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Abstract 

For future space exploration missions it is important to be able store cryogenic propellants 

for long periods of time, in particular storing liquid hydrogen which has a boiling point of 

20.28K. Currently, there is a lack of high capacity, light weight, and highly efficient 

cryogenic cooling systems. The objective of this research has been the development of a two-

stage pulse tube cryocooler with a 1W or larger cooling capacity at 20K. To accomplish this, 

the researchers at the University of Wisconsin are working with the Georgia Tech Cryo Lab. 

It has been the responsibility of the University of Wisconsin researchers to do the mechanical 

design, the design of the transition regions and to build and test a two stage 20K pulse tube 

cryocooler. To ensure that the cooler wouldn’t fail when pressurized the mechanical design 

was done following the ASME pressure vessel code and using finite element analysis, a full 

set of mechanical drawings was created using Solidworks. A pores flow study was conducted 

using ANSYS Fluent which showed that transition regions are needed in order for the cooler 

to fully utilize its heat exchangers and regenerators. Multiple flow studies were done to 

optimize the design of these transition regions. Once the design of the cooler was done the 

cooler was manufactured and instrumented by the researchers. The instrumentation was read 

by a LabVIEW code and analyzed using MATLAB and Excel. After the first round of testing 

to two stage PTC reached a no load temperature of 121K. The underperformance of the 

cooler can be predominately attributed to a lack of acoustic power provided by the 

compressor. The acoustic power can be greatly improved by slightly increasing the frequency 

of the compressor. The failure to reach 20K is also due to poor packing of the regenerator. 

Alteration of the PTC and the compressor is ongoing and will hopefully drastically improve 

the performance of the cooler.  
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Nomenclature  
 
A Cross-sectional area 
Ap Area of piston 
As Surface area 
C2 Internal resistance 
C Capacitance 
CC Capacitance of compressor 
CCHX Capacitance of cold HX 
CHHX Capacitance of hot HX 
CPT Capacitance of PT 
CR Capacitance of regenerator 
CV Capacitance of reservoir 
CTHX Capacitance of top HX 
Dp Particle diameter 
Ė Acoustic power 
Ėe Experimental acoustic power 
ĖSAGE Models acoustic power 
h  Heat transfer coefficient 
i √ 1 
k Thermal conductivity 
L Inertance 
LI Inertance of inertance tube 
l  Length 

 Mass flow 
P Pressure 
Pa Pressure amplitude 
Pe Electrical Power 
Pm  Mean pressure 
Pmax Maximum pressure 
PR Pressure ratio 
q Heat flow 
R Gas constant for helium 
RC Resistance in compressor 
RCHX Resistance of cold HX 
Re Electrical Resistance 
RHHX Resistance of hot HX 
RI Resistance of inertance tube 
Ri  Resistance from node i-1 
ri Inside radius 
ro Outer radius 
RR Resistance of regenerator 
RTHX Resistance of top HX 
Rv Resistance due to viscous effects 
s Displacement 

 
 
s0 Peak Displacement 
T Temperature 
T0  Temperature of the GM cooler 
T∞ Temperature of the cooling water 
TC Temperature at the cold end 
TH Temperature at the hot end 
Ti  Temperature of the nodes 
Tn  Temperature of the HX 
t Time 
th Thickness 
V Volume 
Ve Voltage 
v Velocity 
 
Greek 
α Viscous resistance 
γ Specific heat ratio  
δv Viscous penetration depth 
∆ Change of a variable 
ε Emissivity 
λ  Wavelength 
μ Viscosity 
П Perimeter 
ρ Density 
ρm Mean density 
σall  Allowable stress of the material 
ϕ Void fraction 
ϕPṁ Phase between P and ṁ 
ω Angular frequency 
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To design and develop a high capacity 20K PTC, the researchers at the University of 

Wisconsin are working with the Georgia Institute of Technology Cryogenics Lab. It is the 

responsibility of the University of Wisconsin to do the mechanical design, including the 

design of the transition regions between sections of the cooler, and to build and test the two 

stage 20K PTC. The researchers at Georgia Tech were responsible for the majority of the 

thermal fluid modeling which was done using SAGE and REGEN. The following thesis is an 

in depth description of the work that was accomplished by the researchers at the University 

of Wisconsin and is organized in chronological order. It includes a description of the 

mechanical design process, the fabrication, testing and instrumentation of both individual 

components and the entire system, the design of the transition regions and the results from 

the testing. This chapter will give the reader a basic understanding of how the system works. 

1.2 The Stirling Cryocooler 
 
To understand how a PTC works it is necessary to understand how the Stirling cryogenic 

cycle works, since the cycle and components of the two systems are very similar. The 

Stirling cooler and P-V cycle diagram are shown in Figure 1.2. The cooler consists of two 

linear compressors: one at the hot end of the cooler and the other at the cold end.  Also, at the 

hot end there is a heat exchanger which rejects heat. At the cold end there is a cold heat 

exchanger which accepts heat from the load. The heat accepted by the cold heat exchanger is 

the cooling power for the cooler. The last component needed for the Stirling cryogenic cycle 

is the regenerator which is located in-between the hot and cold heat exchangers. It is 

desirable to use a working fluid that behaves as an ideal gas for Stirling type cycles.  Helium 

has the lowest critical temperature and therefore is used for low temperature coolers. 
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The regenerator is made up of a porous material with a high specific heat capacity at the 

regenerator operating temperature. A high specific heat is important so that the matrix 

temperature will stay relatively constant when the fluid passes through. Unfortunately, the 

specific heat of most solids decrease drastically with temperature, as shown in Figure 1.3a. 

Therefore unique materials are used for regenerators at very low temperatures as shown in 

Figure 1.3b (Note: the units of specific heat are different in Figure 1.3 a and b). The unique 

aspect of the 20K PTC lies in the design of the 2nd stage regenerator which operates between 

75K-20K. The matrix in this regenerator is a packed bed of 50% Erbium and 50% 

Praseodymium (ErPr) 45µm, particles. By changing the ratio of the particles, the specific 

heat of the matrix can be optimized for the temperature at which the regenerator operates. 

The 20K PTC also has two other regenerators that operate from 300K-75K and are composed 

of 400 stainless steel mesh screens. All of the regenerators used in this project were designed 

by the Georgia Tech Cryo Lab using REGEN. REGEN is a numerical tool developed by 

NIST to model the performance of regenerators at cryogenic temperatures. 
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1.2.2 The Cryogenic Stirling Cycle 
 
The following is a step by step description of how the cryogenic Stirling cycle operates: 
 
State 1 to 2 (Compression): At state one all the fluid is at the hot end (assuming a negligible 

void volume in the regenerator). Then, the linear compressor on the hot end compresses the 

fluid. The compression occurs isothermally due to the heat rejection through the hot heat 

exchanger. This increases the pressure in the cooler while keeping the temperature at TH.  

State 2 to 3 (Hot-to-Cold Blow): In this step the working fluid is shuttled from the hot end 

to the cold end in an isochoric process. The fluid goes through the regenerator where the 

regenerator matrix accepts energy carried by the fluid. When the fluid reaches the end of the 

regenerator it is at the temperature of the cold heat exchanger (TC).  

State 3 to 4 (Expansion): At state three all the fluid is at the cold end assuming a negligible 

void volume in the regenerator. Then, the linear compressor on the cold end expands the 

fluid, the expansion occurs isothermally due to the heat transfer at the cold heat exchanger. 

The heat transfer that occurs is the cooling capacity of the cooler per cycle. This step also 

brings the pressure inside the cooler back to its original pressure. 

State 4 to 1 (Cold-to-Hot Blow): In the final step of the Stirling cryogenic cycle the fluid is 

shuttled from the cold end to the hot end in an isochoric process. The fluid goes through the 

regenerator where the regenerator matrix rejects energy to the fluid. When the fluid reaches 

the end of the regenerator it is at the temperature of the hot heat exchanger (TH). A diagram 

showing this cycle is shown in Figure 1.44. 
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The compliance of a component determines the change in the mass flow through that 

component but does not change its pressure as shown in equation [1.1] where P is the 

complex value of pressure, ω is the angular frequency, C is the compliance and ∆  is the 

complex value for the change in mass flow. 

 
1

 [1.1] 

 
The compliance of a part is a function of the volume (V) of the part, and the specific heat 

ratio (γ), density (ρm), and mean pressure (Pm) of the working fluid. Equation [1.2] is used to 

find the compliance of each component of the cooler. 

 
 [1.2] 

 
The inertance and the resistance due to viscous effects, change the pressure through the 

section being modeled as shown in equation [1.3]. Where ∆P is the complex change in 

pressure, L is the inertance, and Rv is the resistance due to viscosity. 

 
 [1.3] 

 
The inertance is a function of the length (l) and cross-sectional area (A) of the part being 

modeled as shown in equation [1.4]. 

 
 [1.4] 

 
When the part being analyzed has a very large surface area relative to the cross-sectional 

area, viscous effects must be included. This is done by using a resistor (Rv) with a value 

derived from equation [1.5]. Where П is the perimeter, l is the length, and A is the cross-

sectional area, μ is viscosity, and δv is the viscous penetration depth, shown in equation [1.6. 
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ΠΔ

 [1.5] 

 
 2 ⁄  [1.6] 

 
By calculating the compliance, inertance and resistance through the PTC phase information 

between the pressure and the mass flow can be determined which is useful in both design and 

testing the PTC. 

1.3.2 Advantages of a PTC 
 
The main advantage of the pulse tube cryocooler over other types of cryocoolers is that there 

are no moving parts at the cold end. This is desirable because any contaminates that get into 

the cooler will make it to the cold end and will either solidify or liquefy which could be 

detrimental to the performance and durability of a cooler if there is a mechanical piston at the 

cold end. Durability is extremely important in space applications because of how inaccessible 

a cooler is once it is launched. The absence of a mechanical piston also reduces the vibration 

and the electromagnetic interference.   
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of 400psi. The tubes are 304L-stainless steel so σall is 16ksi according to Section II-D of the 

Pressure Vessel Code. 

Finite element analysis (FEA) was also employed using SolidWorks SimulationXpress in 

order to verify the mechanical design. FEA provides the factor of safety for each part when 

under 450psi. SimulationXpress allows parts to be quickly updated and reanalyzed if needed. 

The program also shows the areas of highest stress concentrations. The thicknesses of the 

flanges/tubes, bolt size and the corresponding factor of safety are shown in Table 2.1. Each 

flange is held in place with eight bolts. 

Table 2.1: Specifications for the flanges and Tubes 
Part # Part Type of 

Bolt (in)
Thickness (in) Factor of 

Safety 
0.1 Conical Adaptor  ½ - 20 N/A 4.10 
0.2 Adaptor Top Flange ½ - 20 1.250 3.26 
0.3 Common Heat Exchanger ¼ - 28 N/A 29.5 
1.1 1st Regen Shell N/A 0.065 3.43 
1.2 1st Regen Top Flange ¼ - 28 0.375 9.02 
1.3 1st PT Bottom Flange ¼ - 28 0.500 5.24 
1.4 1st PT Shell N/A 0.049 4.19 
1.5 300K HX ¼ - 28 0.787 20.1 
1.6 1st Transition Region ¼ - 28 1.000 17.2 
2.1 Precooler Shell N/A 0.039 2.75 
2.2 Precooler Top Flange ¼ - 28 0.375 5.07 
2.3 2nd  Regen Bottom Flange ¼ - 28 0.375 5.07 
2.4 2nd Regen Shell N/A 0.039 2.87 
2.5 2nd  Regen Top Flange ¼ - 28 0.375 5.07 
2.6 20K HX ¼ - 28 0.750 12.3 
2.7 2nd PT Shell N/A 0.039 6.73 
2.8 2nd PT Flange  #10-24 0.250 3.22 
2.9 75K HX #10-24 0.591 44.5 
2.10 2nd Transition Region #10-24 0.750 6.20 

 
Figure 2.1 shows the solid model of the complete assembly of the two-stage PTC with all the 

components labeled (the 1st stage inertance network is not shown). The 1st stage PTC is the 

right portion of the figure and the 2nd stage PTC is at the left. A set of mechanical drawings 
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has been created for the two-stage cryocooler and are included in Appendix A: 

Mechanical Drawings.  
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Both the compressor and aftercooler were in place before the cooler was designed. Therefore 

the cooler design was based on the capabilities of these two components. The conical adaptor 

was designed to connect the two stage PTC to the aftercooler and compressor.  

2.3.1 Compressor 
 
The compressor is a 77AS 2S241W “Light” water cooled pressure wave generator made by 

Q-Drive. The critical parameters for the compressor can be seen in Table 2.2. The peak 

pressure and the mass flow provided by the compressor are controlled by changing the 

current supplied to the compressor. The frequency for the compressor can also be set.  

Table 2.2: Critical Parameters for Compressor 
Maximum Rated Current 16 amps per motor 
Max Operating Stroke 20 mm p-p 
Area of piston (Ap) 9.144*10-3 m2 
Resistance 15.5 Watt/Bar 
Volume 0.89 Liter 

 

2.3.2 Aftercooler 
 
Since the compressor increases the pressure of the helium the temperature of the helium also 

increases. Therefore is important to cool the helium in order for it to enter the conical adaptor 

at or below the ambient temperature. The aftercooler is a cross flow heat exchanger, as 

shown in Figure 2.2, where the blue arrows represent the flow of the cooling water and the 

red arrow represents the flow of helium. The helium is transported through 199 5.5” long, 

0.095”diameter tubes which run parallel to one another. The cooling water passes over these 

tubes 4 times. 
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The cooling water is at 293.7K and has a volumetric flowrate of roughly 0.3L/s, which 

corresponds to a flow velocity of 2.2m/s. The flowrate was determined by timing how long it 

took to fill a 3.5 liter vessel. To find the temperature of the helium going through the screens, 

equation [2.3] was used. This equation assumes that the screen pack is isothermal. The EES 

code used for this calculation can be found in Appendix B: ESS and MATLAB Code. 

 
ln ⁄

2
1

 [2.3] 

 
Where T is the helium temperature, q is the heat that the heat exchanger rejects, r is the inner 

and outer radius, t is the thickness, k is the thermal conductivity of copper, As is the surface 

area of the wall on the inside of the water channel, h is the water’s heat transfer coefficient 

and T∞ is the temperature of the cooling water. 

The heat transfer coefficient for the water was determined from the Reynold’s number and 

the Prandtl number using the external flow correlation for turbulent flow around a cylinder 

(Nellis 2009). Since the flow is turbulent, the dominant heat transfer mechanism is the 

viscous sublayer, which is minimally affected by the top, bottom, and outer wall of the 

cooling channel. Hence this situation can be modeled by assuming turbulent flow around a 

cylinder. 

The flow velocity and the power dissipation from the helium are the largest uncertainties 

when calculating the temperature of the helium. Therefore, a surface plot was created from 

equation [2.3]  by varying both the velocity of the flow and the power dissipation, as shown 

in Figure 2.12. From this plot, it can be assumed that the temperature will range from 301K 

to 311K proving that this heat exchanger design works. 
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not standard, the closest standard size stainless steel seamless tubing, OD:1.75"(4.445cm) 

th:0.065"(1.651mm) was compared to the specified tube. Conduction through the shell from 

the aftercooler at 300K (TH) to the bottom hot heat exchanger at 75K (TC) may be a problem. 

The size of this heat leak was found using equation [2.4 for both the specified tube 

A=1.28cm2, q =4.51W) and the standard tube (A=2.22cm q =7.83W). A thermal conductivity 

of k=9.6W/m-K, was assumed to be constant for this temperature range because it varies the 

same for each case. Using the standard size tubing would conduct 3.32W more than the 

specified size, therefore the specified size was custom made. The ASME pressure vessel 

code required a minimum thickness of 0.597mm. Since the tube has a wall thickness of 1mm 

it should not fail. 

  [2.4] 

   
The precooler shell is welded to two flanges that are bolted to the bottom 75K heat exchanger 

and the conical adaptor. The precooler top flange was designed to have an outer diameter of 

3.5” and a thickness of 0.375”. The connection between the precooler top flange and the 

bottom 75K heat exchanger is sealed using indium. The screens are packed using the regen 

loader in the same way that the 1st stage regenerator was packed, as discussed in section 2.5.1

 1st Stage Regenerator. 

2.6.2 Bottom 75K Heat Exchanger 
 
The bottom 75K heat exchanger is part of the common heat exchanger. It has an inner 

diameter of 4.175cm (1.644”) and is filled with 75, 145 mesh copper screens with a wire 

diameter of 0.0022”. The copper screens are soldered into the heat exchanger, using the 

method discussed in section 2.5.2 1st Stage Cold Heat Exchanger, to make sure that the 
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screens are secure and to stop the screens in the precooler from bursting out through the top. 

The heat exchanger is connected to the precooler top flange and the bottom 2nd stage 

regenerator flange. There is a tongue and groove indium seal between these components. 

2.6.3 2nd Stage Regenerator 
 

The 2nd stage regenerator is 4.175cm long, has an inner diameter of 4.175cm and a thickness 

of 1mm. It is filled with ErPr 45um spheres as specified in the SAGE model. The 2nd stage 

regenerator is made up of four parts: two flanges, the regenerator tube, and the regenerator 

pellets. The shell was designed and manufactured the same way as the precooler shell. 

Since the second stage regenerator is filled with powder, the flanges were designed in a 

unique way in order to contain the powder while simultaneously allowing helium to pass in 

and out of the regenerator. The design includes 400 mesh screens, used to contain the pellets, 

backed by 60 mesh screens, used to support the 400 mesh screens and minimize vibration. 

An indium ring at the screen edge prevents the particles from escaping at the perimeter. The 

whole assembly fits in a pocket machined into the regenerator flanges. The indium rings are 

heated during assembly so they stick to the 400 mesh screen. Then the ring is compressed 

when the regenerator is bolted into place. The design is shown in Figure 2.14. The two 

flanges were made so they can be bolted to the bottom 75K heat exchanger and 20K heat 

exchanger while being leak tight at 400 psi. This is accomplished using indium to seal the 

interface. 
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2.6.4 20K Cold Heat Exchanger 
 
The 20K heat exchanger is made of copper 101 (OFHC Copper). It has an inner diameter of 

4.175cm, a thickness of 1cm, and is filled with copper screens. There is a transition region 

between the pulse tube and 20K heat exchanger in order to insure well distributed flow 

through these components. The transition region is discussed in Modeling the Transition 

Regions. 

At cryogenic temperatures the thermal conductivity of copper varies greatly as shown in 

Figure 2.15 (Sanchez 1990). The 20K heat exchanger offers the opportunity to take 

advantage of this feature because the thermal conductivity of 110 copper is about 400W/m-K 

and the thermal conductivity of 101 copper is about 1000 W/m-K at this temperature. Since 

the heat load will be at the edge of the cold heat exchanger it is advantageous to have as 

small of a temperature gradient through the copper as possible. 
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4.2 Preliminary Testing 
 
In order to make sure the cryocooler is safe and leak-tight, each custom component was 

hydrostatically pressure tested and the entire system was leak tested before actual testing 

took place. 

4.2.1 Hydrostatic Pressure Testing 
 
To ensure that the cryocooler can be safely pressurized to 400psi, the cooler was 

hydrostatically pressure tested with methanol. This method is much safer than pressure 

testing with a gas because if a component fails then it will spray methanol rather than blow-

up, which could happen if pressurized with a compressible fluid like air or helium. Methanol 

was used because it evaporates at room temperature and therefore, after the test, the methanol 

evaporates. The hydrostatic pressure testing system is shown in Figure 4.2. The hydrostatic 

pressure testing system uses a hydraulic jack to pressurize the cooler. The line connecting the 

jack to the cooler has a pressure transducer, which is connected to a 10V power supply and a 

multimeter to measure the voltage output. Each component was tested to 800psi which 

ensures a factor of safety of two for the cooler. The hydrostatic pressure test also made large 

leaks easy to find. When the system was hydrostatically pressure tested, some of the indium 

seals had leaks which were fixed by either adding more indium to the seals or smoothing the 

seal. After a few iterations of testing and fixing leaks, the cooler was successfully pressurized 

to 800psi for 20 minutes. Once the cooler passed this test, a helium leak test was performed. 
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leak detector would pick it up. This method makes it very difficult to find leaks unlike the 

previous method because the cooler is in the Dewar. However, to be certain that the cooler 

will not leak, it must pass this test. 

4.3 Experimental Setup and Data Collection 
 
The following section outlines the method used to test the 2nd stage PTC. This includes 

information about how the 2nd stage hot heat exchangers were kept at 75K, how heat transfer 

from the pulse tube to its surroundings was minimized, instrumentation, data acquisition, and 

post processing. 

4.3.1 Keeping the 2nd Stage Hot Heat Exchangers at 75K 
 
The two 75K heat exchangers on the 2nd stage PTC were kept at 75K using a commercial 

GM cryocooler. Therefore, accurate cooling data for the GM cooler is required.The GM 

cooler was tested at the four conditions shown in Table 4.1. Since the 2nd stage of the GM 

cooler was not used, the tests were run with no load on the 2nd stage. 

Table 4.1: GM Cooling Curve 
Voltage 

[V] 
Load 
[W] 

Temperature 
[K] 

0 0 35
48 30 50
59 45 53
68 60 73

 
To test the first stage of the GM cooler, a variable voltage power supply was used in parallel 

with two 100W heaters and a multimeter was used to measure voltage. The equivalent 

resistance (Re) of the two heaters is 77.75Ω. The required voltage (Ve) is calculated using 

equation [4.1] for different values of power (Pe). 

 P [4.1] 
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A 100W heater was also attached to the small copper bar in case the heat exchanger drops 

below 75K. To calculate the amount of heat that this design conducts from the heat 

exchanger to the GM cooler, a 1D steady state conduction model with varying thermal 

conductivity was created. This was done by breaking the bus into n nodes and then analyzing 

the heat transfer between each node using equation [4.2]. 

 
 [4.2] 

 
In equation 4.2, Ti is the temperature of the nodes, T0 is the temperature of the GM cooler 

(60K), Tn is the desired temperature of the heat exchanger (75K), q is the heat transfer from 

the heat exchanger to the GM cooler, and Ri is the resistance from node i-1 to i. Ri is 

calculated with equation [4.3].  

 

∗
 [4.3] 

 
Where l is the length of the components (lbar=12”, lstrap=4” and lconnection=1.5”) and A is the 

cross-sectional area (Abar=3 in2, Astrap=0.3927 in2 and Aconnection=1 in2). The conductivity, ki, 

was selected using the thermal conductivity of copper as a function of temperature. This 

simulation shows that this arrangement will transfer 36.7W to the GM cooler and the 

temperature distribution as a function of position through the bus bar is shown in blue in 

Figure 4.4. 

The thermal bus from the GM cooler to the top 75K heat exchanger has the same design as 

the bus discussed previously. However, the large bus bar is 12”x1”x0.75” and it has two 5” 

straps with a cross sectional area of 0.1963 in2 used to connect the bar to the heat exchanger. 

This arrangement will result in a heat transfer of 12.5W and the temperature distribution 
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The two 75K heat exchangers on the pulse tube were connected with a cylindrical aluminum 

shield, shown in Figure 4.10a. Thus, the 20K heat exchanger only sees radiation from a 75K 

source. MLI is significantly less effective at reflecting radiation from a 75K source. This is 

because the wavelength of the majority of the radiation from a surface at 75K is of the same 

order or larger than the thickness of the aluminum layer on the MLI (thal=60μm). The 

wavelength of radiation at different temperatures can be found using Planck’s law (Nellis 

2009), shown in equation [4.5]. 

 ,
exp 1

 [4.5] 

 
λ is the wavelength in microns, C1=3.742 x 108 W-μm4/m and C2=14,388 μm-K. The spectral 

distribution for 75K is shown in Figure 4.11. The area in red is radiation blocked by the 60 

micron aluminized Mylar and the area in green passes through the Mylar. The percentage of 

radiation that passes through the Mylar (%R) can be found using equation [4.6]. 

 

 %
,

,
 [4.6] 

 
This results in 43.3% of the radiation passing through 60micron aluminized Mylar sheets. 

Therefore, the 20K heat exchanger is covered with an aluminum radiation shield with a 

thickness of 381 microns as shown in Figure 4.10b. Using this shield allows only 0.5% of the 

radiation to pass through. 
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4.3.3 Instrumentation 
 
It is important to have all the components of the test well instrumented. This includes both 

the GM cooler and the 2nd stage PTC. The majority of the temperature measurements were 

done using eleven type E thermocouples, which are reliable from 73K to 1173K (NIST 

2014). Since the thermocouples are not reliable below 73K, three LakeShore DT-400 series 

silicon diodes, which are accurate from 10K to 325K (Lake Shore 2015), were employed, 

two on the 20K heat exchanger and one on the GM cooler. One Endevco 8530B-500 pressure 

transducer is used to take pressure measurements at room temperature and three Kulite CTL-

190 pressure transducers (accurate from 77.65K to 393.15K) are used to take pressure 

measurements at cryogenic temperatures (Kulite 2015). The mass flow rate through the pulse 

tube was found by measuring the displacement of the pistons in the compressor. This was 

done using two Hydrastar HS 1000 position sensors and two SP200A signal processors. The 

location of each sensor is shown below in Table 4.2; the sensors are wired to a NI SCXI-

1100 data acquisition system. The eleven thermocouples, three Kulite pressure transducers, 

and three diodes are wired from the inside of the Dewar through two KF-40 feedthroughs. 

Table 4.2: Location of Each Sensor 
Location Sensor 

Compressor Endevco Transducers P1 and Hydrastar position sensors R and L 
Halfway up the precooler Thermocouples T1, T2, T3 and T4  
Bottom 75K HX Thermocouples T5, T6 and Kulite Pressure Transducer P2 
20K HX Diode 20K T1 and 20K T2 
Top 75K HX Thermocouples T7, T8 Kulite Pressure Transducer P3 
Surge Volume Thermocouples T9, T10 Kulite Pressure Transducer P4 
GM cooler (1st Stage) Thermocouples T11 and Diode GM T 
 
Three heaters were used to test the 2nd stage PTC. This includes one 100W on the thermal 

bus from the GM cooler to the top 75K heat exchanger, one 100W on the thermal bus from 

the GM cooler to the bottom 75K heat exchanger and one 7.5W heater on the 20K heat 
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exchanger. The two 100W heaters are used to keep the 75K heat exchangers at a constant 

temperature. These heaters are controlled by a variable voltage power supply. The 7.5W 

heater was used to measure the cooling power of the pulse tube at different temperatures and 

is connected to a XFR 35-35 DC power supply that measures both current and voltage. To 

take an accurate voltage measurement over the 7.5W heater a volt meter is wired in parallel 

at the heater. The power of the heater can then be calculated using P=VI.  

4.3.4 Data Acquisition 
 
The sensors are wired to a NI SCXI-1100, which is connected to a computer. A LabVIEW 

program was used for thermal (temperature) and mechanical (pressure and displacement) 

data acquisition, which was then further analyzed in Excel. 

Temperature data was acquired using the LabVIEW program shown in Figure 4.12a (the 

front panel) and Figure 4.12b (the block diagram). This program takes a temperature reading 

from each temperature sensor sequentially every second starting at T1. Once done with all 

the temperature sensors, it pauses for the specified time delay minus the time it takes to take 

all of the temperature measurements (14 s), then repeats. This cycle continues until the stop 

button on the front panel is pressed. When STOP is pressed the program finishes the current 

cycle and then records the data and corresponding time in a text document with the name and 

location specified in the file path. The data was then further analyzed in Excel. It is important 

to note that the time provided in the text document is the time at the start of each cycle and, 

therefore, the actual time for each measurement is a few seconds off (depending on the 

measurement). However, this time change is negligible because it is very small compared to 

the amount of time it takes the cryocooler to significantly change in temperature. 
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4.4 Data Analysis 
 
In conjunction with setting up the data acquisition system, programs to analyze the data were 

also created. The following section outlines the development of the MATLAB code used to 

analyze the pressure and mass flow in the cooler. 

4.4.1 Determining the Mass Flow 
 
The mass flow rate ( ) through the cooler can be found using the signals from the 

displacement sensors on the left and right pistons. The displacement (s) of the pistons follows 

equation [4.7]. The equation for velocity (v) of the pistons can be derived by taking the 

derivative of equation [4.7]. This is shown in equation [4.8], where the subscript 0 relates to 

the maximum displacement. 

 sin  [4.7] 
 

 cos  [4.8] 

 
The density (ρ) of the working fluid, helium, can be found by using the ideal gas law shown 

in equation [4.9], where Pm is mean pressure, R is the gas constant for helium, and T is the 

temperature of the helium in the compressor. 

  [4.9] 

 
Finally, the mass flow can be derived using the equations for density and velocity, in 

equation [4.10] where Ap is the area of the piston. 

 2  [4.10] 
 
Increasing the current supplied to the compressor causes the compressor to have a larger 

stroke, which creates a higher mass flow rate. A test was run on the system to correlate the 
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current supplied to the compressor to the mass flow rate in the pulse tube. This was done by 

taking displacement data of the left and right pistons for current values from 0 to 10A. Using 

equations [4.8]-[4.10] the mass flow rate can be found. This correlation is shown in Figure 

4.14. The mass flow rate through the cooler needs to be 26.95g/s (according to the SAGE 

model), which corresponds to a current of 6.3A. 

 
Figure 4.14: Mass flow in the 2nd stage PTC as a function of the current  

4.4.2 Phase Angle between Mass Flow and Pressure 
 
From the mechanical data acquired from the LabVIEW code discussed in section 4.3.4

 Data Acquisition, the phase, magnitude, and frequency of the pressure and 

displacement were extracted using the MATLAB code in Appendix B: ESS and MATLAB 

Code. This code accepts matrix A. Matrix A consist of six columns, one for each mechanical 

sensor (P1, P2, P3, P4, L and R), and 22,500 rows, each corresponding to a measurement 

taken at a rate of 4.5kHz. Using the MATLAB command ‘fourier1’ a single term Fourier 

series was developed for each sensor giving an equation in the form shown in equation [4.11] 

(the DC offset is neglected in equation [4.11]). After some algebraic and trigonometric 
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4.5 Results, Troubleshooting, and Conclusions 
 
Once the preliminary tests were done, data acquisition and analysis programs were 

developed, the bus bar was put in place, and the cooler was instrumented and covered with 

MLI, initial testing of the 2nd stage PTC began. The first set of tests were run with the 

compressor at 5A (mass flow rate of 21.13 g/s), a mean pressure of 360psi and a frequency of 

45Hz. The results of this test are shown below in Figure 4.17. The top and bottom 75K heat 

exchangers reached steady state at (75K±1K). The 20K heat exchanger reached 65.5K with 

no load. 

 
Figure 4.17: Cool down of the 2nd stage PTC 
 
Careful analysis and consideration of all parameters indicate that the failure to reach the 

design low temperature is due to a few flaws in the system. The main contributing factor to 

the underperformance of the 2nd stage PTC appears to be the low pressure ratio (PR) 

produced by the compressor, defined in equation [4.15], where Pa is the pressure amplitude 

and Pm is the mean pressure.  

  [4.15] 
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Since the performance of the compressor is related to the frequency, a test was run where the 

frequency was varied and both the stroke of the pistons in the compressor and the pressure 

ratio was measured. For this test the 2nd stage cooler with a 5.8m long inertance tube was on 

top of the compressor and the current supplied to the compressor was 10A (RMS) as reported 

by the power supply running the compressor. The test was run at eight different frequencies, 

and to ensure accuracy five sets of data were taken at each frequency. The results of this test 

are shown in Figure 4.18. This data shows that there may be a mismatch between the 

compressor and the 2nd stage cooler which does not occur when the two stage PTC is 

attached to the compressor. In order to account for this difference, the SAGE model was 

rerun with only the 2nd stage cooler. 

 
Figure 4.18: Pressure ratio and stroke as a function of frequency 
 
After the SAGE model was rerun with just the 2nd stage cooler, it predicted that the cooler 

would need a pressure ratio of 1.88 to reach 20K, which this compressor cannot reach. 
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exchanger was compared to the SAGE model’s predicted mass flow and pressure drop as 

shown in Table 4.3. The data show that there was a significant amount of helium blowing 

around the edge of the precooler, so the inner diameter of the precooler and the outer 

diameter of the screens were re-measured. This measurement showed that there is a gap of 

0.004” due to the shell being 0.0015” above tolerance and the screens being 0.0025” below 

tolerance. Therefore, the precooler used in the two stage PTC was made to account for the 

screens being small. 

Table 4.3: Pressure Drop and Mass Flow over the Precooler 

 Experimental SAGE 
Mass Flow (g/s) 17.9 10.8 
Pressure Drop (KPa) 13 13 

 

Due to time constraint, it was decided to continue with the manufacturing and testing of the 

two stage PTC.  
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5.2 Experimental Setup and Data Collection 
 
Before the cooler was run it was hydrostatically pressure tested and leak tested to ensure that 

it was safe and would not leak in a high vacuum environment. This was done using the same 

methods outlined in section 4.2 Preliminary Testing.  

Once the cooler passed the pressure and leak test, it was instrumented as shown in Figure 5.2. 

The same type of instrumentation that was used for the 2nd stage PTC was used when testing 

the two stage PTC.  The compressor has sensors P1, L, and R as it did when the 2nd stage 

PTC was being tested. Therefore, dynamic measurements of the mass flow and the pressure 

are available at this location. Also, two current transformers were added to the compressor so 

dynamic current information would be available. The current sensors are read using the same 

LabVIEW program used to read the pressure and displacement sensors. The conical adaptor 

has two thermocouples (T1 and T2) to ensure that the copper screens transfer the heat from 

the precooler and 1st stage regenerator to the aftercooler, instead of trapping heat in the 

conical adaptor. There are three thermocouples (T3, T4, and T6) on the common heat 

exchanger and one (T5) on the 75K bus bar. The common heat exchanger has a pressure 

transducer (P2) between the precooler and 2nd stage regenerator, which along with P1, allows 

for the pressure drop over the precooler to be determined. Phase information at the end of the 

precooler can be extrapolated from P2 and the pressure ratio into the 2nd stage regenerator 

can be found. The 20K heat exchanger has two diodes (D1 and D2) to ensure accurate 

temperature measurements at low temperatures. There is also a 7.5W heater so a cooling 

curve can be developed for the two stage PTC. The top 75K hot heat exchanger has two 

thermocouples (T7 and T8) and a pressure transducer (P3). This pressure transducer provides 

phase information and in conjunction with P2 gives the pressure drop over the 2nd stage 
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heat exchanger was covered in an aluminum radiation shield with a thickness of 381microns. 

Then, the precooler, both regenerators, and both pulse tubes were covered with five layers of 

aluminized Mylar with polyester between each layer. Lastly, the entire 75K section of the 

cooler was covered with ten layers of aluminized Mylar with polyester between each layer. 

5.3 Results  
 
The first set of tests were run on the two stage PTC to determine the correct current at which 

to run the compressor to ensure that the pressure ratio and stroke provided by the SAGE 

model matched the experiment. This test was performed by running the compressor at a 

variety of different currents with the two stage PTC mounted. The compressor was run at 5A, 

10A, 15A and 20A while taking displacement and pressure data (using the L, R, and P1 

sensors). The corresponding pressure ratio and stroke for each current setting is shown in 

Figure 5.3 (Note: this test was done at 45Hz). 

 
Figure 5.3: Stroke and pressure ratio of the compressor with two stage PTC mounted 
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When matching the SAGE models stroke (9.6mm) to the experimental trend, the error 

between the experimental and the model’s pressure ratio (1.267) is 1.66%. Unfortunately, the 

current required to accommodate this input is 25.5A and the compressor can run at a 

maximum current of 16A. Therefore, the two stage PTC was run at 15.5A, which 

corresponds to a pressure ratio of 1.16 and a stroke of 5.51mm. Once at steady state, a 

cooling curve was developed for the two stage PTC. The curve was created by having no 

load on the 1st stage, while the 2nd stage was tested at 0W, 1W, and 2W as shown in Figure 

5.4: Cooling Curve for the two stage PTC. 

 
Figure 5.4: Cooling Curve for the two stage PTC 
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5.4 Conclusions and Recommendations 
 
It is clear from Figure 5.5 that the two stage PTC did not meet the project's target of 3W at 

20K. After further investigation, it appears that there are two main issues responsible for the 

poor performance of the cooler. The first is that due to the 16A limitation of the compressor, 

the mass flow into the compressor (.112 kg/s) and the pressure amplitude at the compressor 

(28.2 psi) are lower than what the SAGE model specified (ṁ=.134 kg/s and P=40.8 psi). This 

results in a loss of acoustic power. According to equation 5.1, acoustic power is a function of 

the magnitude and phase, of the mass flow and pressure (Swift 2002). Since the experimental 

phase angle is only 4.5˚ greater than the model's predicted phase angle, the 52.5% reduction 

in acoustic power (Ėe=847W ĖSAGE=1783W) must be predominantly due to the low 

magnitude of the pressure and mass flow. 

 
1
2

| || |cos  [5.1] 

 
Since the performance of the compressor is tightly linked to its operating frequency, 

changing the frequency increases the acoustic power. Therefore, the mass flow and pressure 

at the compressor was measured as a function of frequency as shown in Figure 5.5. It is clear 

from Figure 5.5 that running at a frequency above 45Hz will increases the mass flow and the 

pressure into the cooler, which will result in a large increase of acoustic power. (Note: from 

40Hz to 55Hz, the phase between the mass flow and pressure changed by 5.3˚ so it doesn’t 

have a large effect on acoustic power.) The lack in acoustic power is likely the explanation of 

why the 1st stage PTC fell significantly short of its 75K goal, since both the phase angle at 

the inlet of the cooler and the pressure drop over the 1st stage regenerator match the SAGE 

model. However, it does not explain why the 2nd stage PTC is only 5.2K below the 1st stage.  
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Figure 5.5: Pressure and mass flow as a function of frequency 
  
The second large issue that explains the poor performance of the two stage PTC is that the 

2nd stage regenerator is not functioning properly. The pressure drop over the 2nd stage 

regenerator is only 48.8% of what the SAGE model predicts. Since the mass flow through the 

regenerator is constant and the density of helium increases as temperature decreases, the 

actual pressure drop would become farther from the predicted pressure drop when the 

regenerator is operated at lower temperatures. Therefore, the regenerator must have not been 

packed to meet the specifications of the SAGE model. Thus, the 2nd stage of the two stage 

PTC is doing very little to contribute to the overall performance of the cooler and the 2nd 

stage regenerator needs to be repacked. 

  

20

25

30

35

40

45

50

55

60

0

0.05

0.1

0.15

0.2

0.25

40 42 44 46 48 50 52 54

P
re
ss
u
re
 [
p
si
]

M
as
s 
Fl
o
w
 [
kg
/s
]

Frequency [Hz]

Mass Flow (L)

Pressure (P1)



82 
 

References 

ASME Pressure Vessel Code, Section VIII, Division I. 
 
"Cryogenic Propellant Storage & Transfer." NASA. NASA, 30 Oct. 2013. 
 
Swift, G. W. Thermoacoustics: A Unifying Perspective for Some Engines and Refrigerators. 
Melville, NY: Acoustical Society of America through the American Institute of Physics, 
2002. Print. 
 
Alar, Eric. A Test Facility for New Non-Rare-Earth Pulse Tube Cryocooler Regenerator 
Plates. Thesis. UNIVERSITY OF WISCONSIN – MADISON, 2013. N.p.: n.p., n.d. Print. 
 
Klein, Sanford A., and Gregory Nellis. Thermodynamics. New York: Cambridge UP, 2012. 
Print. 
 
Heat Transfer, G.F. Nellis and S.A. Klein, Cambridge University Press, 2009 
 
Sanchez, N. "Cryogenic Properties of Copper." Cryogenic Properties of Copper, July 1990. 
 
Clearman, William M. Measurement and Correlation of Directional Permeability and 
Forchheimer’s Inertial Coefficient of Micro Porous Structures Used in Pulse-Tube 
Cryocoolers. Thesis. Georgia Institute of Technology, 2007. 
 
Fluent Inc. "User Inputs for Porous Media." FLUENT 6.3 Documentation. ANSYS 
FLUENT, 20 Sept. 2006. 
 
Musilova, V., Hanzelka, P., Kralik, T., Srnka, A., “Low temperature radiative properties of 
materials used in cryogenics”, Cryogenics, Vol. 45 (2004) Pg. 529-536 
 
Jahromi, Amir E. Development of a 1K Facility and Modeling of a Superfluid Magnetic 
Pump with No Moving Parts. Thesis. University of Wisconsin-Madison, 2011. 
 
"ITS-90 Thermocouple Database." ITS-90 Thermocouple Database. NIST 2014 
 
"DT-400 Series Silicon Diodes." Lake Shore 2015 
 
Kulite "Cryogenic Miniature Ruggedized Pressure Transducer" (2015) 
 
Barron, Randall F. Cryogenic Systems. 2nd ed. New York: Oxford UP, 1985. Print. 
 
  



 

Apppendix A: MMechanical Drawinngs 

83 

 



84 
 



 
85 



86 
 



 
87 



88 
 



 
89 



90 
 



 
91 



92 
 



 
93 



94 
 



 
95 



96 
 



 
97 



98 
 



 
99 



100 
 



 
101 



102 
 



 

  

103 

 



104 
 

Appendix B: ESS and MATLAB Code 

Thermal Bus for Two Stage PTC (discussed in 2.4.2) 
SubProgram FindLimit(T_T:k_int) 
 T_B=76[K]                   "Temperature of Bottom HX" 
 k=Conductivity(Copper, T=T)                          "Conductivity of Copper" 
 k_int=INTEGRAL(k,T,T_B,T_T)                     "Integrated conductivity from T_B to T_T" 
end 
 
T_B=76[K]                   "Temperature of Bottom HX" 
q=11[W]                   "Heat load from top 75K HX" 
L=20.13400659*convert(cm,m)                          "Length of Thermal Bus" 
A=A_in2*convert(in^2,m^2)                              "Area of Thermal Bus" 
k_int=q*L/A                              "Equation to find area" 
Call FindLimit(T_T:k_int) 
DELTAT=T_T-T_B                                              "Temperature between top and bottom HX" 
 
Top 300K Heat Exchanger ESS Code (discussed in 2.5.4) 
rho=1000[kg/m^3]                                       "Density if H2O" 
mu=Viscosity(Water,T=300[K],P=101300[Pa])                                   "Viscosity of H2O" 
cp=Cp(Water,T=300[K],P=101300[Pa])                                              "Cp of H2O" 
k_H2O=Conductivity(Water,T=300[K],P=101300[Pa])                       "Conductivity of H2O" 
k=Conductivity(Copper, T=300[K])                          "Conductivity of Copper" 
 
V_dot_cc=(0.0035/11)                                   "Volumetric flow rate experimentally measured" 
D_cc=.5*convert(in,m)                       "ID of tube from T to sink" 
A_cc=.375*convert(in,m)*1.5*convert(cm,m)                                          "Area of Tube" 
 
r_1=(1.402/2)*convert(in,m)                                          "ID of Copper" 
r_2=(1.75/2)*convert(in,m)                                         "OD of Copper" 
l=1.5*convert(cm,m)                              "Thickness of Copper" 
T_inf=293.7[K]           "Measured value of cooling water" 
 
Re_h=rho*u_inf*2*r_2/mu                                              "Re number" 
Pr_h=cp*mu/k_H2O                                               "Pr number" 
 
Call External_Flow_Cylinder_ND(Re_h,Pr_h: Nusselt_h,C_d) 
Nusselt_h=h*2*r_2/k_H2O                                                                                    "Nu number" 
T=q*((ln(r_2/r_1)/(2*pi#*l*k))+(1/(2*pi#*r_2*l*h)))+T_inf                              "Temp of He"
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Thermal Bus from GM Cooler to 2nd Stage PTC 
//Heat Transfer to Bottom 75K HX (Target Q=35.8[W]) 
T[0]=60[K]                    "Temperature of GM cooler" 
T[A+B+C]=75[K]            "Temperature of bottom 75K HX" 
 
L_bar=12*convert(in,m)                                 "Length of large bar" 
L_strap=4*convert(in,m)                                      "Length of straps" 
L_con=1.5*convert(in,m)                                "Length of small bar" 
A_bar=3*convert(in^2,m^2)                                    "Area of large bar" 
A_strap=4*0.3927*convert(in^2,m^2)                                         "Area of straps" 
A_con=1*convert(in^2,m^2)                                    "Area of small bar" 
 
A=48                                  "Nodes in large bar" 
B=16                                       "Nodes in straps" 
C=6                                 "Nodes in small bar" 
DELTAx=L_bar/A                              "Step size in large bar" 
DELTAy=L_strap/B                                   "Step size in straps" 
DELTAz=L_con/C                             "Step size in small bar" 
 
Duplicate i=1,A+B+C                      "Conductivity at each node" 
k[i]=Conductivity(Copper, T=(T[i]+T[i-1])/2) 
end 
 
Duplicate i=1,A  
R[i]=DELTAx/(k[i]*A_bar)                           "Resistance in large bar" 
Q=(T[i]-T[i-1])/R[i]                                           "Fourier's law" 
end 
Duplicate i=A+1,A+B  
R[i]=DELTAy/(k[i]*A_strap)                                "Resistance in straps" 
Q=(T[i]-T[i-1])/R[i]                                           "Fourier's law" 
end 
Duplicate i=1+A+B,C+A+B  
R[i]=DELTAz/(k[i]*A_con)                           "Resistance in small bar" 
Q=(T[i]-T[i-1])/R[i]                                           "Fourier's law" 
end 
 
A_s=2*0.1963*convert(in^2,m^2)                                  "Area of extra strap" 
L_s=2*convert(ft,m)                              "Length of extra strap" 
k_s=Conductivity(Copper, T=T_s)                    "Conductivity through strap" 
Q_s=(A_s/L_s)*Integral(k_s,T_s,60,75)                                           "Fourier's law" 
 
Q_T_b=Q_s+Q                                  "Total heat transfer" 
 
//Heat Transfer to Top 75K HX (Target Q=10.9[W]) 
T[0]=60[K]                    "Temperature of GM cooler" 
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T[A+B]=75[K]                  "Temperature of top 75K HX" 
 
L_bar=12*convert(in,m)                                          "Length of bar" 
L_strap=2*convert(in,m)                                       "Length of strap" 
A_bar=.75*convert(in^2,m^2)                                             "Area of bar" 
A_strap=2*0.1963*convert(in^2,m^2)                                           "Area of strap" 
 
A=48                                           "Nodes in bar" 
B=16                                        "Nodes in strap" 
DELTAx=L_bar/A                                       "Step size in bar" 
DELTAy=L_strap/B                                    "Step size in strap" 
 
Duplicate i=0,A+B                      "Conductivity at each node" 
k[i]=Conductivity(Copper, T=T[i]) 
end 
 
Duplicate i=1,A 
R[i]=DELTAx/(k[i]*A_bar)                                    "Resistance in bar" 
Q=(T[i]-T[i-1])/R[i]                                           "Fourier's law" 
end 
Duplicate i=A+1,A+B 
R[i]=DELTAy/(k[i]*A_strap)                                  "Resistance in strap" 
Q=(T[i]-T[i-1])/R[i]                                           "Fourier's law”
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Phase angle Matlab code (Only the method for P1 and L are shown) 
clear 
uiimport                                           %import mechanical data 
pause                                      %pause until any key is pressed 
  
time=(0:0.0002222:4.9997)';      %Time vector (data taken for 5s at 4.5Hz) 
C=[time A];            %creates matrix: time P1 P2 P3 P4 P5 P6 L R L_C R_C 
  
P1=C(:,2);                                               %Pressure Vectors 
fP1=fit(time,P1,'fourier1');                            %Fourier Transform 
a0P1=fP1.a0+15;                              %Define Fourier series values 
a1P1=fP1.a1; 
b1P1=fP1.b1; 
freqP1=fP1.w/(2*pi)                                             %Frequency 
phiP1d=atan2d(b1P1,a1P1);                             %Find phi in degrees 
magP1=sqrt(a1P1^2+b1P1^2)                                       %Magnitude 
phiP1drel=0;         %Set Phi_P1=0 
plot(fP1,time,P1)                     %Plot of data and Fourier series fit 
xlabel('Time (s)') 
ylabel('Pressure (psi)') 
axis([0.2,0.25,-inf,inf]) 
PR1=(a0P1+magP1)/(a0P1-magP1) 
pause 
 
fs=4500;                                    % sample rate [Hz] 
n=length(P1);                       % number of points 
f = (0:n-1)*(fs/n);                % conversion from bins to Hz 
P1fft = fft(P1);                       % DFT of signal 
P1ABS=abs(P1fft);                      % magnitude of DFT 
P1ABS(1)=0;                    
plot(f,P1ABS)                      % plot Frequency vs magnitude 
xlabel('Frequency (Hz)') 
ylabel('Magnitude') 
axis([0,500,-inf,inf]) 
pause 
 
%same method for P2 P3 P4 P5 P6 L R L_C and R_C 
L=C(:,8); 
fL=fit(time,L,'fourier1'); 
a0L=fL.a0; 
a1L=fL.a1; 
b1L=fL.b1; 
freqL=fL.w/(2*pi); 
phiL=atan2d(b1L,a1L); 
magL=sqrt(a1L^2+b1L^2) 
phiLd=phiP1d-phiL 
plot(fL,time,L) 
xlabel('Time (s)') 
ylabel('Displacement (mm)') 
axis([0.2,0.25,-inf,inf]) 
pause 


