature, Tsat , is determined from an

energy balance

. ..
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
Thermodynamic model equations are then used to obtain the corresponding saturated pressure

from the calculated saturated temperature. Although the entering steam may be superheated, it is

assumed that the influence of the desuperheating portion of the condenser upon the effectiveness

used in Equation .. is negligible.

The condensate may be subcooled in the hot well by heat exchange through the vessel walls.

This heat loss is usually unwanted as the lost heat must eventually be added at the boiler to

change the condensate back into steam. Separate measurements of hot well temperatures are made

at the Walnut Street Plant and a model quantifying the temperature drop due to subcooling as a

function of water flow rate and condensing temperature is used:

..

  ..: Diagram of steam turbine and surface condenser.
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Although the condensate in the hot well will lose heat to the ambient environment, the ambient

conditions are unknown. As an approximation, it is assumed that the subcooling in the hot well

will be some fraction of the difference between the saturated temperature in the condenser, 

 

T

 

sat

 

 ,

and the entering condenser water, 

 

T

 

cwi

 

. At high steam flow rates, the condensate leaving the hot

well will approach the saturation temperature and will tend toward the entering condenser water

temperature.

 

..   

 

Cooling Tower Model

 
The TRNSYS cooling tower component model developed by Braun [Bra

 


 
] incorporates an

effectiveness/Ntu relationship to model heat and mass transfer transport. The cooling tower effec-

tiveness is defined as the ratio of change in air enthalpy to the maximum possible change in air

enthalpy:

 

..

 

The maximum possible change in enthalpy would occur if the air flow left the cooling tower satu-

rated at the entering water temperature. For the crossflow cooling tower used in this work, the air

side effectiveness is given in terms of the 

 

Ntu

 

 and a ratio of heat capacitance rates:

 

..

 

The heat capacitance ratio 

 

C

 

r

 

 is given in terms of the air and entering water mass flow rates and

specific heats:

 

..

 

The specific heat associated with the moist air stream, 

 

c

 

sat

 

 , is given as the change in saturated air

enthalpy with respect to temperature. An average value is used where

 

..
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A general correlation is given for Ntu in terms of the flow rates:

 

..

 

The coefficient 

 

c

 

 and exponent 

 

n

 

 depend upon the tower design and are usually determined with

performance data from a specific tower.

Outlet water temperature is determined from an energy balance about the cooling tower,

 
..

 

where the difference in air enthalpy is determined from Equation 

 

..

 

 and the right most term

in Equation 

 

..

 

 accounts for the energy associated with the tower makeup water flow, typically

one to four percent of the entering water flow rate.

 

.  

 

Parameter Estimation for the Walnut Street Plant Model

 

..   

 

Parameter Estimation Methods

 

The sequential quadratic programming (SQP) minimization algorithm was used for parame-

ter estimation studies with the Walnut Street Plant model. The SQP algorithm yielded some of

the best results for the example system regression problem in Chapter 

 



 

 and required less compu-

tational time than the ODRPACK (Levenburg-Marquardt) algorithm. Ordinary least squares and

the determinant criterion (both discussed in Section 

 

.

 

) were used to formulate the regression

problem. Weighted least squares did not demonstrate any significant advantage over ordinary least

squares in the example system regression problem or in preliminary trial runs with the Walnut

Street Plant model. Consequently, the weighted least squares method was not used with the Wal-

nut Street Plant model.

Residuals corresponding to various combinations of responses (measured dependent variables)

were minimized in comparative parameter estimation runs. Ten measured responses are

available: , 
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two pairs of temperature measurements are of the same water flows at different points along the

flow. The condenser entering water flows for both chillers are from the same common header (the
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condenser water supply line from the cooling tower) and should be nearly equivalent in tempera-

ture (

 

T

 

cwi #

 



 

 

 

≈

 

 

 

T

 

cwi #

 



 

). Also the water temperature leaving the condenser of chiller #

 



 

, 

 

T

 

cwo #

 

,

should be nearly equivalent to the water temperature entering the surface condenser, Tcdwi.

Removing the two nearly identical responses leaves eight distinct response variables. Linear depen-

dencies among these eight are still possible and comparative runs are made regressing against sub-

sets of six, four, two and one variables.

Parameter estimates are needed for a total of  parameters. The parameters and associated

equations and component models are listed below in Table ...

 ..:  List of parameters used in the composite chilled water plant model.

Parameter Referenced Equation Component Model

α,e

Equation ..
electric motor driven chiller

α,e

α,e

α,e

α,e

α,e

ηm,s Equation ..

β

Equation .. steam turbineβ

β

UA Equation .. 
steam “surface” condenser

fhw Equation ..

α,s

Equation ..
steam turbine driven chiller

α,s

α,s

α,s

α,s

α,s

ηm,s Equation ..

c

Equation .. cooling towern

Vmax
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Two modeling approaches were used to formulate parameter estimation problems. In one

approach, a composite model of the interconnected components was used to find estimates for all

twenty two parameters. Although this is a straight forward approach, it requires the solution of a

large multidimensional nonlinear optimization problem that is potentially both difficult to solve

and computationally expensive. In the other approach, the dimension of the optimization prob-

lem was reduced by formulating parameter estimation problems for individual components. For

example, the cooling tower parameters can be estimated using only the cooling tower model and

data for the inlet and outlet flows.

In cases where not all inputs of an individual component have measured data available, its

model parameters cannot be estimated independent of other components. For example, the steam

turbine model requires a power input to calculate steam mass flow rate requirements but the shaft

power between the turbine and the chiller compressor is not measured. Although parameter esti-

mates using an individual component may not be possible, a subsystem or collection of additional

components in which all inputs are available may be identified. Combining the turbine compo-

nent model with the chiller model allows the power input to the turbine to be calculated via the

chiller model from other available measured data. In this application the surface condenser model

requires an inlet steam enthalpy input which is also not measured. Therefore, the surface con-

denser is combined with the turbine and chiller components to form a subsystem for which all

inputs have measured data. A diagram of the three component subsystem is shown in Figure ... 

Parameter estimation runs were made using both composite and subsystem models while two

other aspects of problem formulation and solution were also varied: the scalar function of residu-

als minimized in the regression and the number of responses used. Problems were solved using

ordinary least squares or the determinant criterion. As given in Chapter , the use of all available

measured (independent) responses can contribute to a more accurate model. However, adding

collinear responses is detrimental to the results. Different combinations of responses are used in

the runs to compare the effects of using different responses. Table .. summarizes the different

variations used in the  parameter estimation runs.




The predictive capabilities were assessed by comparing model predictions to a subset of mea-

sured data not used in the fit. All regression runs minimize the residuals over the same  obser-

vations (Period I) and comparisons of predictive performance are made with model predictions

and measured data over another set of  observations (Period II). Model accuracy can be

assessed by examining plots of the residuals versus the predicted value of the associated response as

in Figure ... Since the intended use of this model is in optimization (cost minimization) stud-

ies, the relative success of each run can be evaluated by comparing the accuracy in predicting vari-

ables associated with costs. For optimization studies using the Walnut Street Plant model, steam

flow rate and electric chiller power are the primary variables associated with energy costs. Examin-

  ..: Diagram showing interconnections of the chiller/steam turbine/surface 
condenser subsystem.
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ing residuals associated with steam flow rate and electric power provides a good comparative mea-

sure of the fit. 

 

..   

 

Parameter Estimation Results - Composite Model

 

Ordinary least squares and the determinant criterion objective functions were both used and

are discussed separately below. The number of responses used with the composite model varied

between two and eight. The standard deviations of the steam flow residuals and electric power

residuals resulting from the different applications are tabulated in Table 

 

..

 

.

 

 Standard deviations

of residuals as a percentage of mean steam flow rate and mean power are plotted in Figure 

 

..

 

.

Both methods produced similar results with neither method demonstrating any clear advantage in

 

 ..:  

 

Problem configurations used in parameter estimation runs.
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Objective 

Minimized Responses Used
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Subsystem
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
producing a better fit. In this case, the determinant criterion did not demonstrate poor perfor-

mance when compared to least squares as was shown in the example problem in Section .. The

only significant difference in the example problem of Chapter  is that simulated rather than real

measured data were used in the parameter estimation runs. Measurement noise in the simulated

data set was relatively small compared to estimated noise in the real data set. For example, steam

flow rate residual standard deviation in the simulated data set is  kg/hr (.% of the mean

steam flow rate) and is estimated to be  kg/hr (.% of the mean steam flow rate) in the real

data set. In the limit, as errors in the data approach zero (and assuming an error free model), the

determinant of the  matrix at the solution becomes undefined. With small errors, as in the

simulated data, the objective function surface given by the determinant criterion may represent a

more difficult problem for the minimization algorithm. (See discussion in Section ...)  

Determinant Criterion

Use of the determinant criterion objective function and four responses yielded the smallest

standard deviation in steam flow residuals ( kg/hr, .% of mean flow rate) over Period II.

The steam flow standard deviation increased using both fewer and more responses. The increase

in standard deviation using six and eight responses ( [.%] and  kg/hr [.%] respec-

tively) indicates some amount of collinearity with the added responses. A trial run using all ten

measured responses (with known collinearities) caused the run using the determinant criterion to

fail, the minimization algorithm never moving from the starting point. Using only steam flow rate

and electric chiller power responses to fit the parameters resulted in a steam flow residuals stan-

dard deviation of  kg/hr (.%). 

For electric chiller power predictions with the determinant criterion, using just two responses

(steam flow rate and electric chiller power) yielded the smallest electric power residuals (standard

deviation of  kW, .% of mean power). Using the four, six and eight response sets increased

the standard deviation to  (.%),  kW (.%) and . kW (.%), respectively.

Least Squares

The smallest steam flow residual standard deviation using ordinary least squares was obtained

using only steam flow rate and electric chiller power responses ( kg/hr [.%]). Using four, six

R
T
R




 ..:  Walnut Street Regression Results 
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  Data set: F – the set of data used in the fit (Period I). P - another series of 
data not used in the fit (Period II).

  Subsystem - Results from using parameter estimates found in separate 
subsystem runs.
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
and eight responses yielded slightly increased standard deviations ( [.%],  [.%] and

 kg/hr [.%] respectively). Although the best runs from both the determinant criterion and

ordinary least squares appications had similar results, their parameter estimates were different,

demonstrative of large variance and some amount of overparameterization in the model. 

Using ordinary least squares with just the steam flow rate and electric chiller power responses

produced the smallest standard deviation in electric chiller power residuals ( kW [.%]).

Using four, six and eight responses increased the standard deviation ( [.%],  [.%] and

 kW [.%] respectively).

The best number of responses using either the determinant criterion or least squares is differ-

ent for the steam flow rate and electric chiller power predictions (two responses yield the best pre-

dictions in electric chiller power vs. four responses for steam flow rate.) The argument for

improving the model by adding more independent responses appears to be contraindicated con-

sidering the electric power predictions. However, responses other than electric chiller power and

  ..: Steam flow rate and electric power residuals standard deviations resulting from 
applying the determinant criterion and least squares with various responses.
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
electric chiller leaving condenser water temperature are nearly independent of the electric chiller

component model parameters. Adding any response other than these two essentially weakens the

objective function’s (e.g. sum of squared residuals) dependence upon electric chiller model param-

eters and consequently results in poorer predictions. As discussed in Section .. below, breaking

out the model components to use in separate regression runs significantly improves the fit.

..   Parameter Estimation Results - Individual Components and Subsystems

Steam Turbine/Surface Condenser/Chiller 

Estimation runs for the separate subsystems were also made. The steam turbine/chiller/surface

condenser subsystem parameters were estimated using both ordinary least squares and the deter-

minant criterion formulations with various responses. The smallest residuals in steam flow rate

predictions using the subsystem model were significantly lower than those using the composite

system. Ordinary least squares with three responses (steam flow rate, surface condenser outlet

water temperature and chiller condenser outlet water temperature) produced the smallest steam

flow rate residual standard deviation of  kg/hr [.%]. The determinant criterion with an addi-

tional response (hot well temperature response) yielded similar results with a standard deviation of

 kg/hr [.%]. For this subsystem, there was no clear advantage between ordinary least squares

and the determinant criterion methods.

Electric Chiller

The electric chiller component model has two outputs: chiller power and leaving condenser

water temperature. Solving the ordinary least squares problem using power as the only response

resulted in an electric power residuals standard deviation of  kW [.%] while using both

power and condenser water outlet temperature as responses resulted in a slightly improved stan-

dard deviation of  kW [.%]. Using power and condenser water outlet temperature with the

determinant criterion resulted in an electric power residuals standard deviation of . kW

[.%]




Cooling Tower

For the cooling tower, sump outlet temperature is the only output, which negates use of the

determinant criterion. Applying ordinary least squares to this model resulted in a standard devia-

tion of . °C for the outlet temperature residuals.

Composite Model Predictions Using Parameters from Subsystem Results

Compared to results using the composite model, residuals over the predictive period (Period

II) were substantially smaller for all dependent variables using the separate subsystem component

models. Since the composite model rather than separate subsystem models will be exercised by the

optimization algorithm, predictions from the composite model using the better parameters found

in subsystem regressions are examined. Predictions with these parameters resulted in a steam flow

residual standard deviation of  kg/hr [.%] and electric power residual standard deviation of

 kW [.%]. Both are substantially better than the best results obtained from using the com-

posite model in solving the parameter estimation problem (. kg/hr and . kW, respec-

tively).

Plots of steam flow rate and electric power residuals are shown in Figures .. and ..

respectively. For comparison, the range of the vertical axis in Figure .. is the same percentage of

mean measured steam mass flow rate as the range of the vertical axis in Figure .. is of mean

measured electric chiller power. Comparatively, the electric chiller power residuals demonstrate a

better fit with a smaller distribution about the zero axis. The electric chiller power residuals are

also more uniformly distributed than the steam flow residuals. Underprediction is more likely at

higher values of steam flow rate. The better fit of electric chiller power was possible due to the

availability of measured data for all input and output variables of the chiller model. This allowed

the seven parameters of the electric chiller model to be estimated separately from the rest of the

composite plant model. 

Because power measurements were not available for the steam chiller model, it was necessary

to combine the chiller model with the steam turbine model and the surface condenser model. (A

schematic of the subsystem is shown in Figure ...) A total of twelve parameter estimates are

needed for the subsystem model (seven for the chiller, three for the turbine and two for the con-




denser). The subsystem model represents a more difficult parameter estimation problem because

of the greater number of parameters and the set of nonlinear functions used in the three model

combination.      

A few points demonstrate a significant difference between model predictions and measured

data. Some of these large residuals can be attributed in part to having different plant personnel

reading and recording measurements over different periods of time. The standard deviations of

steam flow and electric power residuals are approximately eight and six percent respectively of the

mean values over the predictive period.

..   Use of Manufacturer’s Data for Parameter Estimates

Manufacturer’s data for the cooling tower were used to estimate model parameters for com-

parison with the results derived from actual plant data. The comparison is made to illustrate use

of manufacturer’s data to predict plant performance in the absence of measured data. Identifying

significant differences between manufacturer’s predictions and actual performance could also be

useful in identifying maintenance problems in the plant, such as excessive fouling of heat transfer

surfaces or excessive restrictions in flow paths.

Graphs showing water outlet temperature as a function of inlet temperature and outdoor wet

bulb temperature were provided by the manufacturer. Three graphs gave tower performance at ,

 and  percent of design water flow. For a given wet bulb temperature and difference in water

temperature across the cooling tower, the tower leaving water temperature is read from the graph.

All manufacturer’s graphs assumed a constant air flow rate with all fans operating at full speed.

The graphical data were digitized and translated to tabular data for use in the estimation runs.

In the cooling tower model, two parameters are required. Ntu is given in terms of the relative

air and water flow rates and two parameters c and n.

..

Ntu c
m

m

n

=







+
˙

˙
cw

a

1




  ..: Steam mass flow rate residuals from composite model predictions using 
parameters estimated from subsystem component models.

  ..: Electric chiller power residuals from composite model predictions using 
parameters estimated from subsystem component models.
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
  ..: Measured and predicted steam mass flow rate with parameters estimated using 
subsystem component models.

  ..: Measured and predicted electric chiller power with parameters estimated using 
subsystem component models.
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
However, three model parameters were estimated in the comparative runs. For both manufac-

turer’s and measured data, the air flow rate is only given as a fraction of full flow, therefore the Ntu

relationship was altered to be a function of fractional flow rate, fair and a third parameter, maxi-

mum volumetric flow rate Vmax.

..

For accurate predictions of Ntu under varying air and water flow rates, the data used in esti-

mating the two parameters should also include a range of flow rates. Flow rate data available from

the manufacturer varies over a smaller range than that recorded at the plant. In the plant data,

tower air flow rate is varied as the fans are sequenced on and off, but in the manufacturer’s data,

air flow rate was assumed to be constant at the maximum possible rate.

The cooling tower model has only one dependent variable, water outlet temperature; there-

fore the ordinary least squares formulation of the parameter estimation problem was applied.

Independent (input) variables include air and water flow rates, water inlet temperature and out-

door dry and wet bulb temperatures. Parameter estimates resulting from both manufacturer’s and

measured data are given in Table ... 

A comparison of residuals over the Period II data is shown in Figures .. and ... Residuals

resulting from parameter estimates using measured data have a standard deviation of . °C

and mean of . °C, while those from using manufacturer’s data have a standard deviation of

. °C and mean of . °C. Temperature predictions versus measured data are compared in

Figures .. and ... As can be expected, the parameters estimated from the measured data

 ..:  Estimated Cooling Tower Parameters

parameter Manufacturer’s 
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
result in smaller residuals than those resulting from regression with the manufacturer’s data. Pre-

dictions resulting from manufacturer’s data show better tower performance (lower outlet tempera-

tures) than demonstrated in the measured data. The differences between predictions resulting

from the two data sets appear relatively small. However, using the parameters from manufacturer’s

data with the composite model introduced greater error in both steam and electric power predic-

tions. Comparative results are given in Table ... The positive mean values of residuals corre-

spond to underpredicting steam flow rate and power.          

..   Parameter Estimation Summary

This chapter presents an approach for creating and evaluating predictive models of chilled

water plants for use in optimization studies. A chilled water plant model was constructed using

the TRNSYS simulation program and mechanistic component models. Various multiresponse

regression techniques were explored in solving the parameter estimation problem. The influence

of using different sets of response variables in the estimation problem was also investigated. Using

more responses than just those for which predictions are needed (e.g. cost associated responses)

can result in a better predictive model. However, adding all measured responses can be detrimen-

tal if collinearity among the responses is present.

For a multiresponse plant model, it is beneficial to separate the system into the smallest sub-

systems possible before estimating parameters. The subsystem models can be treated as indepen-

dent parameter estimation problems if measured data are available for all subsystem input

variables. Subsystem models may be individual components where all input variables are available

as measurements, or a group of interconnected component models when some input measure-

 ..:  Estimation Results Using Manufacturer’s and Measured Data

Predicted 
Variable

Using Cooling Tower Parameters from 
Manufacturer’s Data

Using Cooling Tower Parameters from 
Measured Data

steam flow 
rate (kg/hr)

standard deviation mean standard deviation mean

. (.%) . (.%) . (.%) . (.%)

electric power 
(kW) . (.%) . (.%) . (.%) . (.%)




 

  ..: Residual plot for cooling tower water outlet temperature with parameters 
estimated from measured data. 

  ..: Residual plot for cooling tower water outlet temperature with parameters 
estimated from manufacturer’s data.
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
  ..: Measured and model predicted cooling tower water outlet temperature using 
parameters estimated from measured data.

  ..: Measured and model predicted cooling tower water outlet temperature using 
parameters estimated from measured data.
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
ments are unavailable. In the interconnected subsystem models, input variables without measured

data are left connected to the outputs of components that have measured data available for their

inputs.

The methods presented were used to build and fit a predictive model of the Walnut Street

Chilled Water Plant. Overall, the comparison of team flow rate and electric chiller power predic-

tions with measured data not used in the parameter estimation problem demonstrates a good fit.








 

Optimal Supervisory Control

With a valid model of the chilled water plant, an optimization algorithm can be applied to deter-

mine values of controlled variables that minimize energy costs. In this chapter the optimization

problem for a general system is stated and then developed into an optimal supervisory control

problem. The simulated annealing minimization method is presented and its implementation

into the TRNSYS simulation program described.

.  The Optimal Control Problem

Given a chilled water system of n power consuming components, the objective is to minimize

energy costs over a period of time. The problem statement is given in Equation .. below.

The quantity to be minimized, J, is the integrated cost of energy, summed over all components,

for a given time period. The power, pi, for each of the i components is a subset of the component’s

output variables, yi. Energy sources for each component have associated unit costs, ki(t), which




can be time dependent (e.g. time of day electrical rates). A trajectory of controlled variables, c(t),

is sought which minimizes the objective function, J, over a period of time. 

.  ..

Component power is dependent upon the controlled variables as given by a set of state equa-

tions and output equations. The state equations represent the behavior of dynamic components,

such as thermal storage elements. Output equations model the dependence of the component

output variables, yi (including power, pi), upon component inputs and the component state.

Component inputs may belong to a set of controlled variables, ci; a set of input variables, ui,

which are outputs of other system components; or a set of uncontrolled variables, zi. Measurable,

external forcing variables such as wet bulb temperature or cooling load are included in the set of

uncontrolled variables.

The connections between the inputs of a component and the outputs of others are mapped by

an interconnection matrix Hi, with elements taking a value of either zero or one. Inequality con-

straints may limit the feasible region of system operation. These constraints could be, for example,

limits on control or output variables. Common constraints for chilled water systems include lim-

its on chilled water temperature and condenser water temperature.

The general cost function given in Equation .. does not include all energy associated costs

charged by an energy utility. An additional cost is often charged for the highest rate of use or
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
“peak use” during a billing period. For example, electrical utilities commonly charge for the peak

power demand. The optimal control over a billing period of time will depend upon any demand

charges during the period. However, demand charges are neglected in the development of the

solution to the steady state problem in this chapter. A solution to the optimal control problem

including demand charges is discussed in Chapter .

.  The Steady State Optimal Control Problem

In the technical control literature, optimal control usually connotes a transient control prob-

lem. For example, a dynamic system may be at a certain state x, and a control trajectory c(t) is

sought which will drive the system to a desired state, xd, in the shortest period of time. Or, a con-

trol might be sought which drives the system to xd using the least amount of energy or energy

costs. The dynamic problem can be reduced to a static or steady state problem under certain

assumptions discussed below. Generally, system control includes any means of influencing a sys-

tem in order to obtain some desired state or output. However, before considering the steady state

approximations, it is beneficial to divide system control into two layers, one of local loop control

and the other of supervisory control.

..   Local Loop/Supervisory Control

Local loop controls typically regulate a system variable by direct manipulation of a control ele-

ment such as control valves, dampers and electric motors. Feedback controllers are primarily used

for local loop control in chilled water systems. For example, consider the control of discharge air

temperature from a chilled water coil such as shown in Figure ... A local loop controller adjusts

the flow rate of chilled water through the coil in order to keep the outlet temperature at a given set

point. Changes in the inlet air temperature or air flow rate as well as the chilled water temperature

or flow rate will cause the outlet temperature to deviate from the set point. The controller

responds to the deviation and changes the valve position, causing an increase or decrease in the

chilled water flow rate, which will then cause the discharge air temperature to decrease or increase. 

The desired discharge air temperature, or set point, is determined by a supervisory controller.

In the context of optimal control as used in this work, the discharge air temperature set point is a

controlled variable. It is assumed that the local loop controls are stable and keep the measured
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variable sufficiently close to the desired set point. The supervisory controller provides set points to

local loops controllers. In many cases of chilled water plant control, supervisory control is accom-

plished with a control computer typically known as an energy management and control system

(EMCS). Most EMCSs can make set point changes as well as perform other duties, such as turn-

ing equipment on or off according to a programmed schedule, or monitoring energy usage.

..   The Steady State Approximation

Hackner [Hac] demonstrated that for systems without significant thermal storage, the sys-

tem dynamics of local loop controls can be neglected in the determination of optimal supervisory

controls. A qualitative means of examining the applicability of steady state optimization to a sys-

tem is given by Findeisen et al. [Fin] Consider an optimal trajectory of a system state  from t0

to t1 as shown in Figure ..a. This state trajectory corresponds to some optimal control trajec-

tory which solves Equations ... In an chilled water system, this could be, for example, the exit-

ing water temperature from a chiller. Rather than following the exact optimal trajectory, assume

that the optimal control problem is solved and applied over discrete intervals, ∆T, as shown in

Figure ..b. The resulting desired trajectory, xd, is a step-wise changing function. The way in

  ..: Local loop control of coil discharge air temperature.
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which the leaving chilled water temperature (or state x) changes due to a change in chilled water

set point, xd, illustrates the relative importance of system dynamics. If the response of chilled

water temperature to a change in set point is fast relative to a period ∆T (Figure ..c), the state x

can be assumed to be constant over the period, and the optimal control problem solved as a steady

state problem.

..   Application of the Steady State Approximation to a Chilled Water System

For most chilled water systems, the external forcing variables which cause the actual optimal

trajectory to vary over time usually vary relatively slowly. For example, wet bulb temperature

influences the ability of a cooling tower to reject heat and consequently influences optimal values

of controlled variables in a chilled water system, but changes slowly compared to the transient

  ..: a.) Optimal trajectory of a dynamic system. b.) Discrete approximation to 
optimal trajectory. c.) System response showing near steady state behavior of 
system over interval  ∆T.
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response of any individual chiller component. Another common external forcing variable is

chilled water system load. Throughout the day, load changes tend to be smooth, changing with

environmental conditions. 

Loads can change fairly quickly, for example, in a morning start-up situation. Minimizing

energy costs during a start-up situation is likely the principal case where steady state optimization

can yield control far from the optimum. For example, if the building temperature has risen over-

night, upon start-up local control loops in the system will begin component operation at condi-

tions corresponding to maximum heat transfer rates. The initial chilled water return temperature

will be close to the building temperature and the desired temperature as determined by the steady

state optimal control solution will likely be closer to the design temperature (e.g. 7.2 °C [45 °F]

for chilled water supply temperature). The local loop controller, which may be controlling com-

pressor motor speed, will respond to this great deviation from set point by running the compres-

sor at its maximum power until the chilled water return temperature decreases. 

The energy costs required to bring the building temperature down at the fastest rate possible

will exceed the costs of bringing the temperature down over a longer period of time. Also, electri-

cal rates are often based upon a single maximum demand during a billing period. The combined

effect of turning on all components at full capacity during a morning start can result in an unnec-

essarily high electrical demand.

Because the impact of morning start-up upon energy costs is present whether the system is

optimally controlled or not, practical means are normally implemented to bring a building’s tem-

perature down over a reasonable period of time. An optimal trajectory during morning start-up

can be found by solving Equation .. if a dynamic model of the building is added to the system.

However, for most systems, a simpler means is employed to bring the building temperature down

before scheduled occupancy without creating undue energy rate peaks. For example, the chilled

water set point may be linearly ramped down over a period of time as determined by an experi-

enced operator or by trial and error. Many EMCSs have algorithms which determine a minimum

start-up time without exceeding electrical demand limits. Parameters used in the algorithms are

determined from measuring the transient response of the building temperature or chilled water
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return temperature. If a schedule for gradually increasing system load during morning start up is

in place, then steady state optimal control can be applied to find optimal values of other con-

trolled variables as well during this period. 

Assuming a steady state system, the optimal control problem Equation .. can be simplified.

Time derivatives are zero and the state equations need not be evaluated. What may have originally

been described as a state variable can now be classified as either a controlled variable, c, or an out-

put variable, y. As well, c, u, and y are no longer functions of time. The external forcing variables,

included in z(t), and the unit energy costs k(t) may still vary with time. However, these variables

are considered constant parameters during the time period ∆T. The integrand in Equation .. is

constant and removed from the integral. The resulting steady state optimal control problem is:

..

Although the steady state problem requires a solution to a minimization problem just as in

Equation .., the approaches to solving the two problems are, in practice, quite different. The

remainder of this report will primarily address the steady state problem, as it will be used as a

foundation for solving the more difficult dynamic optimization problem in future work. Before

solving either optimization problems, the output equations and inequality constraints in Equa-

tion .. or .. must be parametrically fit so that they represent the subject HVAC system. 

.  Optimization Problem

Given parametric models representative of HVAC system components and a means for solv-

ing the system of equations, the optimization problem can then be addressed. Only solutions of
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the steady state problem (Equation ..) are considered in this report. Solution methods for the

more general dynamic problem, Equation .., will be considered in future work. 

..   Classification of the Optimization Problem

In order to have wide application, the output equations and inequality constraints in Equa-

tion .. should represent any general HVAC system. Although the objective function is a linear

combination of certain outputs (e.g. component power), the constraints will, in general, be non-

linear, and can be discontinuous. Also, some variables may only take on discrete or integer values.

For example, some fans or pumps may have multiple speeds (e.g. off/low/med/high). For the gen-

eral case, it is possible for the objective function to have multiple local minima.

The generality of the problem restricts the number of available solution methods. One

method for solving optimization problems with both continuous and integer variables is mixed

integer nonlinear programming (MINLP). However, this method is not generally applicable to

problems exhibiting discontinuities (other than the discontinuity between integers) or multiple

local minima. Relatively recently, a global optimization method called simulated annealing has

demonstrated success in solving both combinatorial problems (e.g. mixed integer problems) and

functions of continuous variables. Simulated annealing’s general applicability make it an appeal-

ing method for solving the general HVAC system optimization problem.

.  Simulated Annealing

..   Background

The name, optimization by simulated annealing, was coined by Kirkpatrick et al. who origi-

nally proposed the application of an earlier method of simulating a collection of atoms in equilib-

rium to solving optimization problems. [Kir] The earlier method was used as a simulation tool

to find a configuration of an ensemble of atoms which minimized the total energy at a given tem-

perature. [Met] From some given configuration, an atom is given a small displacement and the

resulting change in system energy, ∆E, is calculated. If the energy has decreased, the new configu-

ration is accepted as the starting point for the next step. If the calculated energy is higher, how-

ever, a probabilistic means is used to determine if the point should be accepted. A probability P of

the higher energy configuration is given by P(∆E) = exp(–∆E/kBT ), where kB is the Boltzmann
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number and T is the ensemble temperature. A random number between 0 and 1 is generated and

compared to the calculated probability. If the random number is less than P then the new config-

uration is accepted as a new starting point. The probability as defined above results in the system

evolving into a Boltzmann distribution.

The algorithm was used to investigate what happens to a system of atoms as the temperature

is lowered. Of interest is the determination of the ground state and how the atoms may solidify,

becoming a crystalline solid or a glass. Experimental methods for exploring the low temperature

states of matter involve gentle annealing, where the substance is first melted, and then the temper-

ature slowly lowered. If cooled too fast, the system may get out of equilibrium and form a crystal

with many defects or a glass without crystalline order. The algorithm which simulates the process

of annealing should result in finding a configuration of atoms with a minimum energy state. The

probabilistic means used in arriving at the minimum energy state is the key feature used in the

optimization problem. In optimization by simulated annealing, rather than searching for a config-

uration of atoms which minimizes energy, values of dependent variables which minimize an

objective function are found. 

Kirkpatrick originally used the method to solve combinatorial problems such as optimization

of circuits on a computer chip and the traveling salesman problem. Corana et al. modified the

simulated annealing algorithm to handle functions of continuous variables. [Cor] Goffe et al.

used the continuous variable implementation to compare simulated annealing to conventional

algorithms in determining parameters for econometric models. [Gof] Goffe also introduced

extensions to the Corana algorithm which help in reducing execution time. 

..   Methodology

The implemented algorithm explores a region of the range space by generating trial points

randomly within a step length vi from a fixed point, xi. Individual moves from the fixed point are

made in only one coordinate direction at a time. For example, if x is a three dimensional vector, a

move is first made in the x1 direction, then in the x2 direction and then in the x3 direction. At

each move the objective function, f, is calculated. If the new objective function value, f ', repre-

sents a decrease, then that point is accepted as the new xi. The unique feature of the simulated
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annealing algorithm is that another check is made before moving to another point. If the objective

function increases due to the move, then the “Metropolis criteria” is used, where a probability

function analogous to the Boltzmann probability is calculated:

..

The probability, p, is compared with a random number in the range [0,1]. If the probability is

greater than the random number the point is accepted as the new xi. Consequently, the algorithm

has the ability to move out of local minima. At the beginning of the algorithm the “temperature,”

Tk , is relatively high and many points resulting in higher objective function values may be

accepted. But as the algorithm proceeds, Tk  decreases incrementally as determined by a user set

parameter, and the probability p tends toward zero for any increase in objective function.

The step size, vi, within which points are generated is adjusted after a given number of cycles

of random moves, Ns. The adjustment is made so that approximately half of the generated moves

are accepted. If too many moves are rejected, then the trial points are too far from the current

point. If too few moves are rejected, the search is being made over too small a region. As the algo-

rithm progresses, the step size decreases due to decreases in the temperature, Tk . After a tempera-

ture reduction, the step length that resulted in half of the moves being rejected at the previous

temperature will cause more moves to be rejected at the new lower temperature. The step length

will then be shortened to bring the ratio back to near 1:1. 

A flowchart of the algorithm is shown in Figure ... After parameter initialization, random

points are generated sequentially in each of the coordinate directions over a number of cycles, Ns.

Each point is accepted or rejected according to whether the objective function decreased or the

Metropolis criteria discussed above was met. During these moves, any point encountered which

results in a lower value of objective function than any previous point is recorded as the optimum.

The step length, vi, is adjusted after Ns cycles such that the ratio of rejected to accepted moves is

approximately 1:1. The number of times the step is adjusted, NT, is another user-defined parame-

ter. After NT x Ns cycles, the temperature is reduced by a user-defined factor, rT, set between 0 and

p
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1. The algorithm will stop if after a number of temperature reductions, Nε, the optimal value of

objective function has not changed more than a tolerance, ε. 

..   Implementing Simulated Annealing with TRNSYS

A simulated annealing subroutine written by Goffe et al. [Gof] was modified and incorpo-

rated into the TRNSYS simulation package. For the purpose of describing the implementation,

TRNSYS may be considered a “black box” function where a set of controlled variables, c, a set of

uncontrolled variables, z, and a set of parameters, β, as shown in Figure .. together represent

  ..: The simulated annealing algorithm given by Corana et al. [Cor]
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the input; and the resulting sum of component costs, J, represents the output. For the given input

variables and parameters, TRNSYS attempts to converge upon a stable set of outputs. It is worth-

while to note that the component models are not generally represented by continuous functions,

but are FORTRAN subroutines which may include a number of logical statements that could

make the output discontinuous or nonsmooth. Also, there may be constraints built into the sub-

routines such that outputs never exceed some upper or lower bounds. The discontinuities and

nonsmooth relationships between component inputs and outputs limit the choice of optimization

algorithms to only the most robust, such as simulated annealing.

The simulated annealing program, SIMANN, was originally written as a subroutine which

calls a user-defined subroutine for calculating the objective function. Rather than calling an objec-

  ..: System of HVAC components within TRNSYS.
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tive function subroutine, SIMANN returns program control to TRNSYS when an objective func-

tion must be evaluated. After TRNSYS converges to a solution, inequality constraints are

evaluated. If the constraint is violated, a penalty is added to the objective function to force

SIMANN to search only in a feasible region. A flowchart showing the SIMANN implementation

with TRNSYS is given in Figure ...

..   Constraints

The relationships between component inputs and outputs given by the component models

can be considered equality constraints, maintained as TRNSYS converges upon a set of outputs for

a given set of controlled and uncontrolled inputs, y = f (c,z;β)  (For a more convenient representa-

tion, let x represent the inputs in general, and assume β constant, i.e. y = f (x) ). This set of compo-

nent equations, however, does not constrain the problem in the sense of decreasing the number of

degrees of freedom since an output variable, y, is added for each additional equation. The compo-

nent equations serve to define the functional relationship between the objective function J and the

variables subject to control, c.

There may be other constraints which are not representative of a single component. For exam-

ple, in the application considered in this chapter, the constraint on average or mixed chilled water

temperature from all chillers is an operational requirement. The mixed chilled water temperature

constraint can be included in the problem formulation by identifying as controlled variables all

but one of the chilled water supply temperatures. The remaining one temperature is then calcu-

lated from an energy balance so that the mean flow temperature is at its constrained value. The

calculated chilled water temperature is constrained by upper and lower bounds corresponding to

the warmest and coldest temperature attainable by the chiller. If the calculated temperature is

beyond the bounds, a simple barrier function is used where a cost orders of magnitude higher

than any possible operating cost is returned to the minimization algorithm.

.  Implementation of Optimal Control in a Chilled Water System

With a means for arriving at a set of controlled variables which minimize energy costs in a

modeled system, these optimal controls can then be applied in a real system. Control application
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  ..: Implementation of SIMANN optimization algorithm with TRNSYS.
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may be classified according to how often the parameter estimation and optimization problems are

solved. In on-line parameter estimation and control, system parameters are updated after each real

system measurement is taken, then the optimization problem is solved with the new parameters,

and the resulting optimal set points are applied to the system. In off-line parameter estimation, a

fixed set of system data is used to determine representative parameters. For example, the data may

have been taken while exercising the real system over a wide range of operating conditions to

improve the predictive capabilities of the parametric models. Given a set of parameters 

 

β

 

, the opti-

mal control variables, 

 

c

 

*

 

, depend only upon the external, driving variables 

 

z

 

 (e.g. load, wet bulb

temperature). The optimal controls may be found by solving the optimization problem on-line

every time a new set of values for 

 

z

 

 is measured. Alternatively, a model of the dependence of the

optimal control variables upon the external variables may be constructed from the results of sys-

tem simulations. The model could be in the form of equations, graphs (maps), or tables. 

There are advantages and disadvantages associated with both on-line and off-line control.

Continuously updated parameters found in on-line control may result in a more accurate system

model as the parametric models adapt to the current operating conditions. A more accurate sys-

tem model will yield more accurate optimal control variables. However, the cost associated with

installing and maintaining the computational equipment required for on-line control may be sub-

stantial. Also, a problem in parametric estimation may arise if the external variables remain nearly

constant over an extended period of time. For example, if the parametric estimation problem is

used with data taken over a period where the external variables were near constant, the depen-

dence of the model output upon these external variables cannot be discerned.

 

.  

 

Summary

 

A method for determining values of control variables which minimize energy costs of an

chilled water system has been presented. Essentially, the proposed method includes fitting real sys-

tem data to a parametric model of the subject chilled water system, and then using the parametric

model in an optimization algorithm to determine minimum energy costs. An optimization algo-

rithm, simulated annealing, is implemented with the TRNSYS simulation program to determine

values of control variables which minimize energy costs.
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 

 

Optimal Supervisory Control -

Walnut Street Plant

 The model of the Walnut Street Plant used in the parameter estimation studies in Chapter    is

used in optimization studies in this chapter. Results from solving the optimization problem with

and without demand charges are presented and discussed. In addition, some general optimal strat-

egies for operating the Walnut Street plant are developed. 

 

.  

 

Problem Description

 

The objective is to minimize the system energy costs for the two chillers (one steam driven

and one electrically driven), four cooling tower fans, two chilled water pumps and two condenser

water pumps. Steam cost is estimated by physical plant personnel to be 
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/
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 kg. Electrical

costs are dependent upon the time of day of usage. During “peak rate” usage hours (
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.
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/kW·hr, and the cost is 

 



 

.

 



 

/kW·hr during the

“off-peak” hours. An additional electrical demand charge of 
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.

 

/kW is levied for the highest

power demand during on-peak hours in the one month billing period.
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System energy costs depend upon the six independent variables and six control variables listed

in Table ... In the calculations for optimal control, new values of the independent variables are

taken from the measured data at each hour and input to the model. The optimization algorithm

then searches over all values of the control variables for the minimum in total energy costs for that

hour.

Certain loads served by the chilled water plant have a high limit on chilled water supply tem-

perature. The water temperature from the plant is constrained to not exceed the limiting temper-

ature. For example, if water flow rates through the individual chillers were equal and the limiting

combined water temperature is . °C, a chilled water temperature of . °C from one chiller

would constrain the temperature from the other chiller to no greater than . °C. This constraint

is applied inside the TRNSYS model where Tchws # (maximum) is calculated via an energy bal-

ance as a function of the combined chilled water supply temperature and Tchws #. Since supply-

ing a lower chilled water temperature than the maximum always increases energy costs, the

constraint effectively removes Tchws # as a control variable. (Tchws # is always at its maximum). 

 ..:  Independent and Control Variables

Independent Variables

Tchwr chilled water return temperature

Twb ambient wet bulb temperature

Tdb ambient dry bulb temperature

pinlet available steam inlet pressure

ksteam steam cost

kelec electricity cost

kdemand peak electrical demand charge

Control Variables

Tchws # steam chiller (#) water supply temperature

Tchws # electric chiller (#) water supply temperature

γ cooling tower fan # speed

γ cooling tower fan # speed

γ cooling tower fan # speed

γ cooling tower fan # speed
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The four cooling tower fan motors can individually be run at zero, half, or full speed.

Although  different combinations of fan speed settings are possible, only nine of these combina-

tions need to be searched. Since fan power increases in cubic proportion to fan speed, the change

in power from half to full speed is greater than the power required at half speed. Also, the increase

in cooling tower effectiveness is less from half to full speed than from off to full speed. Thus, the

combinations having a fan off simultaneously with a fan on at full speed will always use more

power and result in less cooling than both fans at half speed. Since all four cells of the cooling

tower have equivalent performance, the particular combination or order of operating cells makes

no difference. The  combinations that have one fan off when one is at full speed are eliminated

from the search. The problem was further simplified by using a single control variable (having

eight discrete values between  and ) to represent the particular combinations of fan speed.

The resulting optimization problem is a nonlinear function of one continuous variable

(Tchws #) and one discrete variable (fan speed control). The continuous control variable, chilled

water supply temperature for chiller #, Tchws #, has a lower bound of . °C (lowest safe operating

temperature according to plant operators). The upper bound for Tchws # is the warmest water

temperature that forces the chilled water temperature out of chiller # to its minimum (also

. °C) in order to meet the required combined flow temperature.

.  Conventional Control

A sequence of  days of data, beginning with July , is established as a period for comparing

optimal control strategies with the actual control. Costs for conventional operation were esti-

mated using the Walnut Street Plan model and the measured data for the period. In the simula-

tion, the chilled water supply temperatures from both electric and steam driven chillers were set to

match the average measured values over the period. The cooling tower fans were set at speeds indi-

cated by the measured data.

The operators’ existing strategy for operating the plant is to supply chilled water between

. °C and . °C (. °F and . °F). Operators will normally set the chillers’ controls to a fixed

set point of . °C and monitor the mixed chilled water temperature leaving the plant. Operators

will add an available chiller if the chilled water leaving the plant reaches . °C. The measured




chilled water supply and return temperatures for both chillers average . °C (. °F) and . °C

(. °F) respectively for July.

Cooling tower fans are manually controlled by the operators. Generally, fans are added or fan

speed increased if the water temperature from the cooling tower exceeds about . °C (. °F).

However, with manual control, fan operation does not tightly follow in response to cooling tower

water temperature. Measured data shows all fans on at full speed for cooling tower water tempera-

ture above . °C (. °F), and fans somewhere between all at half speed and all at full speed for

temperatures from . °C to . °C (. °F to . °F). There is inconsistent correlation

between the operators’ choice of fan speed and cooling tower temperature in the . °C to . °C

range.

A simulation of the plant operating at the measured values of control variables (conventional

control) is used as a basis for comparing the costs under optimal control. A plot of estimated

steam and electricity costs over the period is shown in Figure ... The periodic reduction in elec-

tricity costs after every five peaks (five days) is due to the reduced off peak rate of electricity apply-

ing during all hours of the weekend. Summing over the month, the steam, electrical and total

energy costs are ,, , and , respectively. Measured chilled water supply temper-

atures are shown in Figure ... Although both chillers had a constant controller set point of

. °C (. °F) over the period, the measured temperatures show some variation. Measured tem-

perature from the electric chiller is more steady over time than that from the steam driven chiller.

The apparent noise in the measured temperatures from the steam driven chiller is due more to

instability in the control of the chiller than to measurement noise. The mean mixed supply tem-

perature over the period is . °C (. °F). Cooling tower fan control during the period is shown

in Figure ... Fan speeds over the period varied between all on at half speed and all on at full

speed.         

.  Optimal Supervisory Control Results

In the optimization calculations, values of the two control variables (Tchws # and γct) that

minimize energy (steam and electricity) costs for each hour are found. The chilled water tempera-




  ..: Steam and electricity costs under conventional control.

  ..: Chilled water return temperature and supply temperatures from the steam and 
electric chillers (# and #) under conventional control.
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
ture from the electric chiller (Tchws #) is constrained such that the mixed water temperature is at

the set point of . °C (. °F). Over most of the period, optimal control favored using the elec-

tric chiller (#) for the majority of the load.

In Figures .. and Figures .. optimal chilled water supply temperatures from chiller # are

plotted against chilled water return temperature. At lower return water temperatures (less than

. °C), the electric chiller is run at its minimum allowable temperature (fully loaded) and the

steam chiller takes on the remainder of the load. Figure .. includes those points calculated with

an electric kW·hr cost of . and Figure .. includes the points calculated with a cost of

.. The minimum allowable supply temperature for either chiller is . °C (. °F). The

optimum strategy during the higher electric rate period, disregarding demand costs, is to base load

the electric chiller (run at minimum supply temperature) and carry the rest of the load with the

steam driven chiller except for high loads (chilled water return temperatures above . °C).  

The plots in Figures .. and .. illustrate that the minimum total cost occurs with either

the steam chiller or electric chiller fully loaded.   The dependence of total cost upon steam chiller

  ..: Cooling tower fan speeds under conventional control.
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
  ..: Optimal chilled water temperatures from both chillers as a function of chilled 
water return temperature. Electric costs are .¢/kW·hr.

  ..: Optimal chilled water temperatures from both chillers as a function of chilled 
water return temperature. Electric costs are .¢/kW·hr.
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
  ..: Total cost as a function of Tchw # at different cooling tower fan speeds. 
Independent variables: Tchwr = . °C, Twb = . °C, kelec = ./kW·hr.

  ..: Total cost as a function of Tchw # at different cooling tower fan speeds. 
Independent variables: Tchwr = . °C, Twb = . °C, kelec = ./kW·hr.
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
water temperature and cooling tower fan speed is shown for two different hours (different values

of independent variables). In Figure .., the cost is calculated with a low load, cool wet bulb and

low electrical rate. Figure .. is for a high load, warm wet bulb and high electrical rate. At the

lower load and lower electrical rate (Figure ..), the optimum control is to run the steam chiller

at the higher temperature limit and the cooling tower fans at full speed. The costs in Figure ..

are calculated at a high chilled water load and high wet bulb temperature. Under this high load

and at the higher electrical energy rate, the optimum control changes to running the steam chiller

at its lower temperature limit and all cooling tower fans at full speed.

The concavity in total cost versus Tchws # apparent in both figures results in the optimum

control occurring at either the lower or upper boundary on Tchws #. Due to the mixed tempera-

ture constraint, the upper bound on Tchws # is fixed by the lower bound on Tchws #. Individual

chiller costs for the case with all fans at full speed shown in Figures .. (labeled “4 full”) are

replotted in Figure ... The plot shows that the concavity of the curve in Figures .. is due pri-

  ..: Steam and electric chiller energy costs with cooling tower fans at full speed. 
Independent variable values are the same as given in Figure ...
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
marily to the performance of the steam driven chiller (chiller #). The electric chiller costs are

nearly linear with respect to load. Note that as Tchws # increases (steam chiller load decreases), the

supply temperature from the electric chiller, Tchws # must decrease (electric chiller load

increases). Since the return water temperature is constant in Figures .., .. and .., changes

in Tchws # correspond to changes in load for the individual chillers. The concavity in steam chiller

costs indicates that the chiller’s COP increases as the load increases. The near linear electric chiller

performance indicates its COP is nearly constant. The influence of the shape of a chiller’s “part

load” performance curve upon optimal control is discussed in Section ..

A plot indicating optimal cooling tower fan settings at various combinations of chilled water

return and wet bulb temperatures at the lower electrical rate is given in Figure ... The overlap-

ping groupings of particular fan speed settings demonstrate dependence upon both return and

wet bulb temperature. When operating at the higher electrical rate, switching to a higher fan

speed setting occurs at a slightly warmer chilled water return temperature. As shown in

Figure .., the switch up from two fans at full speed and two at half at the higher electrical rate

occurs at approximately . °C and at approximately . °C at the lower rate.

The operators’ cooling tower fan control decisions are also shown as a function of wet bulb

and chilled water return temperature in Figure ... Although scattered, the operators’ settings

somewhat coincide with the optimal values. When asked how he decided when to increase fan

speed, a senior operator at the Walnut Street Plant revealed that he could tell from the sound and

vibration of a chiller that a cooler condenser temperature is needed.

An hourly plot of total cost savings of optimal over conventional operation in shown in

Figure ... With optimal control, the steam and electricity costs are reduced to , and

, respectively. The total energy cost for the month is , for a savings of , (.%)

over conventional control. Average savings per day is ..

.  Demand Charges

Typically, an electrical utility will charge not only for energy used, but also for the largest

power required (peak demand) over a billing period. During periods of high cooling loads, the




  ..: Optimal cooling tower fan speed control vs. chilled water return temperature and 
wet bulb temperature. Electrical cost is $./kW·hr.

  ..: Optimal cooling tower fan speed control vs. chilled water return temperature and 
wet bulb temperature. Electrical cost is $./kW·hr.
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
  ..: Conventional cooling tower fan speed control vs. chilled water return 
temperature and wet bulb temperature.

  ..: Hourly savings of optimal control over conventional control.
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
power used at the Walnut Street Plant can have a substantial impact on the University’s electrical

bill. The power used in operating the electric chiller at full load during a peak period represents

approximately , in monthly demand charges.

In comparing demand costs, it is assumed that the remainder of the University’s electrical load

(other than the chilled water plant) is relatively flat. With a flat “base” load, all peaks and valleys

in the recorded electrical demand is attributed to demand from the chilled water plant.

The peak electrical demand under conventional control is , kW, corresponding to ,

in peak demand charges. The peak demand in the optimal control given in Section . is

, kW, an increase of , in demand costs. The savings in optimal over conventional control

including demand costs is reduced to  for the month, .% of the total energy and demand

costs under conventional control. Almost half of the optimal savings are offset by increased

demand charges. To find the minimum monthly energy cost for the chilled water plant, the

demand charge must be included in the optimization.

One strategy for reducing peak demand costs is to minimize electricity use during an antici-

pated high cooling load period. For example, at the Walnut Street Plant, electrical energy could be

reduced by moving as much of the load as possible to the steam driven chillers, unloading the

electrically driven chiller. Knowing when a peak load occurs impacts the operators’ decisions in

loading the chillers. If a large peak was to occur later in the billing period, or if the peak had

already passed, operators would not take the peak charges into account when operating the plant

during periods of lower loads. But the true peak load for the billing period is uncertain until the

end of the billing period, and operators must make predictions of future load based on expected

weather conditions. 

In an actual implementation, determining an optimal control strategy to minimize both

energy and demand costs requires weather and load predictions for the billing period. Using his-

toric measured data of weather and loads over a month for the Walnut Street Plant, what would

have been the optimal control can be determined after the fact. 




.  Optimal Supervisory Control with Demand Charges

Given the measured data for July from the Walnut Street Plant, the optimal control strategy

which would have minimized costs for that billing period can be determined. For hours with rela-

tively small chilled water loads, the optimal control is not influenced by peak demand charges.

The optimum control at lower loads is the same as the results from solving the optimization prob-

lem without demand charges (See Section .). To simulate the presence of demand charges, the

chiller plant model includes an additional cost at each hour for any power increment above a user

set “demand limit” parameter. This demand limit parameter could be set to the highest demand

previously calculated during the period or an expected peak demand for the period. If the limit

was , kW, electrical costs for that hour would include energy use costs (for kW·hrs) plus the

demand charges for use exceeding , kW. At relatively large loads, this limit will influence the

optimum control solution for that hour.

The effect of adding a cost for exceeding a set demand limit is demonstrated in Figure ...

The data presented are identical to those presented in Figure .. except that the cost calculations

include an electrical demand charge. Figure .. shows that without demand charges, the lowest

total cost for the hour is .. This minimum cost occurs at a steam chiller supply water tem-

perature of . °C and an electrical demand of , kW. In Figure .. the demand limit is set at

 kW, lower than the demand of , kW at the minimum point in Figure ... With the

demand charge for exceeding , kW, the optimum steam chiller supply temperature falls to .

°C, indicating the steam chiller is taking on load from the electric chiller. (The temperature of the

combined flow is constrained to . °C.) The sharp upturn in total costs toward the right of

Figure .. is due to the relatively high demand charge (./kW) added when exceeding the

limit. The electrical demand at the new minimum is the same as the demand limit, , kW. 




Without demand charges, the minimum monthly cost can be found by minimizing steam

and electric cost as a function of Tchws # and γct at each ith hour, then summing over all n hours. 

..

With demand charges, a cost is added for the maximum power required during the billing period.

The optimization problem is then to find control variables for each hour, Tchws #, i and γct, i, that

minimize the total monthly cost:

..

The minimum monthly cost cannot be found by separately minimizing energy (kW·hr and

steam) costs at each hour, then adding the demand cost for the individual hour having the peak

  ..: Total cost versus chilled water supply temperature from chiller #. In this case, 
there is a demand charge for electric power requirement exceeding  kW.
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
electrical demand. At the hour having the largest optimal power demand, the plant could have

been operated at a lower power usage. The decreased power use can only increase the otherwise

optimal energy (kW·hr and steam) costs. However, the savings in demand costs can be much

greater than the increased kW·hr and steam costs. 

The dimension of the minimization problem as stated in Equation .. is n. The scope of

the problem can be reduced by considering pi ≤ pmax as a constraint applied over all n hours. The

problem in Equation .. is then minimized as a function of pmax.

..

For the greater minimization problem, the upper bound, pmax u.b., can be found by solving the

problem without demand charges, Equation ... The largest hourly demand from this solution

is the upper bound in Equation ... A lower bound on demand exists because at each hour,

there exists some minimum power required to meet the load, regardless of the cost. The largest of

these minimums is the lower bound on maximum power demand.

As pmax decreases from its upper bound, the sum of the minimum hourly costs can only

increase and the pmax kdemand term decrease. If at an unbounded minimum, the optimum value of

pmax will occur when the derivative of the argument in Equation .. is zero, or equivalently

..

Total power use for each hour optimized without demand charges is plotted in Figure ...

The hours have been rank ordered by hourly power use. The optimum peak demand which solves

Equation .. may be approximated by progressively lowering the demand limit in successive
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optimization runs until the incremental savings in reduced demand costs is less than the addi-

tional energy (steam and kW·hr) costs. At relatively high demand charges (compared to kW·hr

cost), the savings in lowering the peak will always be greater than the increased energy costs and

the optimum will be at the lower bound on demand. By rank ordering the hours by power

demand, only the first few of n hours need to be minimized with the changing pmax constraint.

Optimum control values at hours having an optimum power demand (resulting from the solution

of Equation ..) less than pmax are not affected by the constraint and need not be recomputed.

The lower bound on demand is found by minimizing electrical use each hour rather than

energy cost. The largest minimum power requirement over the month for the Walnut Street Plant

is , kW. Rerunning the optimization including a demand cost for power exceeding , kW

influences the optimal control during eight of the highest load hours. Rank ordered hourly

demand from the demand limited run is replotted in Figure ... The savings in demand charges

compared to optimizing without regard to demand is ,. The increase in energy charges dur-

ing those high load hours is . For the Walnut Street plant, the optimum peak demand during

the month is at its lower bound.   

  ..: Rank ordered optimal hourly power demand. No demand charges were included 
in the optimization.
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Comparing optimal costs and conventional costs including demand charges, the savings is

, for the month, averaging  per day. This represents a .% decrease in the monthly

energy bill. The percentage savings is not very large, but because yearly energy costs are in the mil-

lions of dollars, the absolute savings is substantial. The small percentage in cost savings is prima-

rily due to the small range of possible individual chiller supply temperatures. The required mixed

water temperature of . °C is only . °C greater than the minimum allowable temperature, leav-

ing approximately a . °C range of operation. A larger range for possible individual chiller supply

temperatures would allow for increased savings. Optimal control allowing a warmer chilled water

supply temperature is discussed in Section . below.

.  Priority Control

Two other commonly implemented control strategies were simulated for comparison. In one,

the steam driven chiller is given “priority” and takes on as much of the chilled water load as possi-

ble before using the electric chiller to provide the remaining cooling. In the other mode the elec-

tric chiller is given priority. 

  ..: Rank ordered demand with optimal peak demand limit included in the 
optimization.
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With fixed water flow rates through both chillers, the only control over loading the chillers is

by varying the chilled water supply temperatures. The maximum load either chiller can supply is

limited by the minimum allowed chilled water supply temperature. A plot of both chillers’ supply

temperatures and fraction of total load under steam priority control is shown in Figure ... At

chilled water return temperatures below  °C (. °F), the chilled water return temperature is

not warm enough to fully load either chiller and the priority chiller’s supply temperature remains

at its minimum value. Above a return temperature of  °C, the chiller’s maximum load is reached

and the priority chiller’s supply temperature rises above its minimum. The non-priority chiller

then supplies a lower chilled water temperature to meet the required mixed temperature of . °C

(. °F).

Total monthly costs when running the plant in steam priority mode are approximately the

same as when run in conventional mode. Increased steam costs for operating with steam priority

were offset by lower demand and kW·hr costs. Running the plant under electric chiller priority

  ..: Chilled water supply temperatures and load fraction for steam priority chiller 
control.
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increased total costs by .%, the greatest increase coming from greater kW demand cost. Costs

for conventional, optimal and priority control strategies are given in Table ...

Optimal control for the Walnut Street is a priority control that switches from electric chiller

priority to steam chiller priority depending upon the load and the electric rate. As shown in

Figures .. and .., priority switches to the steam chiller at Tchwr above . °C during on peak

electrical rates, and at Tchwr above . °C during off peak rates.

.  Optimal Control with Tchws = . °C (. °F)

In the design of facility air conditioning systems, a chilled water temperature of . °C

(. °F) is commonly assumed to be available for meeting the largest cooling load. For purposes

of comparison, conventional and optimal control were recalculated with the plant required to

supply . °C instead of . °C chilled water. The return water temperature was set to be . °C

(. °F) higher so that the chilled water load would be approximately the same as indicated in the

measured data. With the warmer mixed chilled water supply temperature the individual chillers

can operate over a wider range of temperatures. 

Under conventional control at the warmer supply temperature, steam and electrical energy

costs are , and , respectively. Adding the power demand charge of , results in a

total cost of ,. Optimal control reduces the total cost to , if demand costs are not

considered in the optimization. Limiting the power demand (to the largest minimum required

hourly demand) reduces demand costs by , and increases steam and kW·hr costs by . The

total monthly cost of , is a .% savings over conventional control.

The larger percentage savings of optimal over conventional control is possible with the

warmer supply temperature because the individual chillers can operate over a wider range of sup-

ply temperature. Optimal supply temperatures at the higher electric kW·hr rate (./kW·hr)

are plotted in Figure ... As return water temperature increases, optimum operation switches

from loading the steam chiller to loading the electric chiller at about  °C, then back to the steam

chiller at temperatures greater than about  C.
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Examining the corresponding plot of load in Figure .. allows a better understanding of

why the favored chiller switches. At low loads, below  °C Tchwr, only the steam chiller is oper-

ated. At about  °C, the steam chiller reaches its minimum allowed supply temperature and two

chillers must be operated to meet the load. 

With both chillers on, the steam driven chiller disproportionately contributes to the heat

rejected at the cooling tower because of the heat removed from the steam condenser. Conse-

quently, the water temperature from the cooling tower increases as load is moved to the steam

chiller. Increased water temperature from the cooling tower reduces the COP of both chillers. If

two chillers must be run at low load conditions, it is more economical to move as much load as

possible to the electric chiller. 

The small jump in load above  °C Tchwr is due to the minimum operating load required

before a chiller can be operated. In the transition region near  °C Tchwr, the optimum operation

switches from favoring one chiller to the other. Two data points in this range have high wet bulb

temperatures compared to other points having approximately the same chilled water return tem-

peratures. At high wet bulb temperature, the cooling water temperature entering the refrigerant

and steam condensers rises. Because of the steam condenser, steam driven chiller performance is

relatively more sensitive to changes in wet bulb temperature than the electric chiller. At the two

points near  °C having high coincident wet bulb temperature, meeting the load with the electric

chiller is more economical that meeting it with the steam driven chiller.

Further increasing Tchwr, the electric chiller supply temperature remains at its minimum until

it reaches its maximum load (about , kW at . °C Tchws). As the chilled water return tem-

perature increases from . °C, the electric chiller remains fully loaded and its supply temperature

rises. While the electric chiller remains fully loaded, the steam chiller takes on the additional load,

decreasing its supply temperature to meet the required . °C mixed supply temperature. Above

approximately . °C Tchwr, it is more economical to fully load the steam chiller. The curve of

total cost versus steam chiller supply temperature changes from a minimum at the higher bound
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(see for example, Figure ..) to a minimum at the lower temperature bound (e.g. Figure ..).

      

.  Chiller Part Load Performance and Optimal Control

A curve of typical centrifugal chiller part load performance given in manufacturer’s catalog lit-

erature is shown in Figure ... The curve is convex with COP improving as the chiller is loaded,

reaching a maximum at about  to  percent of full load. A chiller having maximum COP at

less than full load is beneficial in most applications where the chiller is fully loadedonly a small

fraction of total operating hours. Minimum electrical cost for two identical chillers with part load

performance as shown in Figure .. would occur with each chiller operating at part load and the

same chilled water supply temperature.

In the case of the Walnut Street Plant, the optimal solution includes operating either of the

two chillers at a maximum load or minimum chilled water supply temperature boundary. Opti-

mal operation occurs at these boundaries because of the convex total cost curve as given for exam-

ple in Figure ... The part load performance of the Walnut Street Plant chillers differs from

 ..:  Comparison of costs under different operating strategies
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typical electric chiller performance for a number of reasons. The steam chiller’s atypical decrease

in COP at part load is largely due to the means of load control. Part of the control mechanism for

unloading the steam driven chiller is to throttle the inlet steam. Although the refrigeration cycle

efficiency may improve at part load, the losses in the turbine associated with throttling the inlet

steam result in an overall decrease in system efficiency.

The typical part load curve assumes a constant entering condenser water temperature. The

nearly linear electric chiller part load performance shown in Figure .. includes an increasing

condenser water temperature with decreasing load. Shifting load to the steam chiller results in a

rise in entering condenser water temperature. The temperature increases because the steam tur-

bine/chiller combination must reject more heat per unit of refrigeration than the electrically

driven chiller. Improvement in cycle performance associated with increasing evaporator tempera-

ture is countered by the increasing condenser temperature.

  ..: Optimal chilled water supply temperatures of the steam and electric chiller versus 
chilled water return temperature. The mixed chilled water supply temperature is 
fixed to be . °C.
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  ..: Optimal fraction of total load met by chillers #3 and #4 versus chilled water 
return temperature.

  ..: Typical part load performance for an electrically driven chiller at constant 
entering condenser water temperature.
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The atypical part load behavior evident in the measured data has been reported in other pub-

lished works. In Ng’s paper on performance evaluation of centrifugal chillers, decreasing COP at

decreasing loads is apparent in his measured data. [Ng] Other works presently in publication

have also found atypical part load performance of centrifugal chillers. [Brn] 

.  Summary

In this chapter optimal supervisory control of the Walnut Street Chilled Water Plant is pre-

dicted. Optimal control for the chilled water plant results in a .% cost savings over conventional

control. The savings are limited due to the required chilled water supply temperature (. °C

[. °F]) being very close to the minimum allowed supply temperature from the individual chill-

ers. If supplying a warmer chilled water temperature of . C (. °F), optimal control savings

increase to . % over conventional control.

Optimal operation includes running one chiller at maximum load with the other chiller meet-

ing the remainder of the required load (priority control). At lower plant loads, the electric chiller

should be run at maximum load. The point at which it becomes optimal to priority load the

steam chiller depends upon the chilled water return temperature and the electrical rate. Optimal

cooling tower fan speed increases with increasing load and increasing wet bulb temperature.

Costs for chiller priority control are compared to optimal and conventional control costs. Due

to plant part load performance characteristics, optimal control is priority control where the switch

point depends upon chilled water return temperature and electricity cost. 
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Conclusions

In this work, methods were developed for fitting a chilled water system model with measured data

and for determining optimal supervisory control using the plant model. Parameter estimation

methods for multivariate nonlinear models were investigated and applied to the problem of fitting

a chilled water system model. A minimization algorithm was used with the system model to deter-

mine optimal supervisory control of the plant. In this chapter, conclusions concerning the meth-

ods of parameter estimation and optimization as well as the results of their application will be

presented.

.  Modeling and Parameter Estimation

At the outset of this investigation, it was anticipated that the optimization problem would be

the more formidable task compared to the problem of estimating model parameters. The TRN-

SYS chilled water plant model is a multiresponse, multiparameter and nonlinear system. Finding

parameter estimates for the plant model was as difficult or more so than the optimization prob-

lem. A comment quoted in a regression text [Sen] gives a daunting outlook: “Nonlinear estima-

tion is an art. One-parameter estimation is minimalist, multiparameter is rococo. There are
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numerous booby traps (dependencies, discontinuities, local minima, etc.) which can ruin your

day.” [Wil]

..   Modeling

A mechanistic model can have advantages over other models (polynomial equations, neural

nets, etc.) in extrapolating model predictions. The mechanistic model, in general, constrains the

relationships between inputs and outputs to adhere to conservation laws and energy transport

relationships observed in physical phenomena. Thus the mechanistic type model for the chilled

water plant is advantageous over interpolative type models when the optimal plant operation

occurs at control values not present in the measured data. 

In determining the optimum supervisory control for the Walnut Street Plant (Chapter ), the

model extrapolated responses as the minimization algorithm searched for optimal values of the

control variables. The optimal control is to fully load one chiller (operate it at the minimum

allowable chilled water supply temperature) and use the other chiller to meet any remaining load.

This optimal control usually caused both chillers to operate at a chilled water supply temperature

a few degrees outside the range of measured data used in the fit. Although the accuracy demon-

strated for the interpolated predictions is not guaranteed for the extrapolated values, using the

mechanistic models gives some confidence that the variable values conform to physical laws. With

arbitrary curve fits or neural nets, any prediction outside the region of the data used in the fit is

highly suspect.

..   Regression Methods

In order to begin the regression a scalar quantity representing the difference between model

prediction and the measured data must be defined. Using a sum of squared residuals from all

responses is an extension of the least squares method used in single response cases. It is important

to scale all responses (usually scaled by the response’s mean value in the set of observations)

because of the differences in magnitudes of the measured values.

In multiresponse regression theory, individual responses should be weighted before summing

the squares. The weight for a particular response should be proportional to the inverse of its esti-
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mated variance. Weights can be estimated in an iterative method by first solving the problem with

no weighting preferences for the responses. The resulting set of residuals for each response will

demonstrate some measure of variance. A set of weights can be constructed from the variance

found in the previous solution and the weighted least squares problem resolved, iteratively, until

the change in weights fall below some tolerance. According to regression theory, an alternative to

weighting the responses is to minimize the determinant of the matrix formed by multiplying the

residual matrix by itself.

For the chilled water plant model and data used in this work, using either a weighting matrix

or the determinant criterion did not result in any significant improvement in model predictions.

The lack of improvement in predictions does not, however, imply that weighting is not necessary

in any other case. It can only be concluded that measurements used in this work have approxi-

mately uniform error.

While adding power measurements to the regression would have yielded a significant

improvement in parameter estimates, because of problems associated with collinear responses,

(discussed in Chapter ) adding too many responses can be detrimental to the fit. For the Walnut

Street Plant model, regression results varied when the combination of responses were changed.

Even after removing all obvious collinear responses, it was found that a smaller set of responses

resulted in a better fit. The response set resulting in the best fit was determined by repeated solu-

tion of the parameter estimation problem using various combinations of responses.

..   Walnut Street Plant Parameter Estimation

A total of  parameters in the composite Walnut Street Plant model require estimates. Sub-

jecting the composite model to a parameter estimation algorithm required the minimization of an

objective function of  dimensions. Several regressions were made with the composite model to

compare different parameter estimation methods. Significant differences or variance in some

parameter estimates were evident in results from multiple resgressions having approximately the

same level of fit. The differences in parameter estimates over the multiple regression indicate over-

parameterization in the composite model. Large variances in parameter estimates were also dem-

onstrated with the example problem examined in Chapter .
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Dividing the composite model into three subsystems allowed the solution of three lower

dimensional problems. Parameter estimation problems could be solved for the electric chiller and

cooling tower models separately because measurements were available for all model input and out-

put variables. However, measurements were missing for some interconnected input and output

variables between the steam driven chiller, steam turbine and condenser models. Parameter esti-

mates were found by considering the three models to be combined as a single subsystem model.

Separately solving parameter estimation problems for the three individual subsystems yielded a

better fit than solving for the  parameters simultaneously with the composite model.

Overparameterizaion was also evident in the steam turbine/chiller/surface condenser sub-

system model and in the separate electric chiller model. Considering the relative amounts of vari-

ance found among all model parameters, the seven parameters in the chiller model are more than

are needed to adequately model chiller performance indicated in the data. The overparameteriza-

tion problem is not necessarily inherent in chiller model but is rather more due to the small range

of values present in the measured data. For example, the chilled water supply temperature mea-

surements demonstrate relatively small variation as the chiller control system and the operators

tried to maintain a constant temperature. Chiller power does depend upon the chilled water sup-

ply temperature, but that dependence (and any parameters that model the dependence) cannot be

determined unless the chilled water temperature varies. Despite the large variance in some model

parameters, the model does show a reasonable fit to data used in the regression and a separate data

set recorded later in the month. 

.  Optimization

..   The Optimization Problem

Many minimization algorithms and software packages are available for solving different classes

of optimization problems. [Mor] The majority of available methods are applicable to convex

problems with continuous variables. Integer programming methods are available for solving prob-

lems with discrete variables, and these methods have been combined with algorithms that mini-

mize convex functions to solve problems having both discrete and continuous variables. The

control variables in the general chilled water plant model considered in this work include both
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continuous and discrete variables. The objective function may be convex or concave in any partic-

ular region of the space spanned by the control variables. The general nature of the problem led to

the application of the robust but relatively slow simulated annealing minimization algorithm. 

..   Simulated Annealing Method

The simulated annealing method employed in this work performed well in determining min-

imum operating costs. Minimization methods that use gradients to find a local minima would

have had problems with the concave objective function curve discussed in Chapter . The disad-

vantage of using simulated annealing is that it requires relatively large number of function calcula-

tions compared to gradient methods. Also, the method requires more function calls than integer

programming methods when searching over the discrete variables.

In the application of simulated annealing in Chapter , the objective function was minimized

with respect to two control variables. With the two control variables, the algorithm took approxi-

mately twenty computer processing unit (CPU) seconds using one processor (of 16) on a Cray

C90 “supercomputer” to determine the optimal supervisory control per set of independent vari-

able values (per simulated hour). The code was not optimized for vector performance and the

computing time is comparable to what would be required on a conventional unix workstation. To

optimize the entire Walnut Street Plant, a total of five control variables are required. Optimizing

with respect to five control variables would require approximately two minutes of CPU time.

Determining optimal control values over a month of hourly data would require approximately 

hours of CPU.

If it were certain that the objective function surface was concave with respect to the continu-

ous variables, a conventional gradient search combined with an integer programming method has

the potential to significantly reduce computational time. 

..   Optimal Control of the Walnut Street Plant

The estimated savings from optimally controlling the Walnut Street Plant was only . per-

cent over conventional control. The small decrease in energy costs is primarily due to a required

plant chilled water temperature of only . °C warmer than the minimum allowable temperature
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leaving an individual chiller. To illustrate the impact of a low limit for temperature, the estimated

savings increase to . percent over conventional control if the plant were operated at . °C

(45 °F) rather than . °C (. °F) chilled water temperature.

The optimal control strategy is to operate the chillers in a “priority” mode where one chiller

operates at its maximum possible load (priority loaded) and the other chiller meets any remaining

load. Which chiller should be given priority is a function of the chilled water return temperature.

At the higher time of day electrical rate of ./kW·hr, the electric chiller should be given prior-

ity control at chilled water return temperatures below .°C (. °F). At higher chilled water

return temperatures, the steam chiller should operate at maximum load. At the lower electrical

rate of ./kW·hr (off-peak hours), the switch between electric and steam chiller priority

occurs at a chilled water return temperature of . °C (. °F).

The optimal control strategy of fully loading one of the chillers rather than running both at

part load is attributed to the concave shape of the chiller part load curve. For the chiller system

modeled in this work, individual chiller performance (COP) improves with increasing load and

the maximum efficiency occurs at full load. According to conventional centrifugal chiller manu-

facturers, the typical part load curve is concave, with a maximum COP at about  percent load.

Previous guidance toward optimally controlling multiple chillers has been to operate all chillers at

the same chilled water temperature. [Bra] Maintaining equal chilled water supply setpoints

coincides with optimal operation for identical chillers having the typical part load performance.

However, given two identical chillers having a concave part load curve (maximum efficiency at

full load), controlling both at identical chilled water temperatures is the least efficient operation. 

The concave part load performance curve is not unique to the chillers studied in this work.

Other investigations have found similar performance for operational chillers. One conclusion that

should be carried forward from this work is, that for multiple chiller systems, equivalent chilled

water setpoints does not always result in near optimal operation. The part load performance of

individual chillers should be considered before implementing conventional control strategies. 
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.  Summary

In the example problem considered in Chapter , parameter estimates resulting in a close fit

were found using simulated data and an exact model. The methods examined in Chapter  were

applied in Chapter  using the same component models and actual measured data from the Wal-

nut Street Plant. Although the mechanistic models used in the TRNSYS simulation do not

exactly model the performance of actual plant components, a successful predictive model of the

Walnut Street Plant was determined. 

Considering the second law thermodynamic losses associated with mixing flows of different

temperature, the predicted optimal operation of the Walnut Street Plant is counterintuitive. The

predicted optimal control is also counter to results and recommendations of previous optimal

control studies. Optimal control for any given plant is dependent upon particular component

performance and configuration. Near optimal control will seldom be self-evident and the results

from optimal control studies on other chilled water plants can result in far from optimal control

of even a similarly configured plant. The disagreement with previous control studies does not sug-

gest that those studies are in error or invalid; it rather emphasizes the importance and value of the

methods of modeling, parameter estimation and optimization given in this work. 
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Recommendations

In this work, methods for solving the parameter estimation and optimization problem were pro-

posed and demonstrated on a chilled water plant model. There remains, however, a number of

areas requiring further investigation. Demonstration of the methods upon real as well as simu-

lated systems is needed to validate the methods. Areas recommended for further investigation are

summarized here. 

.  Modeling and Parameter Estimation

..   Data Acquisition

For the Walnut Street Plant, installation of new instrumentation and a modern data acquisi-

tion system would be of great benefit to monitoring performance and to controlling the plant.

Adding an automatic data acquisition system would contribute to measurement accuracy by

removing error associated with the current method of observing an instrument display then tran-

scribing the measurement to a written log. A data acquisition system could also record all mea-

sured values simultaneously, removing the time delay present in the manual recordings and would

allow observation of transient responses.
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Flow meters should be added in the chilled water and condenser water loops. In this work

flow rate had to be estimated from pressure differential measurements across chilled water and

condenser water pumps. Manufacturers’ pump curves were then used to estimate flow given the

pressure drop. Data collected from calibrated flow meters would be more accurate and would not

rely on pump curves.

Currently, power used in driving the steam turbine driven chiller at the Walnut Street Plant is

not measured. Chiller power is a response of the chiller model and an input to the steam turbine

model. Because calculated chiller power is dependent upon a number of parameters, having mea-

surements of steam turbine power would have resulted in better parameters for both the steam

turbine and chiller models. 

..   Model Comparisons

The capability of greater accuracy in extrapolating responses was cited as a reason for using

mechanistic component models instead of arbitrary polynomial equations or a neural net. The

advantages of using a mechanistic model should be substantiated by a study comparing mechanis-

tic model extrapolations with other methods. A study could compare other aspects of the different

modeling techniques such as selecting initial values for the model parameters. 

The parameter estimation methods used with the different models could also be compared.

Several packaged software programs (commercial and public domain) are available for solving lin-

ear parameter estimation problems and for training neural nets.

The goal of having a single model that can accurately predict system performance over all pos-

sible ranges of operation should be reconsidered. The ISOPE method discussed in Section ..

below uses models that may be accurate only in a smaller region local to current values of system

variables. Model parameters are updated as the system moves into different regions of operation.

..   Overparameterization and Parameter Variance

The results from parameter estimation studies with the Walnut Street Plant model indicate

some overparameterization in the model. Detection and removal of redundant parameters from

the estimation problem can reduce variance and improve accuracy in the remaining parameters.
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Reducing the number of parameters also reduces the dimension of the minimization problem

solved in the regression. Overparameterization can be identified using the method discussed in

Section ... Methods for identifying model parameters that should be fixed and removed from

the estimation problem should be further investigated.

..   Updating Parameter Estimates

In this work the problem of parameter estimation was considered separately from the optimi-

zation problem. The only relationship between the two problems was that the goal of the parame-

ter estimation problem was to obtain a model that best predicted cost related responses (e.g. steam

flow rate and electric power). 

In an initial implementation of optimal control in an actual plant, there is an interaction

between the optimization and parameter estimation problems. Unless the plant was already opti-

mally controlled, the predicted optimal control will force the plant into a new region of operation

(i.e. at values of control variables not present in previously measured data). As the plant operates

in the new region, data can be collected and the parameter estimation problem solved again.

Improvement in the model as a result of using the new data will result in an improved prediction

of optimal control.

Determining the frequency of resolving the parameter estimation problem with newly

acquired data is yet another question. Also, the range and number of measurements used in the

regression must be identified. One approach would be to resolve the parameter estimation prob-

lem (during the initial implementation) until the model demonstrates some arbitrarily established

level of accuracy. After establishing a plant model that satisfactorily predicts performance over

some range of operation, the parameter estimation problem would not be resolved.

Over time, physical changes in the plant (e.g. fouling of heat exchanger surfaces, or installa-

tion of a new pump) would reduce the accuracy of a static plant model. In order to maintain opti-

mal plant control, plant model parameters must be updated to reflect the changes in the actual

plant. The updating of parameters could be initiated if some level of sustained bias were detected

in model predictions. 
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Before updating parameters to reflect physical changes in the plant, it would be beneficial to

determine if the physical changes in the plant were due to some acceptable reason (e.g. gradual

degradation of individual component performance or the replacement of a component) or due to

an unacceptable “fault.” Detecting changes in model parameters is one method of detecting possi-

ble faults. 

..   Integrated System Optimization and Parameter Estimation

In integrated system optimization and parameter estimation (ISOPE), the parameter estima-

tion problem is solved in combination with the optimization problem. [Ell] One ISOPE

method uses an adaptive-model approach where model parameters are updated as the system

moves toward a region of optimum operation. The approach used in ISOPE methods makes use

of the most recently acquired data to update model parameters. The system model used in ISOPE

may use linear or polynomial equation(s) rather than a mechanistic model. Although the simpli-

fied models may not accurately predict system performance over a wide range of operation, they

can adequately predict operation within a limited range of current system operation as their

parameters are kept updated using current data.

Current application of ISOPE methods is limited to cases having continuous variables and a

differentiable objective function. Extending ISOPE methods to the optimal control of systems

with discrete control variables may reveal another practicable approach to the optimal control of

chilled water plants.

.  Optimal Control

..   Optimal Control Strategies

The optimal control strategy determined for the plant in this work was to fully load either the

steam driven chiller or electric motor driven chiller, depending upon chilled water return temper-

ature and kW·hr cost. This strategy can be presented to plant operators with simple “If-Then”

rules. For example, if the time of day is between  a.m and  p.m. and the chilled water return

temperature is above .°C, then the steam driven chiller should be fully loaded. 
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As the plant operates over a day, the optimally favored chiller can change as the chilled water

return temperature increases or decreases. Although the optimal control may indicate the change

in loading, it may not be economically optimum because of costs associated with the unloading of

one chiller and loading of the other. If a cost of switching can be estimated, the optimization algo-

rithm can consider the additional costs in determining the optimal control. The optimization

algorithm would need a load model since the decision to switch will depend upon energy cost sav-

ings predicted over the duration of the switch.

The existing method of cooling tower fan control is to manually switch the fans on or off

based upon an operator’s decision. While the recorded fan speeds did, on average, follow the

trends predicted in the optimal control, automatic fan speed control would be more consistent

and cost effective than human control. 

..   Demand Charges and Dynamic Optimization

The steady state optimization problem with demand charges was solved by embedding the

minimization without demand problem within a minimization problem with respect to the upper

limit on electrical demand (See Section .). This approach can also be used to solve the problem

of optimizing a dynamic system subject to demand charges, such as a plant with thermal storage

elements. 

One primary reason for installing and operating a thermal storage system is to reduce peak

demand charges. During very high or peak loads the chilled water load can be met with water

chilled with the storage elements. The optimal control problem for systems with thermal storage

elements is usually solved by the dynamic programming method. [Bra, Hen] However, if an

energy demand charge is incorporated into the objective function, the problem cannot be solved

directly by dynamic programming. 

Dynamic programming is founded upon Bellman’s principle of optimality: An optimal set of

control actions has the property that no matter what the previous control actions have been, the

remaining control actions must constitute an optimal set of control actions with regard to the

state resulting from those previous control actions. [Lew] The problem with the peak electrical
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demand charge is that peak demand is a function of all the control decisions over a billing period,

not just the future decisions:

. ..

The peak power demand is not known until the end of the period after all control decisions have

been made. Thus a control decision at stage k to limit demand would not be optimal if the peak

demand occurred at some future stage k+j. Conversely, not limiting demand at stage k would not

be optimal if, at the end of the period, it were determined that peak demand occurred at stage k. 

The dynamic programming problem can be solved if a constraint on maximum power, pmax,

is observed over all stages. Then the dynamic programming problem can be embedded in a mini-

mization problem with respect to pmax, as was done for the static optimal control problem in

Section .. 

..   Extension of Optimal Control Methods

This work should be extended toward application of the optimal control strategy at the actual

plant. Only half of the Walnut Street Plant was modeled in this work. The remaining plant

includes two other steam driven chillers and another six-cell cooling tower. An optimal control

strategy for the plant should include chilled water set points for the additional chillers and fan

speed settings for the additional cooling tower. Improved instrumentation for these additional

components is required to obtain measurements that can be used to estimate model parameters.

Another chilled water plant, the Charter Street Plant, operates along with the Walnut Street

Plant to meet campus chilled water requirements. Minimizing total campus costs for chilled water

requires a model of the Charter Street Plant chilled water system as well. Adding the boiler and

cogeneration unit at the Charter Street Plant would result in a more complete and more interest-

ing optimization problem. Exhaust from the steam turbine that drives the generator is a primary

source of the steam consumed at the Walnut Street Plant and three additional chillers at Charter

Street (a , ton chiller and two , ton chillers). The dependencies between the boiler, the

steam driven electric generator, the steam driven chillers and the electric driven chiller make it

almost impossible to postulate a favorable control strategy. However, an optimum strategy can be

p p p p p pt t t k t n t npeak = ( )= = = = − =max , , , , , ,1 2 1K K
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predicted with a complete model of the campus chilled water system and an optimization algo-

rithm.

The last step toward making a complete model of the campus chilled water system is a model

of the load. The campus chilled water load is a strong function of weather (primarily incident

solar radiation, wet and dry bulb temperature) and some deterministic schedules (e.g. in-session

schedule). A time dependent load model is needed to account for the significant amount of

energy storage in the chilled water distribution system. Large electric motor driven variable speed

circulation pumps are used to maintain pressure in the chilled water distribution system. A model

of the chilled water flow rate as it varies with load is needed to determine pumping costs.

Optimal control of the combined plants and chilled water loop is a challenging but solvable

problem. Plant models can be created from interconnected component models and parameters

estimated with the methods given in Chapters  and . Although a chilled water load model was

not addressed in this work, means for creating a stochastic model of load as a function of weather

and occupancy schedules are abundant in the technical literature. Electrical demand costs can be

addressed as discussed in Section .. The scale of the minimization problem makes it a formida-

ble challenge. Including the energy storage in the chilled water model yields a time dependent sys-

tem. However challenging, the means for modeling the complete system exist as well as methods

for determining model parameters. Combining available static and dynamic optimization meth-

ods along with increasingly powerful computers put the goal within reach.

..   Recommended Application of Optimal Control Results

Although the two chiller plant model studied in this work does not represent all components

of the Walnut Street Plant, the optimal supervisory control results in Chapter  are still useful. At

times of high plant load, all four chillers in the plant are operated. Thus, there is a part of the total

plant load that must be met by chillers # and # (steam driven and electric driven). At the high

load conditions, plant personnel should implement the recommended priority loading for chillers

# and #. Also, the optimal cooling tower control maps given in Figures .. and .. should

be used to guide cooling tower fan speed control.
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The optimal control strategy can be validated by comparing measured energy use, while under

optimal control, to historical measurements of energy use of the two chillers and cooling tower

when operated during the same loads and wet bulb temperatures.
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