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CHAPTER 1 

Introduction 

 
 

Photovoltaic devices (PVs) convert sunlight directly into electricity.  PV technology clearly 

offers tremendous environmental benefits, requiring no fuel and producing no emissions or 

other waste beyond that inherent in the manufacturing process.  Moreover, photovoltaics 

have proven to be economical for a wide range of applications that have traditionally relied 

on diesel generators.  Water pumping and rural village electrification are prime examples.  

Other applications profitably employing PV generation include vaccine refrigeration, remote 

radio and satellite link stations, railroad signaling, and rural vacation homes.  In each of these 

cases, PV proves to be the most economical energy choice because the cost of purchasing 

and installing a photovoltaic system is less than that of extending utility service to an off-grid 

area.  Developing countries without the electrical infrastructure of the North America and 

Europe provide a major market for PVs.  Of the 31051 peak kW (kWp) of US PV shipments 

in 1995, 19871 kWp were exported [Holihan, 1997].  The photovoltaic industry has been 

growing exponentially at a rate of about 20% over the last ten years, supported primarily by 

applications where utility service is unavailable.  It is essent ial that PV also penetrate the 

grid-tied market if it is to compete with such large-scale utility power technologies such as 

nuclear and fossil plants.   

 

Grid-tied PV plants may be installed at a central generating station just as large fossil and 

nuclear plants.  The Corporation for Solar Technology and Renewable Resources is planning 

to install up to 270 MWp of centralized PV generating capacity in the Nevada desert north of 

Las Vegas [SMUD, 1998].  Another option is to employ building- integrated photovo ltaic 

(BIPV) systems in which PV power is generated at the point of consumption.  BIPV provides 

several advantages over central generation.  Since power is generated and consumed at the 

same location, there are no energy losses in the utility’s transmission and distribution (T&D) 

system.  A central plant requires a large area of dedicated land, but building- integrated 
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systems may be incorporated into a roof or façade without consuming additional ground area.  

Utilities have successfully sponsored programs in which electric customers pay for the 

“privilege” of mounting a utility-owned BIPV system on their roofs.  The Sacramento 

Municipal Utility District (SMUD) has the most ambitious such program.  Residential and 

commercial SMUD customers currently provide roof space for over 1.5 MWp of installed 

BIPV capacity, paying an additional four dollars per month to do so [SMUD, 1998].   

 

The long-term aggregate performance of any grid-tied photovoltaic system is dependent on 

the parameters of the system itself and on the weather.  These factors are no different for a 

central PV generating plant and an identical BIPV system in the same geographic location.  

An additional issue comes into play when evaluating the profitability of privately owned 

BIPV systems, however.  This question is how PV performance varies from hour to hour and 

from season to season. Utility rates are often subject to hourly and seasonal variations, so the 

value of a solar kWh is not necessarily constant over time.  Since commercial customers are 

usually subject to demand charges, it is also important to understand how closely PV 

generation coincides with a building’s electrical load.  The software developed in this work 

determines the monetary saving from BIPV based on hourly system performance, building 

load, and the utility rate schedule. 

 

The progress of grid-tied BIPV depends on the potential benefits for the electric utility as 

well as for the customer.  The cost of generation varies from one plant to another, so the 

value of a photovoltaic kWh to the utility depends on the operating cost of the most 

expensive plant running in the generating mix at that time.  If PV is to replace traditional gas 

turbine plants for meeting a utility’s peak loads, it is necessary to understand how PVs 

perform during the times when loads are greatest.   

 

On a purely monetary basis without considering environmental externalities, photovoltaic 

electricity is not yet competitive with traditional generating technologies in the grid-tied 

market.  The PV market is booming, however, and economies of scale may force prices down 

to the point where PV becomes a viable alternative to fossil, nuclear, and hydroelectric 
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technologies for utility-scale generation.  In the meantime it is important for architects, 

building owners, and utilities to understand the economic ramifications of installing BIPV 

systems. 

 

 

1.1  Motivation for Research 

 

At the present time, the choice for electric customers and utilities to invest in grid-tied BIPV 

systems is not driven primarily by economic considerations.  Photovoltaics are economical 

for many applications, but only when utility grid service is unavailable.  Assuming a realistic 

lifetime of 30 years for a PV system, the cost per kWh is on the order of $0.15 in a favorable 

climate.  This does not in any way imply that the BIPV market cannot grow; in fact it has 

experienced spectacular growth in the last 10 years.  From 1994 to 1995, grid-interactive PV 

shipments more than doubled from 2296 to 4585 kWp [Holihan, 1997].  It is encouraging 

that growth of this magnitude can be maintained in the face of adverse economics.   

 

There are several reasons why a building owner may choose to invest in PV at a loss.  

Perhaps the most clear-cut example is government subsidies that make PV appear more 

enticing.  Of course, a subsidy does not eliminate the loss but merely shifts some of its 

burden from the shoulders of the investor.  Homeowners usually elect to install BIPV for 

environmental reasons.  Businesses may realize that an expensive and visible PV installation 

on a commercial building makes a bold public statement about environmental commitment.  

A growing number of architects are taking interest in solar design, incorporating PV as well 

as daylighting, passive construction, and solar thermal systems into their building plans.  PV 

arrays provide striking building facades and may also be incorporated into window glass and 

roof tiling.  In recent years thin-film architectural PVs have become available in a wide range 

of colors.  Architect Steven Strong of Solar Design Associates has pointed out that many new 

technologies “take off” despite existing alternatives which fulfil the same need at lower cost 

[1998].  A notable example is the automobile; the first cars were slower, dirtier, less reliable, 

and far more expensive than horses.  However, people bought these cars for status, curiosity, 
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or some other reason despite certain monetary loss.  These initial purchases paved the way 

for continued innovation and economies of scale in the auto industry, eventually giving rise 

to vehicles which were competitive in their own right. 

 

The PV industry is likewise growing at an impressive pace.  However, photovoltaics must 

become competitive with conventional energy sources if they are to extend beyond their 

present small niche markets.  In 1995 the US photovoltaic generating capacity was 333 MW, 

less than a single large coal plant, while the total generating capacity was 769530 MW 

[Carlin et al., 1997].  Further innovation and economies of scale may eventually allow PV to 

compete with fossil and nuclear power on a purely economic basis.  The need for accurate 

predictions of solar savings will become more pressing as economics becomes an 

increasingly important driving force in the decision to invest in BIPV. 

 

Much of this project is focused on developing software to calculate the solar savings from 

grid-tied BIPV systems.  A number of solar simulation packages are commercially available.  

These programs are useful for estimating long-term photovoltaic energy generation, but they 

do not combine these results with time-dependent building loads and utility rate schedules on 

an hourly basis.  This type of analysis is essential to evaluating the economics of a privately 

owned BIPV system. 

 

 

1.2  Objective of Research 

 

There are two primary goals motivating this project.  The first objective is to develop a 

program for evaluating the performance of BIPV systems.  This program should be intuitive 

enough that an engineer or architect with only a general knowledge of PV can use it to 

quickly estimate the performance of a proposed BIPV project.  The modular energy 

simulation program TRNSYS [Klein et. al, 1997] was used to develop this program.  

TRNSYS provides a framework to link the components of an energy system, each of which 

is represented by an open-source Fortran subroutine.  TRNSED, a menu-based graphical user 
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interface for TRNSYS, was employed to develop the front end for the BIPV simulation 

package.  A new “five-parameter” photovoltaic model was developed for this program.  

Unlike the standard four-parameter TRNSYS PV component, the new five-parameter model 

is applicable to amorphous as well as crystalline PV modules.  Chapter 3 explains the 

mathematical basis of the five-parameter model along with its implementation into a 

TRNSYS subroutine.  The BIPV program has been named PHANTASM, for PHotovoltaic 

ANalysis and TrAnsient Simulation Method.  The structure and use of this program is 

discussed in Chapter 4 and in the PHANTASM User’s Manual [Fry, 1999]. 

 

The second project goal is to examine the economic feasibility of large-scale BIPV 

implementation in Wisconsin.  Several utility-organized BIPV projects are presently 

underway..  Of the major Wisconsin utilities, Wisconsin Public Service Corporation (WPSC) 

has the most aggressive photovoltaic program.  6 high schools in WPSC’s service area have 

rooftop- integrated arrays with a total capacity of 72 kWp [WPSC, 1998].  PHANTASM was 

used to determine the solar savings and optimal array orientation for 20 kWp rooftop arrays 

for three commercial buildings in Milwaukee.  These simulations employed 1990 weather 

data for Milwaukee and historical electrical loads for the three buildings along with rate 

schedules from Wisconsin Electric, the Milwaukee utility.  Chapter 5 discusses the data sets 

used for these simulations and Chapter 6 presents the results. 

 

The economics of BIPV are also examined from the utility’s point of view.  EUSESIA, a 

TRNSYS package developed by Trzesniewski [1995], was used to investigate the utility 

impact of an ensemble of 20 kWp rooftop BIPV arrays.  EUSESIA evaluates the average 

value of PV-generated kWh as well as PV’s peak shaving potential relative to standard 

combustion turbine technology.  Chapter 7 explains the methods and results of the utility 

study. 
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1.3 Literature Review 

 

Several software packages for PV simulation are currently available.  TRNSYS has been 

employed for a number of PV research projects at the UW Solar Lab and elsewhere.  A 

mathematical method for deriving PV electrical characteristics from readily available 

manufacturers’ data was developed by Townsend [1989].  Eckstein later incorporated this 

model into the standard TRNSYS PV component [1990].  The mathematical basis of this 

“four-parameter” model is addressed in Chapter 3.  The PV F-chart program [Klein and 

Beckman, 1992] extrapolates long-term PV performance from the results of multiple 

TRNSYS simulations employing Typical Meteorological Year weather data.  PV F-chart 

provides a quick and straightforward method for evaluating annual PV energy generation.  

However, it does not calculate hourly generation results and thus cannot be used to compare 

PV performance to electrical load profiles.   Another PV simulator, Sandia National Lab’s 

PVFORM [1994] does produce hourly output.  These programs may be used to simulate 

performance for a wide range of PV systems and locations. 

 

PHANTASM, developed for this work, differs from other PV simulators in two main 

respects.  The first is that PHANTASM employs numerical iteration along an IV curve to 

determine PV output at the maximum power point.  The new five-parameter PV model 

facilitates the simulation of amorphous modules.  PVFORM and PV Design Pro, on the other 

hand, assume a baseline PV efficiency that varies with temperature. The second unique 

feature of PHANTASM is the capability to factor in the utility rate schedule and building 

load when calculating savings for grid-tied buildings.  Demand charges may play an 

important role in solar savings, as shown in the case studies in Chapter 6.   

 

Krom [1997] has carried out a simulation project similar to this one involving rooftop BIPV 

arrays for several buildings in the Madison area.  Krom’s study focuses on solar savings for 

buildings, accounting for both usage and demand savings.  PV Forum was employed to 

generate hourly solar output.  A spreadsheet analysis was then used to find annual solar 
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savings based on building loads and the rate schedules of Wisconsin Gas and Electric 

(MGE).  The rate schedule analyses were essentially similar to those employed by 

PHANTASM, although the economic analysis was not automated.  Krom also accounts for 

such economic factors as inflation, market discount for investment, and renewable energy 

subsidies specific to Wisconsin.  
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 CHAPTER 2 

Background 

 
 

Photovoltaics are semiconductor devices that convert radiant energy directly into 

electricity.  PV technology is simple, elegant, and reliable.  It requires no fuel, produces 

no emissions, and involves no moving parts.  The physics of photovoltaic energy 

conversion is outlined briefly in Chapter 3 in the context of developing mathematical 

models for PV modules.   

 

As discussed in Chapter 1, photovoltaics are most economical in remote applications 

where utility service is unavailable.  These remote applications may be divided into two 

broad categories.  One type of remote application is the direct-coupled system.  In a 

direct-coupled application the PV is connected directly to a DC load; the most common 

example is a water pump.  A direct-coupled system does not include batteries for energy 

storage, so electricity is available only during daylight hours.  Both a PV array and a load 

such as a pump motor have distinct current-voltage (IV) characteristics.  The electrical 

characteristics of each device may be represented by curves on an IV graph (current as a 

function of voltage), and the system operates at the two curves’ point of intersection.  

Since the electrical characteristics of PV are dependent on solar radiation and ambient 

temperature, the system operating point varies over the course of the day. 

 

The second main type of remote PV application includes one or more batteries for 

electrical storage.  Energy storage is essential if the system is to provide power after 

dusk.  Examples include lighting in remote villages and parking lots, railroad signals, and 

vaccine refrigeration.  Off-grid cabins and houses also usually include a battery bank for 

energy storage.  Batteries are bulky and expensive and some energy loss is always 

inherent in storage.  In addition, all batteries require periodic maintenance and charge 

control systems to prevent excessive charge or discharge.  Despite these issues, PV 

storage systems have proven to be economical for a wide range of applications.   
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2.1   Components of a Grid-Tied BIPV System 

 

This work focuses on a third type of PV application, the utility interactive system.  A 

utility interactive system is employed in applications where utility service is already 

available.  There is no need for battery storage because grid power may be used to 

supplement photovoltaic generation when the load exceeds available PV energy.  BIPV 

systems in urban and suburban areas comprise the majority of utility- interactive 

photovoltaics.  In a BIPV system, the load is simply the total energy consumption in the 

building.  Most electrical appliances in grid-connected buildings employ AC, while PV 

arrays produce DC.  For this reason a BIPV system must include an inverter, a device to 

convert photovoltaic DC to grid-voltage AC.  The efficiency of most inverters is on the 

order of 90% to 95%.   

 

A BIPV system also requires a maximum power-point tracker, or MPPT.  The MPPT 

is an electronic device that monitors PV output and provides a constantly varying 

impedance such that the PV always operates near its point of maximum power along the 

IV curve.  This issue is addressed in more detail in Chapter 3.  The MPPT is usually 

purchased along with the inverter as a single unit.  Trace Engineering and Omnion Power 

Engineering Corporation are the largest manufactures of inverter/MPPT units [1998].  A 

utility- interactive inverter has the capability to feed PV electricity back into the grid 

when PV generation exceeds the total building load.  This energy is purchased by the 

utility, so in essence the whole grid is used as a storage medium for excess energy 

generation.  The grid provides more efficient storage than a battery; transmission and 

distribution losses may be around 5% while battery cycle inefficiencies are on the order 

of 20%. Figure 2.1-1 illustrates the major components of a BIPV system.   
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Figure 2.1-1:  Schematic of a grid-tied BIPV System 

 

 

2.2 Net Metering 

 

An important issue is the economics of privately owned grid-tied PV systems is the price 

the utility pays for excess PV generation.  During times when the utility experiences 

extreme loads and its generating capacity is pushed to the limit to avoid brown-outs, 

private generation may prove quite valuable.  Under most circumstances, however, the 

value of parallel generation is equal to the wholesale operating cost of the most expensive 

plant in the generation mix at that time.  For fossil and hydro plants in Wisconsin this 

cost is usually between $0.01 and $0.02 per kWh, and for nuclear plants it is even less 

[Trznesnieski, 1995].   

 

Under a net metering policy a customer employing parallel generation may “turn back” 

the electric meter when excess energy is fed back into the grid.  In this case the utility is 

essentially buying power at the retail rather than wholesale price.  Under a net metering 

policy the utility subsidizes private on-site generation.  Wind and diesel parallel 

generation as well as PV may also be subject to net metering policies. 22 states, including 

Wisconsin, currently regulate net metering practice [Wan and Green, 1998].  Wisconsin 



11 

 utilities are required to provide net metering services to all BIPV customers.  The 

software and analysis in this work assume that net metering is provided. 

 

 

2.3  Electric Rates and BIPV 

 

Both the operating cost for conventional plants and local climatic conditions are 

important in evaluating the feasibility of PVs.  Retail utility rates vary greatly from one 

region to another, and these variations generally reflect the costs of generation.  Strong 

and Scheller [1993] have summarized the standard residential rates for several municipal 

utilities, as shown in Table 2.3-1 

 

Table 2.3-1: Residential electric rates in several US cities 

 

City Residential 
Energy Usage 
Rate [$/kWh] 

Atlanta, GA 0.065 

Denver, CO 0.074 

Albuquerque, NM 0.100 

San Diego, CA 0.130 

Hilo, HI 0.143 

New York, NY 0.157 

 

 

Denver, for instance, has a sunny climate with abundant solar energy.  However, low 

electric rates offset the advantages of climate when considering the economics of PV.  On 

the other hand, high electric rates in New York compensate for a marginal solar climate.  

Of the cities shown in this table, Hilo and San Diego probably offer the most promise for 

PV, combining relatively high electric rates with favorable solar climates.  This work 

focuses on PV in Wisconsin.  The Midwestern climate is fairly sunny during the summer 

months, but solar energy is scarce for much of the year.  Moreover, Wisconsin’s electric 
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 rates are among the lowest in the nation.  It is important to take these issues into 

consideration when evaluating the results of this study.   

 

 

2.4   Utility Interest in BIPV 

 

The electric utility stands to benefit from distributed PV generation for several reasons.  

Power consumed at the point of generation requires no transmission or distribution, 

potentially reducing infrastructure costs.  PV systems without batteries are simple and 

reliable, requiring little maintenance.  Photovoltaic modules themselves very rarely fail or 

malfunction, although inverters do require occasional repair or replacement. 

 

An important factor for utilities considering investing in PV is when photovoltaic 

performance is at its best.  Ideally, PVs should perform well during those hours when the 

total draw on the utility is large.  PV can more easily serve as a substitute for gas-fired 

peaking plants if photovoltaic output coincides well with extreme loads.  This is always 

true to some extent since PV generation occurs during the daylight hours, and on average 

loads are greater during the day than at night.  Utility loads are driven largely by weather, 

as is PV performance.  For most utilities, the greatest loads occur during hot summer 

days.  These days are often sunny, particularly in dry Western climates.  Utilities in 

northern areas such as Wisconsin may also experience large loads during cold winter 

days because of electric heating usage.  Exceptionally cold days may coincide with clear 

skies, although this correlation is weaker than for peak summer loads.  

 

Cragan [1994] and Trzesniwski [1995] have shown that retrofitting electric domestic hot 

water systems with solar collectors can provide a significant benefit to the utility by 

reducing peak loads.  Unlike thermal solar collectors, PVs perform better at low ambient 

temperatures than during hot periods.  However, solar insolation is a more important 

consideration than ambient temperature in the performance of both thermal and PV 

systems.  Thus, PV and thermal systems usually generate the large quantities of useful 

energy at the same times.  Yet there is one major difference between the impact of PV 
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 and solar domestic hot water (SDHW) systems on peak utility loads.  SDHW systems 

include energy storage in the hot water tank, so an ensemble of SDHW systems may 

continue to impact the total utility load even after the sun has set.  This energy storage 

can also help to level the load during cloudy periods in the daytime hours.  Grid-tied PV 

systems do not generally include batteries for energy storage.  This means that PV can 

help the utility only during sunny periods.  Utility benefit will be greatly reduced if the 

sun is obscured by clouds during part of the day.   

 

Commercial and industrial building owners also must consider issues of coincidental 

loads when evaluating the feasibility of a BIPV system.  Commercial rate schedules often 

include demand charges, penalizing the customer for large instantaneous power 

consumption.  PV has the potential to reduce demand charges, but only if it performs well 

when building loads are high.  The hourly load patterns of some buildings prohibit PV 

demand reduction; a nightclub might be an example of such a building.  Rate schedules 

for residential customers do not generally include demand charges.  In this case the 

coincidence of load and generation does not affect solar savings.   

 

 

2.5   Environmental Impact of PV 

 

In the long term, environmental benefits may be the most important reason for the 

implementation of grid-tied PV.  The environmental impact of PV is small when 

compared with all nonrenewable energy sources.  Coal plants produce huge quantities of 

CO2 as well particulates and oxides of sulfur and nitrogen.  Of course, CO2 is inherent in 

the combustion process and cannot be avoided.  Scrubbers can reduce but not eliminate 

sulfur and particulate emissions.  Gas-fired plants are cleaner than coal plants but still 

produce greenhouse gases.  Atmospheric emissions from nuclear plants are negligible but 

radioactive waste is an incessant problem with no clear-cut solution.  One can also make 

a strong argument that PV provides “greener” electricity than other renewable sources.  

This is certainly true when PV is compared to hydropower, which can drastically alter the 

flow of major rivers. Biomass combustion makes no net contribution to atmospheric CO2 



14 

 levels, but it does produce other emissions.  Even wind power may produce a greater 

environmental impact than PV when its land requirements and impact on bird populations 

are taken into account.   

 

Central PV plants do require a considerable investment in land area, but this is not an 

issue with distributed BIPV systems since they are mounted on building surfaces which 

would otherwise go unused.  The only other environmental consideration in assessing the 

environmental impact of PV systems is the energy consumed in their manufacture.  The 

manufacture of single crystal PV modules is quite energy intensive, relying on electric 

furnaces to melt and purify large quantities of silicon.  The same is true, to a lesser extent, 

of polycrystalline modules.  Amorphous silicon modules, manufactured using 

semiconductor chemical deposition processes, require less energy per unit module area.  

However, amorphous modules are less efficient and require a larger system to generate 

power output comparable with polycrystalline or single crystal modules.  Module glass 

and metal mounting structures also contribute the energy requirements for PV system 

manufacture. 

 

Kato et al. [1998] have compiled information on the energy consumed in the manufacture 

of single crystal, polycrystalline, and amorphous PV cells in Japan.  This informa tion was 

then combined with energy requirements for producing glass covers, inverters, and steel 

array support structures.  The results of this study are presented in terms of the energy 

payback periods for 3 kWp rooftop arrays employing each of the three major PV 

technologies.  Table 2.5-1 summarizes these results. Given present technology, the 

efficiency estimate for the amorphous case may be a bit optimistic.  However, this study 

assumes a system lifetime of 20 years, while many current estimates place PV system 

lifetime at 25 or 30 years.  The energy payback times presented here for polycrystalline 

and amorphous photovoltaics are encouraging. 

 

White [1998] has compared the cradle-to-grave CO2 emissions for four types of electrical 

power plants: coal, nuc lear fission, wind turbine, and hypothetical nuclear fusion.  This is  
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 Table 2.5-1: Estimates of energy payback time for 3 kWp rooftop BIPV arrays 
manufactured and deployed in Japan 

 

PV Technology Module 
Efficiency 

Energy 
Payback Time 

Single Crystal 12.2% 8.9 years* 

Polycrystalline  11.6% 2.2 years 

Amorphous  8% 1.7 years 

 

 

a very detailed study accounting for the energy content of a number of specialized 

materials required for building the plants as well as energy expended in procuring fuel.  

Not surprisingly, White’s work shows the lifecycle CO2 emissions from fossil plants to 

be much greater than those from the other three types.  Table 2.5-2 compares White’s 

emission calculations for coal, fission, wind and fusion to those of Kato et. al. [1998] for 

rooftop arrays employing the three main PV technologies. 

 

Table 2.5-2:  Life-cycle CO2 emissions from coal, LWR fission, wind, fusion 
(hypothetical) and PV.  From White [22] and Kato et al. [37]. 

 

Plant Type Capacity Lifetime Lifecycle CO2 
Emissions  
[g C / kWh] 

Notes 

Coal 1000 MW 40 years 336 Conventional 
steam 

Nuclear Fission 1000 MW 40 years 4 Liquid water 
cooled 

Wind 25 MW 25 years 4 3 blade turbine, 
single speed 

Nuclear Fusion 1494 MW 40 years 1 Deuterium-
tritium fusion 

Single Crystal PV 3 kWp 20 years 61 Rooftop array 
Polycrystalline PV 3 kWp 20 years 20  Rooftop array 
Amorphous PV 3 kWp 20 years 17 Rooftop array 

 

                                                                 
* The single crystal energy payback time quoted in Table 2.5-1 assumes that SiCl4, a biproduct of the 
manufacturing process with high energy content, is put to productive use in other industries.  The energy 
content of SiCl4 is subtracted from the total energy required to manufacture the module.  Without this 
assumption, the energy payback time increases to 11.8 years. 
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Photovoltaics, particularly those employing polycrystalline and amorphous technology, 

produce much less CO2 than coal.  Gas turbine plants produce a bit less CO2 per energy 

output than coal.  Nevertheless, Table 2.5-2 shows that photovoltaics offer a vast 

improvement in CO2 emissions over any fossil fuel combustion.  Furthermore, this 

analysis does not consider the other emissions (CO, NOx, SO2, CH4, particulates) which 

are virtually eliminated by using PV.  The work of Kato et al. assumes that the electricity 

employed in PV manufacture is generated from Japan’s mix of fossil, nuclear, and 

hydroelectric power.  In an ideal “renewable energy economy” where this energy was 

supplied by installed PV capacity or another renewable technology, the lifetime CO2 

emissions from all three photovoltaic technologies would become negligible.  

 

Wind, fission, and fusion all offer lower CO2 emissions than PV.  Each of these 

technologies presents its own difficulties, however.  Nuclear fission, of course, generates 

radioactive waste.  Commercially applicable fusion power has not yet been developed, 

and this situation that will not change in the foreseeable future.  Wind turbines provide 

clean, renewable, and often economical power for both remote and utility-scale 

applications.  Like hydropower, however, wind energy may only be effectively harvested 

in specific regions.  The solar resource is also unevenly distributed, but not to the same 

extent as wind.  If new renewable energy sources eventually comprise a major portion of 

utility generation, wind and PV may prove to be important complimentary power sources.  

Most US locations are significantly windier in winter than in summer [Elliot, 1986], 

while PV is generally most productive during the summer months. 

 

 

2.6   Progress of PV in the Grid-Tied Market 

 

Chapter 1 discusses the fact that adverse economics have not stopped the explosive 

growth of PV development and shipment, even in the grid-tied market.  However, it is 

unlikely that environmental concerns and architectural design considerations will be able 
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 to propel the BIPV industry indefinitely.  Photovoltaic shipments will eventually “top 

out” unless large-scale grid-tied PV generation can compete in the energy marketplace. 

 

The Sacramento Municipal Utility District (SMUD) has an ambitious solar energy 

program including both PV and solar thermal systems.  In the SMUD’s PV Pioneers 

program, residential and commercial customers pay the utility to mount PV arrays on 

their buildings.  The building owner sees no economic benefit from this program as the 

PV generation is fed directly into the grid without going to satisfy the building owner’s 

loads.  Nevertheless, SMUD cannot install enough systems to keep up with customer 

enrollment demand. 

 

In addition to rooftop distributed generation, SMUD has installed grid-connected PV 

capacity at Hedge, a substation.  SMUD has experimented with both fixed PV arrays and 

single-axis tracking systems.  Table 2.6-1 summarizes the costs of SMUD’s residential 

and substation systems installed from 1993 to 1995 [Osborn and Collier, 1996]. 

 

 

Table 2.6-1: Cost improvements in SMUD’s PV installations from 1993 to 1995 

 

PV Installation Tracking System Capacity Cost 
[$/kWp] 

30-Year Lifetime Energy 
Cost [$/kWh] 

1993 Substation Fixed Array $10.15 $0.32 

1993 Residential 1-Axis Tracking $8.78 $0.23 

1994 Substation Fixed Array $7.75 $0.21 

1994 Residential Fixed Array $7.13 $0.20 

1994 Substation 1-Axis Tracking $6.97 $0.19 

1995 Residential 1-Axis Tracking $6.87 $0.18 

1995 Substation 1-Axis Tracking $6.62 $0.18 

 

 

SMUD believes (perhaps a bit optimistically) that the price for installed PV may drop 

below $3 per kWp by 2000.  However, the trends shown in Table 2.5-1 are quite 
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 encouraging.  At $3 per kWp, the mean lifetime energy cost will be comparable to that 

of energy from a gas-fired peaking plant.  SMUD refers to this situation, in which PV 

finally becomes competitive without relying on external subsidies, as “sustained orderly 

development” [Holihan, 1997].       

 

SMUD has two major advantages over Wisconsin utilities in profitably implementing 

grid-tied PV systems.  The first is a favorable climate for solar power.  Summers in 

central California are nearly cloudless and winters skies are often clear as well.  The 

second advantage is simply that SMUD has a head start in using PV technology, helping 

to reduce the costs of installation and system administration.  As module prices continue 

to fall, however, PV may prove to be economical in Wisconsin.  Other factors which 

could potentially aid PV’s penetration of the grid-tied market are carbon taxes on utility 

generation and rising fuel prices, particularly for natural gas.  
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CHAPTER 3  

Photovoltaic Models 

 

 

In any simulation scheme involving photovoltaic systems, one important choice is the 

selection of a mathematical PV model.  This model should predict how PV current and 

voltage will vary with ambient temperature and illumination conditions.  PV simulation 

programs have been written for years, and during this time many models have been 

developed.  A variety of schemes in which a PV is treated as an equivalent circuit have 

been summarized by Townsend [2].   

 
This chapter begins with a qualitative overview of the physics involved in the 

photovoltaic conversion process.  The mathematical bases for three PV models are then 

introduced, along with comparison analyzing the relative merits of these models.  Three 

main criteria are considered in evaluating the models.  The first is versatility:  what range 

of PV modules and systems can the model handle?   Accuracy is the second issue:  what 

is the physical basis and how closely can the model replicate manufacturers’ data?  The 

final issue is computational speed.  This criterion is of secondary importance for this 

work, although it may be more critical for other applications.   

     

Speed may be an important issue in applications in which a PV is coupled directly to a 

load such as water pump and/or employs battery storage.  Simulating such systems 

involves simultaneously finding the current-voltage characteristics for a PV and another 

device, often requiring extensive iteration between the two.  Grid-tied applications 

employing a maximum power point tracking device (MPPT), however, do not require 

that the program iterate between the PV and another device.  This work deals only with 

modeling grid connected building- integrated PV systems, so using a relatively slow-

running is not a major concern. 

 

Some simulations for maximum power tracking systems do not determine current-voltage 

relationships in a PV array. Instead, it is assumed that the PV has some baseline 
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efficiency for converting sunlight into electricity at reference conditions.  This efficiency 

may vary with insolation level and module temperature.  Sandia National Laboratory’s 

PV Forum software uses such a scheme[1].  However, neglecting IV calculations may 

result in some loss of accuracy if maximum power performance does not vary linearly 

with temperature or radiation.  The maximum power behavior of amorphous 

photovoltaics such as the Millennia PV line from Solarex may display such nonlinearity. 

[4].  

 

The so-called “four parameter” model is a widely used model with a semi-physical basis.  

Discussed by Beckman and Townsend [2], this model treats a PV as an irradiance-

dependent current source connected in parallel with a diode and in series with a resistor 

and the load.  The four parameters appearing in the IV equations are the light current IL, 

the series resistance Rs, and two diode characteristics Io and γ.  These parameters are not 

measurable quantities and are not generally included in manufactures’ data.  As a result, 

they must be determined from systems of IV equations at various operating points; these 

points are taken from catalog data.  One important consideration is that this model does 

not accurately reproduce the IV characteristics of amorphous silicon PV modules.  

Eckstein incorporated the four parameter model into a TRNSYS component [3].   

 

The final system evaluated here is a five-parameter model that adds a shunt resistance Rsh 

to the four-parameter scheme described above.  The second resistance makes the five 

parameter model more computationally intensive and also calls for an additional piece of 

catalog data.  However, this model has the significant advantage of being applicable to 

both crystalline and amorphous PVs.  In this work, Eckstein's code for the four-parameter 

model was modified to account for the fifth parameter.  

 

 
3.1   Band Structure, p-n Junctions, and the Photovoltaic Effect 

 
A brief description of the physics behind photovoltaics is helpful in understanding the 

origin of the equivalent circuits used to model these devices.  Photovoltaic cells are 

semiconductor devices; the vast majority of commercial PVs are fabricated from silicon.  
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A PV cell may consist of a single crystal, a number of smaller crystals (polycrystalline), 

or it may lack crystal structure all together (amorphous).  Other semiconducting materials 

such as gallium arsenide are employed in PVs for extraterrestrial or sun concentrator 

applications, but this description will concern a silicon PV cell. 

 

In a solid material, not all electrons are necessarily bound to a particular atom.  Unbound 

electrons occupy a group of energy states known collectively as the conduction band.  In 

the presence of an electric field, these electrons will respond by moving against the field, 

producing an electric current.  Metals contain many conduction band electrons and thus 

have very low electrical resistivity.  Semiconductors contain orders of magnitude fewer 

conduction electrons than do metals, but their numbers are still significant.  Those 

electrons which are bound to atoms in states farthest from the nucleus are called valence 

electrons , and they collectively form the valence band.  A key point is that under certain 

circumstances electrons may jump from the valence band to the conduction band or vice 

versa. 

 

A silicon atom contains four valence electrons, and in a crystal each valence electron 

contributes to a chemical bond linking the silicon atom to one of its neighbors.  The 

following diagram is a two-dimensional illustration of this arrangement:  

 

 

 
Figure 3.1-1:  Two-dimensional crystal lattice 
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In a process called doping, specific impurities are added to the silicon lattice.  An n-type 

dopant (n for “negative”) is an atom with one more valence electron than silicon; the 

most common example is phosphorus.  This extra electron cannot fit into the crystal 

lattice and is forced into the conduction band.  A p-type dopant (for "positive") such as 

boron has one fewer valence electron than does silicon.  In this case, one chemical bond 

is absent from the regular lattice arrangement.  This missing bond is referred to as a 

valence band hole.  Conduction band electrons are more energetic than valence band 

electrons.  Thus, a conduction electron will “fall” into the valence band to fill a hole and 

release some energy in the form of light or atomic vibrations, if given the chance.  The 

effect of n-type and p-type dopants on the silicon lattice structure is shown in this 

diagram: 

 

 

 

 
Figure 3.1-2:  n-Type (left) and p-Type (right) Dopants 

 

A p-n junction is formed when n-type and p-type semiconductors are placed in contact.  

In such a device, some of the excess conduction electrons in the material quickly migrate 

to the p-type material to fill in valence holes.  This gives rise to a strong, permanent 

electric field in the immediate vicinity of the junction, as shown below: 
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Figure 3.1-3:  A p-n Junction 

 

p-n junctions are commonly employed in diodes as current rectifiers.  If a diode is placed 

in a circuit, current will flow freely from the n-type to p-type material.  However, very 

little current can flow in the opposite direction even if driven by a very strong voltage. 

Light-emitting diodes and diode lasers (used in CD players) are designed to produce near 

infrared or visible light when electrons drop from the conduction band to fill valence 

holes. 

 

A PV cell is essentially a large diode that produces a voltage when exposed to incident 

light.  It may be considered to be a light-emitting diode “run backward;” the analogy is 

similar to a heat engine and a refrigerator.  The semiconductor bandgap is the 

difference in energy between valence and conduction bands.  It is a material-dependent 

property; in undoped silicon it has a value of 1.12 electron-volts or 1.79x10-19 joules.  An 

incident photon with at least this much energy may interact with a valence electron in the 

p-type material, forcing it up into the conduction band.  Any photon with a wavelength 

less than about 1100 nm has sufficient energy to initiate this reaction.  This wavelength 

corresponds to radiation in the near infrared portion of the spectrum.   

 

If the PV cell is connected to a load in a completed circuit, the new conduction band 

electron will be repelled by the excess negative charge in the p-type side of the PV cell. It 

travels through the circuit, producing a current through the load. 
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Figure 3.1-4:  The Photovoltaic Effect – Incident Light Moves an electron from the 
Valence Band to the Conduction Band 

 

 
3.2  Four-Parameter Photovoltaic Model:  Equations and              

Solution Techniques  

 
The behavior of the four-parameter PV model is described by Beckman and Townsend 

[2,5] and incorporated into a TRNSYS component by Eckstein [3].  This section 

summarizes the derivation of the model equations as well as the numerical techniques 

employed by Townsend and Eckstein in solving them.  The model assumes that an 

“ideal” PV may be modeled as an irradiance-dependent current source in parallel with a 

diode.  The diode provides a means for some current to be shunted across the load 

without actually reaching it.  Physically, this is equivalent to a photoelectron falling back 

into a valence hole before leaving the semiconductor material; if this occurs the electron 

can no longer contribute to useful current.  Since a PV is a large p-n junction, its current-

shunting behavior may be reasonably approximated with a diode.  In addition to the 

photocurrent source and diode, a single resistor is added to the model to account for 

ohmic losses as current travels through the PV.  The equivalent circuit in this model is as 

shown in Figure 3.2-1: 
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Figure 3.2-1:  Equivalent Circuit in the Four-Parameter Model 

 

Here, I and V represent the current and voltage at the load.  The useful power generated 

by the PV is the product of these two quantities.  The photocurrent IL is proportional to 

the irradiance on the PV.  The diode current ID may be written in terms of the diode 

reverse saturation current Io and a diode parameter γ : 
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     Eq. 3.2-1 

 

The nomenclature in this expression is as follows: 

γ  dimensionless diode curve-fitting factor, with a minimum possible 

value equal to the number of cells in series in the module Ns 

ID  diode current (A) 

 Io  reverse saturation current; the current that will flow “backward”  

   through the diode if subjected to a large reverse bias (A) 

 k  Boltzmann constant:  1.381 x 10-23 J/K 

 q   electron charge: 1.602 x 10-19 C 

 Rs  module series resistance (Ω) 

 Tc  cell temperature (K) 

 V  voltage across the PV module (V) 

 

In an ideal diode, the curve-fitting factor γ is equal to 1.  Similarly, γ is equal to the 

number of cells in series Ns in an ideal PV module.  Imperfections in any real PV cause γ 
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to be larger, but it is helpful to employ Ns as a lower bound [2].  The photocurrent may be 

added to the above diode current expression to determine the total current through the 

load: 
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     Eq. 3.2-2 

  

This expression defines the IV characteristics for the four-parameter model.  Note that the 

reverse saturation current Io may be written in terms of material characteristics and 

temperature [2]: 
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The constant A is γ divided by the number of cells wired together in series in the module, 

Ns. 

  

sN
A

γ
=         Eq. 3.2-4 

 

D is constant and ε is the semiconductor bandgap energy, 1.12 eV for silicon.  A, the 

“diode completion factor,” is dimensionless quantity with a minimum value of 1.   

 

Two of the model parameters, Rs and γ, are assumed to be constant.  However, the other 

two parameters are functions of the PV operating conditions.  Io changes with 

temperature and IL is a function of incident radiation.  Given reference values of 298 K 

and 1000 W/m2, Io and IL are determined as follows: 
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Equation 3.2-2 may be used to predict the current-voltage behavior of the model at any 

temperature and radiation conditions, assuming that the values of the four parameters 

IL,ref, Io,ref, γ, and Rs are known.  However, these are not easily measured physical 

quantities and are not available from manufacturer’s data.  Therefore, they must be 

evaluated from other information that can be easily obtained from the manufacturer.  A 

system of four equations is necessary to solve for these values.  The four equations are all 

derived from the general IV expression 3.2-2.  Three of these result from substituting 

values into the equation at the reference open circuit, short circuit, and maximum power 

point conditions as follows:      
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The reverse saturation current Io for any diode is a very small quantity, on the order of  

10-5 or 10-6 amperes. This minimizes the impact of the exponential term in Eq. 3.2-8, so it 

safe to assume that the photocurrent equals the short circuit current: 

 

  refscrefL II ,, ≈         Eq. 3.2-10 
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Eq. 3.2-7 may then be solved for Io.  This value for Io, along with IL from Eq. 3.2-10, may 

be substituted into Eq. 3.2-9.  Some algebra then yields: 
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At this point the problem has been reduced to a system with two unknowns (Rs and γ) and 

one equation.  An additional expression involving information available from the 

manufacturer is necessary to find the remaining two parameters.  Townsend [2] has 

shown that the temperature coefficient of open circuit voltage may be used to provide an 

additional equation.  Eq. 3.2-7 may be solved for the open circuit voltage Voc,ref.  

Substituting Eq. 3.2-5 into this expression and then differentiating with respect to 

temperature yields the following (after some algebra)* : 
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For any particular value of Rs, γ may be determined explicitly from Eq. 3.2-11.  Then γ is 

substituted into Eq. 3.2-12 to determine the open-circuit voltage temperature coefficient.  

At the correct value of Rs and γ, the catalog value should match the analytical value.  

Eckstein’s four-parameter TRNSYS component uses a numerical bisection method to 

solve for series resistance value that forces the left and right sides of Eq. 3.2-10 to be 

equal.  The upper limit for Rs is that value such that A = 1.  The lower limit for Rs is 0; it 

does not make physical sense to define a negative series resistance. 

 

As mentioned above, Rs and γ are assumed to be constants which do not change with 

radiation or temperature.  However, the other two *parameters in the model, Io and IL, are 

                                                 
* Again, the 1 in Eq. 3.2-5 was neglected in this calculation.  Beckman [6] has shown numerically that the 
changes in the IV curve which result when the 1 is neglected are insignificant. 
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not constant.  Once their reference values, are known, Eckstein’s TRNSYS component 

determines Io and IL at each simulation timestep using Eqs. 3.2-5 and 3.2-6.  Voltage is an 

input for the TRNSYS type, so the general IV expression, Eq. 3.2-2, is employed to find 

the operating current.  Since this equation is implicit in I, Newton’s method is used to 

solve for the current numerically. 

 

 

3.3   Efficiency Coefficient Model 

 

The four parameter model discussed above may be used to determine current as a 

function of load voltage.  Being able to predict current-voltage characteristics is essential 

for modeling remote PV systems which are directly coupled to a load or battery.  Of 

course, one may use this model’s IV curve to determine the maximum operating power at 

given conditions.  For grid-tied applications such as those studied in this work, the 

maximum power is actually the only important result.  This opens the possibility of using 

a model that determines the maximum operating power directly without considering the 

IV characteristics.  Such a scheme would be mathematically and computationally simpler 

than the four-parameter model.   

 

The module efficiency is defined as the ratio of useful electrical power output to incident 

solar power. 

 

GA

Pmp≡η         Eq. 3.3-1 

 

G represents insolation in W/m2 and A is module area in m2.  Manufacturers may quote a 

“reference efficiency.”  This is simply the efficiency of the module at reference testing 

conditions, generally an insolation of 1000 W/m2 and a module temperature of 25 C.  The 

maximum power may be given as the product of current and voltage at the maximum 

power point, so the reference efficiency can be expressed as: 
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The reference efficiency of terrestrial PV modules ranges from about 0.03 for small 

amorphous battery charging modules to 0.14 for the best monocrystalline modules. 

 

The efficiency coefficient model is based on two important assumptions.  The first 

assumption is that the efficiency is independent of the intensity of incident radiation.  For 

light levels greater than about 400 W/m2 this assumption appears to be fairly accurate.  It 

breaks down at lower levels, but accurate modeling is less important at these low levels 

since little useful output is produced anyway.  The validity of this “radiation-independent 

efficiency” assumption will be discussed in more detail at the end of this section.  The 

second assumption is that the efficiency varies linearly with temperature, and that the 

constant of proportionality for this relationship may be determined from catalog data. 

 

Given these assumptions, the chain rule of calculus may be used to determine the 

derivative of efficiency with respect to temperature: 

 

( ) 







+===

dT

dI
V

dT

dV
I

AG
IV

dT
d

AGdT

d

dT
d mp

mp
mp

mp
ref

mpmp
ref

ref 11ηη
 Eq. 3.3-3 

 

Unfortunately, the temperature coefficients of Vmp and Imp are not generally available 

from catalog data.  However, they may determined from µVoc and µIsc if every point on 

the IV curve is assumed to translate linearly with a temperature change.  In other words, a 

change in temperature from reference conditions will cause the IV curve to “stretch” or 

“contract” in both the I and V directions, but the overall form of the curve will not 

change.  For instance, consider that the operating temperature drops below the reference 

temperature of 25 C.  In this case Voc will increase and Isc will decrease, and the rest of 

the curve will follow.  This idea is illustrated in Figure 3.3-1; the magnitude of the 

change has been exaggerated for the sake of clarity: 
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Figure 3.3-1:  The IV Curve “Stretches” as Temperature Moves from the Reference 

Value 
 

If the whole curve scales with temperature in this manner, we may use the following 

relations to find the temperature coefficients of  Vmp and Imp: 
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Substituting these expressions into Eq. 3.3-3 produces the following result for the 

temperature dependence of efficiency: 
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Using Eq. 3.3-6 and the definition of efficiency produces the following expression for 

maximum power output as a function of T and G: 
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All of the quantities in this expression may be obtained from catalog data.  

Manufacturer’s specifications for the Siemens SR100 crystalline module were used to 

compare the efficiency coefficient model with the four-parameter model.  Figure 3.3-2 

illustrates the temperature dependence in the two models: 
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Figure 3.3-2:  Temperature Dependence of Maximum Power in Four Parameter and 
Efficiency Coefficient Models 

 

Both models produced maximum power outputs which are essentially linear with 

temperature, although the four parameter model predicts a slightly larger temperature 
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dependence.  This suggests that the IV curves generated by the four-parameter model do 

not obey the temperature behavior illustrated in Figure 3.3-1.   

 

The efficiency coefficient model also assumes that η does not change with insolation.  

Although the efficiency coefficient model does not calculate the efficiency directly, the 

four parameter model makes no such assumption.  A comparison of the two models, 

again using the Siemens SR100 catalog data, produced the results shown in Figure 3.3-3. 
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Figure 3.3-3:  Insolation Dependence of Maximum Power in the Efficiency Coefficient 
and Four Parameter Models 
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Below the reference insolation of 1000 W/m2 the efficiency coefficient model predicts 

slightly greater output than the four parameter model.  In the four parameter model the 

efficiency is slightly less than in the efficiency coefficient model at low insolation levels.  

Graphing the efficiency directly presents this result more clearly, as shown in Figure 3.3-

4: 
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Figure 3.3-4:  Insolation Dependence of Efficiency in the Four Parameter and Efficiency 

Coefficient Models 
 
It is clear that at low insolation levels the efficiency coefficient overestimates the PV 

performance.  At first glance, this graph suggests that the efficiency coefficient model 

may be too inaccurate to consider as a simulation option.  However, above 600 W/m2 or 

so, where most PV energy output actually occurs, the two models agree fairly closely.  

Actual simulation results provide a more valid basis for judgement.  Year long 

simulations were run for the two models using TMY data from four locations.  In each 

case a single Siemens SR100 was modeled, facing south with a slope equal to the 

location latitude.  The results are shown in Table 3.3-1. 



 17

 

 

 

 

 

 

 Four Parameter Model η Coefficient Model 

Washington DC 152 kWh 157 kWh 

Madison, WI 154 kWh 158 kWh 

Miami, FL 170 kWh 179 kWh 

Albuquerque, NM 244 kWh 247 kWh 

 

Table 3.3-1:  Simulation Results for Four Parameter and Efficiency Coefficient Models 

 

In each case the efficiency coefficient model predicted 1% to 5% more energy production 

than the four parameter model.  The two models agree most closely for Albuquerque 

because in this sunny climate radiation levels are generally higher than at the other 

locations.  Figure 3.3-4 shows that the efficiency coefficient model agrees most closely 

with the four parameter at high radiation levels.   

 

 

3.4   Five - Parameter Photovoltaic Model 

 

The four-parameter model has been implemented into many TRNSYS programs, and it 

reliably predicts the performance of single crystal and polycrystalline PV arrays. The four 

parameter model assumes that the slope of the IV curve is flat at the short-circuit 

condition: 
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However, this assumption is not generally valid for amorphous photovoltaics.  The short-

circuit IV slope is finite and negative, so the four-parameter model cannot reproduce IV 

characteristics typical of amorphous silicon.  A modification is necessary to broaden the 

model to include amorphous PVs.   

 

The "five-parameter model" introduces a second resistor in the PV equivalent circuit.  

This electrical behavior of the PV is represented in the following diagram: 

V

I

Rs

ID

IL

Rsh

 
 

Figure 3.4-1:  Equivalent Circuit in the Five-Parameter Model 

 

A shunt resistance Rsh has been added to the standard four parameter model.  The 

magnitude of the IV slope at short-circuit is related inversely to the shunt resistance.  As 

Rsh approaches infinity, this arrangement becomes identical to the four-parameter model.  

Thus, all the equations employed in the five-parameter model reduce to those in the 

simpler four parameter scheme for very large values of Rsh. 

 

The IV equation for the five-parameter model is: 
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3.5   Determining the Shunt Resistance 
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Adding the shunt resistance of course introduces another unknown value into the model.  

Like IL, Io, γ, and Rs, the shunt resistance is not an easily-measured physical quantity.  

Thus, it must be determined from information available from the manufacturer.  The 

primary effect of the shunt resistance on the IV characteristic is to change the short-

circuit slope.  Thus, it is logical to use the measured value of this slope to back out a 

value for Rsh.  The short-circuit slope is not a value which is generally included in the list 

of catalog specifications.  However, it is possible to approximate this value if the IV 

curve is available.  This is often the case for amorphous modules. 

 

In order to determine the the mathematical relationship between the short-circuit slope 

and the shunt resistance it is first necessary to differentitate the IV expression Eq. 3.4-2 

with respect to voltage.  Performing the differentiation, setting V to 0 and I to Isc,ref  yields: 
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where the variable m is equal to the short-circuit slope
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  Solving this expression 

for Rsh produces: 
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A difficulty with this expression is that, in addition to the short-circuit slope, it includes 

the parameters γ and Rs which cannot be explicity written in terms of the manufacturers’ 

parameters.  Thus, solving for these values simultaneously would involve a 

computationally intensive two-stage iteration scheme.  Fortunately, Beckman [6] has 

suggested that this expression may be simplified with the approximation: 
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To test the validity of this approximation several sample IV curves with different shunt 

resistances values were produced using the five-parameter model.  An EES program was 

written for this purpose; EES will readily solve the implicit and nonlinear IV equation.  

The values for the other four parameters had been previously determined using the four-

parameter model for a Siemens 100SR crystalline module as follows: 

 

 Rs = 0.1101 Ω 
 γ  = 64.65  

 IL = 6.50 A 
 Io = 0.00001429 A 
 

The resulting IV curves are shown in  Figure 3.5-1: 
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The resulting IV curves are shown in  Figure 3.5-1. 
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Figure 3.5-1:  Shunt Resistance and IV Curve Shapes 

 

These values were used simply as an example of realisitic parameters.  When combined 

with a finite shunt resistance they no longer represent a real module.  However, this test is 

intended only to varify Eq. 3.5-3, not to predict the behavior of a particular PV.  It is clear 

that the short-circuit slope of the curve becomes more shallow as the shunt resistance 

increases.  To see if it is truly an inverse relationship as Eq. 3.5-3 asserts, the numerical 

derivative of each IV curve was determined as a function on voltage.  The results are 

shown in Figure 3.5-2. 
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Figure 3.5-2: Effect of Shunt Resistance on the IV Slope in the Five Parameter Model 

 

At the open-circuit condition, the negative inverse slope matches closely with the shunt 

resistance.  Thus, it is safe to assume that Eq. 3.5-2 may be simplified to Eq. 3.5-3 in the 

five-parameter model. 
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3.6    Isolating IL,ref , Io,ref , Rs, and γ from the Equations of the Five 

Parameter Model 

 
This section explains the algebra by which IL,ref , Io,ref , and γ are isolated from a system of 

IV equations at various operating conditions.  The series resistance Rs must be 

determined numerically; Sections 3.7, 3.8, and 3.9 discuss various apsects of the 

computation techniques employed to find Rs.  The fifth parameter, Rsh, is determined 

directly from the short-circuit slope of the IV curve as explained in Section 3.5.  The 

methodology introduced here is essentially the same as that employed by Townsend and 

Eckstein.  Adding of a fifth parameter changes the equations significantly.   

 

At open-circuit, short-circuit, and maximum power point conditions respectively, the five 

parameter IV equation becomes: 
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          Eq. 3.6-3 

 

The factor of one outside the exponential is very small compared to the exponential itself 

and is neglected in the following analysis.  In addition, the exponential term itself may be 

neglected at the short-circuit condition; the voltage drop across the diode is due only to 

the small series resistance factor since the load voltage is absent.  With these two 

assumption, Eq. 3.6-1 may be rearranged to solve for the reference photocurrent IL,ref. 
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The shunt resistance is generally much larger than the series resistance so that the 

resistance makes only a small contribution to Eq. 3.6-4.  However, it is included as it 

does not complicate the anlysis. 

 

Neglecting the 1, Eg. 3.6-2 may be solved for the reference reverse saturation current: 
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Again negelcting the 1, Eq. 3.6-5 result is substitued for Io,ref  in the maximum power 

point expression Eq. 3.6-3.  Solving for γ then yields: 
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At this point an additional equaition is need since there are four unknowns and only three 

equations.  As in the four-parameter case, the catalog value that is employed in the 

additional equation is the temperature coefficient of open-circuit voltage.  Taking the 

analytical derivative of  Eq. 3.4-2 and using Eq. 3.2-3 for the temperature dependence of 

Io yeilds the following: 
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3.7   Mathematical Behavior of the Series Resistance 

 

At this point the problem has been reduced to a system of four unknowns (Io,ref, IL,ref, 

γ, and Rs) and four equations ( 3.6-4, 3.6-5, 3.6-6, and 3.6-7).  Eqs. 3.6-4, 3.6-5, and 3.6-7 

express Io,ref, IL,ref, and γ explicitly in terms of Rsh, Rs, and known manufacturer’s values.  

Eq. 3.7 gives Rs as an implicit function of the temperature coefficient of open-circuit 

voltage.  It is not possible to isolate Rs due to the transcendental nature of this equation, 

so Rs must be found numerically.  At the correct value for Rs the analytical voltage 

coefficient given in Eq. 3.6-7 will equal the value given in the catalog.  In planning the 

numerical solution scheme it is important to understand qualitatively how the analytical 

voltage coefficient varies with Rs.  Townsend [2] states that for the four-parameter model 

the value of the voltage coefficient increases with series resistance.  This assertion was 

tested with the five-parameter model for an amorphous silicon module, the Solarex SA-5.  

EES was employed to determine the analytical voltage coefficient as a function of Rs.  

Values for all the other parameters were constrained by the given values of Rs and the 

catalog data.  Figure 3.7-1 shows the results.   
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Figure 3.7-1:  Analytical Voltage Coefficient vs. Series Resistance 

 

From Figure 3.7-1 it appears that µVoc does increase montonically with Rs.  Thus, a 

numerical scheme for converging on the proper guess value of Rs should increase the 

guess value with each iteration that µVoc  is less than the catalog value.  However, this 

function in monotonic only within a limited range.  Figure 3.7-2 shows the difference 

between the analytical value and the catalog value of µVoc as a function of Rs. 
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Figure 3.7-2:  Error in Analytical Voltage Coefficient vs. Series Resistance 

 

The voltage coefficient diverges near Rs = 480 Ω.  In order to use an iterative method in 

which each guess is made larger or smaller based on the sign of the error of the last 

guess, it is necessary that all guesses for Rs stay below this discontinuity.  This point 

might be a reasonable upper bound for Rs.  The reason for this divergence can be seen 

from examining the expression for the voltage coefficient: 
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The expression becomes very large as the denominator approaches 0.  At the 

discont inuity, it is clear that 
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IL,ref and Io,ref are both always positive quanities, as is the exponential, so the only way 

that this equation can hold true is if γ is negative.  However, a negative value for γ is not 

physcially meaningful as it implies that the current through the diode actually decreases 

with the voltage drop across it.  It is interesting to note how Rs effects γ, holding the other 

parameters constant. 
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Figure 3.7-3:  Relation Between Diode Parameter γ and Series Resistance 

 

This graph shows that g becomes negative at series resistance of about 24 Ω.  Of course, 

this value is much less than Rs = 480 Ω, the point at which the voltage coefficient 

approaches infinity.   
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Townsend [2] has pointed out that the minimum physically meaningful value for γ is 

where the diode completion factor A is equal to unity.  In this case, 

 

sN=minγ           Eq. 3.7-3 

 

where Ns is the number of cells in series in the module.  For the Solarex SA-5, Ns = 30.  

It is evident from Figure 3.7-3 that the maximum possible value for Rs is about 19 Ω. 

 

 

3.8   Bounding Rs in the Iterative Numerical Scheme 

 

It has been shown that physical constraints require that the series resistance parameter Rs 

be greater than zero and less than the value such that γ = Ns.  Rs cannot be written 

explicitly as a function of γ, however, so the upper bound must be determined 

numerically.  Newton’s method is employed to find this upper bound.  In Eq. 3.6-6, γ is 

given as an explicit function of Rs.  Thus, at the correct upper bound for the series 

resistance, the following objective equation must hold true: 
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 The derivative of F with respect to Rs,upper is: 
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Starting with an initial guess of 1 Ω, each value of Rs is chosen from the results of the 

previous iteration such that 
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3.9   Implicit Solution for Rs 

 

The previous two sections have addressed the physical and mathematical importance of 

bounding guesses for Rs and developed a method for determining these bounds.  This 

section outlines the algorithm for finding Rs once the initial bounds are known. The 

method is essentially like that employed by Eckstein [3] except of course that the 

equations have changed because of the addition of a fifth model parameter.  An initial 

guess for the series resistance taken to be the mean of the upper and lower bounds.  Eqs. 

3.6-4, 3.6-5, 3.6-6 are used to determine IL, Io, and γ.  (The fifth parameter, Rsh, is 

determined once directly from catalog data and does not depend on Rs.)  µVoc is 

determined according to Eq. 3.6-7, and this result is compared to the value given in the 

catalog.  If analytical value is too low, then the lower bound is set equal to the present 

guess for Rs.  If it is too large, the upper bound is set equal to the present guess.  A new 

guess is then determined by averaging the new set of bounds.  This scheme continues 

until Rs converges.  Figure 3.9-1 illustrates the solution scheme.  
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Figure 3.9-1:  Flowchart Illustrating Algorithm to Determine Rs in Five Parameter 
Model 

 

 

  

3.10   Variations in Io and IL Under Operating Conditions 

 

Once the values for the five parameters are known, the general IV expression (Eq. 3.4-2) 

may be employed to find the operating current for any given load voltage.  γ, Rsh, and Rs 

are assumed to be constant properties of the module, independent of temperature and 

radiation.  However, it is important to remember that IL and Io are not constant; the values 

determined from Eqs. 3.6-4 and 3.6-5 are only valid for the reference conditions of Tc = 
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298 K and G = 1000 W/m2.  Thus, these two parameters must be recalculated at each 

timestep based on their reference values and the ambient conditions.  The NOCT method 

is used to determine the cell temperature Tc [2].  As with the four parameter model, the 

photocurrent is assumed to be proportional to the incident radiation: 
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By manipulating Eq. 3.2-3, the temperature dependence of the reverse saturation current 

may be expressed as: 
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3.11   Finding Isc and Voc Under Operating Conditions 

 

The short circuit current and open-circuit voltage are useful quantities for some 

applications, and the TRNSYS program automatically calculates them at each timestep.  

In addition, Voc is employed as an upper bound in a search routine to determine the 

voltage at the maximum power point; this will be discusses in a later section.  

Determining Isc is trivial; it is determined directly from IL by rearranging Eq. 3.6-4.  Voc 

may be found from Eq. 3.6-5, although an explicit solution is not possible.  (It may be 

found explicitly in the four-parameter model, however.)  A search routine similar to that 

used to find Rs is employed to converge on a value for Voc.  The initial lower bound is 0 

V, while the initial upper bound taken conservatively to be 150% of Voc,ref.  (Under 

operating conditions except for the most extreme climates, Voc will not vary from Voc,ref 

by more than 20%.)   

 



 36

 

3.12   Numerical Method for Solving the IV Equation  

 

As with upper bound for the series resistance, the TRNSYS subroutine employs 

Newton’s method to find the current for any given voltage.  Eq. 3.4-2 is manipulated to 

form an objective function: 
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The derivative with respect to Iguess is 
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3.13   Method for Locating the Maximum Power Point  

 

Under any operating condition there exists a unique maximum power point; this is the 

location along the IV curve where the power output of the PV is maximized.  Building-

integrated photovoltaic systems almost always employ a maximum power point tracker; 

this device provides a constantly varying load which forces the PV to operate at its 

optimal power point.  All simulations in this study assume that the PV output is at its 

maximum power point.   

 

The power is simply the product of current and voltage.  At the maximum power point, 

the derivative of power with respect to voltage must be zero: 

 

 ( )
dV
dI

VIIV
dV
d

dV
dP

+===0      Eq. 3.13-1 

 



 37

Like the current itself, the derivative 
dV
dI

 is an implicit function of voltage.  At any given 

voltage, it may be found readily using Newton’s method.  The objective function F and 

its derivative with respect to 
guessdV

dI






 are: 
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A bisection search routine (like that for Rs and Voc) is employed to solve Eq. 3.13-1.  The 

initial bounds for the maximum power point voltage are 0 and Voc.  If a guess for voltage 

is too low, 
dV
dP

>0 and the lower bound is set equal to the present guess value for the next 

interation.  Likewise, the upper bound is set equal to the guess value if 
dV
dP

<0. 

 

 

3.14   Incidence Angle Modifier 

 

The percentage of incident radiation absorbed by a solar collector or photovoltaic module 

is a function of incidence angle.  At large angles of incidence, a greater portion of 

incident radiation is reflected away rather than absorbed.  King [19] gives an empirical 

correlation for the reflectance of glass front PV modules as a function of incidence angle.  

The correlation of King is as follows: 
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          Eq. 3.14-1 

 

θ ιs the angle of incidence; at normal incidence θ is 0.  IAM stands for “incidence angle 

modifier” and gives the ratio between radiation absorbed by the PV and the radiation that 

would have been absorbed at normal incidence.   Figure 3.14.1 graphs the inc idence 

angle modifier correlation. 
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Figure 3.14-1:  Incidence Angle Modifier Correlation 

 

Al-Ibrahim has noted that the glass cover roughness varies between PV modules.  

However, he has shown experimentally that the roughness of the glass does significantly 

affect the dependence of reflectance on the incidence angle [20]. 

 

Of course, it is necessary to know the angle of incidence in order to use the correlation 

described above.  The TRNSYS solar radiation processor (Type 16) calculates the 

incidence angle for the beam component of the radiation.  However, the absorptance ratio 

cannot be found directly from this angle since doing so would neglect the diffuse and 

ground-reflected components of the radiation.  Beckman and Duffie [5] have compiled 

additional correlations to determine the “effective incidence angle” for diffuse and 
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ground-reflected radiation.  These effective angles are functions only of collector or PV 

slope.  The effective angles are then used as arguments in Eq. 3.14-1 to calculate 

absorptance ratios for diffuse and ground-reflected radiation.  The effective angle 

correlations are: 

 
2

, 001497.01388.07.59 ββθ +−=diffeff     Eq. 3.14-2 

 
2

, 002693.05788.090 ββθ +−=gndeff     Eq. 3.14-3 

 

A total effective insolation may then be calculated by summing the individual 

components of radiation and multiplying them by their separate absorptance ratios.  

 

ggTddTbbTeffT IAMIIAMIIAMII ,,,, ++=     Eq. 3.14-4 

 

Simulations were run for four US locations to examine how including the incidence angle 

modifier affects annual PV output. TMY (Typical Meteorological Year) data was used 

for each location.  Each simulation has a length of one year and employs a single 

amorphous Solarex MST-56 module facing south with a slope equal to the latitude.  The 

results are as follows: 
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Figure 3.14-2: Simulation Results Employing the Incidence Angle Modifier 

 

In each case, including the incidence angle modifier reduced the annual energy 

production by roughly 10%.  
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3.15   Testing the Five-Parameter Model 

 

In general, photovoltaic devices exhibit better performance at lower temperatures.  In a 

climate such as the Midwest with significant seasonal variations in temperature, the PV 

conversion efficiency may vary by 15% or more from winter to summer.  µIsc, the 

temperature coefficient of short-circuit current, is a positive quantity; short-circuit 

performance actually improves as the temperature goes up.  However, at most operating 

conditions including the maximum power point, this effect is outweighed by a drop in 

open-circuit voltage.  Thus, the overall derivative of maximum power with respect to 

temperature is a negative quantity. 

 
The temperature dependence of the five parameter model was examined for two 

amorphous modules, the Solarex SA-5 and Solarex MST-56.  These results are compared 

to selected points read from manufacturers’ IV curves.  The selected points are not 

experimental data but rather are taken from small catalog graphs.  At an irradiance of 

1000 W/m2, the IV curves for the SA-5 at 25 C, 50 C, and 75 C are as shown in 

Figure3.15-1. 
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Figure 3.15-1: Catalog Data and Model IV Curves for Solarex SA-5 

 

The model agrees closely with the catalog data for voltages below about 12 V.  Beyond 

about 15 V, the model begins to underpredict the current significantly.  At a current of 

0.2 A, the model underpredicts the catalog results by about 1 V at each temperature. 

 

For grid-tied applications, it may be useful to graph power rather than current as a 

function of voltage.  This aids is visualizing the difference in peak power between the 

model and catalog: 
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Figure 3.15-2:  Catalog Data and Model Power-Voltage Curves for Solarex SA-5 

 

As with current, the predicted power agrees closely with the catalog curve below about 

13 V.  At the maximum power points for 25 C and 50 C, the catalog and model differ by 

about 0.25 W.  The discrepancy is greater for the 75 C curve, however: about 0.4 W.   

 

Experimental IV points were not available to validate the model; such data would clearly 

be preferable to using catalog data.  It is notable that the values for Voc, Isc, and the 

maximum power point given in the specifications list were inconsistent with the IV curve 

presented in the catalog.  In modeling the IV curve, these values were taken from the 

catalog curve rather than the specifications list.  These parameters for the SA-5 are 

compared in Table 3.15-1. 
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Table 3.15-1: Specifications List and Catalog IV Curve for Solarex SA-5 
 

 Isc Voc Max Power Point 

Specs List 0.380 A (minimum) 23 V (minimum) 15 V, 0.340 A (min) 

Read from IV Curve 0.358 A 25.0 V 15 V, 0.325 A 

 

 
The discrepancies are significant and suggest that the IV curves in the catalog may be not 

extremely accurate.  Experimental data would clearly provide a better test of the model.  

The table value of 15 V for the maximum power point was used in the model, and 

reading from the catalog IV curve implied a maximum power point current of  0.325 A.  

However, Figure 3.15-2 shows that even according to the catalog curve the maximum 

power point occurs as at about 18 V for test conditions (25 C).  Again reading from the 

catalog, this point corresponds to a maximum power point current of 0.300 A.  Running 

the model a second time using this new value for the maximum power point produced the 

results shown in Figures 3.5-3 and 3.5-4. 
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Figure 3.15-3:  Catalog Data and Model IV Curves for Solarex SA-5, taking catalog IV 
value of Vmp = 18 V  
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Figure 3.15-4:  Catalog Data and Model Power-Voltage Curves for Solarex SA-5, taking 
catalog IV value of Vmp = 18 V 

 
 

Changing this maximum power point value in the model improves the agreement with the 

catalog data substantially, particularly for the 25 C reference temperature curve.  Not 

surprisingly, this alteration moves the maximum power voltages in the model to 

correspond much more closely with those in the catalog.  At maximum power the model 

still underpredicts the catalog currents by about 0.2 W for the 50 C and 75 C curves. 

 

The temperature dependence and catalog comparison for the Solarex MST-56, another 

amorphous module, are shown in Figure 3.15-5 : 
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Figure 3.15-5:  Catalog Data and Model IV Curves for Solarex MST-56 

 

 

Figure 3.15-6 shows the power-voltage characteristics for the MST-56 at 25 C and 60 C. 
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Figure 3.15-6:  Catalog Data and Model Power-Voltage Curves for Solarex   MST-56 
 

 

Again, the model seems to perform well at low voltages including the short-circuit 

condition.  It also seems to be fairly consistent around 70 V, the vicinity of the maximum 

power point.  At larger voltages the model overpredicts the performance of the PV 

slightly.  (For the SA-5, the five-parameter model underpredicts the current.)  This 

overprediction is particularly evident for the 60 C case at the open-circuit condition.  The 

five-parameter model underestimates the detrimental effect of increasing temperature on 

this PV.  The catalog value of Voc (-0.4 V/K) was used for the model.  This agrees closely 

with the value of Voc implied by the catalog IV curve; the problem is not simply a case of 

inaccurate values in the specs list.  The model attempts to match the analytical and 

catalog values for Voc at reference conditions, however, so this result is surprising.  One 

explanation could be the Voc actually changes with temperature.  To examine this 



 49

possibility, the open-circuit voltage was determined using the model for a wide range of 

temperatures:  the results are given in Figure 3.15-7: 
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Figure 3.15-7:  Model Open-Circuit Voltage vs. Temperature for Solarex MST-56 

 

 

This function appears to be quite linear, suggesting that µVoc does not change much with 

temperature.  Figure 3.15-8 gives two values for µVoc as functions of temperature.  One is 

determined by numerically differentiating the function in Figure 3.15-7.  The other is the 

analytical value from Eq. 3.6-6.   
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Figure 3.15-8:  Analytical and Numerical µVoc vs. Temperature for Solarex MST-56 

 

Over the range of operating temperatures (about –30 C to 70 C) the two coefficients are 

roughly –0.3 V/C.  The reason that these values do not agree precisely is that the short-

circuit current coefficient µIsc is assumed to be constant in Eq. 3.6-6; this assumption may 

not be completely valid.  However, the model determines Rs such that the analytical value 

of µVoc should match the catalog value at reference conditions; this is clearly not the case. 

 

The reason for this is that the lower bound imposed on Rs prevents it from reaching a 

value where the coefficients can agree.  Rs for this module is very small, 0.00045 Ω.  The 

value is actually “pinned” by the constraint that Rs cannot become negative.  A negative 

series resistance is clearly not physically meaningful.  However, a test was run allowing 

Rs to drop below zero; perhaps this would improve the models agreement with the catalog 

data.   When the lower bound constraint on the series resistance was removed, the model 

converged on Rs = -41.66 Ω.  In this case µVoc agrees much more closely with the given 

value of –0.4 V/K, as shown in Figure 3.15-7. 
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Figure 3.15-9:  Analytical and numerical µVoc values, allowing Rs to become negative 
 

 

The IV and power-voltage curves are shown in Figures 3.15-10 and 3.15-11. 
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Allowing Rs to fall below zero to match the voltage coefficient clearly does not help the 

model.  Not surprisingly, the temperature effect on Voc is improved, but the model fails to 

predict current and power accurately above 60 V for either temperature.  Based on this result, 

it seems that the physical constraint of requiring a non-negative series resistance is justified. 

 

As with the SA-5, there is some inconsistency between the specifications list and points 

shown on the catalog IV curve.  Values for Isc, Voc, and Imp were taken from the 

manufacturer’s IV curves rather than from the catalog specs list.  The differences are 

illustrated in Table 3.15-2.  
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Table 3.15-2:  Discrepancies in Catalog IV Curve Values and Catalog Specifications List 

 
 Isc Voc Max Power Point 

Specs List 0.871 A   102 V (minimum) 73 V, 0.761 A (min) 

Read from IV Curve 0.88 A 101 V 73 A, 0.70 A 

 
 

The maximum power point voltage of 73 V given in the specifications list is consistent with 

that read from the power-voltage graph generated from the catalog IV curve.  As discussed 

above, the largest disagreement between the model and catalog for this module is the effect 

of temperature on open-circuit voltage. 
 

 

3.16   “Parameter Optimization” to Determine IL, Io, γ, and Rs 

 

The method described above to solve for IL, Io, γ, and Rs relies on algebraic relationships 

between these parameters derived from the general IV equation.  An alternate approach is 

simply to find values for the parameters that minimize the error in model IV predictions.  A 

TRNSYS program to perform similar parameter optimization for refrigeration equipment was 

developed by Rabehl and Reichler[7].  EES was employed for the error minimization 

program in this work.  EES has the capability to numerically minimize a specific variable 

with respect to up to ten degrees of freedom.  In this case the variable to be minimized is the 

sum of the squares of the differences between a set of catalog IV data and  corresponding 

points along an IV curve generated by the model.  Each “difference” is just a geometric 

distance between a catalog point and model point in the IV plane.  All the currents and 

voltages are normalized to their open circuit and short circuit values; this assures that current 

and voltage will be weighted equally in finding the difference between two points.  For N 

pairs are data, the total error to be minimized may be expressed as 
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Values for Imod and Vmod were read from manufacturers’ IV curves for the Solarex SA-5 and 

MST-56 modules.  The SA-5 catalog includes curves for three temperatures and the MST-56 

includes two.  A key issue in using this method is finding an appropriate point on the model 

IV curves to compare to each catalog point.  One possibility is to match voltages; a model 

current is calculated for each catalog voltage and compared to the current on the catalog IV 

curve.  In this case the voltage term in Eq. 3.16-1 drops out, leaving only a squared 

difference in currents.  This method is simple and intuitive.  However, it may not lead to 

model IV curves that match the catalog data as closely as possible.  The reason for this is that 

at high voltages approaching Voc the slope of the IV curve is quite large.  This means that 

even if there is very little geometric distance between a catalog curve and a model curve, 

there may be large differences between currents at a particular voltage in this region.  Thus, 

the optimization scheme will preferentially match the model and catalog data at high voltages 

at the expense of regions near the short circuit current.   

 

A better method is to choose each Imod and Vmod so that these points lie along the same 

“resistance line” as Icat and Vcat.  Normalizing with respect to Isc and Voc, this condition may 

be expressed as 

 

jcat

jcat

j

j

I

V

I

V

,

,

mod,

mod, =         Eq. 3.16-2 

 

Figures 3.16-1 and 3.16-2 compare these two methods, illustrating how matching voltage 

rather than resistance lines overemphasizes differences between the model and the catalog 

data for high voltage values. 
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Figure 3.16-1:  Matching Voltages to Optimize Paramteters Exaggerates High Voltage Error 
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Figure 3.16-2:  Matching Resistance Lines Evaluates Error on Geometric Distance Between 

Model and Catalog IV Curves 
 
 
 
The parameter optimization method was first tested using a large number of points along the 

three IV curves for the Solarex SA-5.  14, 13, and 12 data points were used at 25 C, 50 C, 

and 75 respectively.  With a total of 39 catalog data points, this method produced an 

excellent fit at all three temperatures, as Figures 3.16-3 and 3.16-4 show. 
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Figure 3.16-3:  Catalog Data and Model IV Curves For Solarex SA-5 Using Parameter 

Optimization Scheme (39 Points) 
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Figure 3.16-4:  Catalog Data and Model Power-Voltage Curves For Solarex SA-5 Using 

Parameter Optimization Scheme (39 Points) 
 

 
 
In some cases this many points may not be available, so it is interesting to see if the parameter 

optimization routine will still work well when fitting fewer points.  The program was run 

again using a total of nine points, three at each temperature.  The results are encouraging, 

producing curves nearly identical to those generated using 39 catalog points.  Figures 3.16-5 

and 3.16-6 illustrate the parameter optimization for nine points. 
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Fig 3.16-5:  Catalog Data and Model IV Curves For Solarex SA-5 Using Parameter 

Optimization Scheme (9 Points) 
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Fig 3.16-6:  Catalog Data and Model Power-Voltage Curves For Solarex SA-5 Using 

Parameter Optimization Scheme (9 Points) 
 

 

For the SA-5 parameter optimization clearly provides a viable alternative to iterating to find 

Rs and then solving for the other parameters algebraically. Unfortunately, the EES program to 

optimize the parameters for the Solarex MST-56 failed to converge using three data points at 

each of two temperatures.  An additional point for each temperature was added between the 

maximum power point and open-circuit voltage point but this did not change the result.  The 

algebraic parameter solution method did not produce wholly satisfactory results for the MST-

56 either; correctly matching µVoc produced a negative series resistance and very poor fit at 
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voltages greater than the maximum power point.  It may be that the five parameter IV 

relation described by Eqn. 2-20 does not adequately describe the behavior of this module.  

 

 

3.17   Summary of Model Parameters at Reference Conditions  
 
For the SA-5, the values of the five parameters IL, Io, Rsh, Rs, and γ at reference conditions are 

given in Tables 3.17-1 and 3.17-2 for various methods of calculation.  The physical 

significance of these values is limited as they cannot be compared to measurable quantities.  

Their accuracy should be evaluated by comparing the IV curves they produce to 

experimental or catalog IV data.   

 

Table 3.17.1:  Parameter Values for Solarex SA-5 

 

Method IL Io γ Rs Rsh 

Algebraic iteration:   
Vmp = 18 V as given in 
specs list 

0.3600 A 2.02 x 10-4 A 131.3 2.75 x 10-4 Ω 1000 Ω 

Algebraic iteration: 
Vmp = 15 V as implied by  
catalog IV curve 

0.3631 A 2.55 x 10-6 A 82.5 8.68 Ω 1000 Ω 

Parameter optimization: 39 

data points 

0.3623 A 7.25 x 10-6 A 90.9 4.838 Ω 1000 Ω 

Parameter optimization:   
9 data points 

0.3615 A 7.30 x 10-6 A 90.8 4.382 Ω 1000 Ω 
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Table 3.17.2:  Parameter Values for Solarex MST-56 

 

Method IL Io γ Rs Rsh 

Algebraic iteration:   
Rs required to remain 
positive 

0.8710 A 1.81 x 10-4 A 478.6 4.46 x 10-4 Ω 714.3 Ω 

Algebraic iteration: 
Rs allowed to drop below 
zero 

0.8202 9.33 X 10-3 A 926.8 -41.66 Ω 714.3 Ω 

Parameter optimization:   
6 data points 

Failed to Converge 

Parameter optimization:   
8 data points 

Failed to Converge 

 

 

 
 

3.18   Insolation Effects in the Five-Parameter Model 
 

In any PV both Isc and Voc decrease at low insolation levels.  Isc is roughly linear with 

insolation; this is reflected in the model by setting the photocurrent IL to be proportional to 

insolation.  Voc does not drop off as quickly, although changes in this quantity are also 

significant.  These effects are reflected in the five-parameter model, as illustrated in Figure 

3.18-1 and 3.18-2. 
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Figure 3.18-1:  Model IV Curves for Solarex SA-5 at Five Insolation Levels 
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Figure 3.18-2:  Model IV Curves for Solarex MST-56 at Five Insolation Levels 
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3.19   Computational Speeds of the Three Models 
 

A final consideration in selecting a PV model is computational speed.  The primary thrust 

of this work is estimating the economic potential for BIPV systems in Wisconsin.  For 

this application computational speed is not a high priority since programming, data 

analysis, and documentation require much more time than actually running the 

simulations.  However, a secondary goal is to produce stand-alone software for analyzing 

BIPV systems.  Computational speed is more critical for this application. 

 

Three “bare-bones” TRNSYS simulation decks were written to compare the speeds of the 

three models.  Each deck includes only five PV arrays (four parameter, efficiency 

coefficient, or five parameter), five radiation processors, and a TMY data reader.  The 

simulation length was set to one year with hour- long timesteps. The decks were run on a 

200 MHz Intel Pentium Pro machine.  The computational time necessary to run each 

model is given in Table 3.19.1.  

 

Table 3.19-1:  Computational Times with 200 MHz Pentium Pro 

 
PV Model Computational Time 
Efficiency Coefficient 8 sec 
Four Parameter 9 sec 
Five Parameter 24 sec 

 
 
It is surprising to see that the efficiency coefficient model is only marginally faster than 

the four parameter model.  Given its relatively unsophisticated calculations and broad 

assumptions, a 10% improvement in computational over the four-parameter model does 

not justify its use in simulations for this work.  The five parameter model is about three 

times slower, although it still runs this test in well less than a minute.  For both 

Wisconsin economic analysis and stand-alone software development the five parameter 

model appears to be acceptably quick.  The advantage of the five parameter model lies in 

its ability to simulate amorphous modules.  For single crystal and polycrystalline modules 

its results are identical to those of the four parameter model.  For the of sake speed, the 
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developed software actually employs the five parameter model only for amorphous 

modules.  The four parameter model is used for single crystal and polycrystalline 

modules.   Simulations in which a PV is coupled directly to a load require far more 

current-voltage iterations than grid-tied applications in which the PV unit is only called 

once per timestep.  Thus, the slower speed of the five-parameter model may pose more of 

an obstacle for direct-coupled simulations. 

 
 

3.20  Conclusion 
 
This chapter addresses the basic physics of photovoltaic devices qualitatively and 

discusses issues involved in simulating their performance.  A PV is formed by “doping” a 

semiconductor material such as silicon with impurities that change the electronic 

structure of the crystal lattice.  If an incident photon of sufficient energy reacts with an 

electron in the PV material, the electron may be knocked loose from its atomic orbit.  

Such an electron is free to contribute to an electric current.  A permanent electric field in 

the PV forces this photoelectron through a load, where it can perform useful work. 

 

Three PV modeling schemes are introduced: the efficiency coefficient model, the four 

parameter model, and the five parameter model.  The first of these, the efficiency 

coefficient model, determines the maximum power out of the PV without calculating its 

current-voltage coefficients.  This limits its use to applications in which only the 

maximum power output is desired; it cannot be employed in simulations of direct-

coupled PV systems.  The efficiency coefficient assumes that the conversion efficiency of 

any PV is linear with operating temperature and independent of insolation.   Neither of 

these assumptions is precisely correct.  However, under most operating conditions they 

are reasonable approximations.  The advantages of the efficiency coefficient lie in its 

speed and simplicity, although this works calls for the use of a more sophisticated model. 

 

The four parameter model, developed largely by Townsend [2] and implemented into 

TRNSYS by Eckstein [3], has been used extensively in PV simulation work.  It treats the 

PV as an equivalent circuit consisting of a current source, a diode, and a single resistor.  
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The “four parameters” consist of the current source strength, the resistance, and two 

diode curve-fitting parameters.  These values are not physically measurable quantities 

and cannot be obtained directly from catalogs.  However, they may be determined 

numerically from numbers readily available in a PV specifications list.  This model is 

only slightly slower than the efficiency coefficient scheme.  In addition, it is not suitable 

to determine the IV characteristics of amorphous PVs.  Unlike the efficiency coefficient 

model, it has a semi-physical basis and does not make simplifying assumptions about the 

insolation and temperature-dependent behavior of the PV.   

 

The final system, the five-parameter model, was implemented into a TRNSYS 

component for this work.  It is based on an equivalent circuit like that in the four 

parameter model, although a second resistance is added.  The model is able to simulate 

amorphous as well as single crystal and polycrystalline PVs.  For single crystal and 

polycrystalline modules, however, the equations employed in this model reduce to those 

in the four-parameter model.  Two methods of calculating the five parameters from 

catalog data are discussed.  The “algebraic iteration” method iterates to determine a value 

for Rs such that the analytical coefficient of open circuit voltage matches the catalog 

value.  The other parameters may be found explicitly from Rs at each iteration.  In the 

“Parameter Optimization” method, an EES program minimizes the differences between 

points on a model IV curve and catalog data to find optimal values for the parameters.  

This method produces an excellent fit for the Solarex SA-5 but fails to converge for the 

Solarex MST-56.  Running the five parameter model takes about three times longer than 

the four parameter model, although it is still acceptably fast for this work.  The TRNSYS 

simulations detailed in the following chapter employ the four parameter model for single 

crystal and polycrystalline modules and the five parameter model with algebraic iteration 

for amorphous PVs.  
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           CHAPTER 4  

PHANTASM Simulation Program 

 

 

PHANTASM (PHotovoltaic ANalysis and TrAnsient Simulation Method), developed for 

this work, is a tool for estimating the electrical energy production of grid-tied building 

integrated photovoltaic systems.  Based on these results, the program also calculates a 

customer’s monetary savings.  This program employs TRNSYS, an energy simulation 

package developed at the UW Solar Energy Laboratory.  PHANTASM was run using 

1990 weather, load, and utility data for Milwaukee to estimate the feasibility of large-

scale BIPV implementation in Wisconsin.  The results of these simulations are discussed 

in Chapters 6 and 7. 

 

This chapter begins with an overview of the capabilities of TRNSYS.  It then summarizes 

the methodology and calculations employed in the PHANTASM program and describes 

the new TRNSYS components included in the program.  The PHANASM User’s Manual 

explains the features and capabilities of the program in more detail [Fry, 1999].  

Appendix A gives the TRNSYS code for PHANTASM.  Fortran Code and descriptions 

for the new TRNSYS TYPEs are given in Appendix B. 

 

 

4.1   TRNSYS, TRNSHELL, and TRNSED 

 

The photovoltaic simulations in this work were developed using TRNSYS (short for 

Transient System Simulation.)  TRNSYS is a general-purpose energy system simulation 

package developed at the Solar Energy Laboratory [Klein et. al, 1997].  A TRNSYS 

program consists of a number of components or "TYPEs," each of which represents a 

specific part of the system.  A TYPE may be physical system element such as a chiller, 

tank, or photovoltaic module.  Other TYPEs perform necessary calculations but do not 

represent an actual piece of equipment.  An example is the TYPE 16 “radiation 
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processor” which determines the solar energy incident on a tilted surface.   Other TYPEs 

are output components that write simulation data to disk or produce graphical results on-

screen. 

 

Each TYPE requires a specific set of parameters and inputs. Parameters are values 

describing the component which do not vary with time, such as the reference value for 

short-circuit current of a PV module.  Inputs may change with time as the simulation 

progresses.  For instance, the TRNSYS inputs for a PV component include incident 

radiation and ambient temperature.  Each TYPE uses the values of its parameters and 

inputs to calculate outputs at every timestep.  The physical system is defined by assigning 

the outputs of certain TYPES to be inputs of others, producing a system of differential 

and algebraic equations.  TRNSYS iterates the system inputs numerically until all outputs 

reach a specified convergence tolerance.   

 

Consider the following example of a TRNSYS deck modeling a simple PV system.  This 

deck includes four TYPEs.   The first is a TYPE 9 data reader that reads a weather data 

file from disk; this data file includes hourly values for ambient temperature Ta and total 

solar radiation I on a horizontal surface.  The second is a TYPE 16 radiation processor.  

This component employs an empirical correlation to determine the total radiation incident 

on the tilted surface of the PV module.  The third component is the TYPE 64 PV module 

itself.  It uses various module parameters, ambient temperature, and incident radiation 

from TYPE 16 to calculate electrical power generation.  Finally, a TYPE 25 "printer" 

writes the PV output to disk.  Figure 4-1.1 illustrates the information flow in this sample 

program. 
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TYPE 16
Radiation Processor
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Figure 4-1.1:  Simple TRNSYS PV program  

 

Each TYPE is a Fortran subroutine that calculates outputs from inputs and parameters.  

TRNSYS provides a framework to link these subroutines together, along with numerical 

algorithms to solve the resulting system of equations.  The source code for TYPEs in the 

standard component library may be modified as needed.  In addition, new TYPEs may be 

developed for special applications. Seven new TYPEs were written for this work: 

 

 TYPE 3: Utility Rate Schedule Calendar 

 TYPE 100: Parallel Generation Rate Processor 

 TYPE 99: Utility Rate Schedule File Writer 

 TYPE  96: Efficiency Coefficient "Quick" PV Module 

   (Evaluated in Chapter 3 but not used in final program) 

 TYPE 87:  Inverter 

 TYPE  98: Economic Impact Evaluation  

 TYPE 123: Sequential Simulation Summary 

 

Two other non-standard TYPEs, developed by Thermal Energy System Specialists 

[1998], are included in the BIPV program: 
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 TYPE  70: Grouped Parameter Replacement 

 TYPE  153: Load Data Reader 

 

Finally, substantial modifications were made to Eckstein’s TYPE 64 Four Parameter PV 

Module [1990] in developing the TYPE 101 Five Parameter PV Module. 

 

TRNSYS decks are usually coded using TRNSHELL, a text editor.  TRNSED is another, 

more intuitive user interface for TRNSYS.  TRNSED uses buttons, pull-down menus, 

and number-entry fields to modify the components and parameters in a deck.  One major 

advantage of TRNSED is that it allows users to quickly modify, run, and analyze 

TRNSYS simulations without detailed knowledge of the TRNSYS language.  

PHANSTASM employs the TRNSED interface.  It is intended for engineers and 

architects interested in quickly estimating the economic performance of PV systems.  

Figure 4.1-2 illustrates the a portion of the TRNSED input screen for the PHANTASM 

program. 
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Figure 4.1-2: Portion of PHANTASM input screen 

 

 

4.2   Overview of the PHANTASM Program 

 

PHANTASM evaluates the physical performance of a BIPV system over any desired 

time period for which weather data is available.  It also estimates the utility bill savings 

for the building owner.  Three types of data are necessary to run a simulation: weather, 

building loads, and a utility rate schedule.  A fourth data set, hourly utility demand 

obligation values, was used in this study to estimate the impact of BIPV systems on a 

utility.  Chapter 5 discusses the data used in the Milwaukee simulations.  All the 
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necessary information to run a simulation is summarized in Table 4.2-1.  The table also 

shows where these data were obtained for the Milwaukee simulations. 

 

Table 4.2-1:  Input data for PHANTASM 
 

Data Description Source for Milwaukee 
Simulations 

PV System Parameters Inverter information.  
Number, make, and 
orientation of PVs 

Manufactures’ catalog data 

Weather Temperature and solar 
radiation 

Hourly solar data from NREL 
and temperature data from 
Commercial Cooling Load 
Library [12, 16] 

Building Load Total electrical load of 
building at each timestep 

Records from Commercial 
Cooling Load Library [16] 

Rate Schedule Hourly and seasonal usage 
and demand rates for 
electric customers 

Wisconsin Electric rate 
schedule brochure [14] 

 

 
Weather data is necessary to determine the electrical performance of a PV system.  This 

may be either statistically generated weather from a TYPE 54 Weather Generator or a file 

containing hourly values for temperature and solar radiation.  1990 data for Milwaukee 

was used for this study but any hourly weather data set may be used.  A TYPE 16 

Radiation Processor determines incident radiation on each PV array.  The arrays 

themselves are represented by TYPE 101 Five Parameter Photovoltaics.  Chapter 3 

describes the calculations employed in TYPE 101.  A TYPE 87 Inverter accounts for 

power conditioning losses.  The total production of electricity at each timestep is the 

inverter output. 

 
Determining a customer’s savings due to PV-generated electricity is more involved than 

simply totaling up PV generation and multiplying by a constant price per unit of energy.  

There are two main complicating factors in this calculation.  The first is that the price a 

utility charges for a kWh of electricity is not necessarily constant from one hour to the 

next.  Rate schedules often include hourly and/or seasonal variations.  The second 

complicating factor is that most commercial utility schedules include monthly (and 
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possibly annual) demand charges.  A demand charge is based on a customer's largest 

instantaneous net power consumption over the course of the month. The demand charge 

is independent of the usage charge assessed for total energy consumption.  Chapter 5 

discusses rate schedules in more detail. 

 

PHANTASM accepts building electrical loads from one of two sources.  The first is the 

program SCHED.EXE developed by Thermal Energy Systems Specialists (TESS)  

[1998].  This program provides twenty-four “sliders” to define hourly loads and writes 

the load pattern to disk as a data file.   The PHANTASM program includes a link to 

SCHED.EXE.  A TYPE 153 Load Data Reader reads this file as the simulation runs. The 

slider input display is shown in Figure 4.2-1. 

 

 
 

Figure 4.2-1:  Graphical load input using SCHED.EXE 
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Alternately, a file containing load data over the course of a year may be read in from 

disk.  Fifteen-minute load files from the Energy Center of Wisconsin Commercial 

Cooling Load Library [The Fleming Group, 1994] were used in the Milwaukee BIPV 

simulations.     

 

Four new TYPEs were developed to calculate PV savings.  These components may also 

be used in TRNSYS programs employing other types of renewable parallel generation.  

The first component is the TYPE 3 Utility Rate Schedule Calendar.  This TYPE 

calculates the hour of day, day of week, and month at each simulation timestep.  It also 

determines if the timestep falls on a weekend or holiday.  These pieces of information are 

inputs for the TYPE 100 Utility Rate Schedule Processor.  TYPE 100 reads a utility rate 

schedule file and uses the calendar to determine the usage and demand rates at each 

timestep.  Cumulative energy usage and maximum demand are totaled for each month 

and written to two "utility bill" files. Twenty-four rate schedules for major Wisconsin 

utilities are saved as text files; the user may select a rate schedule from a pull-down menu 

on the TRNSED input screen.  Alternatively, the user may create a new rate schedule.  

This file is written to disk by the TYPE 99 Utility Rate Schedule File Writer.  At the end 

of the simulation a TYPE 121 Economic Evaluation component is called once.  This 

component calculates one of four quantities and prints the results to a data file.  

Depending on the operating mode selected, TYPE 121 reports on payback time, break-

even cost, profits (or losses), or return-on- investment. 

 

Any of five TYPE 25 “Printers” write output files to disk.  The TYPE 25 components 

produce tab-delimited text files detailing system performance at each timestep.  A type 

123 Sequential Simulation Summary writes a single-line summary giving savings and 

energy generation over the course of the simulation.  This line is written at the bottom of 

an existing file without altering any data it may already contain; this component was 

developed to quicken the analysis of parametric studies.  Finally, the user has the option 

of choosing between five TYPE 65 On-Line Displays which plot various aspects of 

system performance as the simulation runs.  Turning off the on- line graphics causes the 

program to run slightly faster.   
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Figure 4-2.2 shows a flowchart summarizing the information exchange in the program.  

Output components are not included in the diagram. 

 

Weather
    Data Reader
or Generator
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Radiation
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Instantaneous
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Rate
Schedule

- Profit
- Payback Time
- Break-Even Cost
- Return on Investment  

 

Figure 4-2.2:  PHANTASM program flowchart 
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4.3   Weather Data  

 
Weather may either be statistically generated at each timestep as the simulation runs or 

read from an hourly data file.  The first option relies on the TYPE 54 Weather Statistical 

Weather Generator.  This component produces hourly weather based on monthly 

averages for three quantities:  horizontal radiation, temperature, and humidity ratio.  

TRNSYS includes these monthly quantities for over 200 North American cities, and any 

of these locations may be selected from the TRNSED input screen.  The ground 

reflectance is not an output from TYPE 54, and the user will be prompted to enter a 

constant ρg value if weather generation is employed.   

 

The program also supports two types of hourly weather files.  The first is the standard 

TRNSYS TMY (Typical Meteorological Year) format.  TMY data is compiled by NREL 

to represent climatic conditions in an ordinary year.  The TMY database is discussed in 

further detail in Chapter 5.  The user may select TMY data from one of four locations: 

Madison, Albuquerque, Miami, or Washington DC.  As with statistically generated data, 

the user will be prompted to enter a constant value for ground reflectance when TRNSYS 

TMY data is selected.  Other TMY data sets may be added if desired. 

 

The second weather file format, referred to as “reduced NREL,” was developed for this 

work and employed in the Milwaukee simulations.  It includes hourly values for total 

horizontal radiation I and normal beam radiation Ibn at the present hour and following 

hour.  In addition, the file contains entries for ground reflectance, ambient temperature, 

and relative humidity, and dewpoint temperature.  (The dewpoint and relative humidity 

are not employed in calculations in the present version of the program, so zeros may be 

entered as placeholders if these values are unavailable.)  The reduced NREL data format 

consists of 8760 rows of hourly data in eight tab-delimited columns as shown in Table 

4.3-1: 
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Table 4.3-1:  Format of “reduced NREL” data file 
 
 
Column Quantity Description Units 
#1 I Total radiation on a horzontal surface at 

present timestep 
W/m2 

#2 Ibn Beam radiation on a normal surface at 
present timestep 

W/m2 

#3 Inext Total radiation on a horizontal surface at 
next timestep 

W/m2 

#4 Ibn,next Beam radiation on a normal surface at next 
timestep 

W/m2 

#5 Tamb Ambient temperature C 
#6 R Relative humidity Unitless (0-100) 
#7 Tdp Dewpoint temperature C 
#8 ρ Ground reflectance Unitless (0-1) 
 
 
 
 
4.4 PV System Calculations 

 

A TYPE 16 Radiation Processor calculates the radiation incident on each PV array.  The 

radiation processors in this program are configured to take total horizontal radiation and 

beam normal radiation as inputs.  The beam radiation incident on each surface is 

calculated from these values.  The diffuse radiation on each surface is determined using 

the “isotropic sky” method of Liu and Jordan [1960].  This method assumed that diffuse 

solar radiation emanates uniformly from all regions of the sky.  Other diffuse radiation 

correlations, such as that developed by Perez [1988], account for increased sky radiation 

from regions near the horizon and solar disk.  The Perez calculation was not employed in 

the BIPV program, however, because it occasionally generated unrealistically large 

“spikes” of radiation near dawn and dusk.  The Liu and Jordan method gives a 

conservative estimate of PV output. 

 

Both the weather data files and statistically generated data contain solar information in 

hourly increments.  However, the Milwaukee simulations were run with a 15 minute 

timestep.  TYPE 16 includes a “radiation smoothing” algorithm to interpolate solar 

radiation values at timesteps between the hourly data points.  This algorithm employs a 



 92

quadratic fit between the previous hour, the present hour, and the next hour.  This is why 

the new reduced NREL data format includes radiation values for both the present hour 

and the next hour.   

 

The PV arrays themselves are represented in the program by TYPE 101 Five Parameter 

Photovoltaics.  Chapter 3 describes the calculations employed in TYPE 101.  For each 

array, the user may select one of seven manufacture’s modules from a pull-down menu.  

The data for each of these modules (short-circuit current, temperature coefficient of 

voltage, etc.) are stored in text files which are accessed according to the menu selection.  

Alternately, the user may enter values for each of these parameters if the module desired 

for the simulation is not included in the list.  The incidence angle modifier correlation 

described in Chapter 3 is included in TYPE 101, reducing solar absorption at large angles 

of incidence. 

 

A TYPE 87 Inverter accounts for power conditioning losses.  The TRNSED input screen 

allows the user the option of selecting a constant inverter efficiency or setting the 

efficiency to be a function of power.  The user is also prompted to enter a maximum 

inverter capacity and an upper limit on excess PV power that may be sold to the utility.  

If efficiency is set to be a function of power, an efficiency curve is defined using the 

graphical input program SCHED.EXE.  Efficiencies at eleven input powers ranging from 

0 to the inverter capacity are written to a data file.  At the beginning of the simulation this 

file is read by a TYPE 70 Grouped Parameter Replacement component.  TYPE 70 resets 

the inverter parameters in the TRNSYS deck to account for the efficiency curve.  When 

an inverter input power falls between the eleven points on the curve, TYPE 87 employs 

linear interpolation between points to find the efficiency.  The output from TYPE 87 is 

the total PV system generation at each timestep. 
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4.5   Building Loads 

 

PHANTASM provides two options for electrical loads.  The first option is an hourly load 

schedule which repeats each day. SCHED.EXE is used to define the load at each hour.  In 

this case the load is read by a TYPE 153 Load Data Reader developed by TESS [10].  

The second option is to read a historical load data file from disk. Fifteen minute electrical 

load data for three commercial buildings were employed in the Milwaukee simulations.  

There are three important considerations in using load data files: 

    

#1:  The interval between entries in this file must be equal to the simulation 

timestep.  A new load point is read at every timestep, so if the timestep does not 

equal the data interval the simulation time and load time will be mismatched. 

 

#2:  Each entry in the load file must be integrated energy use in kWh over the 

data interval.  Unless the data interval is exactly one hour, using a file giving 

power consumption in kW will produce incorrect results. 

 

#3:  The time of the first data point for the load should correspond to the end of 

the interval of integration for the first weather point.  Solar data in TMY files and 

weather from the NREL’s hourly solar files are integrated energy values over 

hour- long intervals.  The first interval in an annual NREL data set is from 

midnight to 1:00 AM.  Thus, the first point in the building load file should occur 

at 1:00 AM.  The first three points in the Cooling Load Library data set occur at 

12:15 AM, 12:30 AM, and 12:45 AM, so these points were deleted before running 

the Milwaukee simulations. 
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4.6    Calendar and Utility Rate Processor 

 

As mentioned above, the monetary savings from PV-generated electricity cannot be 

determined simply by multiplying energy production by a constant electrical rate.  The  

customer’s benefit from parallel generation at any time is dependent on both the utility 

rate schedule and the building load.  Two new TYPEs were developed for calculating the 

value of parallel generation to a building owner.  The first is the TYPE 3 Utility Rate 

Schedule Calendar.  Utilities generally employ off-peak rates on weekends and holidays, 

and TYPE 3 determines when these periods occur.  TYPE 3 outputs several “calendar 

quantities” at each timestep: 

 

 Output #1: Hour of Day 
 Output #2: Hour of Year:  Int (Simulation Time) 
 Output #3: Day of Year 
 Output #4: Day of Week (0 = Sunday, 6 = Saturday) 
 Output #5: Month (1-12) 
 Output #6: Day of Month (1-31) 
 Output #7: Weekend Flag (1 = YES, 0 = NO) 
 Output #8: Holiday Flag (1 = YES, 0 = NO) 
 

Calculating outputs #1, #2, #3, and #5 is fairly trivial, requiring only modular division.  

The day-of-week calculation was obtained from a website detailing electronic calendar 

algorithms [Montes, 1998].  The day-of-week formula is 
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The weekend flag is activated when d is equal to 5 or 6.  The holiday flag is activated on 

certain days of the year.  The default holiday list is: 

 

 #1 New Year’s Day 
 #2 Martin Luther King Day 
 #3 Presidents’ Day 
 #4 Memorial Day 
 #5 Independence Day 
 #6 Labor Day 
 #7 Columbus Day 
 #8 Veterans Day 
 #9 Thanksgiving 
 #10 Christmas Day 
 
Easter is not included in this list because it always falls on a Sunday.  Utilities generally 

use the same off-peak rates for weekends and holidays, so for rate schedule purposes 

Easter is no different from any other Sunday.  Some holidays, such as Christmas, always 

fall on a particular date.  It is not difficult to determine, for example, whether or not a 

particular timestep falls on Christmas.  The date of some other holidays, such as 

Presidents’ Day, changes from year to year.  President’s day occurs on the third Monday 

in February.  The formula for finding these holidays is: 

 

( ) ( )[ ]7mod171 DWDayNDate −+−+=     Eq. 4.6-2 

  

Here, Day is the day of the week for the holiday in question:  1 for Monday, 2 for 

Tuesday, and so on.  N is the number of occurrence for that day in the month, so N is set 

to 3 when solving for the third Monday in the month.  DW is the day-of-week of a 

specific date in the month: 

 

( )[ ]171,, −+−−= NMonthYearWeekofDayDW    Eq. 4.6-3 

 

Day-of-Week  for day number [1+7(N-1)] is found from equation 4.6-1.  At the third 

Monday in February, the day-of-year in Eq. 4.6-1 is set to 46.  
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The second unit involved in savings calculations is the TYPE 100 Parallel Generation 

Rate Processor.  Inputs include load in W, parallel generation rate in W, (PV generation 

in this program), and several calendar values from TYPE 3.  The load schedule is read 

from a text file.  This file contains information on hourly rates for usage and demand as 

well as off-peak rates for holidays and weekend and ratchet rates.  The format of the rate 

schedule files is detailed Section 4.3 of the PHANTASM User’s Manual [Fry, 1999].  

TYPE 100 keeps track of the cumulative energy consumption and generation as well as 

the maximum load during each month for determining demand charges.  Outputs from 

TYPE 100 at each timestep include net building load (load minus parallel generation), 

usage rate, excess generation sold back to the utility, and cumulative solar savings.  

TYPE 100 also prints a “utility bill” file to disk detailing monthly energy consumption 

and generation as well as usage, demand, and ratchet charges for that month.  

PHANTASM includes two TYPE 100 components so the user may compare utility bills 

for buildings with and without BIPV. 

 

 

4.7  Evaluating Economic Parameters 

 

After a simulation is complete, a TYPE 98 Economic Evaluation component is called to 

determine key economic parameters of the system.  These calculations are based on the 

total utility bill savings over the course of a year as well as such parameters as interest 

rate, market discount rate, and system cost.  TYPE 98 has four modes; in each mode it 

calculates a different economic characteristic and prints the results to a data file.  Table 

4.7-1 summarizes the output values for each mode as well as the data necessary to 

determine the output. 

 

There are three key assumptions in each economic evaluation: 

 

#1:  The PV system is purchased with cash.  Interest rates on loans are not 

included in the calculations. 
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Table 4.7-1:  Modes of operation for TYPE 98 Economic Evaluation 

 

Ouput Necessary Information 

Payback Time  
Np 

- System cost CS 
- First year operation and maintenance costs CM 
- Inflation rate i  
- Market discount rate d 

Breakeven System Cost 
Ceven 

- Period of economic evaluation N 

- First year operation and maintenance costs CM 
- Inflation rate i  
- Market discount rate d 

Profits 
P 

- System cost CS 
- Period of economic evaluation N 
- First year operation and maintenance cost CM 

- Inflation rate i   
- Market discount rate d 

Return-on-Investment 
dROI 

- System cost CS 

- Period of economic evaluation N 
- First year operation and maintenance cost CM 
- Inflation rate i  
 

 

 

#2:  The annual rate of return on a typical investment is a known value equal to 

the market discount rate d.  The discount rate reduces the effective value of future 

electrical savings. 

 

#3:  Operation and maintenance costs and utility rates increase with the inflation 

rate i. 

 

All other things being equal, these assumptions predict that a PV system becomes more 

profitable as the inflation rate goes up.  This is because future electricity purchases will 

become more expensive when inflation is high.  On the other hand, a high market 

discount rate makes PV appear less profitable.  A large value of d indicates a strong 

economy in which other investments are more enticing.    
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Beckman and Duffie discuss a method to evaluate the payback time of solar thermal 

systems [1991].  In the following expressions, Np is the number of years that a solar 

investment takes to pay off. 
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FL is amount of fuel saved over the course of one year, and CF is the cost per unit of fuel.  

Thus, the quantity FLCF is the total value of the energy produced by the system over the 

course of the year.  For a PV system, this value is replaced by the electrical savings CE.  

In the BIPV program it is the value of electrical savings over the course of a year- long 

simulation.  Subtracting the annual operation and maintenance cost CM gives       
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The second mode of operation determines the break-even cost Ceven of the PV system 

given a period of economic evaluation N.  At the break-even cost, it will take to N  years 

of operation for the investment to begin to be profitable.  The breakeven cost is found by 

solving Eq. 4.7-2 for CS.  The result is shown in the following expressions, with the 

variable CS  replaced by Ceven. 
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TYPE 121’s third mode of operation calculates the profits (or losses) for a PV investment 

after a period of N years.  Given a system cost CS, the profits after a given period of 

evaluation is found by subtracting CS from the total value of energy savings over that 

period.  A negative result indicates a loss rather than profit.   
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The fourth mode of operation for TYPE 121 is solving for the system return-on-

investment, or ROI.  The ROI is the market discount rate at which the investment will 

pay off in N years.  It is not possible to solve Eq. 4.7-2 explicitly for d, so TYPE 121 

employs an iterative numerical scheme to determine the ROI.  When d is equal to dROI, 

profits will equal exactly zero.  TYPE 121 starts with an arbitrary guess value of 0.08 and 

solves Eq. 4.7-4.  If the profits at this discount rate are positive, the d is increased by 

0.01.  If the profits are negative d is decreased by 0.01.  The step size is halved on any 

iteration when P changes from negative to positive or vice versa.  It is assumed that d has 

converged dROI when the relative change in P over one iteration changes by less than 

0.5%.   
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4.8   Summary 

 

The PHANTASM program is a TRNSYS package for examining the impact of 

photovoltaic parallel generation on the electric bills of grid-tied customers.  This program 

employs TRNSED, a menu-based interface for TRNSYS.  Detailed knowledge of the 

TRNSYS programming language is not necessary to define a BIPV system and estimate 

its physical and economic performance.  Photovoltaic generation is determined from 

weather data and PV system parameters.  These results are combined with a building load 

and utility rate schedule to calculate solar savings over the course of the simulation.  The 

program accounts for hourly, daily, and seasonal variations in electric usage and demand 

rates.  The user may choose from one of seven types of PV modules and 24 rate 

schedules from major Wisconsin utilities.  New PVs and rate schedules may be added as 

needed.   
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 CHAPTER 5  

Simulation Data 

 

 
The main thrust of this work is to evaluate, through simulation, the economic feasibility of 

implementing large-scale BIPV systems in Wisconsin.  Four sets of location-specific data for 

Milwaukee were employed in the simulations.  The first of these is weather data, including 

Milwaukee’s hourly solar radiation and temperature in 1990.  The second set of data is 1990 

electrical loads for three commercial buildings in the Milwaukee area.  These loads were 

obtained from the Energy Center of Wisconsin Commercial Cooling Load Library.  The third 

data set consists of two commercial rate schedules from Wisconsin Electric, the power utility 

in Milwaukee. These schedules were taken from a Wisconsin Electric pamphlet [1998].  

Finally, a fourth data set was used in examining the benefit of BIPV system to the utility. 

Wisconsin Electric’s total hourly loads in 1990 were matched with PV generation to estimate 

the peaking reduction potential of BIPV.  The utility load data were obtained from Ron Pugh 

of Wisconsin Electric’s marketing department [1998].  This chapter discusses the contents of 

these four data sets and how they were put to use in running and evaluating the Milwaukee 

simulations. 

 

 

5.1  Weather Data Format 

 

The BIPV Simulation Program requires two types of hourly weather data: solar radiation and 

ambient temperature.  Depending on the mode selected, the TYPE 16 TRNSYS radiation 

processor can accept several types of solar data as inputs.  One of several correlations may be 

employed to determine total radiation incident on a tilted surface from a single radiation 

value the total radiation on a horizontal surface I.  In general, however, more accurate results 

may be obtained by using two radiation values at each timestep.  The BIPV Simulation 
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Program is configured to use the total horizontal radiation, I, and  the beam radiation incident 

on a normal surface, Ibn. 

 

The NREL website (www.nrel.gov) contains downloadable hourly radiation data for over 

300 North American locations [1992].  Data are available for every year from 1961 until 

1990.  These files include 5 solar quantities, each averaged over hour- long data intervals.  

Table 5.5-1 summarizes these quantities. 

 

Table 5.1.1:  Data in NREL’s hourly solar radiation files 

 

Quantity Description Units 

Io Extraterrestrial radiation on a horizontal surface [W/m2] 

Io,normal Extraterrestrial radiation on a normal surface [W/m2] 

I Total radiation on a horizontal surface [W/m2] 

Id Diffuse radiation on a horizontal surface [W/m2] 

Ibn Beam radiation on a normal surface [W/m2] 

 

 

I and Ibn were copied from the NREL file into MILW1990.TXT, the data file supplying 

inputs for TRNSYS. 

 

The extraterrestrial values Io and Io,normal were not measured but rather were calculated from 

astronomical relationships.  In addition, the terrestrial values  I, Id, and Ibn for Milwaukee and 

most other locations were not actually measured with a pyranometer.  In Milwaukee they 

were calculated from observed sky cover and estimated optical depths.  This procedure 

introduces an uncertainty in the data greater than the experimental error inherent in 

pyranometer measurements.  The NREL file includes uncertainty estimates for I, Id, and Ibn.  

The typical range is 9% to 13%, although in some cases they range from 13% to 18%.  These 

uncertainties in the solar data are probably the dominant source of error in the Milwaukee 

simulations. 
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The program also requires hourly temperature values because PV performance is temperature 

dependent.  Milwaukee temperature data at fifteen minute intervals are included in the 

Cooling Load Library.  An Excel macro was written to pull out one value per hour; these 

hourly values were saved in the weather file to be read by the BIPV Simulation Program.  In 

addition, the program reads in the ground reflectance ρ at each timestep. The Upper 

Midwest’s ground reflectance exhibits significant monthly variation because of the high 

albedo of snow. Hourly ground reflectance observations were not available, so ρ was 

estimated at each month as shown in Table 5.1-2. 

 

Month Ground 
Reflectance 

January 0.6 

February 0.6 

March 0.4 

April 0.3 

May 0.2 

June 0.2 

July 0.2 

August 0.2 

September 0.2 

October 0.2 

November 0.3 

December 0.4 

 

Table 5.1-2:  Monthly estimates for ground reflectance 
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5.2   Analyzing the Weather Data    

 

The Milwaukee simulations are case studies intended to evaluate the potential for large scale 

implementation of BIPV systems in Wisconsin.  The lifetime of a PV system is much greater 

than a single year, and its performance will vary somewhat from year to year due to 

fluctuations in the weather.  For this reason it is desirable to estimate how closely 

Milwaukee’s 1990 weather represents an “average” year.   

 

A useful tool in this analysis is the Typical Meteorological Year (TMY) data.  TMY data sets 

are compiled by NREL and may be freely downloaded from their website.  TMY data are 

available for each of the North American locations in the NREL database [NREL, 1992].  

Each month of the “typical year” is taken directly from one of the years in the meteorological 

database.  For instance, the January data for Milwaukee TMY is taken from January 1962 

and the February data is from February 1966.  The source year for each month of the “typical 

year” is selected based on two criteria.  The first is how closely the data replicates the 

average weather for that month.  The second is the reliability of the data.  Thus, if the June 

weather data for two years are both fairly normal, the year with smaller data uncertainty 

would be chosen.   

 

The TMY data were compared with the 1990 Milwaukee data from NREL (solar) and the 

Cooling Load Library (temperature and humidity) to estimate how closely 1990 corresponds 

to an average year.  Using an unusually cloudy or clear year for simulation case studies will 

tend to underestimate or overestimate the feasibility of BIPV.  Temperature trends will also 

influence the results to a much lesser extent.  The daily clearness index KT  was calculated to 

quantify the cloudiness of each day.  The clearness index is defined as 

 

 
o

T H
H

K =         Eq. 5.2-1 
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where H is the total daily solar radiation incident on a horizontal surface and Ho is the total 

horizontal extraterrestrial radiation.  KT values typically range from about 0.15 on rainy days 

to 0.7 on days with no clouds or haze.  EES was used to determine hourly dewpoint 

temperatures from the Cooling Load Library dry-bulb temperatures and relative humidities at 

each hour.  Excel macros were employed to determine KT, daily average temperature T , and 

daily average dewpoint dpT  for each 1990 day and TMY day. It is notable that the Milwaukee 

TMY data for October was taken from 1990, so it is safe to assume that October was not an 

exceptional month in 1990.   Figures 5.2-1, 5.2-2 and 5.2-3 show the monthly averages of T , 

dpT , and KT values for the two data sets.  In October the KT  values are identical. T and dpT do 

not match exactly because NREL’s temperature and humidity values in TMY were taken 

independently of the Cooling Load Library data.  

-20

-10

0

10

20

30

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Month

M
o

n
th

ly
 A

ve
ra

g
e 

T
em

p
er

at
u

re
 [C

]

Milwaukee 1990

Milwaukee TMY

Figure 5.2-1:  Monthly average temperatures: Milwaukee 1990 and TMY  
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 Figure 5.2-2:  Monthly average dewpoints: Milwaukee 1990 and TMY 
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Figure 5.2-3:  Monthly average KT values Milwaukee 1990 and TMY  

(expanded scale) 
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From Figures 5.2-1 and 5.2-2 it is apparent that every month in 1990 except July and October 

was warmer than in a “typical year.”  The difference is usually on the order of 2 C.  

However, this trend is particularly noticeable in January when the 1990 data was an average 

of 9 C warmer than the TMY data.  On the whole, 1990 was an exceptionally warm year in 

Milwaukee. 

 

Figure 5.2-3 shows that 1990 was also not a typical year in terms of cloudiness. TK  values 

(monthly averages for KT) for the two data sets were similar in November, December, 

January, and February.  The 1990 TK  values were about 0.01 greater than the TMY values 

for these months, but these small differences are not significant.  On the other hand, the 

spring and summer months of May, June, July, August, and September were considerably 

cloudier in the 1990 data than the TMY data set.  This is particularly evident in June, when 

the 1990 TK  is more than 20% less than the TMY value. 

 

The normalized fractional distributions for each day’s value of T , dpT , KT  are graphed in 

Figures 5.2-4, 5.2-5, and 5.2-6.  The X-axis of these graphs indicates the fraction of days in 

the year with values of T , dpT , or KT  equal to or less than the corresponding y-value.  The 

graphs are essentially 365 values of T , dpT , and KT  arranged in ascending order. 
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Figure 5.2-4: T distribution: Milwaukee 1990 and TMY 
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Figure 5.2-5: dpT  distribution: Milwaukee 1990 and TMY  
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Figure 5.2-6: KT  distribution: Milwaukee 1990 and TMY  

 

On the whole, a comparison with TMY suggests that 1990 was not a good year for PV.  The 

main reason for this is a cloudy summer.  Available solar energy is greatest during these 

months, so an unusually cloudy summer penalizes PV generation more than a cloudy winter.  

In addition, electrical demand reduction is most critical to both customers and utilities during 

the summer months.  1990 was also a warm year, imposing a further small penalty on PV 

performance.  Since meteorological conditions in 1990 were poor, it safe to say that the 

Milwaukee simulations will provide conservative estimates of BIPV system performance. 

 

 

5.3   Building Load Data 

 

The building load data were obtained from the Commercial Cooling Load Library, a record 

of building loads for 45 commercial buildings in the Milwaukee area [the Fleming Group, 

1994].  Cooling Load Library data sets are not downloadable.  The data of interest were 

obtained from the Energy Center of Wisconsin on diskette.  The Library includes loads from 

1989, 1990, and 1991, although not all the buildings include complete records for all three 
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years.  The identity of the individual buildings is not given in the report for the sake of 

anonymity; some of the records may reveal excessive energy consumption.  However, each 

building is grouped into one of five major types: retail, office, grocery, restaurant, or health.  

The total floor area and number of floors is also provided for each building. 

 

The electrical load data in the Library were obtained through direct monitoring.  Each data 

point is the electrical energy consumption over a fifteen minute interval.  As the name 

suggests, the Cooling Load Library also estimates the portion of the total electrical load that 

goes to satisfy space cooling needs at each quarter-hour interval.  The modeling schemes 

employed in estimating the cooling loads are outside the scope of this work since the bene fits 

of PV depend only on total load and not on how utility draw is allocated within a building. 

 

Three building were studied in the Milwaukee simulations.  The essential characteristics of 

these buildings are summarized in Table 5-3.1. 

 

Table 5-3.1: Commercial Cooling Load Library buildings employed in Milwaukee 
simulations 

 

Library 
Building 
Code 

Building 
Type 

Total Floor 
Area [ft2] 

Floors Average 
Load [kW] 

Max Load [kW] 

13 Grocery 24300 1 246.9 413.6 

46 Office  350000 20 1030.5 2268.0 

54 Retail 12000 1 20.5 48.0 

 

 

Plotting the loads as functions of time over the course of the year does not produce legible 

graphs because the load values change quickly.  They usually reach local minima and 

maxima once each day.  Instead of graphing with respect to time, the total electrical loads 

and cooling loads for each fifteen minute interval were plotted as fractional distributions in 

Figures 5.3-1, 5.3-2, and 5.3-3.  The values for total load and cooling load at any given x-

value do not correspond to the same times. 
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Figure 5.3-1:  Load distribution for grocery (Building #13) 
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Figure 5.3-2:  Load distribution for office highrise (Building #46) 
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Figure 5.3-3:  Load distribution for retailer (Building #54) 

 

 

 

5.4   Utility Rate Schedules 

 

A rate schedule is a list of prices a customer pays for electrical energy purchased from a 

utility at various times.  It costs a utility more to distribute power to customers at peaking 

times when the total draw on the utility is high than at times when the load is small.  At these 

times the utility is forced to run its smaller, more costly plants such as gas turbines that 

generally remain idle during times of average power draw.  Worse yet, the utility may have 

to purchase electricity from a neighboring power company if it lacks the capacity to satisfy 

customers’ power demands.  Rate schedules reflect the cost of power generation.  Utilities 

charge their customers more during peaking periods to encourage conservation at these times 

and to help recoup losses from costly generation and energy purchase. 

 

Residential customers may pay a flat rate per unit kWh of electrical energy; this is the 

simplest possible rate schedule.  Some utilities provide residential cus tomers the option of 
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time-of-use rates in which power is cheaper at night and more expensive during the day.  

Commercial and industrial (C & I) customers generally consume more energy and are subject 

to more complex rate schedules.   C & I schedules usually include time-dependent rates for 

energy consumption or usage.  These rates may be subject to hourly and/or seasonal 

variation.  In addition, C & I schedules usually include monthly demand charges on the 

largest instantaneous power consumption over the course of the month.  Consider a factory 

that usually runs a steady load of 5 MW but briefly consumes 20 MW for a fifteen minute 

period.  It will pay a demand charge for that month based on a 20 MW power consumption.  

This quick spike does not represent a significant energy consumption and therefore does not 

contribute much to the usage charge.  However, if it were eliminated the demand portion of 

the factory’s power bill would drop by 75%.  For many C & I customers demand charges are 

about as large as usage charges, making demand reduction an important aspect of 

conservation.  A second demand charge is also included in some C & I rate schedules.  This 

is the twelve-month rolling demand or ratchet charge.  The ratchet charge is based on the 

largest instantaneous power consumption over the last twelve months.  In essence, a 

customer continues to pay for a single spike in power consumption for a year after it occurs. 

 

The BIPV Simulation Program includes 24 residential, commercial, and industrial rate 

schedules.  The five major Wisconsin utilities are represented:  Madison Gas and Electric, 

Northern States Power Company, Wisconsin Power and Light, Wisconsin Public Service 

Corporation, and Wisconsin Electric.  The rate schedules for all of the utilities except 

Wisconsin Electric were downloaded from company websites.  The Wisconsin Electric 

schedules were obtained from a pamphlet mailed by marketing employee Ron Pugh [1998].  

Two Wisconsin Electric commercial schedules were employed in the Milwaukee 

simulations.  These rate schedules are summarized in Table 5.4.1. 
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Table 5.4-1:  The two Wisconsin Electric rate schedules used in the Milwaukee simulations 

 

Rate Schedule Large Secondary: 
Demand & Time-of-Use 

Small Secondary:  
Demand & Time-of-Use 

Applicable Buildings Grocery (#13) 
Office Highrise (#46) 

Retail (#54) 

On-Peak Usage Rate  $0.0375 per kWh $0.0537 per kWh 

Off-Peak Usage Rate  $0.0244 per kWh $0.0537 per kWh 

Monthly On-Peak Demand 
 
** See Exception Below ** 
 

 

$9.29 per kW 

 

$4.50 per kW 

Ratchet $0.68 per kW N/A 

 

 

Wisconsin Electric’s on-peak period is 9 am to 9 pm.  Weekends and holidays are exempt 

from on-peak rates.  There is no seasonal variation in usage or demand charges.  There is one 

unusual feature in this rate schedule; the monthly demand rate may be reduced for months 

with few on-peak hours of use.  This quantity (OPHU) is defined as the monthly on-peak 

energy use divided by the greatest on-peak demand. 

 

 
peakon

peakon

Power

Energy
OPHU

−

−≡
max,

      Eq. 5-4.1 

 

If the OPHU total for the month is less than 100, the monthly demand rate for the large 

secondary schedule (grocery and office highrise) is adjusted according the formula 

 

 ( )[ ]OPHURateDemand −−= 1000563.0$29.9$    Eq. 5-4.2 

 

For OPHU values less than 100 the monthly demand rate in the small secondary schedule 

(retail) becomes 
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 ( )[ ]OPHURateDemand −−= 1000225.0$50.4$    Eq. 5-4.3 

 

This scheme reduces the demand charges for customers who consume the majority of their 

energy during off-peak periods.  If most energy consumption occurs at night, this will be 

reflected in low OPHU values.  The monthly OPHU for the office highrise studied in this 

work never drops below 1000.  However, the OPHU for the grocery and retail is less than 

100 for some months of the year, resulting in small demand rate discounts. 

 

 

5.5  Total Utility Load Data 

 

The final data set employed in this work is total hourly loads, or utility demand obligation, 

for Wisconsin Electric in 1990 [Wisconsin Electric, 1998].  Ronald Pugh from Wisconsin 

Electric’s marketing department supplied this information.  The utility load data were not 

used directly in the Milwaukee simulations as they have no bearing on PV system 

performance or customer savings.  However, this data set was combined with the energy 

generation results of the simulations to examine potential utility benefit from BIPV.  This 

procedure is described in Chapter 7.  Wisconsin Electric’s demand obligation in 1990 varies 

from about 1700 MW to 4300 MW.  Figure 5.5-1 shows the normalized fractional 

distribution of the utility load data: 
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Figure 5.5-1:  1990 load distribution curve for Wisconsin Electric 
 

The distinct “tail” on the upper end of the distribution shows that there are a few periods 

when Wisconsin Electric’s load is exceptionally large.  The utility looses money at these 

points and stands to benefit from PV or other parallel generation which could help to level 

the load. 

 

The total utility demand obligation exhibits a noticeable seasonal and hourly variation.  The 

load is greatest in summer and winter and smaller in spring and fall. This pattern is typical of 

utilities in continental climates with summer air conditioning loads and winter electric 

heating loads.  Figure 5.5-2 shows the average obligation for each month. 
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Figure 5.5-2: Wisconsin Electric’s average monthly loads (expanded scale) 

 

The hourly variations in the average load are greater than the seasonal variations.  Loads are 

generally greatest from about 10:00 AM to 5:00 PM, falling off quickly after 9 PM. 

Wisconsin Electric’s on-peak time for weekdays is from 9:00 AM to 9:00 PM, coinciding 

with the hours at which the average obligation is greatest.  It is interesting to note the small 

dip in average load around 3:00 PM. 
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Figure 5.5-3:  Wisconsin Electric’s hourly average loads and on-peak billing period 

 

 

5.6    Summary 

 

Four data sets were employed in the 1990 Milwaukee simulations.  The first set is weather 

data, including hourly values for solar radiation, ambient temperature, and humidity.  The 

solar data were taken from the NREL website [NREL, 1992], while the temperatures and 

humidities were obtained from the Commercial Cooling Load Library [the Fleming Group, 

1994].  These data were compared to NREL’s TMY data which represent meteorological 

conditions in an average year.  These comparisons show that 1990 was an unusually warm 

year in Milwaukee.  In addition, the summer of 1990 was exceptionally cloudy.  These are 

not good conditions for effective PV operation, so the Milwaukee simulations will produce 

conservative results in estimating the long-term feasibility of BIPV. 

 

The second data set is 15-minute electrical loads for three commercial buildings in the 

Milwaukee area: a supermarket, an office highrise, and a retail store.  These loads each 
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exhibit distinct daily and seasonal trends.  The load data were obtained from the Commercial 

Cooling Load Library [the Fleming Group, 1994]. 

 

The third set of data is utility rate schedules from Wisconsin Electric, the Milwaukee utility.  

Two rate schedules were employed in the Milwaukee simulations.  The grocery and office 

highrise are billed under the first schedule, “Large Secondary.”  The retailer is billed under 

the “Small Secondary” schedule.  Both of these schedules include energy usage and monthly 

demand charges.  Demand is weighed more heavily in the Large Secondary schedule, while 

the Small Secondary schedule places more weight on energy consumption. 

 

The final data set is total hourly utility loads, given by Ron Pugh of Wisconsin Electric 

[1998].  The largest loads occur in the summer months when air conditioning demand is 

high.  How closely solar generation coincides with large utility loads is important in 

assessing the value of BIPV to the utility, as discussed in Chapter 7. 
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CHAPTER 6  

Simulation Results: Customer Benefits 

 

 
The PHANTASM program was used to examine the potential physical and economic 

performance of BIPV arrays for three commercial buildings in the Milwaukee area.  This 

chapter presents the results of these simulations and examines how these results depend on 

the electrical consumption patterns of the buildings.  In this chapter all discussions on the 

potential benefits of PV are presented from the point of view of the building owner (electric 

customer).  Chapter 7 uses the simulation results to investigate how large-scale BIPV 

implementation could impact the electric utility. 

 

Each simulation examines the annual performance of a 20kW rooftop array placed atop a 

building.  The simulations used historical weather data and building load data, both from 

1990.  In order to obtain meaningful results it is essential that the weather data and load data 

for a simulation cover the same time period.  The rate schedules of Wisconsin Electric, the 

Milwaukee utility, were employed in determining monetary solar savings.  Three buildings 

were studied: a supermarket, a twenty-story office highrise, and a mid-size retailer.  In 

reality, these buildings are not actually outfitted with PV.  The simulations are intended to 

calculate how much money the owners would have saved in 1990 if PV arrays had been 

mounted on their buildings. 

 

The data sets employed in the BIPV simulations are discussed in detail in Chapter 5.  These 

data include weather, building loads, utility rate schedules, and total utility demand 

obligation. 
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6.1   Simulated BIPV Systems  

 

Physically, the three buildings examined in this study were quite different.  The supermarket 

and retailer are both flat-roof buildings with a single story.  From an engineering perspective, 

sloped rooftop arrays are the most practical BIPV arrangement for such buildings.  The 

twenty-story office highrise, on the other hand, provides a much greater surface area that may 

be outfitted with PV.  Commercial skyscrapers have been built implementing PV into the 

facade, rooftop, window sunshades, and even the windows themselves.   

 

Identical PV systems were simulated on the three buildings.  Using similar systems allows 

the study to focus on the issue of how PV generation coincides with electrical consumption 

without simultaneously considering differences between systems.  A 20 kWp fixed rooftop 

array with a single orientation is simulated for each building.  The system consists of 200 

Siemens SR100 modules each rated at 100 Wp. Specification for the SR100 were obtained 

from an on- line manufacturer’s catalog [Siemens, 1998].   The SR100 is a large single crystal 

module, representing the most widely used PV technology.  Each module has an area of 0.89 

m2, so the entire array measures 178 m2.  PHANTASM does not account for shading losses 

when one row of modules in an array casts a shadow on another.  However, the roof of each 

building is large enough that rows may be spaced widely to minimize shading losses.  The 

smallest building, the retailer, has a total floor area of 1115 m2 so the roof area is slightly 

greater.  Thus, the kW array will require only about one sixth the roof area of this building.  

This fraction is smaller for the office highrise and the grocery.   

 

The inverter for the PV system is taken to have a constant efficiency of 93%, a typical value.  

A large value (100000 W) is used for the inverter capacity.  This eliminates the possibility of 

PV generation exceeding the inverter capacity.  An undersized inverter should not pose a 

problem in a well-engineered BIPV system.  The PV incidence angle modifier correlation 

described in Section 3.14 was employed in each simulation.   
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6.2   PV Array Orientation    

 

One advantage to rooftop PV arrays is that their orientation need not be dictated by the 

exposure of other surfaces on the building.  The orientation of PVs built into the façade of a 

building, for instance, clearly cannot differ from that of the façade itself.  One question this 

work addresses is how a rooftop array should be oriented to optimize energy production and 

monetary savings for each building. 

 

Consider a hypothetical location where average normal insolation does not change from 

morning to afternoon or from summer to winter.   In this case the annual energy output of the 

PV array will be optimized by using a south-facing orientation (in the northern hemisphere) 

sloped at the latitude of the location.  However, in the Midwest and many other regions, 

winter is cloudier than summer.  This suggests that annual energy production can be 

maximized by using an array sloped at an angle less than the latitude.  Such an orientation 

will reduce the average angle of solar incidence during the summer when the sun is high in 

the sky and more radiation is available.  Moreover, the average insolation in some climates is 

not symmetric about noon.  In most locations along the US Pacific coast, for instance, early 

morning is often cloudier than mid afternoon.  It would be advantageous to face PVs west of 

due south to maximize energy production in such a climate.   

 

If a building’s rate schedule does not include demand charges or time-dependent usage rates, 

the optimal array orientation for energy production will also maximize solar savings.  This 

orientation is chosen according to location and climate as discussed above.  However, if 

electric rates are higher in the afternoon than the in morning, it may be beneficial to increase 

PV production during these on-peak periods by facing the array a few degrees to the west.  

Likewise, demand charges can be reduced by orienting the PV array to maximize output 

when the electrical load is large.  The issues of climate and load involved in optimizing PV 

orientation are complex and often contradictory.  It is difficult to produce estimates more 

precise than the qualitative rules of thumb discussed here without resorting to either 

simulation or experiment. 
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Nine array slopes ranging from 23 degrees to 63 degrees were examined for each building.  

In Milwaukee these values correspond to 20 degrees less than latitude and 20 degrees greater 

than latitude respectively.  In addition, five azimuth angles were tested, ranging from 0 

degrees (due south) to 40 degrees west of south.  Each combination of slope and azimuth was 

examined, requiring 45 simulations per building.  40 southeast- facing additional orientations 

were also examined for the grocery, as discussed in Section 6.4.  Each year- long simulation 

for a given building and array orientation took slightly over a minute on a 450 MHz Pentium 

II computer.  Section 6.3 addresses the relationship between annual energy generation and 

array orientation; this result is independent of the buildings’ loads.  Sections 6.4, 6.5, and 6.6 

discuss the optimization of PV orientation to maximize monetary savings for each building.  

The monthly and hourly average load patterns are plotted for each building along with the 

top 15-minute loads.  This information helps to explain why a particular orientation is best 

for each building. 

 

 

6.3 Annual PV Energy Generation 

 

The annual energy production for the various PV orientations was the same for each 

building.  Energy production is dependent only on PV system parameters and on weather; it 

is not a function of building load.  Figure 6.3-1 illustrates the annual energy generation for 

each array orientation.   
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Figure 6.3-1:  PV orientation and total annual energy generation.  Scale is expanded on y-

axis. 
 

Energy output is maximized with a south-facing array sloped at ten degrees less than latitude.  

The annual PV generation in this case is 23197 kWh.  The output of an array oriented 10 

degrees west of south is nearly identical to the south-facing case.  On the whole, the energy 

production is rather insensitive to orientation over the range examined.  The annual output 

changes by about 1000 kWh from a surface azimuth of 0 degrees to 40 degrees.  Energy 

production falls by about 2500 kWh when a slope equal to latitude plus 20 degrees is used 

rather than the optimal value of latitude minus 10 degrees.  Optimum energy production at a 

slope less than latitude is consistent with the fact that in Wisconsin there is generally more 

solar energy available in summer than in winter. 

 

Wisconsin Electric’s on-peak period is 9:00 AM to 9:00 PM on working days, and demand 

charges are assessed only during this period.  All three buildings examined in the simulations 

are subject to demand charges.  The energy usage rate in the “Large Secondary” schedule 
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goes up during the on-peak period, but usage rates are constant under the “Small Secondary” 

schedule.  The grocery and the office highrise are billed under the Large Secondary schedule, 

while the retailer is billed under Small Secondary.  Table 5.4-1 summarizes these two rate 

schedules.   

 

In general, energy generated during the on-peak period is more valuable to both the electric 

customer and the utility than off-peak energy.  Figure 6.3-2 shows annual on-peak energy 

generation for each orientation. 

 

12500

13000

13500

14000

14500

15000

15500

-20 -15 -10 -5 0 5 10 15 20

Array Slope - Latitude [Degrees]

A
n

n
u

al
 O

n
-P

ea
k 

P
V

 G
en

er
at

io
n

 [k
W

h
]

Azimuth = 0 deg

Azimuth = 10 deg

Azimuth = 20 deg
Azimuth = 30 deg

Azimuth = 40 deg

 

Figure 6.3-2: PV orientation and annual on-peak energy generation.  Scale is expanded on 
y-axis. 

 

Unlike total energy, on-peak energy production is maximized by facing the PV array west of 

due south.  The on-peak optimum is a slope of 10 degree less than latitude and an azimuth of 

30 degrees.  Over the course of the year this orientation produces 15088 on-peak kWh.  
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Morning hours prior to 9:00 AM do not fall in the on-peak period.  Thus, on-peak energy is 

maximized by orienting the array to produce more output during the afternoon when the sun 

is in the western portion of the sky.   

 

 

6.4   Simulation Results for Grocery 

 

The first building case study is a single-story grocery store with a floor area of 24300 ft2.  

The grocery is billed under Wisconsin Electric’s “Large Secondary” schedule.  Figure 5.4-1 

illustrates the annual fractional load distribution for the grocery.  Cooling is a relatively small 

portion of the total electrical load for this building.  The cooling load does not include 

product refrigeration, the largest source of energy consumption in supermarkets [Mitchell, 

1998].  An unusual feature of the load pattern for this building is that average loads are 

significantly greater during the winter months than during the summer.  This pattern is 

indicative of electric heating.  Figure 6.4-1 shows the monthly average loads for the grocery. 
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Figure 6.4-1:  Monthly average loads for grocery.  Greater loads in winter than summer 

suggest that the building is electrically heated. 
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Figure 6.4-2 shows the hourly loads averaged over the year for this building.  Over the course 

of the day the average load is quite level, varying by only about 10% from day to night.  

Even though the store probably closes in the evening, the product refrigeration must run 

continually.   
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Figure 6.4-2:  Hourly average loads for grocery over entire year.  The load shows little 

change from day to night. 
 

 

The average hourly loads for the cooling season (June, July, August, and September) are 

plotted in Figure 6.4-3.  During the cooling season, total loads are about 25 kW less than the 

yearly averages in Figure 6.4-2 since heating is unnecessary.  The shape of the hourly 

average load curve for the cooling season is almost identical to that for the entire year.  On 

average, cooling loads are about 10 kW higher during these four months than over the whole 

year.  Cooling loads show no significant hourly variation. 
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Figure 6.4-3: Hourly average loads for grocery during the cooling season.  Total loads are 

slightly less than the averages for the year. 
 

 

PHANTASM was run for 45 array orientations using the 15-minute load data for the grocery 

in conjunction with Wisconsin Electric’s “Large Secondary” rate schedule.  Figure 6.4-4 

illustrates the annual monetary savings for each orientation. 
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Figure 6.4-4:  Annual monetary savings for arrays on grocery facing south and southwest 

 
 

The south-facing array with a slope of 5 degrees less than latitude produces the most savings: 

$1345.  Of  this total, $762 is in usage charges and $583 is in demand charges.  Figure 6.4-4 

shows that facing the array to the west reduces savings.  Plotting the top loads over the 

course of the year provides some insight into why this is the case.  Figure 6.4-5 shows the top 

15-minute loads in chronological order; values for these points are on the left y-axis scale.  

The right y-axis scale gives the direct normal radiation at each of these points, providing an 

estimate of available solar energy.  The time of day for each point is shown on the x-axis. 
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Figure 6.4-5:  Top 15-minute loads for grocery, shown with hour of occurrence and direct 

normal insolation.  Scale is expanded on left-hand y-axis. 
 

 

Surprisingly, every one of these loads occurs during an off-peak period.  Most of the loads 

happen before the on-peak period begins at 9:00 AM, and those that occur later fall on the 

weekend.  All of these top loads occur on cold, clear winter mornings in February and 

December.  This lends further support to the hypothesis that the grocery employs electric 

heating.  Half of the loads occur when the direct normal radiation is greater than 400 W/m2, 

offering the possibility for PV load reduction.  Moreover, low ambient temperatures enhance 

photovoltaic efficiency at these times.  However, demand reduction provides no economic 

benefit for the building owner at the times shown in Figure 6.4-5 since they do not fall in the 
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on-peak period.  Figure 6.4-6 graphs the top on-peak loads for the grocery.  Reducing these 

loads through parallel generation offers the possibility for demand charge savings. 

350

370

390

410

430

1/1
2/9

0 9
:00

 AM

2/2
8/9

0 2
:15

 PM

2/2
8/9

0 2
:30

 PM

2/2
8/9

0 7
:00

 PM

2/2
8/9

0 7
:15

 PM

3/2
/90

 9:0
0 A

M

3/2
/90

 9:
15

 AM

3/2
/90

 9:3
0 A

M

11
/7/9

0 9
:00

 AM

12
/27

/90
 9:

00
 AM

12
/27

/90
 9:

15
 AM

12/
27/

90 
10:

30 
AM

15
-M

in
ut

e 
Lo

ad
 [k

W
h]

0

200

400

600

800

1000

D
ir

ec
t N

o
rm

al
 R

ad
ia

tio
n

 [W
/m

2
]

On-Peak Load

Direct Normal Radiation

 
Figure 6.4-6:  Top 15-minute on-peak loads for grocery, shown with hour of occurrence and 

direct normal insolation.  Scale is expanded on left-hand y-axis. 
 
 

Most of these loads occur in the morning shortly after the on-peak period begins at 9:00 AM, 

and all the loads occur during cold months in winter or late autumn.  Two of the loads occur 

after dusk and cannot be reduced by PV parallel generation.  Since many of the top loads 

occur before noon, it is possible that facing the arrays to the southeast may be beneficial.  

The monetary savings for 40 orientations with azimuths ranging from 10 to 40 degrees east 

of south are shown in Figure 6.4-7. 
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Figure 6.4-7: Annual monetary savings for arrays on grocery facing southeast 

 

The best southeast orientation is 10 degrees east of south with a slope of 33 degrees.  This 

setup produces an annual solar savings of $1346, one dollar more than an array facing due 

south with the same slope.  An array facing a few degrees to the east offers slight 

improvement over one facing due south. 

 

This result is rather surprising; it seems intuitive that facing the array to the southeast should 

be even more beneficial when the largest loads occur in the morning.  However, the 

opportunity for demand reduction in any given month depends on how closely PV generation 

coincides with the largest loads for that month.  Even if the top loads for a particular month 

are not the largest of the year, demand costs can be reduced if PV works well when those 

loads occur.  This raises the question of summer demand reduction for the grocery even 

though loads are generally lower during this season.  Figure 6.4-8 illustrates the grocery’s 
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monthly demand savings for an optimal array (south-facing, sloped 10 degrees less than 

latitude). 
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Figure 6.4-8:  Monthly PV demand charge reduction for grocery.  Significant demand 

reductions occur during summer months even though largest loads are in winter. 
 

Demand charge reduction is significant throughout the year, not just during the winter 

months when loads are at their greatest.  The largest summer loads usually occur in the 

afternoon.  This means that orienting the PV to the east to maximize performance on winter 

mornings when the greatest loads of the year occur will result in a penalty during the summer 

months.  Figure 6.4-8 helps to explain why orienting the array to the southeast is only very 

slightly better than facing it due south.  

 

 

6.5 Simulation Results for Office Highrise 

 

The twenty-story office highrise is a very large building with a total floor area of 350000 ft2.  

Like the grocery, the office highrise follows Wisconsin Electric’s “Large Secondary” rate 

schedule.  The annual fractional load distribution for this building is shown in Figure 5.3-2.  

In general, the electric load of the office is more variable than that of the grocery.  The 
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maximum load for the office is 2268.0 kW, while the annual average load is less than half 

this value, 1030.5 kW.  The monthly variation of average load is shown in Figure 6.5-1. 
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Figure 6.5-1:  Monthly average loads for office highrise 

 

The average load is about 25% greater in summer than in winter.  The monthly trend for total 

load and cooling load is almost identical, indicating that the seasonal variation in the office is 

due almost exclusively to air conditioning.  Low winter loads suggest that the building is 

heated with gas.  Figure 6.5-2 shows the hourly load distribution for the office highrise with 

loads averaged over the entire year.  The hourly averages for the cooling season of June, 

July, September, and August are given in Figure 6.5-3.  Qualitatively, these graphs are very 

similar. 
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Figure 6.5-2:  Average hourly loads for office highrise over entire year.  Load appears to be 

closely linked to building occupancy. 
 

0

200

400

600

800

1000

1200

1400

1600

1800

12:00 AM 6:00 AM 12:00 PM 6:00 PM 12:00 AM

Hour

A
ve

ra
g

e 
L

o
ad

 [
kW

]

Total Load

Cooling Load

 
Figure 6.5-3:  Average hourly loads for office highrise during cooling season.  With the 
exception of greater cooling demand, the load pattern is almost identical to the annual 

average. 
 
 

Figures 6.5-2 and 6.5-3 show that unlike the grocery, the average load of the office highrise 

exhibits a large hourly variation.  The load appears to be tied closely to building occupancy.  
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It reaches a minimum value around 3 AM and peaks at noon.  Since the largest average 

monthly loads occur in August and the average hourly loads are greatest around noon, it is 

likely that hot summer days account for biggest single loads.  The hourly average loads for 

the cooling season and the entire year exhibit very similar trends.  Both the total load and 

cooling load are about 120 kW greater in Figure 6.5-3 than in Figure 6.5-2. 

 

The annual monetary savings for 45 array orientations are shown in Figure 6.5-4. 
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Figure 6.5-4: Annual monetary savings for arrays on office highrise facing south and 

southwest 
 

The optimal orientation is ten degrees west of south sloped at ten degrees less than latitude.  

This arrangement produces $1715 in annual solar savings.  $762 of this is in usage charges 

and $963 is in demand.  The optimal usage savings is identical to that in the grocery.  

However, PV saves $369 more in demand charges for the office building than for the 

grocery.  This indicates that the large loads in the office coincide more closely with clear 
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daytime hours during the utility on-peak period.  Since the optimal orientation is west of 

south, load reduction appears to be more critical in the afternoon than in the morning.  This 

evident from Figure 6.5-5, which gives the top loads along with their time of occurrence and 

direct normal radiation. 
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Figure 6.5-5: Top loads for office highrise shown with time of occurrence and direct normal 
solar radiation.  All of the loads occur during the utility’s on-peak period. 

 
 

All of the top loads occur during warm periods in July, August, or September.  Unlike the 

grocery loads, every one of the top loads for the office highrise occurs during Wisconsin 

Electric’s on-peak period.  Nine of the thirteen loads occur on a single hot day, August 28.  

Each of these points except the first one on July 19 coincide with periods of at least moderate 

sunshine, providing an excellent opportunity for PV demand reduction.  The weather data 
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indicates minimal solar radiation and high humidity from about 1:00 PM to 3:30 PM on July 

19, suggesting an afternoon thunderstorm. 

 

Figure 6.5-5 indicates that the largest loads occur during the summer.  This does not rule out 

the possibility of demand reduction in the winter, however.  The grocery experienced 

significant PV demand charge reduction throughout the year, as shown in Figure 6.4-8.  

Figure 6.5-6 gives the monthly demand charge reduction for the office using the optimal PV 

orientation of 10 degrees west of south with slope of 10 degrees less than latitude. 
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Figure 6.5-6:  Monthly PV demand charge reductions for the office highrise.  Demand 
savings are significant in spring and autumn even though all the largest loads occur in 

summer. 
 

As with the grocery, demand reduction is an important consideration throughout the year.  

There is very little demand reduction in July despite high average loads during this month.  

Figure 6.5-6 shows that the greatest load for this month occurs during an unusually cloudy 

daytime period, allowing little opportunity for peak shaving.  The greatest monthly demand 

savings occur in December, even though Figure 6.5-1 indicates relatively low average loads 

for the month. 
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6.6   Simulation Results for Retailer 

 

The final building examined in the Milwaukee simulations is a single story retailer with a 

floor area of 12000 ft2.  Unlike the office and grocery, the retailer is billed under Wisconsin 

Electric’s “Small Secondary” rate schedule.  Compared to Large Secondary, the Small 

Secondary schedule bills energy usage more heavily and demand more lightly.  Figure 5.3-3 

illustrates the annual fractional load distribution of the retailer.  Its loads are much smaller 

than either the grocery or the office highrise, so the energy production from a 20 kWp PV 

array will account for a more significant fraction of the total load.  The average monthly 

loads for the retailer are shown in Figure 6.6-1. 
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Figure 6.6-1: Monthly average loads for retailer.  Like the office highrise, loads are greatest 

during the summer months. 
 
 

This building’s average load is greatest in summer, although the seasonal variation in total 

load is fairly small.  The variation in average hourly load is much more significant.  Figure 
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6.6-2 gives the mean hourly load averaged over the entire year.  The average hourly load 

pattern for only the four-month cooling season is shown in Figure 6.6-3. 
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Figure 6.6-2: Hourly loads for retailer averaged over entire year.  Mean loads vary by a 

factor of three from day to night. 
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Figure 6.6-3: Hourly loads for retailer averaged over June, July, August and September.  

The load pattern in similar to the yearly average except that cooling loads are roughly twice 
as large. 

 

There is a very distinct variation in the building’s average load over the course of the day.  

Nighttime loads, from about 10:30 PM to 7:00 AM, average about 10 kW.  From 9:00 AM to 

9:00 PM the average load is roughly 30 kW.  This cycle clearly corresponds to the store’s 

business hours.  Unlike the average hourly loads for the office highrise (Figure 6.5-2), the 

retailer’s load falls off quickly at night over the course of about an hour.  Presumably all 

employees and customers leave when the store closes while some people continue to work 

into the night at the office. 

 

The monetary savings for 45 array orientations facing south and southwest are illustrated in 

Figure 6.6-4. 
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Figure 6.6-4: Annual monetary savings for arrays on retailer facing south and southwest 

 

 

A south-facing array with a slope of ten degrees less than latitude produces the greatest 

savings.  This is the same orientation that maximizes total energy generation, as shown in 

Figure 6.3-1.  Using this orientation saves $1250 over the course of the year.  Only $5 of this 

total comes from demand shaving.  The usage savings are almost $500 greater than for either 

the grocery or the office.  This is not because the PV array generates significantly more 

energy on the retailer than on the other two buildings.  However, usage rates are higher under 

the Small Secondary schedule than under the Large Secondary schedule, making PV-

generated kWh more valuable.  Figure 6.6-5 highlights the top 15-minute loads for the 

retailer.  Separate symbols distinguish those loads occurring at on-peak and off-peak periods. 
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Figure 6.6-5: Top loads for retailer shown with hour of occurrence and direct normal solar 

radiation.  Scale is expanded along the left y-axis. 
 
 

Of these top loads, only three occur during sunny periods.  Eight actually occur after sunset.  

Most importantly, only one of the on-peak loads in Figure 6.6-5 occurs before dusk (4:45 on 

August 28).  Figure 6.6-6 shows only the top on-peak loads, along with direct normal 

insolation. 
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Figure 6.6-6: Top on-peak loads for retailer shown with hour of occurrence and direct 

normal solar radiation.  Scale is expanded along the left y-axis. 
 

 

Five of these loads occur during reasonable sunny periods and are subject to PV load 

shaving.  However, the building owner sees essentially no reduction in demand charge.  The 

reason is that other large loads occur at night during the same month, and these cannot be 

reduced by PV.  The demand charge is based on the largest single monthly load.  This means 

that a customer can only save significantly on the monthly bill if every large load in that 

month can be reduced.  It is clear that this building’s loads are very poorly matched to 

photovoltaic parallel generation. 

 

The retailer’s loads are much smaller than those for the grocery or office highrise, so a 20 

kW PV system generates proportionately more energy than for the other buildings.  At some 

times photovoltaic generation actually exceeds the load, allowing the retailer to sell power 
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back to the utility.  Net-metering laws require the utility to purchase a customer’s excess 

parallel generation at the customer’s usage rate for that time.  Figure 6.6-7 shows the total 

energy sold for each month. 
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Figure 6.6-7: Monthly values for excess PV generation sold back to the utility. 

 
 

Most of the excess energy is produced during May, November, and December.  In May, the 

excess generation occurs on several clear mornings before the store opens for business.  The 

energy sold in November is mainly the result of a very clear Veteran’s Day during which the 

store is closed and loads are low.  Likewise, the business closes on Christmas, accounting for 

excess energy in December. The energy sold back to the utility over the course of the year is 

not economically significant, totaling only 36 kWh.  However, examining when excess 

generation occurs may be important for grid-tied buildings with very large PV capacity.  

 
 
 
 

6.7  Conclusions and Summary 

 

This chapter discusses the results obtained from running PHANTASM for three commercial 

buildings in the Milwaukee area.  Annual monetary savings were calculated for 20 kW 
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rooftop crystalline PV arrays.  The array orientation was optimized for each building.  Table 

6.7-1 summarizes the simulation results. 

 

 
Table 6.7-1:  Orientation, annual energy generation, and monetary savings for optimized PV 

arrays  
 
 

Building Slope – 
Latitude  

Azimuth  Energy 
Generation  

Usage 
Savings 

Demand 
Savings 

Total 
Savings 

Grocery -10 -10 23197 kWh $757 $589 $1346 
Office Highrise -10 +10 23154 kWh $762 $953 $1715 
Retailer -10 0 23197 kWh $1245 $5 $1250 

 
 

The energy generated by the optimized PV systems does not vary much between buildings.  

There are significant differences in total savings between the buildings, however.  These 

discrepancies occur for two reasons.  The first is that the buildings do not all follow the same 

rate schedule. The retailer is billed under the Small Secondary schedule, while the grocery 

and office highrise are billed under the Large Secondary schedule.  Small Secondary has 

greater usage rates; this is why the retailer saves so much more in usage charges than the 

other two buildings despite generating only slightly more energy.   

 

The second reason for the differences in savings is how closely each building’s greatest on-

peak loads coincide with periods in which solar energy is readily available.  The largest loads 

for both the grocery and the office occur predominantly during daylight hours.  In general, 

the grocery’s largest loads occur during cold winter mornings because of electric heating.  

These clear, cold periods are ideal times for PV.  However, many of these top loads occur 

before utility on-peak period begins at 9:00 AM.  Peak shaving is irrelevant to the building 

owner before this time since demand charges are not assessed.  The greatest loads for this 

building coincide well with solar availability but not always with the rate schedule.  The 

grocery sees significant demand reduction in summer as well as winter, even though loads 

are not as large during these months. 
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The office building probably employs gas heating, so its greatest electrical consumption 

occurs during hot summer afternoons when cooling loads are high.  These periods are often 

sunny and occur during on-peak hours, allowing PV generation to reduce demand charges 

significantly.  Demand savings exceed usage savings for this building.  Of the three buildings 

examined in this work, BIPV is most beneficial to the office highrise. 

 

The small retail store sees the least benefit from BIPV.  It saves more in usage charges than 

the office and the grocery because it is billed under a different schedule.  However, its 

demand savings are negligible.  The reason for this problem is simple: this building 

consumes the most electricity after sunset when solar energy is unavailable.   It represents an 

extreme mismatch of load and solar availability.   

 

The demand shaving benefits of BIPV are summarized in Table 6.7-2. 

 
 

Table 6.7-2: Time of peak loads and potential for PV demand reduction in each building 
 

Building Time of Greatest Building 
Loads 

PV Demand Reduction Potential 
 

Grocery Cold clear winter mornings Moderate:  PV performs well but top 
loads often occur before demand charge 
assessment begins at 9:00 AM. 

Office Hot summer afternoons Good: Top loads occur during utility’s 
on-peak hours and often coincide with 
high insolation. 

Retailer Evenings after dusk Minimal: There is usually no sun when 
loads are greatest. 
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CHAPTER 7  

Milwaukee Simulation Results: Utility Benefits 

 
 

Chapter 6 evaluates the potential benefits of BIPV for three commercial electric 

customers in Milwaukee.  PHANTASM determines solar savings based on historical 

building load data and utility rate schedules.  The monetary solar savings are dependent 

on both total energy production and how closely the times of PV generation coincide with 

large building loads.  This chapter discusses the benefits of large-scale BIPV 

implementation from the perspective of the utility.   

 

The utility’s cost for generating a kWh of electricity is not constant.  Most utilities own a 

number of plants with different operating costs.  At times when the utility’s total demand 

obligation is moderate, only large plants with low operating costs are run.  The generation 

cost per kWh at these times is quite low, and parallel generation from PV or other sources 

is not particularly valuable to the utility.  When demand obligation is very large, the 

utility must run its most expensive plants, generally gas turbines.  It may also be forced to 

purchase power from a neighboring utility if demand exceeds generating capacity.  At 

these times the utility’s cost for each kWh may exceed the selling price, so the utility 

stands to benefit from customer parallel generation to reduce demand obligation.  From a 

commercial customer’s perspective, the potential benefits of BIPV depend largely on PV 

performance at times when building loads are large.  Similarly, the value of BIPV 

implementation for the utility is dependent on how closely PV generation coincides with 

times when customers consume the most energy. 

 

 

7.1  Total Energy and On-Peak Optimization 

 

Figure 6.3-1 gives the total annual energy production of a 20 kW PV array as a function 

of orientation.  The optimal orientation to maximize energy production for 1990 in 
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Milwaukee was found to be a south-facing array sloped at ten degrees less than the 

latitude. Figure 6.3-2 shows how orientation effects total energy production during on-

peak hours only.  Wisconsin Electric’s on peak period is from 9 AM to 9 PM on working 

days.  Solar energy prior to 9 AM cannot contribute to on-peak generation, so the “on-

peak optimization” is west of south to take advantage of afternoon sun.  An array facing 

20 degrees west of south sloped at 10 degrees less than latitude maximizes on-peak 

generation.  In general, the utility stands to benefit the most from parallel generation 

during the on-peak hours.  The discussions in this chapter will refer to PV arrays 

optimized for “total energy generation” and “on-peak generation.” 

 

 

7.2   BIPV and Average Hourly and Monthly Loads 

 

Wisconsin Electric’s average loads are greater in summer than in winter.  The winter 

loads, in turn, are larger than those in spring and fall.  In the Midwestern climate PV is 

most effective during the summer, so average PV production coincides fairly well with 

utility loads on a seasonal basis.  Figure 7.2-1 shows the monthly average utility load and 

generation of a 20 kWp PV system optimized for on-peak energy production.  The values 

for PV generation are much less than the 20 kWp rated capacity because all hours 

including nighttime are included in the monthly average calculation. 

 

On average, PV generation also coincides with utility load on a daily basis.  Utility loads 

are usually greater during the day than in the evening, and of course PVs function only 

during the daytime.  The daily variations in average utility load are much larger than the 

monthly variations.  Figure 7.2-2 shows the average utility load and PV generation over 

the course of the day. 
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Figure 7.2-1:  Monthly average utility load and generation from a 20 kWp PV array. 
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Figure 7.3-2: Average utility load and PV generation over the course of the day.  PV 

system is 20 kWp optimized for on-peak generation 
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7.3   BIPV and Load Distribution Curves 

 

A utility load distribution curve is essentially a graph of the utility’s total demand 

obligation over the course of the year ordered from smallest to largest load.  Wisconsin 

Electric’s load distribution curve for 1990 is shown in Figure 5.5-1.  There is a steep 

“tail” of unusually large loads on the far right side of the distribution.  These are hot 

periods in summer when exceptionally heavy cooling loads strain the utility’s capacity.  It 

is at these times that PV or other parallel generation schemes have the most potential to 

benefit the utility.  A qualitative method the estimate the impact of BIPV implementation 

is to examine how PV changes the load distribution curve.  Figure 7.2-1 shows how the 

load distribution changes when 500 MWp and 1000 MWp installed PV are added to the 

grid.  It is important to note that two points falling at the same y-value do not occur at the 

same time.  Each of the three load curves is ordered individually from smallest to largest 

without regard to time of occurrence.  The utility load data were supplied in hour- long 

increments, while the Milwaukee simulations were run using a timestep of fifteen 

minutes.  Thus, the four PV generation results for each hour were averaged to determine 

how PV effects the utility load for that hour. 

 

PV impacts the upper half of the load distribution curve more substantially than the lower 

half.  This is because the lower loads more often occur at night when PV offers no 

benefit.  A key issue is the influence of PV at the upper end of the distribution curve.  

Figures 7.3-2 and 7.3-3 show the top 10% and 1% of the distribution curve.  Figure 7.3-3 

also contrasts PVs optimized for total energy generation (TE) and on-peak energy 

generation (OP). 

 

Most of the top 10% of the load distribution curve is reduced by about 150 MW when 

1000 MWp PV is installed.  Figure 7.3-3 shows that the reduction is slightly larger in the 

lower range of the top 1%, about 200 MW.  However, at the most extreme loads the 

influence of PV falls off substantially.   The very top of the distribution curve is reduced 

by only about 120 MW for 1000 MWp PV capacity.  Figure 7.3-3 also shows that the on-

peak optimization changes the upper range of the distribution curve more favorably than 
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PVs optimized for total energy production.  This is because the largest loads almost 

always fall during the on-peak period. 
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Figure 7.3-1: Annual load distribution curve with 500 MWp and 1000 MWp of installed 

BIPV capacity.  The PV is optimized for on-peak (OP) energy production. 
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Figure 7.3-2: Top 10% of the utility load distribution curve with 500 MWp and 100 MWp 

installed BIPV capacity.  The PV arrays are optimized for on-peak generation. 
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Figure 7.3-3: Top 1% of the utility load distribution curve with 500 MWp and 1000 MWp 

installed BIPV capacity optimized for on-peak (OP) and total energy production (TE). 
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7.4    Marginal Plant Energy Cost Analysis 

 

When grid-tied BIPV systems produce energy, some of the utility’s load is displaced.  

This means that the utility may reduce its generation by running a plant at less than full 

capacity or perhaps shutting off one or more plants.  For the most part, a utility will use 

its most inexpensive available plants to fulfill its load in order to minimize cost.  

Combustion turbines, for instance, are usually the last plants to be turned on when the 

load becomes large and the first to be deactivated when the load falls off.  The most 

costly plant in the generating mix at any given time is known as the “marginal plant.”  

The operating cost of this plant is what determines the value of PV-generated kWh at that 

time. 

 

Two pieces of information are necessary to determine the marginal plant.  The first is the 

total utility load.  The second is a list of plants in the utility, along with their capacities 

and operating costs.  EUSESIA (Electric Utility Solar Energy System Impact Analysis), a 

TRNSYS program developed by Trzesnieski, evaluates the value of thermal or 

photovoltaic solar systems to a utility through a marginal plant analysis [1995].  The 

EUSESIA package includes the complete 1991 generation mix for six Wisconsin utilities 

including Wisconsin Electric.  Although this work relies on 1990 load data, Wisconsin 

Electric’s plant mix should not have changed significantly over the course of one year.  

The list of Wisconsin Electric’s plants is given in Appendix E. 

 

EUSESIA employs statistical methods to account for the possibility of plant outages that 

temporarily reduce the utility’s generation capacity.  The outages are divided into two 

types.  “Forced outages” are unexpected breakdowns that occur randomly.  The 

EUSESIA utility plant data includes the fraction of time during which each plant is down 

due to forced outages.  “Scheduled outages” are regular intervals during which some 

plants are deactivated or run only at partial capacity for maintenance purposes.  For 

Wisconsin Electric, all scheduled outages occur between March 1 and May 1 or 

September 20 and November 20.    
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EUSESIA also accounts for energy losses in transmission and distribution.  BIPV parallel 

generation is consumed on-site and is not subject to such losses.  Thus, the amount by 

which the utility generation is reduced by grid-tied BIPV systems is somewhat greater 

than the energy produced by the PV systems themselves.  By totaling the marginal cost of 

parallel generation at each hour and dividing out transmission and distribution losses, 

EUSESIA calculates the utility’s monetary savings in energy production over the course 

of a year.  This is summarized in the following equation: 
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    Eq. 7.4-1 

 

QPV,j and Costj are the values for PV generation and marginal energy cost at each hour.  

Losstrans and Lossdist are the fractions of centrally generated energy lost in transmission 

and distribution respectively.  For this work Losstrans was assumed to be 2% and Lossdist 

to be 3%.   

 

The annual utility energy savings for single 20 kWp systems optimized for total and on-

peak energy production are shown in Table 7.4-1. 

 

 

Table 7.4-1: Utility savings and annual energy production of 20 kWp BIPV systems 

 

BIPV System 
Optimization 

Utility Energy Savings 
(Generation Level) 

Utility Monetary 
Savings 

Value of PV 
Generation 

On-Peak 24168 kWh $476 $0.0197 / kWh 

Total Energy 24402 kWh $482 $0.0198 / kWh 

 

The average value of photovoltaic electricity is just under $0.02 per kWh based on the 

cost of the conventional generation it replaces.  This is considerably more valuable than 
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Wisconsin Electric’s nuclear and cheaper coal generation ($0.0048 and roughly $0.01 per 

kWh respectively).  On the other hand, the gas turbines operate at $0.06 per kWh. 

 

  

7.5    Utility Demand Reduction 

 

A second factor in assessing the value of grid-tied BIPV for a utility is how well BIPV 

systems offset the need for the utility to install additional conventional capacity.  The 

total capacity that a utility must install is essentially dictated by the greatest loads it may 

expect.  For this reason, the demand reduction potential of BIPV systems is closely tied 

to their performance at times when utility loads are greatest.  Figure 7.3-3 shows how 500 

MW and 1000 MW ensembles of BIPV systems would effect the top 1% of the utility 

distribution curve.  Another way to visualize PV performance at high utility loads is show 

how PV installation will reduce each load at a given time.  Figure 7.4-1 illustrates how 

each of the top 50 hourly utility loads is reduced by 500 MWp of installed PV capacity, 

optimized for on-peak production.  Most of the top loads occurring before 4 PM are 

reduced by at least 200 MW.  Not surprisingly, the PV performance at top loads drops off 

quickly in late afternoon.   

 

EUSESIA uses solar performance at the largest utility loads to estimate how much new 

utility generating capacity is offset by installing solar systems.  The number of peak 

hourly loads employed in this analysis, N,  is a variable that may be set by the user.  The 

demand reduction for a BIPV system is its average generation for the top N loads with 

transmission and distribution losses divided out: 
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    Eq. 7.5-1 
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The demand reduction clearly depends on the somewhat arbitrary choice of a value for N.  

In this analysis, however, the result varies by only about 20% for values of N ranging 

from 10 to 50.  
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Figure 7.5-1:  Reduction of the top 50 utility loads for 500 MWp installed BIPV.  

Separate symbols distinguish the hour of occurrence for each load.  PV provides little 
load shaving benefit for loads occuring after 6 PM. 

 
 

 

Figure 7.5-2 shows the demand reduction estimates using five values of N for 20 kWp 

systems optimized for on-peak and total energy production.  These estimates suggest that 

20 kWp installed PV capacity corresponds to roughly 8 kW of new gas turbine capacity 

for meeting top loads.   On-peak optimization provides about 5% more utility demand 

reduction for each value of N except 20.  The reason is that most of the solar energy 

available for loads ranking 10 to 20 occurs in the morning or early afternoon, as shown in  
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Figure 7.5-2:  Utility capacity reduction for installation of 20 kWp systems optimized the 

total energy and on-peak generation.   
 
 

Figure 7.5-1.  In general, the demand reduction estimate goes down with larger N values. 

However, N = 40 produces slightly more optimistic results than N = 30.  Figure 7.5-1 

shows that PV performs unusually well for loads ranking in the 30s, so including these 

loads in the analysis enhances the demand reduction estimate. 

 

EUSESIA calculates the monetary value of solar demand reduction by multiplying the 

results shown in Figure 7.5-2 by set costs for new generation, transmission, and 

distribution capacity.  Gas turbine peaking plants are estimated to cost $325 per kW.  In 

addition, new infrastructure requirements for transmission and distribution are each 

estimated to cost $100 per kW.   Table 7.5-2 shows the results for the monetary demand 

reduction value of a 20 kWp PV system for values of N  ranging from 10 to 50.  These 

results show that 20 kWp BIPV system will replace roughly $4000 worth of conventional 

peaking plant capacity.  
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Table 7.5-1: Estimate of the monetary value of utility demand reduction for a 20 kW 
BIPV system. 

 
 

N:  # of Peak 
Loads Used in 
Demand 
Calculation 

Total Energy 
Optimization 

On-peak 
Optimization 

10 $4345 $4669 
20 $4017 $4016 
30 $3407 $3646 
40 $3546 $3712 
50 $3293 $3451 

 
 

 

7.6   Summary 

 

This chapter examines the potential benefits of BIPV parallel generation from the 

perspective of the electric utility.  Hourly 1990 load data for Wisconsin Electric, the 

Milwaukee utility, were employed in these analyses.  On an hourly and monthly basis, 

PV generation coincides fairly well with average utility loads.  Loads are generally 

largest during the daytime hours when PV is effective.  Likewise, the utility experiences 

its greatest average loads during the summer months when PV systems produce the most 

energy.   

 

EUSESIA, a TRNSYS package developed by Trzesniewski [1995], was used to calculate 

the value of photovoltaic energy and demand reduction for the utility.  EUSESIA 

employs a “marginal plant” model to determine the average value of a kWh of PV 

generation.  This model accounts for which plants the utility is running at a given time 

and assesses the value of PV generation at that time based on the operating cost of the 

most expensive operating plant.  The average value to the utility of photovoltaic 



 160 

electricity was found to be just under $0.02 per kWh.  In addition, EUSESIA was used to 

estimate the value of the gas turbines peaking capacity and associated transmission and 

distribution infrastructure which could be replaced by a single 20 kWp BIPV system.  20 

kWp PV capacity is equivalent to about 8 kW of gas turbine capacity, valued at roughly 

$4000. 

 

These estimates for the value of PV to the utility are based on simulations from a single 

year; using some other year would produce different results.  As discussed in Chapter 5, 

the weather in 1990 was unusually poor from the perspective of available solar energy.  

Combining the results of similar simulations for ten or twenty years would probably 

produce more realistic estimates.  On average, PV might be (very roughly) 10% more 

productive than during 1990.  Running more simulations would of course require more 

weather and utility load data.  In addition, the plant list employed in the marginal plant 

analysis may not remain constant over this time span if new plants are built or old ones 

are decommissioned. 

 

EUSESIA does not account for the possibility of total loads exceeding generating 

capacity, a very bad situation for the utility.  Such a problem would be most likely to 

arise if a significant portion of the generating capacity suffered a forced outage during a 

peaking period.  This situation will produce a brownout if the utility in question is unable 

to purchase excess power from a neighboring utility.  PV is probably a more reliable 

power source than generation technologies that rely on mechanical energy conversion, 

making unexpected outages less likely.  Moreover, the distributed nature of BIPV 

generation could help it to prevent brownouts.  A large central plant could fail 

unexpectedly at any time, but there is very little chance of many small BIPV systems 

failing simultaneously and producing a large drop in total generating capacity.  This 

analysis does not quantify the value of avoiding brownouts or wheeling for an individual 

utility.   
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CHAPTER 8  

Conclusions and Recommendations 

 
 

 

8.1 Project Summary 

 

The goals of this project were twofold.  The first objective was to develop a stand-alone 

TRNSYS software package for simulating the electrical and economic performance of 

building- integrated photovoltaic systems.  This package, PHANTASM, relies on the 

TRNSED menu-based user interface.  PHANTASM allows a user to define a grid-tied 

photovoltaic system in any location and examine its potential to reduce a building’s 

electric bill.  The program uses hourly weather data, building load data, and a real utility 

rate schedule.  Both usage and demand charges are accounted for in assessing the 

economic impact of the BIPV system.  The software employs a new five-parameter 

TRNSYS photovoltaic model that can simulate amorphous as well as crystalline PV 

modules.  The five-parameter model is described in Chapter 3, while the other aspects of 

the PHANTASM program are discussed in Chapter 4. 

 

The second goal of this work was to use PHANTASM to study the potential for the large-

scale implementation of grid-tied BIPV systems in Wisconsin.  Simulations were carried 

out for three commercial buildings in the Milwaukee area using electrical load data and 

weather from 1990.  Rate schedules from Wisconsin Electric were employed to calculate 

solar savings for each building.  The methods and results of these calculations are 

addressed in Chapter 6.  In addition, the impact of BIPV on the electric utility was 

studied using EUSESIA, a TRNSYS program developed by Trzesnieski.  1990 total load 

data for Wisconsin Electric were employed in this analysis.  EUSESIA uses a utility 

marginal plant model to determine the value of solar parallel generation at each time 

throughout the year.  The program also examines photovoltaic performance during times 
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when utility loads are greatest to estimate the value of the conventional generating 

capacity that may be replaced by a BIPV system. 

 

 

8.2 Conclusions 

 

This study examines the performance of a 20 kWp rooftop BIPV array from the 

perspective of the electric customer and the utility.  The present cost of such an array is 

roughly $80000.  Three commercial buildings were examined: a grocery, an office 

highrise, and a retail store.  Since commercial rate schedules generally include demand 

charges that penalize the customer for large instantaneous loads, the solar savings from 

BIPV depend largely on how well PV performance coincides with the greatest building 

loads.  It was found that the greatest loads in the grocery occurred during winter 

mornings.  These periods were often clear, providing moderate PV generation with an 

annual solar savings of $1346.  The greatest loads for the office highrise occur on hot 

sunny afternoons, coinciding more closely with photovoltaic generation.  Solar savings 

for the office was $1715.  The retailer saved only $1250 because most of its greatest 

loads occur at night when the PV system is not operating. 

 

A 20 kWp oriented to maximize energy production during the on-peak period produces 

24168 kWh over the course of the year.  A marginal plant analysis assesses the value of 

this energy for the utility is $476 or $0.0197 per kWh.  Based on PV performance during 

the top 10 to 50 hourly utility loads during the year, the 20 kWp system has the same 

potential for meeting peaking demands as about 8 kW of gas turbine capacity.  The value 

of this generation capacity and the associated transmission and distribution equipment is 

approximately $4000. 

 

These results suggest that, in purely economic terms, grid-tied photovoltaic systems do 

not promise to be profitable investments at this time.  However, photovoltaics have 

proven to be economical energy solutions in areas without electrical infrastructure, and 

there are several reasons to believe this study has produced conservative results.  Perhaps 
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the most important is that electric rates in Wisconsin are among the lowest in the nation.  

Power is roughly twice as expensive on the Eastern seaboard and even more costly in 

Europe, so the value of photovoltaic generation in these area is proportionately greater.   

 

Chapter 5 shows that weather conditions in 1990 were unusually poor for PV, mainly 

because of a cloudy summer.  Rerunning the simulations in a more typical year would 

probably produce more optimistic results.  Moreover, the climate in the Upper Midwest is 

not ideal for PVs.  Most areas in the Western US are considerably sunnier, especially 

during winter.   

 

Standard crystalline PV modules currently cost about $4 to $5 per peak watt.  Amorphous 

modules are cheaper although a bit less efficient.  However, both the cost and efficiency 

of PVs employing thin-film technology is improving rapidly.  The production of PV 

capacity is growing by 20% annually, a trend that suggests economies of scale stand to 

further reduce PV costs. 

 

 

8.3 Recommendations 

 

PHANTASM is a useful tool for building designers interested in estimating the economic 

performance of a BIPV system.  A number of simulation packages are available to 

predict the physical performance of photovoltaic systems. However, other solar 

simulation programs do not estimate the impact of demand savings by accounting for 

fluctuations in electrical consumption. 

 

It would be useful to run further BIPV simulations in areas with more favorable climates 

and/or higher utility rates.  These are the areas most likely to see large-scale market 

penetration of grid-tied PV systems in the near future.  Furthermore, simulations 

involving amorphous technology would provide a useful comparison in determining 

whether crystalline or amorphous modules are most appropriate for a large-scale utility 

program. 
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Trzesnieski [1995] has pointed out that the EUSESIA program could readily be expanded 

to examine the utility impact of wind turbine systems.  Modifying PHANTASM to 

include wind systems would be more complicated.  However, the Rate Calendar and 

Utility Rate Schedule TRNSYS components are compatible with any sort of grid-tied 

parallel generation.  A program including wind data and wind turbine model components 

could be developed to examine how the availability of wind energy coincides with 

building loads.    

 

Finally, the scope of this study could be expanded to examine the environmental 

ramifications of renewable energy systems.  One very important advantage of 

photovoltaic generation is that, from an environmental standpoint, it is completely 

benign.  PV manufacture is an energy- intensive process, although the energy-payback 

time for emerging thin-film technologies is on the order of one year.  Moreover, utility 

deregulation and stricter emissions standards are likely to lead to increased trading of 

emissions credits among utilities.  PV implementation is an effective way to reduce 

emissions, and EUSESIA’s marginal plant model provides a straightforward method to 

quantify these reductions for various utilities.            
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APPENDIX A 

Wisconsin Electric Generation Mix (1991) 

 
 
        
PLANT          Capacity    Out1      Out1       Out1       Out2  Sched       Full      Partial     Partial    Operating 
                           start        end         start        end      Out.        Out.       Out.     Capacity   Cost  
              [MW]    (m/d)     (m/d)       (m/d)      (m/d)    [%]         [%]        [% ]       [MW]    [$/kWh] 
  
 'PNT BEACH2' 497 3 1 5 1 9 20 11 20 6 1.9 0 0 0.0048 
 'PNT BEACH1' 497 3 1 5 1 9 20 11 20 6 1.9 0 0 0.0048 
 'PLEASNTPR2' 580 3 1 5 1 9 20 11 20 6 1 1.3 220 0.009 
 'PLEASNTPR1' 580 3 1 5 1 9 20 11 20 6 1 1.3 220 0.009 
 'EDGEWATER5' 97 3 1 5 1 9 20 11 20 4 2 5 38 0.0136 
 'OAK CREEK8' 305 3 1 5 1 9 20 11 20 5 1 1.6 85 0.0143 
 'OAK CREEK7' 280 3 1 5 1 9 20 11 20 5 1 1.6 85 0.0143 
 'OAK CREEK5' 258 3 1 5 1 9 20 11 20 5 2 2.9 82 0.0148 
 'OAK CREEK6' 260 3 1 5 1 9 20 11 20 5 2 3 82 0.0149 
 'PRESQUEIS4' 57 3 1 5 1 9 20 11 20 1 1 2.4 12 0.0162 
 'PRESQUEIS6' 85 3 1 5 1 9 20 11 20 1 1 2.2 20 0.0163 
 'PRESQUEIS5' 84 3 1 5 1 9 20 11 20 1 1 2.2 19 0.0163 
 'PRESQUEIS1' 25 3 1 5 1 9 20 11 20 0 0 0 0 0.0165 
 'PRESQUEIS2' 37 3 1 5 1 9 20 11 20 0 0 0 0 0.0167 
 'PRESQUEIS3' 58 3 1 5 1 9 20 11 20 1 1 2.4 12 0.017 
 'PORT WASH2' 80 3 1 5 1 9 20 11 20 0 4 1.3 29 0.0199 
 'PORT WASH1' 80 3 1 5 1 9 20 11 20 0 4 1.3 29 0.0203 
 'VALLEY2   ' 62 3 1 5 1 9 20 11 20 8 2.5 3.9 30 0.0214 
 'VALLEY4   ' 70 3 1 5 1 9 20 11 20 0 2.5 4 34 0.0216 
 'VALLEY1   ' 64 3 1 5 1 9 20 11 20 8 1 13 7 0.0224 
 'PRESQUEIS9' 84 3 1 5 1 9 20 11 20 1 1 3 14 0.0227 
 'PRESQUEIS8' 83 3 1 5 1 9 20 11 20 1 1 3 14 0.0227 
 'PRESQUEIS7' 81 3 1 5 1 9 20 11 20 1 1 3.2 13 0.0227 
 'VALLEY3   ' 70 3 1 5 1 9 20 11 20 0 1 15 14 0.023 
 'PORT WASH3' 82 3 1 5 1 9 20 11 20 0 4 1.4 29 0.0237 
 'PORT WASH4' 80 3 1 5 1 9 20 11 20 0 4 1.5 29 0.0267 
 'CONCORD4  ' 83 3 1 5 1 9 20 11 20 0 1 0 0 0.047 
 'CONCORD3  ' 83 3 1 5 1 9 20 11 20 0 1 0 0 0.047 
 'CONCORD2  ' 83 3 1 5 1 9 20 11 20 0 1 0 0 0.047 
 'CONCORD1  ' 83 3 1 5 1 9 20 11 20 0 1 0 0 0.047 
 'OAK CREEK9' 20 3 1 5 1 9 20 11 20 0 1 0 0 0.0557 
 'GERMNTOWN4' 53 3 1 5 1 9 20 11 20 0 1 0 0 0.06 
 'GERMNTOWN3' 53 3 1 5 1 9 20 11 20 0 1 0 0 0.06 
 'GERMNTOWN2' 53 3 1 5 1 9 20 11 20 0 1 0 0 0.06 
 'GERMNTOWN1' 53 3 1 5 1 9 20 11 20 0 1 0 0 0.06 
 'PNT BEACH5' 20 3 1 5 1 9 20 11 20 0 1 0 0 0.0637 
 'PORT WASH6' 18 3 1 5 1 9 20 11 20 0 1 0 0 0.0651 
 
 


