
DEVELOPMENT OF A DAYLIGHTING PROGRAM

WITH THE F METHOD

by

Jan-Uwe Kluessendorf

A thesis submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE

(Chemical Engineering)

at the

UNIVERSITY OF WISCONSIN - MADISON

1987

APPROVED:

/6 ,49~7

Date Prof. JAZfi

II

ABSTRACT

Development of a daylighting program with the F method

by

Jan-Uwe Kluessendorf

under the supervision of Professors John A. Duffle and Sanford A. Klein

The daylight received at a sensor positioned at a specified point in a room can be

viewed as the sum of three components: direct sun, direct diffuse, and interreflected

light. It can be determined from geometrical considerations if direct beam

illuminance occurs; i.e., when the sensor is directly radiated. The direct diffuse

component is the daylight reaching the sensor from diffuse light sources (e.g. the

window plane) without being interreflected. The window plane is diffusely

illuminated from the patch of sky it views and from light that is reflected from the

ground. Interreflected light reaches the sensor after diffuse and beam light are

reflected from the room surfaces once or multiple times.

In the absence of direct beam illumination, the interreflected light can be a major

daylight component at the sensor position. An exact calculation of the interreflected

illumination depends on the spectral and specular properties of all room surfaces.

Such calculations can be done with the Monte Carlo method, but with significant

computational effort. At the other extreme, interreflected light can be estimated with

III

the split flux method [Narasimhan], in which the interior surface is considered to be

spherical with suitably-averaged properties.

This paper describes a new method for calculating the interreflected daylight

component which is computationally efficient, yet does not require the restrictive

assumptions of the split-flux method. The method is based on the F (F-hat) thermal

radiation exchange methodology developed by Beckman [Beckman]. In this case Fij

is defined as the fraction of the daylight leaving surface i which reaches surface j by

all possible paths. Assuming the room surfaces to be diffuse reflectors, the value of

Fli depends only on the configuration factors of surface i to surface j and the

reflectances of the room surfaces. Matrix algebra must be done only once at the start

of the calculations. The effect of reflected radiation from room surface patches

which are directly illuminated is accounted for by treating these patches as additional

windows.

A program has been developed to calculate the direct and reflected daylight at a

specified position in a rectangular room with one or more windows. Using the F

method, the program requires minimal computational effort and can be used for

hour-by-hour daylight calculations for yearly periods.

IV

ACKNOWLEDGEMENTS

The German Academic Exchange Service (DAAD) provided me with the

possibility of attending graduate school at the University of Wisconsin - Madison.

This scholarship supports participants of the program "Integriertes

Auslandsstudium" for two semesters. For my third semester, I was granted a

research assistantship by the Department of Chemical Engineering. My parents

improved my financial situation throughout my stay, and without their help, this

thesis would not have been possible.

At least as important as the financial aid, was the technical knowledge and

engineering expertise of Professors J.A. Duffle and S.A. Klein. Their

encouragement and ideas were essential.

I want to thank Karla for taking care of another component of my life in the

United States that needed support. Without her, I would not have survived my
"zombie periods". I appreciate her patience, especially during the last several

weeks, and admire her ability to give me moral support as my personal back-up

system. Finally, her proofreading eliminated my German punctuation in this work.

Besides supporting me financially, my parents were as understanding as they

could be from 3000 miles away, and they helped me with many encouraging letters

and care-packages.

Going to school in Madison was an unforgettable experience. The Solar

Energy Laboratory was a great place to work, and I will recommend it to all future

German exchange students.

V

TABLE OF CONTENTS

ABSTRACT I

ACKNOWLEDGEMENTS V

LIST OF FIGURES VIII

LIST OF TABLES X

CHAPTER 1: Introduction 1

1.1 Overview 1

1.2 Objective 2

1.3 Units 3

CHAPTER 2: Sky model 5

2.1 Intermediate Sky Conditions 5

2.2 Luminous Efficacy 7

2.3 Overcast sky luminance distribution 8

2.4 Clear sky luminance distribution 9

2.5 Direct beam 13

2.6 Transmittance 15

CHAPTER 3: Interreflected light 17

3.1 Theory 17

3.2 Configuration factors 22

3.3 Room model 26

VI

3.4 Checks 33

CHAPTER 4: Components 35

4.1 Window luminance 35

4.2 Interreflected component 38

4.3 Direct diffuse component 41

4.4 Direct beam component 42

4.5 Total daylight 44

CHAPTER 5: Program description 45

5.1 Data flow 45

5.2 Room geometry 47

5.3 Input and Output 49

5.4 Limitations 53

CHAPTER 6: Results 55

6.1 Ideal day 55

6.2 Contributions 57

6.3 Reflectances 67

6.4 Sensor position 73

CHAPTER 7: Conclusion 76

APPENDIX A: Ideal day data 78

APPENDIX B: FLITE listing 79

BIBLIOGRAPHY 163

VII

LIST OF FIGURES

2.1 Clear sky fraction 6

2.2 Overcast sky luminance distribution 10

2.3 Sky dome with angles in eqn.(2.8) 11

2.4 Clear sky luminance distribution 14

2.5 Angular dependent transmittance 16

3.1 Energy flux between parallel plates 19

3.2 Nomenclature in eqn.(3.11) 24

3.3 Numbering convention of surface elements for n = 3 27

3.4 Numerical integration of point-area configuration factors 29

3.5 CPU time and memory space needed 30

3.6 Area weighted sky luminance 32

4.1 Beam patch on surface #2 43

5.1 Flowchart of FLITE 46

5.2 Room geometry 51

6.1 Ideal day radiation distribution 56

6.2 Room geometry for fig.(6.4) 58

6.3 Daylight contributions for one window facing south 60

6.4 Daylight contributions for one window facing north 61

6.5 Daylight contributions for windows facing south and east 65

VIII

6.6 Daylight contributions for windows facing south and west 66

6.7 Variation of the wall reflectances 69

6.8 Variation of the, wall reflectances for a smaller room 70

6.9 Variation of the floor reflectance 71

6.10 Variation of the ceiling reflectance 72

6.11 Variation of the sensor position 74

Ix

LIST OF TABLES

2.1 Climatic coefficients 12

5.1 File 'FLITE.in' 49

5.2 File 'TRNSYS.out' 52

5.3 File 'FLITE.out' 52

6.1 File 'FLITE.in' for fig.(6.3) 58

6.2 File 'FLITE.in' for fig.(6.4) 59

6.3 File 'FLITE.in' for fig.(6.5) 62

6.4 File 'FLITE.in' for fig.(6.6) 64

6.5 File 'FLITE.in' for fig.(6.8) 68

X

CHAPTER 1

Introduction

The engineering objective of calculating the daylight inside a room is to predict

the electric lighting load that is needed to obtain a specific workplane illuminance.

With this information, lighting loads may be reduced resulting in lower air

conditioning costs. The computer program described here, FLITE, furnishes the

user with the required data for these calculations, i.e. the illuminances at any

specified point on a plane parallel to the floor of a rectangular room.

The nomenclature of used parameters is given after each formula. For recurring

parameters, the definition is noted previously in the same chapter or following a

referenced expression.

1.1 Overview

A computer program has been developed that calculates the daylight in a

rectangular room with any combination of windows in the four wall surfaces. The

program is based, in part, on the daylighting program DALITE [Gillette] of the

National Bureau of Standards (NBS), although the approach to solving the internal

reflection of daylight is entirely different.
It was not possible to use DALITE for the generation of iluninance data due to

apparent errors in that program. For instance, for certain geometries, if the point for

2

which the illuminance had to be calculated did not view the sky, the total daylight

turned out to be zero. This cannot be true, because there should still be light

reaching the point which was reflected from the room surfaces. Considerable time

has been invested trying to debug the program. The author of DALITE was very

cooperative but it was ultimately decided that it was impractical to base this work on

DALITE. The consequence was that a new program had to be designed, since other

daylighting programs in source code form and suitable for incorporation into a

general building simulation program were not available.

DALITE calculates the illuminance at a specific point in the room by

determining the fraction of light coming from the patch of sky viewed by this point

through the window. The contributions to the total illuminance by direct beam and

interreflected light are then added. The interreflected light is calculated by applying

the split flux method [Narasimhan] in which the actual internal space is

approximated by a sphere with an average reflection factor representing the

reflectances of all of the room surfaces.

1.2 Objective

The objective of this work was to develop a computer program which could

accurately estimate the daylight at a prescribed point in a room with minimal

computational effort. DALITE was used to provide the ideas for the sky models

used and a basic structure of the program. In the new approach developed in this

thesis, the interreflected component is calculated in a new way which does not

involve the restrictive assumptions of the split flux method. The new method takes

into account that there may be beam sunlight reaching one or more of the room

3

surfaces. The beam radiation on these surfaces is assumed to be diffusely reflected;

and the beam images are treated as additional windows.

One of the goals of this study was that the new program could use the TRNSYS

program [Solar Energy Laboratory] as a source of input data. TRNSYS is a

simulation program which can be used for the investigation of the energy

performance of buildings. A subroutine of TRNSYS (Typel6) generates hourly

radiation data, which are needed for daylighting calculations. Compatibility had to

be provided in order to use the new program in conjunction with TRNSYS.

FLITE allows calculatidns with variable accuracy, where the dependence of the

accuracy on the computation time can be investigated.

1.3 Units

Daylight is the visible portion of the radiation emitted by the sun between

wavelengths of 0.38 gm and 0.78 gm that reaches the surface of the earth. It is

usually expressed in terms of luminance L or illuminance E.

A uniform light source with the luminous intensity of one candela (cd) induces a

luminous flux density of one lux (lx) or one lumen per square meter (lm/m 2), called

illuminance, on each point of an imaginary sphere with a radius of one meter around

this source. Luminous intensity is the same as luminous flux per unit solid angle

(steradian) in a given direction. It is measured in candela (cd) or lumen per steradian

(lm/sr). Luminance is the luminous flux density per unit solid angle in a given

direction, measured in candela per square meter (cd/rn 2). For further information

see [Kaufman, pp. 1-i - 1-3].

Illuminance is the luminous flux density reaching a surface. The luminous flux

density leaving a surface is referred to as exitance M, where

M=p*E (1.1)

with p being the surface reflectance. Luminance can be converted into exitance by

multiplication with xc:

M=ic*L (1.2)

Conversion tables from SI units to English units are given in the IES Handbook

[Kaufman, pp.1-31 - 1-36].

5

CHAPTER 2

Sky model

Values of the sky and sun luminance must be obtained from data that are

generally available, i.e. total horizontal solar radiation, diffuse horizontal solar

radiation, solar azimuth angle and solar altitude angle. The methods described in

this chapter are recommended by the Illuminating Engineering Society (IES) and/or

taken from DALITE.

2.1 Intermediate sky conditions

To account for the intermediate states between completely overcast and

completely clear skies, DALITE [Gillette, p.14] uses the cloud ratio, also called

diffuse fraction [Duffle, Beckman, pp.70 -72], as a measurement of the clearness of

the day.

CR = ID / IT (2.1)

CR = cloud ratio

ID = diffuse horizontal solar radiation

IT= total horizontal radiation

6

DALITE suggests that the actual intermediate sky is a unique function of the cloud

ratio. For an almost overcast sky the Clear sky component is negligible and for an

almost perfectly clear sky the diffuse radiation has virtually no influence on the

average luminance.

DALITE uses a clear sky fraction, based on the cloud ratio that calculates an

intermediate value that is biased towards the extremes.

f = (1+cos(CR*nt))/2 (2.2)

f = clear sky fraction

1

= 0.8
0

co0.6

S0.4

C.~0.2-S02

9 0.2 0.4 0.6 0.8 1
cloud ratio CR

Figure (2.1): Clear sky fraction

7

The intermediate sky luminance is found from

L = f*Lclr + (1-f)*Lovr (2.3)

L = intermediate sky luminance

L r = clear sky luminance at specified point of the sky dome

Lovr = overcast sky luminance at specified point of the sky dome

2.2 Luminous efficacy

Luminous efficacy is defined as the ratio of luminous flux to radiant flux, where

luminous flux is measured in lm and radiant flux in W. This quotient can be used to

estimate illuminance data directly from radiation data:

(D)=K* S [lm/W] (2.4)

0 = luminous flux

K = luminous efficacy

S = radiant flux

The luminous efficacy varies somewhat for different sky conditions (overcast

and clear sky) and surface orientations. For these sky conditions and for a

horizontal plane, the values for the diffuse luminous efficacy (which does not take

into account direct sunlight) generally range from 105 Im/W to 120 Ira/Wand for the

global luminous efficacy from 100 Im/W to 115 Im/W. Littlefair found that some

8

researchers measured or calculated values that lie considerably above or below these

numbers [Littlefair, p. 172]. The values used in DALITE (111 ln/W for diffuse sky

luminous efficacy and 93 lm/W for total luminous efficacy) [Gillette,p, 20] represent

average values and have been adopted in this program for calculating the total

(global) horizontal illuminance on the ground:

ET = (93 + 18 CR)IT [lux] (2.5)

ET = total horizontal illuminance

Equation (2.5) requires that the total horizontal radiation IT be inserted in W/m2 .

The cloud ratio CR is used to find the intermediate luminous efficacy value between

those for completely diffuse and perfectly clear skies.

2.3 Overcast sky luminance distribution

The IES Handbook recommends the following formula to calculate the

nonuniform overcast sky luminance distribution [Kaufman, p.9-83]:

L = 3/7 * ET/7*(1 + 2 sin(a)) (2.6)
ovr

= altitude angle of luminance point on sky dome

The total horizontal illuminance ET can be determined using equation (2.5).

Equation (2.6) shows that the overcast sky luminance distribution is symmetric

about an axis drawn through the center of the sky dome. A point with a luminance

value can be specified with the altitude angle a of its location. The normalized

overcast sky luminance distribution is plotted in fig.(2.2).

2.4 Clear sky luminance distribution

The nonuniform clear sky luminance distribution was derived by Kittler and is

recommended by the IES [Kaufman, p.9-84]:

(1 - e-0.32/sin(a))(0 .9 1 + 10e3 ' + 0.45cos2(N)(
Ll= + tr(2.7)

0.274(0.91 + lOe 3 + 0.45sin2(h))

Lz,cer = zenith clear sky luminance

NV = great circle angle between sun and luminance point

h = solar altitude angle

0 = solar zenith angle

aI 0.50
0

o 0.45

E 0.40
D -.

0.135

o 0.30

0 0.25
N

L 0.20
0

0 0.10

13

E 0.05
E

0 a A A a A * ."1 0 20 40 60 80 80 60 40 20 0

alt i tude an9l]1e of Ilum i nonce po i nt

Figure (2.2): Overcast sky luminance distribution
0

11

Nf is also called scattering angle and is given by several authors [Karayel et al., p.4;

Dogniaux, p.18]:

Nf = arccos[sin(0)sin(az)cos(y) + cos(0)cos(az)] (2.8)

a= zenith angle of luminance point

y = angle between sun azimuth and azimuth of luminance point

Figure (2.3): Sky dome showing angles in equation (2.8)

12

The zenith (air mass = 1) clear sky luminance Lz r is

LZcr = a0 + alh2 + a2 h3 [cd/m 2] (2.9)

Dogniaux found that the coefficients a0 , a1 and a2 depend on the climate of the

considered region, which is characterized by the precipitable water vapor content of

the atmosphere (co) and a turbidity coefficient (0l), which expresses the radiation

absorbing effect of particles other than water. He developed a table showing the

parameters a0, a1 and a2 for the different water vapor contents and turbidity

coefficients [Dogniaux, p.22]. The program requires co and beta as inputs, where

beta identifies the turbidity coefficient 03. The constants a0, a, and a2 are stored in

the program and automatically found according to beta and co. These can be

determined from table 2.1, which also shows the turbidity coefficients that

correspond to the different choices of beta.

location beta f3 climate co [cm of water]

rural 1 0.05 dry 0.5, 1

urban 2 0.1 moderate 2, 3, 4

Table (2.1): Climatic coefficients

industrial 3 0.2 humid 5

13

Unlike Lr the location of a luminance point with a specific clear sky

luminance L,, must be defined by two parameters, the altitude and the azimuth

angle of the point. For a solar altitude angle of 600 and a solar azimuth angle of 00,

the normalized clear sky luminance distribution is plotted across the sky dome in

fig.(2.4). The azimuth angles of the luminance point are 00 in the left half

(increasing altitude angle of the luminance-point) of the plot and 1800 in the right

half (decreasing altitude angle).

2.5 Direct beam

In addition to the diffuse light from the sky, the case of direct beam must also

be considered. DALITE suggests [Gillette, p.20]:

E = Esc 1 + 0.033cos(3 6 0 .J))e1 1 (20365 / e '- s ~) (2.10)

EB = direct normal beam iluminance

Esc = solar illuminance constant

J = Julian date (day of the year)

a = atmospheric extinction coefficient

This relationship resembles the equation for the extraterrestrial solar radiation

[Duffie, Beckman, p.22]. It substitutes the solar constant by the solar illuminance

constant of 127.5 klx, and includes a term which accounts for the attenuation of the

atmosphere with an extinction coefficient a=0.21.

coi
uC 4
a

E3.5

.p •
.~ 3

4

02.5

N

2

4J

CL
01.5

co=
01)

u0

C 0.50

E 0
0

altitude angle of l umi nonce poi nt

Figure (2.4): Clear sky luminance distribution

20 40 60 0 80 60 40 20 0

15

2.6 Transmittance

In the diffuse case, a constant transmittance of the window can be used, also

called hemispherical transmittance. This value can be found in tables in various

sources, e.g. the IES Handbook [Kaufman, p.7-10]. For direct beam, the

transmittance is dependent on the incidence angle, which is the angle between the

normal to the window plane and the beam itself.

For vertical windows:

a = arccos(h) (2.11)

a = incidence angle

The transmittance also depends on the number of glazings. The formula used in

DALITE [18] that has been adopted is:

ta 1.018 to cos(a)(1 + sin3 (a)) (2.12)

ta = angular dependent transmittance

to = hemispherical transmittance

It is valid for single glazings. Equation (2.12) is plotted in fig.(2.5) for to =

0.85. Duffie and Beckman suggest a different relationship that accouns for the

number of glazings and is based on the Fresnel equations [Duffie, Beckman, pp. 171

- 174]. The respective statement function in this program (TRANSMIT) can easily

16

be substituted.

0 12 24 36 . 48 60 72 84

incidence angle a (degrees)

Figure (2.5): Angular dependent transmittance

I

17

CHAPTER 3

Interreflected light

In order to find the interreflected component of daylight that enters a room and

eventually reaches the specified point, the F method [Beckman] has been applied.

This method is generally used for heat flux calculations and has not been chosen for

daylighting calculations previously. The F method is exact under the following

assumptions:

1) The room is totally empty.

2) The point (sensor) for which the illuminance is calculated, has a

transmittance of one. In other words, it interferes in no way with the light fluxes

reflecting between the room surfaces.

3) All surfaces are perfectly diffuse, including the window(s). This assumption

refers only to the light interreflected within the room and not to beam sunlight,

which is treated separately.

4) The surfaces involved in the calculations form an enclosure and are opaque.

3.1 Theory

The fraction of the energy leaving surface i that impinges on surface j directly

without any interreflections is the configuration factor Fij also called view or shape

factor. F.. is the fraction of the total energy emitted by surface i that reaches j by all
1J

18

possible paths. It includes that portion of energy that impinges on surface j after

being reflected from all surfaces, including surface i itself, and the direct component,

expressed by Fij. The general equation for a problem with n surfaces reads:

Fij = Fij + (plFil)Flj + (P2Fi2)F 2j + ... (3.1)

Fi = fraction going directly from i to j without being reflected

F il = fraction initially going from i to 1

P1 'P2 = surface reflectances

P 1Fil = fraction of Fii which is reflected from i

(p 1 Fil)Fj = fraction of F1j eventually reaching j

For the two infinitely large parallel plates in fig.(3.1), eqn.(3.1) gives:

F11 = F11 + (plFll)Fll + (P2F 12)F2 1 (3.2)

F21 = F21 + (plF2 1)Fll + (P2F22)F2 1 (3.3)

F12 = F12 + (p1F11)F 12 + (P2F12)F22 (3.4)

F22 = F22 + (P1F21)F12 + (p2F22)F22 (3.5)

Equations (3.2) through (3.5) represent a linear system of four equations for four

unknowns. They could be solved by hand, b't an increasing number of surfaces

involved in the problem makes the use of a computer essential.

19

surface #1

P2F1

Fp1

surface #2

Figure (3.1): Energy flux between parallel plates

Eqn.(3.1) can systematically be written in matrix form, which provides the

adaptability to the computer [Klein]. The general matrices read:

F1, F 12 ... Fin

F 21 F22 ... F2n

F (3.6)

Fni Fn2 ... Frm

F-

Fl, F 12 Fin

F2 1 F22 F

(1-p 1F 11) -P2F 12

-P1F21 (1-P2F22)

-P 1Fnl -P2Fn2

F = Fmatrix

F = configuration factor matrix

R = reflectivity matrix

The matrices represent a linear system of n equations for n unknowns.

20

(3.7)

(3.8)

(1-PnFrm)

21

The unknown F.. can be found by solving the matrix equation:1J

F= R-1 x (3.9)

ER = inverse of reflectivity matrix R

This program uses the subroutines SGEFA and SGESL from the library UNPACK

[Dongarra et al.] to solve equation (3.9).

The F method assumes that the surfaces involved form an enclosure and that

there is no energy leaving the system by transmittance. All energy is either absorbed

or reflected:

Pi + ai= 1 (3.10)

p. = surface reflectances
1

ai = surface absorptances

The FiU are only zero in the cases of zero reflectances of the surfaces They can be

greater than one. That happens if the reflectances are high with low absorptances.

Light may be reflected from other surfaces several times onto the same surface

without having lost much energy. This does not mean that the gain is larger than the

energy input, because small absorptances coincide with high reflectances (see

eqn.(3. 10)).

With the knowledge of the Fi the energy leaving surface i that reaches surface j

22

by all possible paths can be determined. Here the energy is light and the surfaces

involved in the F method are the walls, the ceiling, the floor and the windows of the

room. Hence, the illuminance of each room surface due to interreflection can be

calculated. The illuminance at the point of'interest can be derived from this

information with configuration factors between the point and the portion of the

surfaces viewed.

3.2 Configuration factors

The F method requires the calculation of the configuration factors between all

surfaces involved in the model. The following must be considered:

1) In order to obtain the luminance distribution on the room surfaces, it is

necessary to break them up into elements. If an entire room surface is used rather

than smaller elements, only a single luminance value for the surface can be

calculated, which is the equivalent to treating the surface as a uniformly lit light

source.

2) Each window must be treated as an additional surface in the model, because

the energy input must be assigned to a surface.

3) There are no simple equations available that express the configuration factor

between two areas in terms of a variable location of these surfaces with respect to

each other. The area-area configuration factor equations are solved for specific

cases, for instance for two surfaces with a common edge, or for two surfaces that
are direc~ly opposite of each other [Hamilton, Morgan]. These equations apply

only, if a luminance distribution, as stated in 1), is not desired.

Pierpoint and Hopkins developed a point-area configuration factor [Pierpoint]

23

that provides the desired flexibility. The point can be located arbitrarily with respect

to a surface, which may be tilted towards the plane on which the point is located at

an angle 0:

1x r V/x2+z2
R. arctan

ij 2x(Vx 2 +y Y x2+y +z2-yr

t cos(O)-x r x+z+t2+2tg
2a2ctan 2

x +z2+t2+2tg [x;+y2+z .yr+t2+2tgj

+ Vy- h [ycit]
y +h2 y +h+g +tg

-(y-r)cos(o) arctan tV (y-r) +h (311

22 [Yr 2 2 2(y-r) +h (Y-r) +h +g2+tg(

Fij = point-area configuration factor

g = z sin(O) -x cos(O)

h = z cos() + x sin(O)

The nomenclature of eqn.(3.1 1) is illustrated in figure (3.2).

Pierpoint and Hopkins called their expression an area-source equation, which

may be misleading, because the actual configuration factor is from point to area.

24

The term area-source refers to the energy source and not to direction of the

configuration factor.

x

Figure (3.2): Nomenclature in equation (3.11)

Equation (3.11) has been derived with the reciprocity theorem:

(3.12)

Ai, A. = areas of energy sources

AiF-j = AjFji

25

For point-area configuration factors, the reciprocity theorem reads:

d(Ai)Fij = Ajd(Fji) (3.13)

d(Ai) = infinitesimal area of the point

d(Fji) = infinitesimal configuration factor between source and point

The configuration factor from area-source to point Fji is infinitesimally small,

because the energy impinging on a point of infinitesimal area approaches zero.

For the total illuminance reaching a point from an area source:

Eid(Ai) = MjAjd(Fji) (3.14)

Ei = illuminance of the point

Mj = exitance of the area-source

Aj = area of the source

Reciprocity can be applied and yields with equation (3.13):

E= MjFij (3.15)

The infinitesimal terms have been eliminated and the illuminance reaching the point
can be expressed with the finite configuration factor between point and area-source

Fij

26

Using point-area configuration factors rather than area-area configuration

factors requires that a numerical integration be performed. This can be done by

dividing the room up into small elements. Eventually, as the number of elements

increases, the point-area configuration factors will approach area-area configuration

factors.

3.3 Room model

The surfaces of a rectangular room with variable geometry had to be divided

into a sufficient number of elements. Since the sufficient number had to be

determined, a variable input n, defining the number of elements, was used. In

addition to n, the variables are the room geometry in terms of height, width, and

length, and the inputs of the configuration factor function (eqn.(3,*11)):

x,y and z for the coordinates of the point with respect to the area-source;

r and t for the dimensions of the area-source; and

4 for the tilt angle of the area,

where 4 is 0" for elements on opposite room surfaces and 900 for elements on

surfaces with a common edge. See fig.(3.2) for illustration.

Figure (3.3) shows how the elements divide up the room surfaces, viewed from

inside the room and facing surface #1. The convention of numbering the room

surfaces has been adopted from DALITE. The walls are surface #1 to #4, the ceiling

is #5 and the floor is #6. The number of elements along one edge of each surface is

n, so the total number of elements is 6*n*n. Facing the respective surface from

inside the room, the count starts at (sn-1)*n~n+1, with sn being the surface number,

and the largest element number is sn*n*n in the lower right corner.

27

Figure (3.3): Numbering convention of surface elements for n = 3

28

This convention is also applied to the ceiling, by facing surface #1 as in

fig.(3.3) and looking upwards. The floor element numbers are found from adding

n*n to the element number directly opposite on the ceiling.

The algorithm performed in subroutine CONFIG calculates the configuration

factors according to equation (3.11) between all points in the center of each element

and all elements, thus generating E with (6*n*n)2 elements.

The reciprocity theorem has been applied to determine how many elements must

be considered to give reasonable accuracy in approximating area-area with point-area

configuration factors. For point area configuration factors the reciprocity theorem is

given in eqn.(3.13).

In order to perform the step from finite elements to differential elements a

numerical integration must be performed. Then, by increasing the number of

elements, eqn.(3.13) approaches eqn.(3.12). This is shown in figure (3.4) for two

wall surfaces with a common edge. The walls have different dimensions, because

otherwise the reciprocity theorem gives no new information, since the configuration

factors Fij and Fji are the same. The following has been plotted:

2 2 2 2

I(A i Fj) and X(Aj Fji) against n,
j=li-1 i=1j=

for elements i on one and j on the other surface.

From fig.(3.4), n=5 has been chosen as an approximation, thus the total

number of elements in each F, Fl and R, is (6*52) = 22500.

co

L2 6
* 2.8 -

L
0

... 2.4

4 2.2

0 2

L 1.6

060 le .

o1.4

S 2 3 5 6 79

!n

Figure (3.4): Numerical integration of point-area configuration factors

10

30

The time and memory space needed to solve eqn.(3.9) with LINPACK on a

MicroVAX II is shown in figure (3.5). The user of this program may change n,

adapting it to needs, available hardware, and CPU time. Along with n, the

dimensions of the arrays in the program must also be adapted by setting the

parameter Ida = 6*n*n.

4500
4000
3500
3000

2500
2000

1500
1000

500
0

* CPU time
O memory

1 2 3 4 5 6 7 8 9 10
n

Figure (3.5): CPU time and memory space needed

As can be seen from fig.(3.3), the area of a window in a wall does not

necessarily match the area of the elements that lie in the window area. Thus, if the

luminance of the window plane is the input of the interreflection routine and the

window area is larger than the area of the elements representing it, the illuminance at

the sensor position will be too small. On the other hand, if the window is smaller

than the area of the respective elements, the illuminance will be too high.

rj)

U

~0
0

0

0
C~)
4)
U,

31

Rather than choosing a large number of elements to make the error small, the

input luminance has been area-weighted:

Aw
L4=1* Aw,i (3.16)

Lw = area-weighted window luminance

L = luminance inside of window plane

A = area of window

Aw i = area of one element that lies in window area

The effect of area-weighting the input luminance on the total daylight at a

specific point inside the room is shown in fig.(3.6). The normalized illuminance is

plotted against n. If the window is larger than the area of the respective surface

elements that represent the window, the result is too small. On the other hand, if the

window is smaller the illuminance is higher, which is illustrated by the wavy form

of the non-weighted curve. For n = 5, the window area matches the area of the

respective elements exactly for this geometry. Thus, the curves ir.tercept at this

point. The area-weighted curve is already close to the correct value for small n, i.e.

2 - 3. Therefore, it is not necessary to use large values of n to represent the window

with surface elements.

cu
0c

E

r-4

9-4q

.C

*1-4

cu

L
14

Figure (3.6): Area weighted sky luminance

5]

5

4.

3.

2.

I

0-
1

94

4.)

7

2 3 4 5 5 7

33

3.4 Checks

Several checks may be employed to test the accuracy of the calculations:

1) The reciprocity (eqn.(3.12)) must hold, which has been shown in fig.(3.5)

for the F matrix. Reciprocity must hold for the F as well:

AiFj= AjFji (3.17)

2) The sum of the configuration factors from one point to all elements of the

enclosure must be one:

2

6*n
Y FU= 1 (3.18)
j=1

For an enclosure, all energy leaving one point reaches all surfaces it views. In F,

the sum of each row must be one. This check is built into the program and an error

message will be displayed, if eqn.(3.18) is not satisfied.

3) Eventually, all energy leaving a point must be absorbed, so that

2

t(Fij cj) = 1 (3.19)
j=1

For the F method, the surfaces are opaque (see eqn.(3. 10)). This check is made by

the program and an error message will be displayed, if eqn.(3. 19) is not satisfied.

34

4) For blackened surfaces (pis pj = 0), the interreflected component becomes

zero and F becomes E.

5) For mirrored surfaces (pi, pj = 1) and a sensor position on the floor, the

interreflected component plus the direct diffuse component from the light source(s)

equals the sum of the Fip from the source(s) to the sensor directly. The Fip already

include the direct diffuse component in this special case. This check will be clear

after reading the next chapter, in which the equations for the interreflected

component at the sensor position are derived.

6) The values of F and F must obey symmetry considerations. For the

rectangular room in fig.(3.3) this symmetry requires that the configuration factors

between the element pairs #12/#4 and #28/#6 or for #44/#2 and #53/#8 be identical.

35

CHAPTER 4

Components

Daylight at a point in a room consists of direct beam, direct diffuse and

interreflected components. A daylighting program must determine how these

components contribute to the total illuminance at the point of interest. Some details

concerning the daylight at the window surface have not been accounted for in this

study. Examples are trees obstructing the fenestration, reflection from other

buildings, and light reflected from overhangs and wingwalls. The contributing

factors that have been considered in this program are described in this chapter.

4.1 Window luminance

The interreflected light algorithm and the direct diffuse component from the

window both require the luminance of the window plane as input. DALITE [1]

calculates the window luminance by determining the portion of the sky dome viewed

by the point of interest through the window. The interreflection routine must also

take into account the portion of the sky dome that is viewed by the surface elements.

There are portions of the sky viewed by the elements, i.e. other points in the room,

that are obstructed for the point of interest. Thus, the luminance as seen by the
window itself is calculated in order to cover the range seen by all elements and the

specified point. The view of the window plane may be restricted by an overhang

36

and wingwalls and a reduced view is taken into account.

To account for the nonuniformity of the sky luminance distribution models,

more than a single sky luminance value is calculated. For the point in the center of

the window, 25 sky luminance values are determined, with these 25 locations being

evenly distributed over the patch of sky viewed. The sky luminance at a specific

point is calculated with eqn.(2.3) and the average luminance inside the window

plane becomes

25

k=1
Ld=25 to (4.1)

Ld = average luminance inside of window plane due to direct diffuse light from

sky dome

Lk -sky luminance at point k

to = hemispherical transmittance

Another component contributing to the light entering a room is the light reflected

from the ground. A simple method to obtain a value for the ground illuminance is

the luminous efficacy technique.

Assuming the ground is an infinitely extending plane, the area-area

configuration factor between the ground and a vertical window is 0.5. This does not

take into account that there may be buildings obstructing the view through the
window. The following expression is recommended by the lIES [Kaufman, p.9-91]:

37

Lgr = 0.5/7CE T Pgrt 0 (4.2)

ET =given in eqn.(2.5)

Lgr = luminance inside the window plane due to ground reflected light

pgr = ground reflectance

The factor t converts the ground exitance, found with eqn.(2.5) multiplied by the

ground reflectance, into the ground luminance and results from integration over the

hemisphere (see eqn.(1.2)).

This adds to the average window luminance due to direct diffuse light from the

sky:

LLd+ Lgr (4.3)

L = total luminance inside the window plane

At this point the light reflected from overhangs and wingwalls onto the window

plane may be added. If an algorithm for these calculations should be developed, the

following must be considered:

1) There may be beam sunlight reaching the wingwalls for some hours of the

day.

2) The accuracy of the model depends on the number of interreflected fluxes
used. It may be sufficient not to account for light reflected from overhang on the

wingwalls and between the wingwalls.

38

4.2 Interreflected component

With the knowledge of the F matrix as derived in the previous chapter, the

luminance of each surface element due to the luminous flux leaving a light source,

reaching the element by all possible paths, can be derived.

For the daylight reaching element i:

AiEi =Y,(As FSi) M1(4.4)
S

Ai = area of surface element

E= illuminance of surface element i

As = area of source element

Fsi = fraction of M1 leaving the source that reaches the surface element i by all

possible paths

M, = uniform exitance of the light source

Eqn.(4.4) describes the summation over all elements that represent a light source.

T 1 is the same for all elements of one light source, thus subscribed with 1 and not

with s.

The area terms can be eliminated with the reciprocity theorem (eqn.(3.17)), and

the new expression reads:

39

Ei = XFisM,
s

(4.5)

##% 44

Fis,= F from surface element to source element

In order to find the luminance of the point of interest, the configuration factors

between the point and all surface elements viewed must be determined, which are all

elements above the workplane, including the ceiling elements.

For the energy reaching the point of interest:

d(Ap)Ep = X(Ai d(Fip) Mi)
i

d(Ap)

Ep

d(Fip)

MA

(4.6)

= infinitesimal area of the point

= illuminance of the point

= infinitesimal configuration factor between element i and point p

= exitance of surface element i

where

Mi = PiEi (4.7)

pi = reflectance of surface element i

from equation (1.1).

40

Again by applying eqn.(3.12), the reciprocity theorem, the infinitesimal terms

can be eliminated:

Ep= X(FpipiEi) (4.8)
i

FPi = configuration factor between point of interest and surface element

Combining equations (4.5) and (4.8) gives the illuminance of the point of

interest due to the source luminance by interreflection:

EpY= X(Fpi P i XF is) M1 (4.9)
1 S

Ep= illuminance of point of interest due to one light source by interreflection

The illuminance of the point of interest found with eqn.(4.9) does not include the

direct diffuse component from the luminance source. The illuminance of each

surface element, including those representing the source, was found with the F

method. This means that the illuminance of an element representing a light source is

the luminous flux reaching it from the source itself by all possible paths, including

the direct component. However, the direct component from source element to

source element is zero, because the sources in this problem are plane and the

configuration factors are zero between source elements. The illuminance of a source
element, determined with the F method, is the light reflected back from all other

elements only. Thus, the illuminance at the point of interest due to the exitance of

41

the source elements, as in eqn.(4.9), does not include the direct diffuse component

from source to point and must still be added.

For certain configurations, there may be patches of beam sunlight on the walls

and/or on the floor of the room. It is assumed here that the beam reflected from the

walls or floor is perfectly diffuse. After determining the elements that represent the

patch, it is treated as an additional window and the illuminance due to interreflection

from the patch at the point of interest is found from eqn.(4.9). Again, this does not

include the direct diffuse component from the source to the point. For a beam patch

on the floor, the latter is zero, but for patches on the walls, that part of the patch

contributes a direct diffuse component that is viewed by the point of interest, which

is the part that lies above the workplane.

4.3 Direct diffuse component

In addition to the interreflected component also the light reaching the point of

interest directly without being interreflected must also be accounted for. With the

knowledge of the configuration factors between the point of interest and the elements

that represent a light source, eqn.(4.8) applies, where piEi is substituted by the

uniform source exitance M:

Ep,d X= F pi MI (4.10)
i

Epd = illuminance at point of interest due to direct diffuse light

42

4.4 Direct beam component

The internal illuminance at the specified point due to beam sunlight is found

from eqn.(2. 10) and (2.12):

EB,i = EB * t, * sin(h) (4.11)

EB,i = beam illuminance at point of interest

t = found from eqn.(2.12)

h = solar altitude angle

where sin(h) expresses the normal component of the illuminance reaching the

workplane.

In the case of beam patches that may occur on the walls of the room, eqn.(4.1 1)

must be modified and sin(h) is exchanged by the a term that accounts for the

component of the beam sunlight that is normal to the respective surface. The new

term is dependent on the room azimuth angle, the surface that the beam patch is on,

solar azimuth and altitude angles, and the surface that includes the window. As an

example, for the room in fig.(4. 1) with beam sunlight on surface #2, eqn.(4. 11)

becomes

EB i = EB * to * cos(h) • sin(cs-yr) (4.12)

os = solar azimuth angle

T= room azimuth angle

43

The term that must substitute sin(h) in eqn.(4.11)-is calculated by the program

for windows in all surfaces and beam patches on all wall surfaces.

For the floor, eqn.(4.11) is directly applicable. The exitance of the beam

patches is found with eqn.(1.1) and for the illuninance due to the beam patches the

uniform source exitance M1 becomes:

M= p EBi (4.13)

Figure (4.1): Beam patch on surface #2

44

4.5 Total daylight

For each light source, the direct diffuse and the direct beam components must

be added to the interreflected component, where light sources for the direct diffuse

component are windows and that portion of beam patches on the walls that lie above

the workplane. The final equation for the total daylight at the specified point is

obtained by adding eqn.(4.9), (4.10) and (4.11):

Ep=.X(FpiPiXFis) + XF M1+EB i (4.14)

Ep= total iluminance due to one light source

For the exitance of a window , with the area weighted luminance inside the window

plane from eqn.(3.16), M1 becomes:

M1 = x W(4.15)

Equation (4.11) must be applied for each light source. The daylight at the point of

interest due to all light sources in the room is found from:

Ept = XEptj (4.16)
i

E t total illuminance at specific point

45

CHAPTER 5

Program description

The computer program developed (FLITE) is written in FORTRAN 77.

Chapter 5.1 demonstrates how the problem of calculating the daylight inside a room

is split up into subproblems. Naturally, correct results depend on a thorough

understanding of the input variables. The interpretation of the input and output

parameters is given in this chapter. Finally, the limitations of FLITE are discussed.

5.1 Data flow

The subproblems that must be solved with this program are shown in fig.(5.1).

The shaded rectangles show those subproblems that deal with the F method. These

parts must only be solved initially for a room geometry. The program is set up to

process hourly radiation data and jumps over the time-consuming F calculations after

the first time step. Some of the subproblems had to be divided up into even smaller

parts that are not shown in the chart. For instance, in order to calculate the numbers

of the elements that lie in a beam patch area, it is necessary to determine the

dimensions of the patch, which involved the development of a separate algorithm.

46

Data input: - Room geometry
-*Sun and climat--e data
-*Sensor location
-*Properties

Check if beam at senisor

Oultput : iluminance at sensor

Determine the tota daylight
at sensor position

Check if patches of beam on
walls or floor

No

Yes

Determine the numbers of the elements
that lie in the patch area

Calculate the area weighted beam
illuninance of the patch

Calculate the average sky luminance as
seen by point in center of window

Calculate the area weighted
luminance of the window

Figure (5.1): Flowchart of FLITE

H
DetermineIthe numbers of the elements

that lie in the window area

,, |

=A| a

47

5.2 Room geometry

A rectangular room is defined by its height, length and width. The room

position is defined by the room azimuth angle. It is zero due south with east being

negative and west positive, following the sign convention of the solar azimuth angle

(Duffle, Beckman, p.10). Surface numbers are used for two reasons:

1) defining which is the length and which is the width of the room, and

2) defiming in which walls the windows are located.

The wall facing south is always surface #1. Then, the room may be turned by an

azimuth angle, to obtain an angular displacement from south. This angle must be

between 900 and -900. An angle larger than 900 and smaller than -90' is not

needed, since the surface numbers would be redefined. If, for instance, a room is

turned by 1000, this is the same as assigning #1 to the wall that was facing south

after 900 of the turn were completed, and then turning it by another 100.

The width of the room is measured along surfaces #1 and #3 and the length

along surfaces #2 and #4. The sensor position inside the room is defined by the

elevation above the floor or workplane height and the length and width distances

from the room reference point. The room reference point is in the right lower comer

of surface #1, viewed from inside the room. The width and length distances of the

sensor from the reference point are consistent with the definition of length and width

of the room walls.

The location of a window is defined by assigning a surface number, which is

surface #1 - #4. Viewed from inside the room, the distance from the left edge of the

window to the left edge of the respective wall is required as input along with the

distance between the bottom of the window and the floor. The window

48

dimensions must be defined as width and height.

An overhang may be assigned to the window by giving it a length, The

overhang is perpendicular extending from the top of the respective wall and the

length is measured away from the wall. An infinite width of the overhang is

assumed. Wingwalls, also called sidefins, may be placed on either side of the

window, where the distance from the left or right window edge, respectively, do not

have to be the same. Their lengths, perpendicular to the window, may be different

as well.

A mullion correction factor is used to account for mullions, which may obstruct

the window and reduce its effective size, as defined with the dimensions above. The

mullion correction factor is:

cm = 1-Am (5.1)

cm = mullion correction factor

Am = area of the mullions

Aw = gross area of the window

The luminance of the window plane from eqn.(4.3) is multiplied by the mullion

correction factor to account for these obstructions by reducing the input luminance.

49

5.3 Input and output

FLITE requires a file with the name 'FLITE.in' as one input file:

ri rh raz

sw sl wkpln nw

reflw refic reflf reflg tO

beta omega reflgr

wb owh ww Iov Ifinl dfll finrlIdfr sn

Table (5.1): File 'FLITE.in'

The abbreviations in table (5.1) and fig.(5.2) are the same

code of the program, where

as those in the source

= room width [m]

= room length [ma

= room height [m]

= room azimuth angle

= width distance of sensor from room reference point [m]

= length distance of sensor from room reference point [m]

= workplane height [in]

= number of windows, the maximum number is 5

= reflectance of the walls [0... 1]

= reflectance of the ceiling FO... 1]

rw

wl

rw

rl

rh

raz

sw

sl

wkpln

nw

reflw

refic

50

reflf = reflectance of the floor [0... 1]

reflg = reflectance of the windows [0...1]

tO = transmittance of the windows [0...1]

beta = climate indicator, found from table (2.1)

omega = water vapor content of the atmosphere [cm of water], from table (2.1)

reflgr = ground reflectance [0... 1]

w1 = distance from left edge of window to left edge of respective wall [m]

wb = distance from bottom of window to floor [m]

wh = window height [in]

ww = window width [m]

ov = length of overhang [m]

fIl = length of left wingwall [m]

dfl = distance from left edge of window to left wingwall [m]

finr = length of right wingwall [m]

dfr = distance from right edge of window to right wingwall [m]

cm = mullion correction factor [0... 1]

sn = surface number of the wall with the window

These parameters can be varied independently. Some cases of impossible

configurations, like a sensor position outside the room or a window that does not fit

in a wall, are indicated by the program. The room geometry is illustrated in

fig.(5.2):

51

finr

room reference point

Figure (5.2): Room geometry

52

The radiation and sun data are read from file TRNSYS.out', where the FLITE

read statement is compatible with the output generated by TRNSYS Type 16, a

radiation processor. The inputs required from this file are:

hour of the year solar zenith angle
I U

solar azimuth angle I

Table (5.2): File TRNSYS.out'

where ID and IT, the diffuse and total horizontal radiation, are measured in kJ/m2.

The output from FLITE is written on the file 'FLITE.out:

hour of the year interreflected light direct diffuse light patch light total daylight

Table (5.3): File 'FLITE.out'

The interreflected and direct diffuse light contain the contributions from all light

sources, i.e. windows and patches. The column 'patch light' summarizes the

contribution to the total daylight, including interreflected and direct diffuse light from

the beam patches. The total daylight is the sum of the interreflected and the direct

diffuse light. The light output is given in lux.

I I-L

53

5.4 Limitations

The assumptions that were made when the program was developed must be

considered when interpreting the results for a certain application. The limitations of

the F method have already been stated in chapter 3, ie. all surfaces of the room are

assumed to behave like lambertian sources with the same luminance regardless of the

viewing angle. This is certainly not realistic, since most surfaces reflect light in part

in a specular way. Especially in the case of beam sunlight, which is assumed to be

perfectly diffuse after the first reflection, this assumption causes some inaccuracy. It

is possible to account for specular reflecting surfaces with the F method, but the

simpler model was expected to be sufficient. An exact model of the internal daylight

distribution also requires an exact model of the sky luminance distribution and other

components that contribute to the daylight entering the room in order to be justified.

Furthermore, the luminance of the window plane was assumed to be uniform. An

exact solution would require to determine the luminance of the patch of sky as seen

by each surface element.

A totally empty room, as modeled here, has no light absorption by furniture or

pictures on the walls. The influence on the daylight distribution by objects in the

room cannot be modeled, other than to estimate their effect on the surface

reflectances.

If a room with more than one window is modeled, the transmittances of the

windows are the same. This is sufficient for most cases, but, for instance, a

combination of windows with normal and frosted glass cannot be simulated.

Reflection from overhangs and wingwalls onto the window plane has not been

accounted for. This may be a serious limitation for windows with wingwalls and

54

overhangs that obstruct the patch of sky viewed by the center of the window to a

great extent. The daylight calculated inside the room will be conservatively low.

The sensor always is assumed to be on a horizontal plane. The daylight

reaching points on tilted surfaces cannot be calculated, but in most cases the

workplane illuminance is desired, which refers to the illuminance of a horizontal

plane.

While the reflectances of the ceiling and the floor can be independently varied,

the reflectances of the four wall surfaces are assumed to be the same. Thus,

including the window reflectance, there are four reflectance values that characterize

the internal room surfaces. A window absorbs radiation, so the reflectance of the

window cannot be obtained from the knowledge of its transmittance.

55

CHAPTER 6

Results

Various parameters can be varied in the input of FLITE. This chapter shows

the influence of some of these variations on the daylight availability in a room.

6.1 Ideal day

The radiant energy reaching the surface of the earth does not vary uniformly

over a day. Even for very clear or perfectly overcast days, the data calculated with

TRNSYS Type16 is not symmetric over noon. For testing purposes of this program

it was desired that the radiant energy distribution over a day follows a perfect

pattern. Then, any irregularities in the results of FLITE would not be due to the

radiation data. TRNSYS Type1 6 was used to generate hourly sun and radiation

data, i.e. the contents of file TRNSYS.out' (see fig.(5.4)). The radiation data was

calculated from the direct normal and total horizontal solar radiation of a typical

meteorological year (TMY) for Madison, Wisconsin. The 9th of March has been

randomly picked to represent a clear day with approximate highs of the total and

diffuse horizontal radiation of 800 W/m 2 and 150 W/m 2, respectively. A sine curve

has been applied to generate symmetric data over the day. The radiation distribution

of this ideal day is plotted in fig.(6. 1).

0.9

E

E

L_ C"

aNO.5 total horizontal radiation
L) 0

00.

93 Z; -

o 0.3.
L
L

0.2

0. 1
diffuse horizontal radiation

0
4 6 8 10 12 14 16 18 20

hour of th2 day

Figure (6.1): Ideal day radiation distribution

57

The TMY data is integrated over an hour, identified by the end of the hour, and

given in kJ/rn2. The input required by FLITE must be in W/m 2, which is computed

by dividing the TRNSYS output by 3.6, thus switching from hourly radiant energy

to energy per second or instantaneous radiant energy. Daylighting calculations only

make sense for instantaneous data, because there is no storage medium for light.

Integrated input data would result in the calculation of accumulated daylight. In

order to obtain a symmetric distribution of the instantaneous radiant energy over the

day, the new values have been assigned to a time half an hour before the time of the

integrated values.

6.2 Contributions

Figures (6.3), (6.4),(6.5) and (6.6) show the contributions of four components

to the total daylight at the sensor position. These four components are written on the

file 'FLITE.out', which was illustrated in table (5.3):

1) interreflected light from all light sources, i.e. beam patches and windows;

2) direct diffuse light from all light sources;

3) total contribution of the beam patches, i.e. direct diffuse and interreflected

component; and

4) total daylight, i.e. the sum of 1) and 2).

The total contribution of the beam patches is shown in a separate curve to illustrate

their significant contribution to the daylight illuminance at a specific point.

The room used to generate fig.(6.3) has a window facing south and the

geometry allows beam patches to occur on surface #4 in the morning, on the floor

during the day , and on surface #2 in the evening. The room is illustrated in

58

fig.(6.2):

2m

0-5 m

0.5 m

Figure (6.2): Room geometry for fig. (6.4)

The data not shown in fig.(6.2) can be taken from the input file 'FLITE.in' for this

simulation, shown in table (6.1). For the meaning of the values refer to table (5.1).

10.0 3.0 0.0

2.5 5.0 0.76 1

0.5 0.7 0.3 0.1 0.85

2 2.0 0.2

1.0 11.5 2.0

Table (6.1): File 'FLITE.in' for fig.(6.3)

5.0

1.5 1.0 10.5 0. 5 1 0.5 I10.5 1.01 1

59

At noon, about 75% of the total daylight is due'to the interreflected component,

while only approximately 24% is due to the combined direct diffuse component from

beam patches and window. The direct diffuse component of the patches is

negligible in most cases, because only that part of the beam patch that is above the

workplane contributes, i.e it must be viewed by the sensor. In addition to this, the

configuration factor between sensor and a beam patch element is usually very small.

This means that the total beam patch component shown in fig.(6.3) consists mostly

of the interreflected light from the patch. This is exactly true for the hours between

10:30 am and 1:30 pm, when there are no beam patches on the walls, but merely on

the floor. This can be derived from the geometry of the room and the solar zenith

and azimuth angle, given in appendix A for the perfect day. The shape of the curve

showing the beam patch contribution indicates the changing sizes of the patches.

For 9:30 am and 2:30 pm there are patches both on walls and on the floor, which

increases the illuminance at the sensor position due to the patches.

The same room geometry was used for fig.(6.4), but the window was facing

north. The input file shows the data used:

5.0 10.0 3.0 0.0

2.5 5.0 0.76 1

0.5 0.7 0.3 0.1 0.85

2 2.0 0.2

1.5 1.0 1.5 2.0 1.0 0.5 0.5 0.5 0.5 1.0 3

Table (6.2): File 'FLITE.in' for fig.(6.4)

1.2

I

x
J

r1
LiJ

c

EC

E
J)

8 10

hour
12 14

of the day
16

Figure (6.3): Daylight contributions for one window facing south

totalI dayIi ght

7 nterref I ected 1 i h

S/ direct diffuse light

contribution from beam patches'"
* '

0.8

-a
0

£

0. 4

04
6 18 20

9 a a I

500

450

400

350

300

250

200

150

]ao.:/7/. -"

50 -1 i~ * *..•• . I • I I • • . * a I ! .. . * • .. • I

4 6 8 10 12 14 16 1B

hour of the day

Figure (6.4): Daylight contributions for one window facing north

r--t

xD

LIJ

0
c

E
D

'-Iq

r-Oq
.9-.

20

62

As expected, the total daylight is much lower, which is about 36% of the total in

fig.(6.3) in this case. The curve indicating the contribution of the beam patches is

not on the plot, because there is no beam sunlight entering a window facing north in

march in the northern hemisphere. The interreflected light accounts for

approximately 66% and the direct diffuse component for about 33% of the total

daylight at the sensor position. The irregularities at 7:00 am and 5:00 pm are due to

the sky luminance distribution models used. The averaging of the sky luminance

distribution over 25 points for the window plane instead of assigning discrete

luminance values to each element in the room may be a contributing factor as well

(see chapter 5.4).

Fig.(6.5) and (6.6) illustrate a case where beam sunlight reaches the point of

interest directly. The room geometry from the previous examples was used, but

instead of one, the room had two windows. For fig.(6.5), the windows were in

surface #1 facing south and surface #2 facing east, where the window facing east

was in the center of the wall. The input data was as follows:

5.0 10.0 3.0 0.0

2.5 5.0 0.76 2

0.5 0.7 0.3 0.1 0.85

2 2.0 0.2

1.5 1.0 1.5 2.0 1.0 0.5 0.5 0.5 0.5 1.0 1

4.0 1.0 1.5 2.0 1.0 0.5 0.5 0.5 0.5 1.0 2

Table (6.3): File 'FLITE.input for fig.(6.5)

63

At 7:30 am, beam sunlight reaches the sensor and overwhelms the other

components. The sensor illuminance is more than three times as high as at 10:30

am, when the illuminance due to direct diffuse and interreflected light only is

highest. This high is not at noon, but shifted towards the morning. The window

luminance of the window facing east is higher in the morning and lower in the

afternoon, while the luminance of the window facing south is symmetrical over the

day, as seen in fig.(6.3). Considering the path of the sun in the sky, this is a

reasonable result.

The direct diffuse component increases by a factor 5 compared to the case of the

window facing south only (fig.(6.3)). This can be explained with the sensor

position. It is 5 meters away from the window facing south, but only 2.5 meters

from the window facing east. The direct diffuse component is calculated with the

configuration factors between the elements that represent the window and the point

of interest. For the window facing east these are greater than for the window facing

south. The configuration factor is not a linear function of the distance from the

source, as can be seen from eqn.(3.11). The interreflected component is only twice

as high as opposed to the case of the single window facing south. This indicates

that the F method does not take into account the direct components between the

sources and the point of interest, as stated in section 4.2. It processes the

configuration factors between the surface elements, which are independent of the

sensor position. Another interpretation of the doubled interreflected component is,

that the surface elements viewed by the sensor are illuminated twice as much due to
interreflection for the two windows than in the case of the single window facing

south.

64

The illuminance at the point of interest due to beam patches is the same in the

afternoon as in fig.(6.3) for the window facing south only, but in the morning there

are additional beam patches due to the window facing east.

In fig.(6.6), the results for a symmetrical window configuration are shown.

The room geometry was kept the same as in fig.(6.5), but instead of windows

facing south and east, windows facing south and west were simulated. The input is

shown in table (6.4):

5.0 10.0 3.0 0.0

2.5 5.0 0.76 2

0.5 0.7 0.3 0.1 0.85

2 2.0 0.2

1.5 1.0 1.5 2.0 1.0 0.5 0.5 0.5 0.5 1.0 1

4.0 1.0 1.5 2.0 1.0 10.5 0.5 1 0.5 0.5 1.oI4

Table (6.4): File 'FLITE.in' for fig.(6.6)

For a perfectly symmetrical day with respect to the radiation data and a symmetrical

window configuration, fig.(6.5) is symmetrical to fig.(6.6).

6 8 10 12 14 16 18

hour of the day

Figure (6.5): Daylight contributions for windows facing south and east

10

9

EB

r"'l

xD

fJ
'-Iq

c

c

E0)

-*-41

13
o

.C

4J

7

6

.5

4

3

;2

4 20

c7N

10

9

8

7

6

5

3

2

0 a

4 6 8 10 12 14 16 18 20

hour of the day

Figure (6.6): Daylight contributions for windows facing south and west ONON

xD

0
C

.- ,

E
3

*--1

"0
I0

43
%
4)

67

6.3 Reflectances

The influence of the surface reflectances on the total daylight at the sensor

position is investigated in this chapter. The advantage of calculating the

interreflected light with the F method is that the reflectances can be precisely

accounted for. FLITE requires the reflectances of the four walls, the ceiling, the

floor, and the window as input.

For the room geometry already used as a model in the previous chapter, and a

single window facing north, an input file as in table (6.2) had been used for

fig.(6.7), (6.9) and (6.10). All data are exactly the same, only the reflectances for

the respective surfaces have been varied.

The reflectance of the walls was expected to have the greatest influence on the

total daylight availability in the room, because the surface area of the walls is greater

than the area of the ceiling or the floor. For wall reflectances between 0.1 and 0.9,

the results have been plotted in fig.(6.7). Increasing the wall reflectance in

increments of 0.2 results in increasing the total illuminance at the sensor position by

a factor of 1.5 for each increment.

In order to show the influence of the room geometry, the room dimensions have

been changed to 6 by 5 by 3 meters for the results shown in fig.(6.8). The input is

shown in table (6.5), where the x indicates that the wall reflectance was varied:

68

5.0 6.0 3.0 0.0

2.5 1.0 0.76 1

X 0.7 0.3 0.1 0.85

2 2.0 0.2

1.5 1.0 1.5 2.0 1.0 0.5 0.5 0.5 0.5 1.0 3

Table (6.5): File 'FLITE.in' for fig.(6.8)

The total daylight at the sensor position is higher than in the case of the larger room.

The distance of the sensor from the window was kept the same, and the different

result is not due to a higher direct diffuse component from the window. A smaller

area of the room surfaces is causing a higher interreflected component, because a

smaller surface also absorbs less energy. Furthermore, the distance between the

sensor and the wall facing south is only 1 meter as opposed to 5 meter in fig.(6.7),

which will increase the direct diffuse component from the surface elements (see

eqn.(4. 10)).

The floor and ceiling reflectances were varied in increments of 0.4 between 0.1

and 0.9. The room configuration is again the same as for fig.(6.7) with the input

data shown in table (6.2). For the variation of the floor reflectance, the total daylight

at the sensor position increases by approximately 1.3 for each increment.(fig.(6.9)).

The smaller influence on the total daylight, compared to varying the wall reflectance,

is due to the smaller area of the floor.

8009

700

~ 600
x
J
,. 500

,0,7

cu
U
c 4000

*13

E 3000.5

• 200-0,3

100 0

0
4 6 8 10 12 14 16 18, 20

hour of the day

Figure (6.7): Variation of the wal reflectances

1.2

1 0.9

r'-I

(00

S0.4

t)

.E-.
3 v0. 400

005

4 6 8 10 12 14 16 18 20

hour of the day

Figure (6.8): Variation of the wall reflectances for a smaller room
0

600 w 9 w I • W- a• w| I• R w w a' | 6 w| • a 9 1 • 1

No

6009

500,

x
2 400

L.. a0,

f 300

E
i 200

100

0

4 6 8 10 12 14 16 18 20

hour of the day

Figure (6.9): Variation of the floor reflectance

10 12 14

hour of the day

Figure (6.10): Variation of the ceiling reflectance

'U

x

c

0

E

-1

400

350

300

250

200

150

100

50

0

73

The influence of the ceiling reflectance on the total illuinance of the point of

interest is shown in fig.(6. 10). Increasing the ceiling reflectance by 0A between 0.1

and 0.9 results in an illuminance value that is greater by 1.1 for each step. Not only

the areas of the surfaces, but also their location (with respect to the sensor)

contributes to the total daylight, as stated before. The floor does not contribute to

the total illuninance with a direct diffuse component, because the sensor cannot

view the floor. Considering the ceiling, this direct diffuse component has to be

taken into account. The higher illuminance value at the the sensor for fig.(6.9) is

due to the ceiling reflectance of 0.7. The floor reflectance in fig.(6.10) is only 0.3,

thus resulting in lower illuminances. The factors by which the daylight increases are

not the same for the variation of the floor and ceiling reflectances. This is due to the

high ceiling reflectance in fig.(6.9) and the low floor reflectance in fig.(6. 10). The

F method accounts for multiple interreflections between the room surfaces and the

exitance of a surface depends not only on the reflectance of this surface, but also on

the properties of the other surfaces involved in the model.

6.4 Sensor position

The room shown in fig.(6.2) has been modeled to simulate different sensor

positions in the room. The sensor has been moved on the centerline between the

wall facing east and the wall facing west from the surface facing north to the

window facing south. The input data is consistent with table (6.1), except that the
length distance of the sensor from the room reference point has been varied. The

result of this simulation is shown in fig.(6. 11).

4.5

4

3.5

3

2.5

2

15

.0.5

o

0 2 3 4 5 6 7 8 9 10

distance from window

Figure (6.11): Variation of the sensor position

r"

x

L~j

c

E
Cr

Em]

75

The interreflected component increases as the distance between sensor and

window decreases. The interreflected light is calculated by determining the

illurinance of the elements that the room surfaces have been divided into, and using

these elements as light sources that contribute to the illuminantion of the point of

interest. These elements will have a higher illuminance near the window, which

causes the interreflected component near the window to be higher than in the back of

the room. As the sensor gets close to the window, the total daylight increases

rapidly due to beam sunlight on the point of interest.

76

CHAPTER 7

Conclusion

FLITE provides the option to vary parameters that characterize a rectangular

room and its properties. The F method introduces the possibility of studying the

effect of different reflectances of the room surfaces without using average values.

Thus, the effect of changing the properties of a specific surface on the daylight at a

specific point in the room can be studied.

FLITE can be used to develop daylight utilizability charts by simulating the

changes of room parameters and researching their dependence on each other.

Utilizability charts would illustrate the useful daylight over a period of time in terms

of room parameters.

The program is set up to process hourly radiation data. Thus, longterm

simulations can be done with minimal computational effort. The geometry of the

room is taken into account with the F method before the first time step and the matrix

equations involved do not have to be solved repeatedly.

The significant contribution of beam patches on the room surfaces can be

simulated with FLITE. By treating them as additional windows it was assumed that

the beam impinging on the respective surface is reflected in a perfectly-diffuse

manner. This assumption made it possible to apply algorithms that were already

developed for the windows.

The time limit given for developing FLITE made it impossible to compare its

results with measurements or the results of other daylighting programs. Some

77

research has been done in this respect, and working with illuminance values for one

and half years provided the experience to decide, if calculation results were within a

reasonable range. Suitable daylighting data for comparisons is hard to find, since

most researchers do not provide all the information necessary for this task. In

addition to the iluninance data, the sun position, climate and radiation data, the

room geometry and the surface properties are needed.

This thesis intends to provide a clear picture of what has been done and how the

program should be used. It is hoped that this study is useful for another daylighting

researcher.

78

APPENDIX A

Ideal day data

hour of the year

1609.0000
1610.0000
1611.0000
1612.0000
1613.0000
1614.0000
1615.0000
1616.0000
1617.0000
1618.0000
1619.0000
1620.0000
1621.0000
1622.0000
1623.0000
1624.0000
1625.0000
1626.0000
1627.0000

1628.0000
1629.0000
1630.0000
1631.0000
1632.0000

solar
zenith angle

9.900E+01
9.900E+01
9.900E+01
9.900E+01
9.900E+01

9.900E+01
8.639E+01
7.759E+01
6.771E+01
5.91 1E+01
5.254E+01
4.890E+01
4.890E+01
5.254E+01
5.91 1E+01
6.771E+01
7.759E+01
8.639E+01
9.900E+01
9.900E+01
9.900E+01
9.900E+01
9.900E+01
9.900E+01

solar
azimuh angle

0.000E+00
0.OOOE+00
0.OOOE+00
0.OOOE+00
0.OOOE+00
0.OOOE+00
-7.929E+01
-7.038E+01
-5.862E+01
-4.494E+01
-2.869E+01
-9.932E+00
9.932E+00
2.869E+01
4.494E+01
5.862E+01
7.038E+01
7.929E+01
O.OOOE+00
O.OOOE+00
0.OOOE+00
O.OOOE+00
0.OOOE+00
0.000E+00

diffuse
horizontal
radiation

O.OOOE+00
O.OOOE+O0
0.OOOE+00
0.OOOE+00
O.OOOE+00
0.OOOE+00
1.548E+02
3.024E+02
4.284E+02
5.328E+02
6.048E+02
6.444E+02
6.444E+02
6.048E+02
5.328E+02
4.284E+02
3.024E+02
1.548E+02
O.OOOE+00
O.OOOE+O0
O.OOOE+O0
O.OOOE+O0
0.OOOE+00
O.OOOE+O0

total

horizontal
radiation

0.000E+00
0.000E+00
0.OOOE+00
0.OOOE+00
0.OOOE+00
0.OOOE+00
6.876E+02
1.343E+03
1.904E+03
2.369E+03
2.689E+03
2.866E+03
2.866E+03
2.689E+03
2.369E+03
1.904E+03
1.343E+03
6.876E+02
0.000E+00
0.OOOE+O0
0.OOOE+00
0.OOOE+00
0.OOOE+00
0.OOOE+00

The diffuse horizontal and total horizontal radiation are given in kJ/m 2. The solar

azimuth angle is zero due south with east being negative and west positive.

79

APPENDIX B

FLITE listing

PROGRAM FLITE

C *** A dayligting program developed by
C *

C * Jan-Uwe Kluessendorf
C**

C * SOLAR ENERGY LABORATORY
C * UNIVERSITY OF WISCONSIN- MADISON
C *** 1987

C ***
C

C
C

C

FLITE has to be linked to the subroutine-package LINPACK for
subroutines SGEFA and SGESL that are used for the matrix operations.

C Input => File 'FLITE.in':

C

C rw Irl

C
C

C

C

C

C

C

Irh Iraz

sw I sl I wkplnI nw

reflw I reflc I reflf I reflg I tO

beta I omega Ireflgr I

C wl I

C

C where:

C

Crw :r(
C rl :ro

I wb Iwh Iww I ovI finlI dflI finrldfrI cmlI sn

oom width [m]
om length [m]

80

C rh : room height [m]
C raz : Room azimuth angle (exact south=O., east negative, west positive)
C ov : Overhang length (distance away from wall)
C sl sensor location from reference point in length direction

C sw sensor location from reference point in width direction

C wkpln : Workplane height [m]
C nw : number of windows, maximum = 5

C reflw: reflectance of walls [0...1]
C refic reflectance of ceiling [0... 1]
C reflf: reflectance of floor [0...1]
C reflg: reflectance of glass used as fenestration [0...1]
C tO : hemispherical transmittance of fenestration [0...1]
C beta :climate indicator (rural- 1, urban.*2, industrial- 3)
C omega : water vapor content of the atmosphere (0.5, 1, 2, 3, 4 or 5) in
C cm of water

C reflgr: reflectance of ground [0...1]
C wl : distance from left edge of window to left edge of respective wall [m]

C wb : distance from bottom of window to floor [m]
C wh : height of window [m]
C ww : width of window

C ov : length of overhang [m]

C fml : length of fim left of window (as seen from inside room) [m]
C dfl : distance of fin left of window to left window edge along wall
C with window (as seen from inside room) [m]
C finr : length of fin right of window (as seen from inside room) [m]
C dfr : distance of fin right of window to right window edge along
C wall with window (as seen from inside room) [m]
C cm : mullion correction factor [O...l]
C sn : surface number of the wall with the window [1, 2, 3 or 4], south
C facing surface is 1, counting counter-clockwise.
C
C Input ==> File TRNSYS.out':• Sun and radiation data fron TRNSYS Typel6

C

C hour of the year I solar zenith angle I solar azimuth angle I Id I It

C

C ... II 1 ... 1 ... I ...

81

C

C solar zenith angle : zero due south, west positive, east negative
C Id :diffuse horizontal radiation [kJ/(m*m)]

C It : total horizontal radiation [kJ/(m*m)]

C

C Output => File FLITE.out'

C

C hj - 0.5 1 interr. light I dir. diff. light I patche light I total light

C
C ... I .. I .. I ... I ..

C

C where:

C

C hj :hour of the year
C interr. light : total interreflected light [lux]
C dir. diff. light: direct diffuse light [lux]

C patch light : total contribution from beam patches [lux]
C total light : interr. light + dir. diff. light [lux]
C

C Parameters and arrays:

C
C F(ij) • configuration factor matrix (= F-hat matrix after being
C processed in subroutine SGESL)
C R(ij) • reflectivity matrix
C winelem(ij) : array containing the numbers of the elements that lie in a
C window area
C b(i) : working array in subroutine SGESL
C floorbeam(i) : array containing the numbers of the elements that lie in the

C area of a beam patch on the floor.
C FS(i) : array containing the configuration factors from the sensor

C to all elements above the workplane.
C ipvt(i) : working array in subroutine SGEFA
C skylum(i) • array containing 25 luminance points evenly distributed over
C the patch of sky as seen bya Point in the center of the

C window.

C surfelem(i) : array containing the numbers of the elements that lie above

C the workplane.

C wallbeam(i) • .array containing the numbers of the elements that lie in the

82

C area of a beam patch on a wall.
C xr(i) : working array subroutine CONFIG
C yr(i) : working array in subroutine CONFIG
C zr(i) : working array in subroutine CONFIG
C Ida : leading dimension of array (=6*n*n)

C lumwin luminance of window plane
C n : number of elements along one edge of the surfaces of the room.

Parameter (lda=150, n=5)

real skylum(25), lumwin, F(da,lda),R(lda,lda)

real b(da), xr(lda), yr(lda), zr(lda), FS(lda)
integer ipvt(lda), winelem(5,lda/6), surfelem(lda)
integer sn, beta, wallbeam(ldai2), floorbeam(lda/2)

nf=0
pi = 4.*atan(.)

open(1,file=LITE.in',status='old')

read(1,*) rw, rl, rh, raz

read(l,*) sw,sl,wkplnnw

read(l,*) refiw, refic, refif, reflg, tO

read(l,*) beta, omega, reflgr
read(l,*,end=2000) wl,wb,wh,ww,ov,finldfl,fimr,dfr,cmsn

read(1,*,end=2000) wlwb,wh,ww,ov,finl,dfl,finr,dfrcm,sn

read(l,*,end=2000) wl,wb,wh,ww,ov,finl,dfl,f'mr,dfrcm,sn

read(1,*,end=2000) wl,wb,wh,ww,ov,finl,dfl,f'mr,dfr,cm,sn

read(l,*,end=2000) wl,wb,wh,ww,ov,finl,dfl,fmrdfr,cm,sn

2000 continue

if (wkpln.gesrh) then
write(*,*)' *** Error : Workplane is above ceiling : wkpln'
write(*,*)' has to be smaller than room height !'

stop
end if

83

if ((raz.ge.90.).or. (raz.le.(-90.))) then

write(*,*)' *** Error: Room azimuth angle raz should not be'

write(*,*)' equal or greater than 90 degr. and'
write(*,*)' not be equal or less than -90 degr..'

write(*,*)' Choose the new south facing surface'
write(*,*as surface # 1 and the left or most

write(*,*)' southern roomcorner as room ref. pL'

write(*,*)'1 to avoid this message!'

stop

end if

open(2,file='TRNSYS.out',status='old')

do 999 mm = 1,1000

read(2,'(lx,f9.4,4(el 1.7))',end= 1000) hj,zenith, sunaz,

@ radd, radt

if (radLeq.0.) goto 999

jul = int((hj-0.5)/24.)+1

sunalt = 90.-zenith

diffuse = radd/3.6

total = radt/3.6

if ((sw.ge.rw).or. (sl.gerl).or. (sw.le.0).or. (s~le.0)) then
write(*,*)'*** Error: Sensor is outside room or in wall!'

stop

end if

C *** input of window data

rmw =0

allight = 0.

beamlight = 0.
patchlight =0.

rlight = 0.

dirlight = 0.

84

rewind 1

do 888 Ai = 1,nw+4

if (jj.l5) then

read(1,*)

goto 888

end if

read(1,*) wl,wb,wh,wwov,fiml,dflfinrdfr,cmsn

nnw = nnw+1

if (wh+wb.gt.rh) then

write(*,*) Error : wb = ',wb,'wh = ',wh,' rh = ',rh

write(*,*)' -> Window does not fit in wall!'

stop

end if

if (wb.gtwkpln) then

z = wb-wkpln

else

z =0.

end if

if (sn.eq.1) then

dsw = sl

wwl = rw

else if (sn.eql.2) then

dsw = rw - sw

dsr = sl

85

wwl = rl

else if (sn.eq.3) then

dsw = rl-sl

dsr = rw-sw

wwl = rw

else if (sn.eq.4) then

dsw = sw

dsr = ri-si

wwl = rl

else
write(*,*)

write(*,*)'"** Error: surface # sn =', sn,' is not allowed'

stop

end if

C *** Determine elements that lie in window area
call elementslI (winelem,nsnnnwrh,wb,wh,ww,wwl,wl)

C * Determine the ground reflected light
call reflight(diffuse,totalreflgr,tO,outrefl)

if (sn.eq.1) then

azI = -anglefl+raz

azr = anglefr+raz

else if (sn.eq.2) then

azi = -anglefl+raz-90.

azr = anglefr+raz-90.

else if (sn.eq.3) then

azi = -anglefl+raz- 180.

azr = anglefr+raz- 180.

86

else if (sn.eq.4) then

azi = -anglefl+raz+90.

azr = anglefr+raz+90.

end if

if (azl.lt.(-180.)) then

azi = 360.+azl

end if

if (azr.lt.(-180)) then

azr = 360.+azr

end if

if (azl.gt.180.) then

azl = azl-360.

end if

if (azr.gt.180.) then

azr = azr-360.

end if

C *** Check if sun is visible by sensor through the window.

if ((sunaz.gt.azl) .and. (sunaz.lt.azr)

@.and. (sunaltlt.angleov)

@ .and. (sunalt.gt.angle3)) then
sunbeam = beam(sunaltjul)*transmit(raz,snsunalt,sunaz,tO)

@ *sind(sunalt)*phae ! [lux]
beamlight = sunbeam

else

beamlight =0.

end if

C ** Check if there are patches of beam on the surfaces of the room.

C If so, determine their location and size ,the numbers of the

C elements that lie in the respective t~dtch areas and the

87

C illuminance of these points.
call patches(floorbeam,wallbeam,n,sn,rw,rl,rh,wlwb,wwwh,

fmlfmr,dfl,dfr,ovsunalt,sunazrazjul,tphase,

@ beaml,beam2,beam3,beam4,beam6,swsl,wkpln)

C *** Calculate the average sky luminance as seen by a point in the center
C of the window.

call winlum(sn'finldflfinrdfr'ww,ovrhwhwblumwintO,

sunaz,sunalt,diffusetotal,betaomegaphase)

C *** weigh the sky luminance as seen by the window with the fraction
C of actual window area and area of the elements that model the

C window.

Fwin = ww*wh

k=0

do i = 1,n*n

if (winelem(nnw,i).eq.0) then

goto 22

else

k= k+1

end if

end do

22 if ((sn.eq. 1) .or. (sn.eq.3)) then

elemw = rw/n

else

elemw = rl/n

end if

elemh = rh/n

Felem = k*elemw*elrrIh

weigh = Fwin/Felem

88

lumwin = lumwin*weigh ! [cd/(m*m)]

C *** Add ground reflected light to ltninance of window plane and take

C mullion correction factor into account
lumwin .= (lumwin+outrefl)*cm

C *** Check ff F-hats were already calculated!

if (nf.eq.1) goto 199

nf= 1

C *** Define configuration factors for interreflection model

call config(F~xr,yr,zr,lda,n,rwrlrh)

C *** Check configuration factors for accuracy (The sum of all factors
C from one point to all elements has to be one!

testsum =0.
indicator = 0
eps = 1.e-05

do j=l,6*n*n

testsum ff=0.

do i=l,6*n*n

testsum = testsum + F(j,i)

end do

if (abs(testsum-1.).gt.eps) then
write(*,*)' The sum of the configuraion factors in each

@ row of the'
write(*,*)' configuration factor matrix F has to be one!'
write(*'(a,f8.6,a,i3,a)')' Sum =', testsum,' in row'

@ j,' of matrix'
indicator =f 1

end if

end do

89

testsuml f= 0.

testsum2 = 0.
do i = l,n*n

do j = n*n+l, 2*n*n

testsuml = testsuml+F(ij)

testsum2 = testsum2+F(j,i)

end do

end do

C *** Define reflectivity matrix

call reflec(RF,winelemldan,nwreflgreflwreflcreflf)

C *** Apply matrix factorization to reflectivity matrix with the UNPACK
C subroutine SGEFA. The contents of R will be changed after use!

call sgefa(R,lda,6*n*nipvt,info)

if (info.ne.O) then
write(*,*)'*** Warning- Error may occur when using'
write(*,*)' subrout. SGESL to solve the system of linear'
write(*,*)' equations in the interreflection algorythm!'
write(*,*)' Check matrices F and R for senseless values,'

write(*,*)' f.i. zeros in the diagonal of F.'

end if

C *** Solve system of linear equations with UNPACK subroutine SGESL.
C After use, array F will contain the solution, the F-hats.

do i=l,6*n*n

do j=1,6*n*n

b(j) = F(j,i)

end do

call sgesl(R,lda,6*n*n,ipvt,b,0)

do j=l,6*n*n

FOj,i) =f b(j)

end do

90

end do

C *** Test F-hats matrix for accuracy The sum of all F-hats from one
C point to all other surfaces muliplied by their absorptances has

C to be one.

ind= 1

do i = 1,6*n*n

testsum =0.

doj = 1,6*n*n

dok = 1,n*n

dokk= 1,nw

if (winelem(kkk).eq.j) then

absorb = 1.-reflg

goto 11

end if

end do

end do

if (int(real(j-.5)/(n*n))+l.lt.5) then

absorb = 1.-reflw

else if (int(real(j-.5)/(n*n))+1.eq.5) then

absorb = 1.-refic

else

absorb = 1.-reflf
end if

11 testsum = testsum + F(ij)*absorb

end do

if (abs(1.-testsum).gt.1.e-05) then

write(*,*)

write(*,*)' Error : Sum of F-hats times absorptance'

write*,*)' has to be one for each row.'

91

write(*,*)' row =',i,' and sum =',testsum
write(*,*)

ind =0

end if

end do

C *** Determine the numbers of the elements that lie above the workplane

call elements2(surfelem,n,rhwkpln)

C *** Calculate the configuration factors for the elements that lie above

C the workplane.

call consens(FS,surfelemn,sw,slrhrwrl,wkpln)

testsum = 0.

do i = 1,5*n*n

testsum = testsum+FS(i)

end do

if (abs(1.-testsum).gt.l1.e-05) then
write(*,*)' The sum of all configuraion factors from the'
write(*,*)' sensor to all elements above the workplane'
write(*,*)' in matrix FS has to be one:'
write(*,*)' Error : sum =',testsum

end if

199 continue

C *** Determine the illuminance at the sensor with the F-hats method.
call light(FFS,winelem,surfelem,floorbeamwallbeam,lda,n,lumwin,

@ reflg,reflw,reflfreflcbeam 1,beam2,beam3,beam4,beam6,

@ daylightreflectplight,dlightnwnnw)

allight = allight+daylight+beamlight
night = rlight+reflect

patchlight = patchlight-iplight

92

dirlight = dirlight+dlight

888 continue

C *** Write results on file 'FLITE.out':
open(3,ffl'FL1TE.out',status='new')

write(3,*) hj-0.5,rlight,dirlightpatchlight,allight

999 continue

1000 stop

end

C *** Subroutine PATCHES determines the location of beam patches on the
C floor (surface #6), the numbers of the surface elements that lie
C in the respective area of the floor and calculates the area-weighed

C illuminance of the patch.

Subroutine patches(floorbeam,wallbeamn,snrwrlrh,wl,wb,ww,wh,

@ ful,finr,dfl,dfr,ov,sunalt,sunazrazjul,tO,phase,

@ beam 1,beam2,beam3,beam4,beam6,sw,sl,wkpln)

integer floorbeam(n*n), wallbeam(3*n*n), sn

beam1=0.

beam2 =0.

beam3 = 0.
beam4 =0.

beam6 = 0.

S1=0.

S2=0.

S3 =0.

S4 =0.

93

patchfi =0.
RI = 0.

R2 =0.

R3 =0.

R4 =0.

patchr =0.

BI=0.

B2 =0.

B3 =0.

B4 =0.

patchb = 0.
TI =0.

T2 =0.

T3 =0.

T4 =0.

patcht = 0.

do i = 1,3*n*n

wallbeam(i) =0.

end do

do i = 1,n*n

floorbeam(i) =0.
end do

if ((ov.eq.O).or.(finr.eq.0.).or.(fml.eq.0)) then

eps = 1.e-05

else

eps = 0.

end if

sub = raz-sunaz

if (sub.eq.0.) sub = 1.e-05

if (sub.eq.90.) sub = sub+l.e-05
if (sub.eq.-180.) sub % sub+1.e-05

if (sub.eq.-90.) sub =f sub+ 1.e-05

subi = sunaz-raz
if (subl.eq.O.) sub I = 1.e-05

94

if (sublI.eq.90.) sub1 = sub+1.e-05

if (subl.eq.180.) sub1 = sub+l.e-05

if (subl.eq.-90.) sub1 = sub+L.e-05

if (sn.eq.1) then

C *** Check if beam sunlight reaches the floor for window in surface #1

* angler= atand((dfr+ww)/(finr+eps))+raz

anglel = -atand((dfl+ww)/(fml+eps))+raz

if (sunalt.lL(atand((rh-wb)/(ov+eps))) .and.

@ (sunalt.gt.atand(wb/rl)) .and.

@ (anglel.lt.sunaz) .and.

@ (angler.gt.sunaz)) then

if (sunalt.gt.atand((rh-wb-wh)/(ov+eps))) then

patcht = (rh-ov*tand(sunalt))/tand(sunalt)

else

patcht = (wh+wb)/tand(sunalt)

end if

if (patchLgt.rl) patcht = ri

patchb = wb/tand(sunalt)

if (patchb.ge.rl) patchb =iA

patchh = patcht-patchb

if (sunaz.lt.-atand(dfl/(finl+eps))+raz) then

patchl = wl-dfl+tand(raz-sunaz)*(finl+(patchb+patcht)/2.)

else

patchl = wl+tand(raz-sunaz)*((patcht+patchb)/2.)

end if

if (patchl.gexw) patchl = rw
if (patchlIe.O.) patchl 0- .

if (sunaz.gt.atand(dfr/(finr+eps))+raz) then

patchr = w1+ww-tand(sunaz-raz)*(f'mr+(patcht+patchb)f2.)

95

else

patchr = wl+ww-tand(sunaz-raz)*((patht+patchb)/2.)

end if

if (pachr.gtrw) patchr = rw
if (patchr.le.O.) patchr- 0.

patchw = patchr-patchl

C * Determine the beam illuminance on the floor due to the window in

C surface #1.

beam6 = beam(sunaltjul)*transmit(raz,snsunaltsunaz,tO)

@ *sind(sunalt)*phase [lux]

if ((patchh.eq.0.).or. (patchw.eq.0.)) then

beam6 =0.

end if

end if

C *** Check if beam sunlight reaches suface #2 for window in surface #1
ff ((sunaz.gtatand(wl/rl)+raz) .and.

@ (sunaz.lt.angler) .and.
@ (sunalt.t.atand((rh-wb)/(ov+eps)))) then

if (sunaz.lt.atand(dfr/(f'mr+eps))+raz) then

S2 = rl-(wl+ww)/tand(subl)

else

S2 = rl-(wl+ww+dfr-finr*tand(sunaz-raz))

@ /tand(subl)
end if

if (S2.1t.0.) S2 =0.

R2 = rl-wl/tand(subl)

.W2 = R2-S2

X2 = tand(sunaz-raz)*(r1-(S2+R2)/2.)

Y2 = sqrt(X2*X2+(rl-(S2+R2)12.)**2)

96

B2 = wb-tand(sunalt)*Y2

if (B2.1t.0.)-B2 = 0.

if (sunalLgt.atand((rh-wb-wh)/(ov+eps))) then

Z2 = tand(sunalt)*(ov+eps)

T2 = rh-Z2.tand(sunalt)*Y2

else

T2 = wb+wh-tand(sunalt)*Y2

end if

if (T2.1t.0.) T2 = 0.

H2 = T2-B2

C * Determine the beam illuminance on surface #2 due to the window in
C surface #1.

beam2 = bim(sunaltjul)*tamit(rzsnsunaltsunaz,tO)
@ *sind(abs(sunaz-raz))*cosd(sunalt)*phase [lux]

if ((H2.eq.0.).or. (W2.eq.0.)) then

beam2- 0.
end if

end if

C*** Check if beam reaches surface #3 from window in surface #1
X31 = (wl+ww+dfr)/tand(abs(sub))-f'mr

Y3 la = (wl+ww)/tand(abs(sub))

Y3 lb - (rw-wl-ww)/tand(abs(sub))

if ((X31.gt.rl) .and.

@ (sunaz.gt.atand(dfr/(finr+eps))-raz)) then

S3 = rw-tand(abs(sunaz-raz))*(X31-rl)

else if ((Y3 la.gt.rl) .and. (sunaz-raz~gt.0.)) then

S3 = rw-(Y3 la-rl)*tand(abs(sunaz-raz))

97

else if ((Y3 lb.gt.rl) .and. (sunaz-raz.l.O.)) then

S3 = (Y3lb-rl)*tand(abs(sunaz-raz))
else if ((Y3 lb.lt.rl) .and. (sunaz-raz.lt.O.)) then

S3 =0.
else if ((Y3 la.lt.rl) .and. (sunaz-raz.gt.0.)) then

S3= rw

end if

if (S3.1t.0.) S3 = 0.
if (S3.gt.rw) S3 = rw

X32 = (rw-wl+dfl)/tand(abs(sub))-fml

Y32a = (rw-wl)/tand(abs(sub))

Y32b = wl/tand(abs(sub))

if ((X32.gt.rl) .and.

@ (sunaz.lL-and(dfl/(finl+eps))-raz)) then

R3 = tand(abs(raz-sunaz))*(X32-rl)

else if ((Y32a.gt.rl).and. (sunaz-raz.lLO.)) then
R3 = tand(abs(raz-sunaz))*(Y32a-rl)

else if ((Y32b.gt.rl).and. (sunaz-raz.gt.0.)) then
R3 = rw-tand(abs(raz-sunaz))*(Y32b-rl)

else if ((Y32b.lt.rl) .and. (sunaz-raz.gt.O.)) then

R3=rw

else if ((Y32a.lt.rl).and. (sunaz-raz.ILO.)) then

R3 =0.

end if

if (R3.lt.0.) R3 =0.

if (R3.gtxw) R3 =rw

if ((sunaz-raz).eq.0.) then

S3 = rw-wl-ww

R3 = rw-wl

end if

98

W3 =R3-S3

Z31 = (rl+ov)*tand(sunalt)

Z32 = rl*tand(sunalt)

if ((Z31.lt.rh) .and.

@ (sunaltgt.atand((rh-wb-wh)/ov))) then

T3 = rh-Z31

else if (Z32.1t.wh+wb) then

T3 = wb+wh-Z32

end if

if T3.ltO.) T3 =0.

B3 = wb-Z32

if (B3.lt.O.) B3 =0.

H3 = T3-B3

C * Determine the beam illuminance on surface #3 due to the window
C in surface#1.

beam3 = bean(sunaltjul)*transmit(razsn,sunalt,sunaz,tO)

@ *cosd(abs(sunaz-raz))*cosd(sunalt)*phase ![lux]

if ((H3.eq.0.).or. (W3.eq.0.)) then

beam3 =0.
end if

C * Check if beam reaches surface #4 from window in surface #1

if ((sunaz.lt.-atand((rw-wl-ww)/rl)+raz) .and.
@ (sunaz.gt.anglel) .and.

@ (sunalt.lt.atand((rh-wb)/(ov+eps)))) then

if (sunaz.gt.-atand(dfl/(f'ml+eps))+raz) then

99

R4 = (rw-wl)/Mnd(sub)

else

R4 = (rw-wl+dfl-fml*tand(raz-sunaz))/tand(sub)

end if

if (R4.gt.rl) R4 = ri

S4 = (rw-wl-ww)/tand(sub)

if (S4.gt.rl) S4 = rl

W4 = R4-S4

X4 = tand(raz-sunaz)*(S4+R4)/2.

Y4 = sqrt(X4*X4+((S4+R4)/2.)**2)

if (sunalt.gt.atand((rh-wb-wh)/(ov+eps))) then

Z4 = tand(sunalt)*(ov+eps)

T4 = rh-Z4-tand(sunalt)*Y4

else

T4 = wb+wh-tand(sunalt)*Y4

end if

if (T4.OL.) T4 =0.

B4 = wb-tand(sunalt)*Y4

if (B4.1t.0.) B4 = 0.

H4 = T4-B4

C * Determine the beam illuminance on surface #4 due to the window in

C surface #1.
beam4 = beam(sunaltjul)*transmit(raz,snsunaltsunaz,tO)

@ *sind(abs(sunaz-z))*cosd(sunalt)*phase ! [lux]

if ((H4.eq.0.).or. (W4.eq.0.)) then
beam4 = 0.

end if

end if

100

else if (sn.eq.2) then

C *** Check if beam sunlight reaches the floor for window in surface #2
anglel = -atand((dfl+ww)/(f'ml+eps))+raz-90.

if (anglel.lt.-180.) then

anglel = 360.+anglel

end if

angler = atand((dfr+ww)/(f'mr+eps))+raz-90.

if (angler.lt.-180.) then

angler = 360.+angler

end if

if (sunalt.lt.(atand((rh-wb)/(ov+eps))).and.

@ (sunalt.gLatand(wb/rl)) .and.

@ (anglel.lt.sunaz) .and.
@ (angler.gt.sunaz)) then

if (sunalt.gt.atand((rh-wb-wh)/(ov+eps))) then

patchr = (rh-ov*tand(sunalt))/tand(sunalt)

else

patchr = (wh+wb)/tand(sunalt)

end if

if (patchr.gt.rw) patchr = rw

patchl = wb/tand(sunalt)

if (patchl.gerw) patchl = rw

patch* = patchr-patchl

angleazl = -atand(dfl/(finl+eps))+raz-90.

if (angleazl.1L-180.) then

anglazl = 360.+angleazl
end iff

if (sunaz.ltangleazl) then

patcht = rl-wl+dfl-tand(raz-90.-sunaz)*

101

(f'ml+(patchl+patchr)/2.)

else

patcht = rlwl-tand(raz-90.-sunaz)*((patchl+patchr)/2.)

end if

if (patchLge.rl) patcht = ri
if (patcht.le.O.) patcht =0.

angleaz2 = atand(dfr/(fnr+eps))+raz-90.

if (angleaz2.lt.-180.) then

angleaz2 = 360.+angleaz2

end if

if (sunaz.gLangleaz2) then
patchb = rl-wl-ww+tand(sunaz-raz+90.)*(finr+

@ (patchr+patchl)/2.)
else

patchb = rl-wl-ww+tand(sunaz-raz+90.)*((patchr+patchl)

@ /2.)

end if

if (patchb.gt.rl) patchb = rl
if (patchb.le.0.) patchb =0.

patchh = patcht-patchb

C *** Determine the beam illuminance on the floor due to the window in

C surface #2.

beam6 = beam(sunalt,jul)*transmit(raz,snsunaltsunaz,tO)

@ *sind(sunalt)*phase ! [lux]

if ((patchh.eq.0.).or. (patchw.eq.0.)) then

beam6 = 0.

end if

end if

C ** Check if beam sunlight reaches suface #3 for window in surface #2

if ((sunaz.gt.atand(wl/rw)+raz-90.) .and.

102

@ (sunaz.lt.angler) .and.

@ (sunaltlLatand((rh-wb)/(ov+eps)))) then

if (sunaz.lt.atand(dfr/(finr+eps))+raz-90.) then
53 = rw-(wl+ww)/tand(subl+90.)

else

S3 = rw-(wl+ww+dfr-finr*tand(sunaz-raz+90.))

/tand(subl+90.)

end if

if (S3.11.0.) 53 = 0.

R3 = rw-wl/tand(subl+90.)

W3 = R3-S3

X3 = tand(sunaz-raz+90.)*(rw-(S3+R3)/2.)

Y3 = sqrt(X3*X3+(rw-(S3+R3)/2.)**2)

B3 = wb-tand(sunalt)*Y3

if (B3.1LO.) B3 =0.

if (sunalt.gt~atand((rh-wb-wh)/(ov+eps))) then
Z3 = tand(sunalt)*(ov+eps)
T3 = rh'Z3-tand(sunalt)*Y3

else

T3 = wb+wh-tand(sunalt)*Y3

end if

if (T3.1t.0.) T3 = 0.

H3 = T3-B3

C * Determine the beam illuminance on surface #3 due to the window in
C surface #2.

beam3 - bea(stnaltul)*transmit(raz,sn,sualt, sunaz,t0)

@ s~~b~ua-a+0.)cs~uat*hs ! [lux]

if ((h3.eq.0.) .or. (W3.eq.0.)) then

beam3 -n

103

end if

end if

C *** Check if beam reaches surface #4 from window in surface #2
X41 = (wl+ww+dfr)/tand(abs(subl+90.))-fmr

Y4la = (wl+ww)/tand(abs(subl+90.))

Y4 lb =. (rl-wl-ww)/tand(abs(sub1+90.))

if ((X41.gt.rw) .and.

@ (sunaz.gt.atand(dfr/(finr+eps))-raz+90.)) then

S4 = rl-tand(abs(sunaz-raz+90.))*(X41-rw)

else if ((Y4 la.gtrw).and. (sunaz-raz+90..gt.O.)) then
S4 = rl-(Y41a-rw)*tand(abs(sunaz-raz+90.))

else if ((Y41b.gtrw) .and. (sunaz-raz+90..LO.)) then
S4 = (Y41b-rw)*tand(abs(sunaz-raz+90.))

else if ((Y4lb.ltrw) .and. (sunaz-raz+90..ILO.)) then

S4 =0.
else if ((Y41a.ltrw) .and. (sunaz-raz+90..gt.0.)) then

S4 = rl

end if

if (S4.1t.0.) S4 = 0.
if (S4.gt.rl) S4 = rl

X42 = (rl-wl+dfl)/tand(abs(subl+90.))-finl
Y42a = (rl-wl)/tand(abs(subl+90.))

Y42b = wl/tand(abs(subl+90.))

if ((X42.gtrw) .and.

@ (sunaz.lt.-atand(dfl/(f'ml+eps))-raz-90.)) then

tR4 = tand(abs(sunaz-raz+90.))*(X42-rw)

else if ((Y42a.gt.rw).and. (sunaz-raz+90..lt.O.)) then

104

R4 = tand(abs(sunaz-raz+90.))*(Y42a-rw)

else if ((Y42b.gtrw).and. (sunaz-raz+90..gt.0.)) then
R4 = rl-tand(abs(sunaz-raz+90.))*(Y42b-rw)

else if ((Y42b.ltrw) .and. (sunaz-raz+90..gt.0.)) then

R4= rl

else if ((Y42a.lt.rw).and. (sunaz-raz+90..lLO.)) then

R4 =0.

end if

if (R4.1t.0.) R4 =0.

if (R4.gLrl) R4 = rl

if ((sunaz-raz+90.).eq.0.) then

S4 = rl-wl-ww

R4 f rl-wl

end if

W4 = R4-S4

Z41 = (rw+ov)*tand(sunalt)

Z42 = rw*tand(sunalt)

if ((Z41.lt.rh) .and.

@ (sunalt.gtatand((rh-wb-wh)/ov))) then

T4f=frh-Z41

else if (Z42.1t.wh+wb) then

T4 = wb+wh-Z42

end if

if (T4.1t.0.) T4 = 0.

B4 = wb-Z42

if (B4.1t.0.) B4 = 0.

H4 = T4-B4

105

C *** Determine the beam illuminance on surface #4 due to the window

C in surface #2.

beam4 = beam(sunaltjul)*transmit(razsn,sunalt,sunaz,tO)

@ *cosd(abs(sunaz-raz+90.))*cosd(sunalt)*phase ! [lux]

if ((H4.eq.O.).or. (W4.eq.0.)) then

beam4 =0.

end if

C *** Check if beam reaches surface #1 from window in surface #2

if ((sunaz.lt-atand((rl-wl-ww)/rw)+raz-90.) .and.

@ (sunaz.gt.anglel) .and.

@ (sunaltlt.atand((rh-wb)/(ov+eps)))) then

if (sunaz.gL-atand(dfl/(finl+eps))+raz-90.) then
Ri = (rl-wl)/tand(sub-90.)

else

Rl = (rl-wl+dfl-f'ml*tand(raz-sunaz-90.))

@ /tand(sub-90.)

end if
if (Rl.gt.rw) R Irw

Si = (rl-wl-ww)/tand(sub-90.)

if (S 1.gt.rw) S1 = rw

WI = Ri-Si

Xi = tand(raz-sunaz-90.)*(Sl+Ri)/2.

Y1 = sqrt(XI*XI+((S1+R1)/2.)**2)

if (sunaltgt.atand((rh-wb-wh)/(ov+eps))) then

Zi = tand(sunalt)*(ov+eps)

Ti = rh-Zl-tand(sunalt)*Yi
else

Ti = wb+wh-tand(sunalt)*Y1

end if

if (Ti.lt.0.) Ti = 0.

106

B1 = wb-tand(sunalt)*Y1

if (B1.lLO.) Bi = 0.

H1 = T1-B1

C *** Determine the beam illuminance on surface #1 due to the window in

C surface #2.

beam1 = beam(sunaltjul)*transmit(razsnsunaltsunaztO)

@ *sind(abs(sunaz-raz+90.))*cosd(sunalt)*phase ! [lux]

if ((Hl.eq.0.).or. (Wl.eq.0.)) then

beaml-=0.

end if

end if

C *** Check if beam sunlight reaches the floor for window in surface #3
else if (sn.eq.3) then

anglel = -atand((dfl+ww)/(fml+eps))+raz-180.

if (anglel.lL-180.) then

anglel = 360.+anglel

end if

angler = atand((dfr+ww)/(f'mr+eps))+raz-180.

if (angler.lt.-180.) then

angler = 360.+angler

end if

if (sunaz.le.0.) then

if (sunalt.lt.(atand((rh-wb)/(ov+eps))) .and.
@ (sunalt.gt.atand(wb/rl)) .and.

@ (angler~gt.sunaz)) then

ind = 1

107

else
ind=0

end if

else

if (sunalt.l(atand((rh-wb)/(ov+eps))) .and.

(sunalLgt.Latand(wb/rl)) .and.
(anglel.lt.sunaz)) then

ind = 1

else

ind=0

end if

end if

if (ind.eq.1) then

if (sunalLgLatand((rh-wb-wh)/(ov+eps))) then
patchb = rl-(rh-ov*tand(sunalt))/tand(sunalt)

else

patchb = rl-(wh+wb)/tand(sunal)

end if

if (patchb.lLO.) patchb =0.

patcht = rl-wb/tand(sunalt)

if (patcht.le.0.) patcht = 0.

patchh = patcht-patchb

angleazl = -atand(dfl/(finl+eps))+raz-180.

if (angleazl.lt.-180.) then
anglazi = 360.+angleazl

end if

if (sunaz.lLangleazl1) then

108

patchr = rw-wl+dfl-tand(raz-180.-sunaz)*

@ (fml+(patcht+patchb)/2.)
else
patchr = rw-wl-tand(raz-180.-sunaz)*((patcht+patchb)/2.)

end if

if (patchr.ge.rw) patcht = rw
if (patchr.le.O.) patcht =0.

angleaz2 = atand(dfr/(finr+eps))+raz-180.

if (angleaz2.1L-180.) then

angleaz2 = 360.+angleaz2

end if

if (sunaz.gt.angleaz2) then
patchl = rw-wl-ww+tand(sunaz-raz+180.)*(finr+

@ (patcht+patchb)/2.)
else
patchl = rw-wl-ww+tand(sunaz-raz+180.)*((patcht+patchb)

@ /2.)

end if

if (patchl.gt.rw) patchl = rw

if (patchl.le.0.) patchl =0.

patchw = patchr-patchl

C *** Determine the beam illuminance on the floor due to the window in
C surface #3.

beam6 = beam(sunaltjul)*transmit(razsnsunaltsunaz,tO)

@ *sind(sunalt)*phase [lux]

if ((patchh.eq.0.).or. (patchw.eq.0.)) then

beam6 =0.

end if

end if

C ** Check if beam sunlight reaches suface #4 for window in surface #3

109

if ((sunaz.gtatand(wi/rl)+raz-180.) .and.

@ (sunaz.lLangler) .and.

@ (sunaz.lLO.) .and.

@ (sunalt.ltatand((rh-wb)/(ov+eps)))) then

if (sunaz.ltatand(dfr/(finr+eps))+raz-180.) then

S4 = rl-(wl+ww)/tand(subl+180.)

else

S4 = rl-(wl+ww+dfr-f'mr*tand(sunaz-raz+180.))

/tand(subl+ 180.)

end if

if (S4.1L0.) S4 = 0.

if (S4.gt.rl) S4 = rl

R4 = rl-wl/tand(sub1+ 180.)

if (R4.lt.O.) R4 = 0.

if (R4.gt.rl) R4 = rl

W4 = R4-S4

X4 = tand(subl+180.)*(rl-(S4+R4)/2.)

Y4 = sqrt(X4*X4+(rl-(S4+R4)/2.)**2)

B4 = wb-tand(sunalt)*Y4

if (B4.1LO.) B4 = 0.

if (sunalt.gt.atand((rh-wb-wh)/(ov+eps))) then

Z4 = tand(sunalt)*(ov+eps)

T4 = rh-Z4-tand(sunalt)*Y4

else

T4 = wb+wh-tand(sunalt)*Y4

end if
if (T4.1t.0.) T4 = 0.

H4 = T4-B4

C *** Determine the beam illuminance on surface #4 due to the window in

C surface #3.

110

beam4 = beam(sunaltjul)*ransmit(razsnsunalt, sunaz,tO)

*sind(abs(sunaz-raz+180.))*cosd(sunalt)*phase ! [lux]

if ((H4.eq.0.) .or. (W4.eq.0.)) then

beam4 =0.

end if

end if

C *** Check if beam reaches surface #1 from window in surface #3
if (sunaz.1lt.0.) then

zmul=1.
else

zmul= -1.

end if

X1 = (wl+ww+dfr)/tand(abs(subi+(180.*zmul)))-finr

Y1 la =(wl+ww)/tand(abs(subl+(180.*zmul)))

Y 1 lb = (rw-wl-ww)/tand(abs(subI+(I80.*zmul)))

if (sunaz.lt.0.) then

if ((Xl1.gtrl) .and.

@ (sunaz.gtatand(dfr/(fmr+eps))-raz+180.)) then

S 1 = rw-tand(abs(sunaz-raz+180.))*(XI1-rw)

end if

end if

if ((Y1 la.gt.rl) .and. (sunaz-raz+(180.*zmul).gt.0.)) then

S 1 = rw-(Y 11a-rl)*tand(abs(sunaz-raz+(180.*zmul)))

else if ((Yl lb.gt.rl) .and. (sunaz-raz+(1(80.*zmul).lt0.)) then
S 1= (Y1 lb-rl)*tand(abs(sunaz-raz+(180.*zmul)))

else if ((Y1 ib.lt.rl).and. (sunaz-raz+(80.*zmul).lt.0.)) then

else if ((Yilla.ltrl) .and. (sunaz-raz+(i80.*zmul).gt.O.)) then

Sil=rw

111

end if

if (51.11.0.) Si =0.-

if (S1I.gtrw) SI =rw

X12 = (rw-wl+dfl)/tand(abs(sub1+(180.*zmul)))-fmIn

Yl12a =(rw-wl)/tand(abs(sub1I+(l180.*zmul)))

Yl2b =wI/tand(abs(subl+(180.*zmul)))

if (sunaz.gt..0.) then

if ((X 12.gtxrl).ad

@ (sunaziLt-atand(dfl/(finl+eps))-raz+180.)) then

Ri = tand(abs(sunaz-raz+18O.))*(X12-rl)

end if

end if

if ((Yi12agtrl) .and. (sunaz-raz+(i 8O.*zmnul).lLO.)) then

Ri = tand(abs(sunaz-raz+(18O.*zmul)))*(Y12a-r1)

else if ((Yl12b.gtrI) .and. (sunaz-raz+(1 8O.*zmul).gt.O.)) then
RI = rw-tand(abs(sunaz-raz+(18O.*zmul)))*(Y12b-rl)

else if ((Yl2b.lt~rl) .and. (sunaz-raz+(18O.*zmul).gt.O.)) then
RI = rw

else if ((Yl2a.lt~rl) .and. (sunaz-raz+(18O.*zmul).1t.0.)) then
Ri = 0.

end if

if (R1.lt.0.) RI =0.

if (Ril.gtrw). Ri =rw

if ((sunaz-raz+(180.*zmul)).eq.0.) then

Si 1 rw-wl-ww

RI rw-wl

zi1 = (rl+ov)*tand(sunalt)

112

Z12 = rl*tand(sunalt)

if ((Zii.ltarh) .and.

@ (sunalLgt.atand((rh-wb-wh)/ov))) then

Ti = rh-Z11

else if (Zl2.Lwh+wb) then

T1 = wb+wh-Zl2

end if

if (Tl.lt.O.) T1 = 0.

B1 = wb-Z12

if (Bi.lt.0.) BI = 0.

H1 = T1-B I

C *** Determine the beam illuminance on surface #1 due to the window

C in surface #3.
beamli = beam(sunaltjul)*transmit(raz,sn,sunalt,sunaz,tO)

@ *cosd(abs(sunaz-rz+180.))*cosd(sunalt)*phase ! [lux]

if ((Hl.eq.0.).or. (Wl.eq.0.)) then

beam1 =0.
end if

C *** Check if beam reaches surface #2 from window in surface #3
if ((sunaz.gt.-atand((rw-wl-ww)/rl)+raz- 180.) .and.

@ (sunaz.gt.0.) .and.

@ (sunaz.gt.anglel) .and.
@ (sunaltit.atand((rh-wb)/(ov+eps)))) then

anglefin = -atand(dfl/(flnl+eps))+raz- 80.
if (anglefin~lt.-180.) anglefin = 360.+anglefin

if (sunaz.gt.anglefin) then

113

R2 = (rw-wl)Itand(sub-180.)

else

R2 = (rw-wl+dfl-fnl*tand(raz-sunaz- 180.))

/tand(sub-180.)

end if

if (R2.gtrl) R2f= rl

if (R2.1LO.) R2 = 0.

52= (rw-wl-ww)/tand(sub-180.)

if (S2.gt.rl) S2 = rl
if (S2.Lt.0.) 52 =0.

W2 = .R2-S2

X2 = tand(raz-sunaz-180.)*(S2+R2)/2.

Y2 = sqrt(X2*X2+((S2+R2)/2.)**2)

if (sunalt.gtatand((rh-wb-wh)/(ov+eps))) then

Z2 = tand(sunalt)*(ov+eps)

T2 = rh-Z2-tand(sunalt)*Y2

else
T2 = wb+wh-tand(sunalt)*Y2

end if
if (T2.1L0.) T2 =0.

B2 = wb-tand(sunalt)*Y2

if (B2.1t.0.) B2 = 0.

H2 = T2-B2

C * Determine the beam illuminance on surface #2 due to the window in
C surface #3

beam2 = beam(sunaltjul)*transmit(raz,snsunaltsunaz,tO)
@ sn~b~ua-a-80)*odsnl*hs ! [lujx]

if ((H2.eq.0.) .or. (W2.eq.0.)) then

beam2 = 0.

end if

114

end if

C *** Check if beam sunlight reaches the floor for window in surface #4

else if(sn.eq.4) then

anglel = -atand((dfl+ww)/(f'ml+eps))+raz+90.

if (anglel.gt.180.) then

anglel = anglel-360.

end if

angler = atand((dfr+ww)/(finr+eps))+raz+90.

if (angler.gt.180.) then

angler = angler-360.

end if

if (sunaltlt(atand((rh-wb)/(ov+eps))).and.

@ (sunalt.gt-atand(wb/rl)) and.

@ (anglel.lt.sunaz) .and.

@ (angler.gt.sunaz)) then

if (sunalt.gt.atand((rh-wb-wh)/(ov+eps))) then

patchl = rw-(rh-ov*tand(sunalt))/tand(sunalt)

else

patchl = rw-((wh+wb)/tand(sunalt))

end if
if (patchl.ltO.) patchl =0.

patchr = rw-wb/tand(sunalt)

if (patchr.le.0.) patchr =0.

patchw = patchr-patchl

angleazl = -atand(dfl/(f'ml+eps))+raz+90.

if (angleazl1.gt. 180.) then

anglazi = angleazl-360.

115

end if

if (sunaz.lt.angleazl) then

patchb = wl-dfl+tand(raz+90.-sunaz)*

(f'ml+(patchl+patchr)/2.)

else

patchb = wl+tand(raz+90.-sunaz)*((patchl+patchr)/2.)

end if

if (patchb.ge.rl) patchb = rl
if (patchb.le.0.) patchb =0.

angleaz2 = atand(dfr/(finr+eps))+raz+90.

if (angleaz2.gt. 180.) then

angleaz2 = angleaz2-360.

end if

if (sunaz.gtangleaz2) then
patcht = wl+ww-tand(sunaz-raz-90.)*(fmr-+

@ (patchr+patchl)/2.)
else
patcht = wl+ww-tand(sunaz-raz-90.)*((patchr+patchl)

@)2.)

end if
if (patcht.gt.rl) patcht = rl
if (patcht.le.0.) patcht =0.

patchh = patcht-patchb

C *** Determine the beam illuminance on the floor due to the window in
C surface #4.

beam6 = beam(sunaltjul)*transmit(razsnsunalt,sunaz,tO)

@ *sind(sunalt)phase ! [lux]

if ((patchh.eq.0.).or. (patchw.eq.0.)) then
beam6 =0O.

end if

end if

116

C *** Check if beam sunlight reaches suface #1 for window in surface #4

if ((sunaz.gLatand(wI/rw)+raz+90.) .and.

@ (sunaz.ltangler) .and.

@ (sunalt.ltatand((rh-wb)/(ov+eps)))) then

if (sunaz.lLatand(dfr/(fmr+eps))+raz+90.) then

S I = rw-(wl+ww)/tand(sub1-90.)

else

S1 = rw-(wl+ww+dfr-fimr*tand(sunaz-raz-90.))

@ /tand(sub1-90.)

end if

if (S1.It.O.) S1 = 0.

R1 = rw-wl/tand(subl-90.)

WI = R1-Si

X1 = tand(sunaz-raz-90.)*(rw-(Si+Ri)/2.)

Y1 = sqrt(Xl*Xl+(rw-(Sl+Ri)/2.)**2)

BI = wb-tand(sunalt)*Yi

if (Bi.lt.0.) Bi 1=0.

if (sunalt.gt.atand((rh-wb-wh)/(ov+eps))) then

Zi = tand(sunalt)*(ov+eps)

T1 = rh-Zi-tand(sunalt)*Y1

else

T1 = wb+wh-tand(sunalt)*Yi

end if

if (Ti.lt.0.) T1 = 0.

H1 =T1-Bi

C ** Determine the beam illuminance on surface #1 due to the window in

C surface #4.
beaml1 = beam(sunaltjul)*transmit(raz,sn,sunalsunaz,t0)

117

*sind(abs(sunaz-raz-90.))*cosd(sunal*phase ! [lux]

if ((H 1.eq.0.) .or. (W1.eq.0.)) then

beaml = 0.

end if

end if

C *** Check if beam reaches surface #2 from window in surface #4
X21 = (wl+ww+dfr)/tand(abs(subl-90.))-finr

Y21a = (wl+ww)/tand(abs(subl-90.))

Y2lb = (rl-wl-ww)/tand(abs(subl-90.))

if ((X21.gtrw) .and.

@ (sunaz.gt.atand(dfr/(finr+eps))-raz+90.)) then

S2 = rl-tand(abs(sunaz-raz-90.))*(X21-rw)

else if ((Y21a.gLrw).and. (sunaz-raz-90..gt.O.)) then
S2 = rl-(Y21a-rw)*tand(abs(sunaz-raz-90.))else if ((Y2lb.gt.rw) .and. (sunaz-raz-90..LO.)) then

S2 = (Y21b-rw)*tand(abs(sunaz-raz-90.))

else if ((Y2lb.lLrw) .and. (sunaz-raz-90..ILO.)) then
S2=0.

else if ((Y21a.lt.rw) .and. (sunaz-raz-90..gt.0.)) then

S2f=frl

end if

if (S2.1t.O.) S2 = 0.
if (S2.gt.rl) S2 = rl

X22 = (rl-wl+dfl)/tand(abs(subl-90.))-frml
Y22a = (rl-wl)/tand(abs(sub-90.))

Y22b = wlI/tand(abs(sub-90.))

if ((X22.gt.rw) .ard.

118

@ (sunaz.lL-atand(dfl/(fml+eps))-raz-90.)) then

R2 = tand(abs(sunaz-raz-90.))*(X22-rw)

else if ((Y22a.gt.rw) .and. (sunaz-raz-90..t.O.)) then
R2 = tand(abs(sunaz-raz-90.))*(Y22a-rw)

else if ((Y22b.gt.rw) -and. (sunaz-raz-90..gt0.)) then
R2 = rl-tand(abs(sunaz-raz-90.))*(Y22b-rw)

else if ((Y22b.lt.rw) .and. (sunaz-raz-90..gt.0.)) then
R2 = rl

else if ((Y22a.lLrw).and. (sunaz-raz-90..L'O.)) then

R2 =0.

end if

if (R2.1t.0.) R2 =0.

if (R2.gLrl) R2 = rl

if ((sunaz-raz-90.).eq.0.) then

S2 = rl-wl-ww

R2 = rl-wl
end if

W2 = R2-S2

Z21 = (rw+ov)*tand(sunal)

Z22 = rw*tand(sunalt)

if ((Z21.1Lrh) .and.

@ (sunalLgt.atand((rh-wb-wh)/ov))) then

T2 = rh-Z21

else if (Z22.Lwh+wb) then
T2 = wb+wh-Z22

end if

if (T2.1t.0.) T2 = 0.

119

B2 = wb-Z22

if (B2.1t.0.) B2 =0.

H2= T2-B2

C * Determine the beam illuminance on surface #2 due to the window
C in surface #4.

beam2 = beam(sunaltjul)*transmit(razsn,sunaltsunaz,tO)

@ *cosd(abs(sunaz-raz-90.))*cosd(sunalt)*phase ! [lux]

if ((H2.eq.0.).or. (W2.eq.0.)) then

beam2 =0.

end if

C *** Check if beam reaches surface #3 from window in surface #4
if ((sunaz.lL-atand((rl-wl-ww)/rw)+raz+90.) .and.

@ (sunaz.gt.anglel) .and.
@ (sunalt.ltatand((rh-wb)/(ov+eps)))) then

if (sunaz.gt.-atand(dfl/(f'ml+eps))+raz+90.) then
R3 = (rl-wl)/tand(sub+90.)

else

R3 = (rl-wl+dfl-f'ml*tand(raz-sunaz+90.))

/tand(sub+90.)

end if

if (R3.gtrw) R3 = rw

S3 = (rl-wl-ww)/tand(sub+90.)

if (S3.gt.rw) S3 = rw

W3 = R3-S3

X3 = tand(raz-sunaz+90.)*(S3+R3)/2.
3= sqrt 3*X3+((S3+R3)/2.)**2)

if (sunalt'gt'atand((rh-wb'wh)/(ov+eps))) then

Z3 = tand(sunalt)*(ov+eps)

120

T3 = rh-Z3-tand(sunalt)*Y3

else

T3 = wb+wh-tand(sunalt)*Y3

end if

if (T3.Lt.O.) T3 =0.

B3 = wb-tand(sunalt)*Y3

if (B3.1t.0.) B3 = 0.

H3 = T3-B3
C *** Determine the beam illuminance on surface #3 due to the window in
C surface #4.

beam3 = beam(sunaltjul)*transmit(raz sn,sunaltsunaz,tO)

@ *sind(abs(sunaz-raz-90.))*cosd(sunalt)*phase I [lux]

if ((H3.eq.0.) .or. (W3.eq.0.)) then

beam3 =0.
end if

end if

end if

C *** Determine the numbers of the elements that lie in the beam patch
C on surface #1.

if (beaml.ne.0.) then
call elements3(wallbeam,n,r,rh,B 1,H1,W1,rw,S 1)

C *** Calculate the weig ied illuminance of the patch of beam on surface #1
C to correct for differences in the areas of the actual patch and
C the area of the elements that lie in the patch location.

k=0
do i=1,n*n

if(wa-beam(i).eq.C) ten

goto 11

else

k=k+l

121

end if

end do

11 if (k.eq.O) then

pweigh =0.

else

pweigh = (Wl*H1)/(k*rh/n*rw/n)

end if

beam1 = beam l*pweigh

end if

C *** Determine the numbers of the elements that lie in the beam patch

C on surface #2.

if (beam2.ne.0.) then

call elements3(wallbeamn,2,rh,B2,H2,W2,rl,S2)

C *** Calculate the weighed illuminance of the patch of beam on surface #2
C to correct for differences in the areas of the actual patch and
C the area of the elements that lie in the patch location.

k-O

do i--ln*n

if(wallbeam(i).eq.0) then

goto 12

else

k=k+l

end if

end do

12 if (k.eq.0) then

pweigh =0.

else
pweigh- = V2*H2)/(k*rh/n*rl/n)

end if

beam2 = beam2*pweigh

122

end if

C *** Determine the numbers of the elements that lie in the beam patch
C on surface #3.

if (beam3.ne.O.) then

call elements3(wallbeamn,3,rh,B3,H3,W3,rw,S3)

C *** Calculate the weighed illuminance of the patch of beam on surface #3
C to correct for differences in the areas of the actual patch and
C the area of the elements that lie in the patch location.

k=O

do ii1,n*n

if(wallbeam(i).eq.0) then

goto 13

else

k=k+1

end if

end do

13 if (k.eq.0) then

pweigh =0.

else

pweigh = (W3*-3)/(k*rh/n*rw/n)

end if

beam3 = beam3*pweigh

end if

C *** Determine the numbers of the elements that lie in the beam patch
C on surface #4.

if (beam4.ne.0.) then
call elements3(wallbm,n,4,rh,B4,H4,W4,rI,S4)

C ** Calculate the weighed illuminance of the patch of beanm on surface #4
C to c ,rect for differences in the areas of the actual patch and

123

C the area of the elements that lie in the patch location.
k=O

do ifin*n

if(wallbeam(i).eq.O) then

goto 14

else

k=k+l

end if

end do

14 if (k.eq.0) then

pweigh =0.
else

pweigh = (W4*H4)/(k*rh/n*rl/n)

end if

beam4 = beal4*pweigh

end if

C *** Determine the numbers of the elements that lie in the beam patch

C on the floor.

if (beam6.ne.0.) then

call elements3(floorbeam,n,6,rlpatchbpatchhpatchwrwpatchl)

C *** Calculate the weighed illuminance of the patch of beam on the floor
C to correct for differences in the areas of the actual patch and

C the areas of the elements that lie in the patch location.

k=0

doi=1,n*n

if(floorbeam(i).eq.0) then

goto 16

else
k=k+l

end if

end do

124

16 if (k.eq.0) then

pweigh = 0.
else

pweigh = (patchw*patchh)/(k*rw/n*rl/n)

end if

beam6 = beam6*pweigh

end if

return

end

C *** Subroutine CONFIG determines the coordinates for function CFW
C and calculates the configuration factors by using function CFW
C and taking advantage of symmetric configurations

Subroutine config(Fxr,yrzrjda,n,rwrlrh)

real xr(6*n*n), yr(6*n*n), zr(6*n*n), F(lda,6*n*n)

C *** The configuration factors between points and areas on the same
C wall (= surface) are zero.

do k=1,6

do i=(k-41)*n*n+1,k*n*n

do j=(k- 1)*n*n+1,k*n*n

F(ij) =0.

end do

end do

end do

C *** determine the coordinates for function CFW and calculate the
C configuration factors from n*n points on surface #1 to each of
C the n*n surface elements on surface #2, from the points on surface
C #2 to elements on surface #3, from #3 to #4 and from #4 to #1.

C

125

C defime height of elements and room dimension in y-direction
r = rh/h

yy = rh

C *** me = # of emitting surface, which is the surface with the point sources.
C define width of elements and room dimensions in x- and z-direction.

do 10me= 1,4

if ((me.eq.1).or. (me.eq.3)) then

xx=rw

zz = rl

tt rl/n

else
xx--rl

zz=rw

tt = rw/n

end if

C *** calculate x- and z-distance from left lower corner of each element on
C receiving surface to each point source (the n*n point sources are
C assumed to lie in the center of the n*n elements on the emitting
C surface). The arrangement of source to element is according to the
C illustration in: :The Derivation of a New Area-Source Equation' by
C W. Pierpoint and J. Hopkins, journal of the IES, 4/1984.

do i-l,n

xr(i) (i*2.-1.)*xx/(2*n)

zr(i) = (i-1.)*zz/n

end do

i =0
=0jj=o

mm = me
if (me.eq.4) then

mm-=0

end if

C *** do 11:• counter for elements on emitting surface. The elements are

126

C numbered with the smallest number in the upper left comer of the
C wall (as seen from the inside of the room) and have increasing numbers
C by one with respect to the rows. The smallest number of a surface is
C (sn-1)*n*n+1, where sn is the surface number. Below is an example for
C surface #3 andn=f3"

C

C 1191201211

C

C 1221231241

C

C 1251261271

C

do 111= (me- 1)*n*n+ 1 ine*n*n

i =i+1

if (i.eq.(n+l)) then

i=1

end if

C *** do 12: counter for elements on receiving surface

k=O

m = n+1

do 12 j=mm*n*n+ 1,(mm+ 1)*n*n

m = m-1

if (j.eq.(k*n+mm*n*n+ 1)) then

k=k +1

end if

if (l.eq.(jj*n+(me-1)*n*n+ 1)) then

A = jj+1

C ** determine distance from lower left corner of element on receiving

C surface to each point in one row on emitting surface in y-direction.

do kk=1,n

yr~kk) = (2.*kk- 1.)*yy/(2.*n)-(j- 1.)*yy/n

end do

127

end if

if (m.eq.0) then

m=n

end if

C *** calculate the configuration factor

F(lj) = cfw(xr(i),yr(k),zr(m),rrtt,90.)

12 continue

11 continue

10 continue

C *** Configuration factors from surface #1 to surface #2 are the same for
C the respective elements as from surface #1 to surface #4. The same holds
C for sn #2/#3 and #2/#1, sn #3/#4 and #3/#2 and sn #4/#1 and #4/#3.

C
C do 20:counter for # of emitting surface

do 20 me = 1,4

mrl = me

if(mrl.eq.4) then

mrl =0

end if

mr2 = me+2

if(mr2.ge.4) then

mr2= mr2-4

end if

C * do 21 : counter for elements on emitting surface.
C k: counter representing decrement to be deducted from
C the largest (=most right) element #of each row on 'old'
C receiving surface.

C kk : counter representing decrement to be deducted from the
C largest element of each row of emitting surface.

kk=0

mm = 1

128

do 21 j = (me-1)*n*n+1,me*n*n

k-0

m-1

if (kk.eqn) then

kk=0

mm = mm+1

end if

C *** i: counter representing increment to be added to smallest element #

C on 'new'receiving surface

do i-On*n-1

if (k.eq.n) then

k=0

m =m+1

end if

F(mm*n+(me-1)*n*n-kk,mr2*n*n+1+i) = F(j,m*n+mrl*n*n-k)

k =k+1
end do

kk=kk+1

21 continue

20 continue

C *** Calculate configuration factors between surface #1 (surface with point
C sources in the center of each of the n*n elements) and surface #5
C (= ceiling devided in n*n elements). Imagine you stand in the center
C of the room facing surface #1 and look upward: The elemnt with the
C lowest number, which is 4*n*n+1, will be in the upper left comer of
C the ceiling. The numbers increase by one going in the direcion of rows
C parallel to those on surface #1,so the element with the largest number,
C which is 5*n'n, will be in the lower right corner, having a common edge

C with element #n on surface #1.

C define coordinates in x- and z-direction

129

do i=ln

xr(i) = (i*2.-1.)*rh/(2.*n)

end do

do i=-Iln

zr(i) = (i-1.)*rl/n

end do

C *** do 30: counter for elements on surface #1.
C nx indicates, where the appropriate x-dimension in array

C xr(n) is stored.

nx= 1

ml = n
do 301= 1,n*n

C *** The x-dimension changes with each row on surface #1
if (l.eq.nx*n+l) then

nx = nx+1

end if

if (ml.eq.0) then

ml = n
end if

C * nz indicates, where the appropriate z-dimension in array

C zr(n) is stored.

nz = n

nk= 1
mk = n+1

C * counter for elements on surface #5 (= ceiling).
C The z-dimension changes with each row on surface #5.

do kf4*n*n+1,5*n*n

if (k.eq.4*n*n+nk*n+1) then

nz - nz-1

nk =nk+l

end if

130

C *** calculate coordinate in y-direction and configuration factor F(lk)
y5 = (2.*mk-1.)*rw/(2.*n)-ml*rw/n

mk = mk-1

if (mk.eq.1) then

mk = n+1

end if

F(1,k) = cfw(xr(nx),y5,zr(nz),rw/nrl/n,90.)

end do

ml= im-i

30 continue

C *** Determine the configuration factors between the elements

C on surface #2 (point sources) and surface #5 (= ceiling).

C The numbering of the elements is described above.

C do 40 : counter for elements on surface #2. The array xr(n)

C from above does not change. zr(n) has to be defined again.

C nx indicates, where the appropriat x-dimension in array

C xr(n) is stored.

do i=ln

zr(i) = (i-1.)*rw/n

end do

nx= 1

ml = n

do 40 1= n*n+1,2*n*n

C *** The x-dimension changes with each row on surface #2

if (1.eq.nx*n+n*n+1) then

nx = nx+1
end if

if (ml.eq.O) then

131

ml=n

end if

C *** nz indicates, where the appropriate z-dimension in array

C zr(n) is stored.

C i: Counter for rows on surface #5 (= ceiling) with rows parallel

C to rows on surface #2.

mk = n+1

nz = n

do i=O,(n-1)

ii=

C *** counter for elements on surface #5 (= ceiling).
C The z-dimension changes with each row on surface #5.The rows on

C surface #5 are parallel to the rows on surface #2. Calculate
C coordinate in y-direction and configuration factor F(lk).

do k-4*n*n+n-ii,4*n*n+n-ii+(n-1)*n,n

y5 = (2.*mk-1.)*rl/(2.*n)-ml*rI/n

mk=mk-1

if (mk.eq.1) then

mk = n+i

end if

F(1,k) = cfw(xr(nx),y5,zr(nz),rI/nrw/n,90.)

end do

nz = nz-1

end do

ml = ml-1
40 continue

C *** Determine configuration factors between points on surface #5 and

C elements on surface #1.
C Calculate x- and z-distance from left lower corner of each elemen. n

132

C surface #1 to each point source on surface #5.
do i=ln

xr(i) = (i*2.-1.)*rl/(2*n)

zr(i) = (i-1.)*rh/n

end do

i =0
m=0

C *** do 50: counter for elements on emitting surface.

do 50 1 = 4*n*n+1,5*n*n

i=i+1

if (i.eq.(n+l)) then
i=l1

m -- rn-I1

end if

C * deternine distance from lower left comer of element on receiving
C surface to each point in one row on emitting surface in y-direction.

do kk=1,n

yr(kk) = (2.*kk-1.)*rw/(2.*n)-(i-1.)*rw/n

end do

C *** do 51 : Counter for elements on receiving surface
k =0

mm.= 0

do5lj= 1,n*n

mm = mm+1

if (j.eq.(k*n+1)) then

k = k+1

mm=1

end if

F(ldj) = cfw(xr(n-m),yr(mm),zr k),rw/n,rh/n,90.)

51 continue

133

50 continue

C *** Determine configuration factors between points on surface #5 and
C elements on surface #2.
C Calculate x- and z-distance from left lower comer of each element on

C surface #2 to each point source on surface #5. Array zr(i) is the same

C as above.

doiffiln

xr(i) f (i*2.-1.)*rw/(2*n)

end do

i=0

m =1

C *** do 60: counter for elements on emitting surface.

do 60 1 = 4*n*n+1,5*n*n

if=fi+1

if (i.eq.(n+l)) then

i=1

m =m+l

end if

C *** determine distance from lower left comer of element on receiving

C surface to each point in one row on emitting surface in y-direction.

do kk=1,n

yr(kk) = (2.*kk-1.)*r!/(2.*n)-(m-1.)*rl/n

end do

C *** do 61: Counter for elements on receiving surface

k =0

mm-= 0
do 61 j f*in+1,2*n*n

mm = mm+ 1
if (jeq(k*nen*n+ 1)) then

k =k+1

mm-= 1

134

end if

F(lj) = cfw(xr(i),yr(mm),zr(k),r/n,rh/n,90.)

61 continue

60 continue

C *** Symmetry: The configuration factors between surface #1 and #5
C are the same for the respective elements as between surface #3
C and #5 (= ceiling). The same holds for the factors between
C surfaces #5/#1 and #5/#3. The factors between surface #1 and #5
C are not necessarily the same as between #5 and #1!

C m : Counter for rows of elements on surface #3
C k • Counter for elements on surface #3
C kk" Counter for elements on surface #5 as viewed from surface #3
C i : Counter for elements on surface #1
C ii" Counter for elements on surface #5 as viewed from surface #1

i=0

do 70 m = 1,n

1=0

do 71 k = 2*n*n+m*n-1, 2*n*n+(m-1)*n+1, -l

i =i+l

1 =1+1

ii = 4*n*n

do mm=(n-l),0, -1

do kk = 4*n*n+mm*n+1,4*n*n+mm*n+n

i=ii+l

F(kkk) = F(i,ii)

F(lkkk) = F(ii,i)

end do

end do
71 continue
70 continue

135

C *** Symmetry: The configuration factors between surface #2 and #5
C are the same for the respective elements as between surface #4
C and #5 (= ceiling). The same holds for the factors between
C surfaces #5/#2 and #5/#4. The factors between surface #2 and #5
C are not necessarily the same as between #5and #2!

C m : Counter for rows of elements on surface #4
C k : Counter for elements on surface #4
C kk: Counter for elements on surface #5 as viewed from surface #4
C i : Counter for elements on surface #2
C ii: Counter for elements on surface #5 as viewed from surface #2

i= n*n

do 80m= 1,n

I=0

do 81 k = 3*n*n+m*n-, 3*n*n+(m-l)*n+1, -1
i =i+1

1 =1+1

H = 4*n*n

domm= 1,n

do kk = 4*n*n+mm*n,4*n*n+(mm-1)*n+l,-1

ii=ii+1

F(kkk) = F(i,ii)

F(kck) = F(iii)

end do

end do
81 continue

80 continue

C *** Symmetry : The configuration factors between surface #1(#2,#3,#4) and
C #5 are the same for the respective elements as between surface
C #1(#2,#3,#4) And #6 (= floor). The same holds for the factors between

C #5/#1 (#2,#3,#4) and #6/#1 (#2,#3,#4) but they are not necessarily the same

C as those abeve. The elements on surface #6 are defined by adding n*n to

C the element number that is located directly on the opposite side on

136

C surface #5 (= ceiling).

C 1: loop for surface #1 (0), #2 (1),#3 (2),and #4 (3)
C i • Counter for elements on surface #1 (#2)

C ii: Counter for respective elements on surface #1(#2)
C j • Counter for elements on surface #5
C jA- Counter for elements on surface #6

C k • Counter for rows on surface #1(#2)

do 901= 0,3

m = n-1

do91 k= 1,n

do i = (k-1)*n+l*n*n+1,k*n+l*n*n

ii = i.+m*n

do j = 4*n*n+1,5*n*n

jj = j+n*n

F(iijj) = F(ij)

F(ij,ii) = Fj,i)

end do

end do

m = m-2

91 continue

90 continue

C *** Determine configuration factors between surfaces #1/#3 and #2/#4, where

C the point sources are on #1and #2 and the elements on #3 and#4.All

C previously calculated factors involved surfaces at an angle of 90
C degrees. The following surface pairs form an angle of 0 degrees: They
C are parallel. Since the surfaces that are opposite of each other have

C tLe same dimensions, their elements have the same areas and it can be

C concluded that the configuration factors from points i to elements j are

C identical to those from points j to elements i.

C do I' :, Indicator for surface pairs #l1/#3 and #2/#4

137

C do101:•Counter for surface #1and #2
C do102:Counter for surface #3 and #4

do 1001ii1= 0,1

if (ii.eq.O) then

zd=ri
yy-rw

else

zd-rw
yy-rl

end if

m=0

k =1

km =0

do 101 i = ii*n*n+1,(ii+1)*n*n

km = km+l

if (km.eqk*n+l) then

k=k+1
end if

do lf=1,n

xr(l) = (2.*'-1.)*rh/(2.*n)-(k-1.)*rh/n

end do

m = m+I
if (m.eq.n+1) then

m=1

end if

dol1=1,n

yr(l) = (2.*1-1.)*yy/(2.*n)-(m-1.)*yy/n
end do

kk= n+l

mm = 1

138

11=0

do 102 j = (ii+2)*n*n+1,(ii+3)*n*n

kk=kk-1

if (kk.eq.0) then

kk= n

end if

11=11+1

if (1.eq.mm*n+l) then

mm =mm+l

end if

F(ij) = cfw(xr(mm),yr(kk),zd,yy/nrh/n,0.)

F(j,i) = F(ij)

102 continue

101 continue

100 continue

C *** The same as above holds for surfaces #5 and #6.
C do 110: Counter for points on surface #5
C do 111: Counter for elements on surface #6

m-0

k=1
km =0
do 110 i = 4*n*n+1,5*n*n

km =km+i

if (km.eq.k*n+1) then

kfk+1

end if

do l= 1,nl

xr(l) = (2.'I- 1.)*rl/(2.*n)-(k-1.)*rl/n

end do

m = m+i

139

if (m.eq.n+ 1) then

m=l

end if

do 1=1,n

yr(1) = (2.*1-1.)*rw/(2.*n),(m-1.)*rw/n

end do

kkf=in+l

mm= 1
11=0

do 111 j = 5*n*n+ 1,6*n*n

kk=kk-1

if (kk.eq.0) then

kkf=fn

end if

11=11+1
if (l.eq.mm*n+1) then

mm = mm+l

end if

F(ij) = cfw(xr(mm),yr(kk),rhrw/nrl/n,O.)

F(ji) = F(ij)

111 continue

110 continue

return

end

C *** Subroutine ELEMENTS 1 determines the elements the room surfaces have been

C devided into that lie in a window area

Subroutine elements1 (winelemn,sn,nnwrh,wb,wh,ww,wwl,wl)

140

integer winelem(5,n*n), sn

if (n.eq.1) then

winelem(nnw,1) = sn

goto 11
end if

wfrw = wwl/n

hfrac = rh/n

iposl = nint(wl/wfrac)

do i = 1,n

if (iposl.eq.i*n) then

iposi = iposl-1

end if

end do

ipos2 = nint((rh-wb-wh)/hfr)

doi= 1,n
if (ipos2.eq.(n-1)*n+i) then

ipos2 = ipos2-1

end if

end do

ipos3 = nint((wl+ww)/wfrac)-I

doi= 1,n

if (ipos3.eq.i*n) then

ipos3 = ipos3-1

end if

end do

ipos4 = nint((rh-wb)/hfrac)-1

doi= 1,n
if (ipos4.eq.(n-1)*nAi) then

ipos4 = ipos4-1

end if

141

end do

m=O

do j = ipos2,ipos4

do k = iposl,ipos3

m = m+1

winelem(nnw,m) = (sn-1)*n*n+j*n+k+1

end do

end do

11 return

end

C *** Subroutine ELEMENTS2 determines the numbers of the elements that
C lie above the workplane including the ceiling elements.

Subroutine elements2(surfelem,n,rh,wkpln)

integer surfelem(5*n*n), plnfrac

hfrac = rh/n

plnfrac = nint(wkplnfhfrc)

C *** Elements on surface #1 to #4:

m=O

dok= 1,4

do i = O,n-plnfrac-I

doj= t,n

mfm+l
surfelem(m) = (k- 1)*n*n+i*n+j

end do

end do

end do

142

C *** Ceiling elements (surface #5):

do i = 4*n*n+l,5*n*n

m =m+I

surfelem(m) = i

end do

return

end

C *** Subroutine ELEMENTS3 determines the elements the room surfaces have been
C devided into that lie in a beam patch area

Subroutine elements3(beamelem,nsnrh,wb,wh,ww,wwl,wl)

integer beamelem(3*n*n), sn

if (n.eq.1) then

beamelem(1) = sn

goto 11

end if

wfrac = wwl/n

hfrac = rh/

iposl = int(wl/wfrac)+l

if (iposl.gt.n) ipos1 = n

iw = int(ww/wfrac)

if (iw.gt.n) iw = n

isuml = iposl+iw
if (isuml.gt.n) isuml = n

ipos2 = int((rh-wb-wh)/hfrac)

143

if (ipos2.ge.n-l) ipos2 = n- I

ih = nint(wh/flrac)

if (ih.gt.n-1) ih = n-1

isum2 = ipos2+ih

if (isum2.gt.n-1) isum2 = n-I

mf=0

do i = ipos2,isum2

doj = ipos 1,isum1

m =m+l

beamelem(m) = (sn-1)*n*n+i*n+j

end do

end do

if (beamelem(1).eq.0) then

write(*,*) 'no elements for the beam patch can be assigned!'

write(*,*) '-> Calculate with more elements n.'

end if

11 return

end

C *** Subroutine REFLEC determines the reflectivity matrix R by assiging
C the appropriate reflectances to the configuration factors.

Subroutine reflec(RF,winelem,ldan,nwreflgreflw,reflcrefl)

real R~lda,6*n*n),F(lda,6*n*n)

integer winelem(5,n*n)

do 10 i = 1,6*n*n

144

do 20 j = 1,6*n*n

if (i.eq.j) then

dok= lnw

do kkf= 1,1da/6

if (j.eq.winelem(kjkk)) then

R(ij) = 1.-reflg*F(ij)

goto 20

end if

end do

end do

if(jle.4*n*n) then

R(ij) = 1.-reflw*F(ij)

goto 20
else ff((j.gtA*n*n).and. (j.le.5*n*n)) then

R(ij) = 1.-reflc*F(ij)

goto 20

else if(j.gt.5*n*n) then

R(ij) = l.-reflPfF(ij)

goto 20

end if

else

dok= 1,nw

do kk= 1,lda/6

if (j.eq.winelem(k,kk)) then

R~id) = -reflg*F(idj)

goto 20

145

end if

end do

end do

if(j.le.4*n*n) then

R(ij) = -reflw*F(ij)

goto 20

else if((j.gt.4*n*n).and. (.le.5*n*n)) then

R(ij) = -reflc*F(ij)

goto 20

else if(j.gt.5*n*n) then

R(ij) = -reflf*F(ij)

goto 20

end if

end if

20 continue

10 continue

return

end

C *** CONSENS determines the configuration factors between those
C elements that lie above the workplane and the sensor. The
C conf. factor is stored in FS(i), where i is the number of
C the surface element above the workplane it refers to, in other
C words, the conf. factor from a surface element to the sensor
C is stored in location FS(surfelem. #).

Subroutine consens(FS ,surfelem,n,sw,sl~rh,rw,rl,wkpln)

real FS(5*n*n)

integer surfelem(5*n*n)

146

hfrac = rh/n

k =
11=0

do 10 i= 1,5*n*n

if (surfelem(k).eq.i) then

if (I1.eq.n) 11=0

ns = int(real(i-.5)/(n*n))+l

if (ns.eq.1) then

T =rwfn

tt =rh/n

xx =sl

yy = rw-sw-ll*rr

else ff (ns.eq.2) then

rr =rl/n

tt =rh/n

xx = rw-sw

yy = rl-sl-1*rr

else if (ns.eq.3) then

rr =rw/n

tt =rh/n

xx = rl-sl

yy = sw-ll*rr

else if (ns.eq.4) then

rr = rl/n

tt =rh/n

XX =SW

yy = sl-ll*rr
else if (ns.eq.5) then

if =-rw/n

tt -=rln

yy = sw-rw+(ll+l)*rr

zz - rh-wkpln

end if

147

do 20 j = n,n*n~n
if (i.le.(ns-1)*n*n+j) then

if (ns.le.4) then

zz = rh-wkpln-real(j/n)*hfrac

else

xx = r-sl-(real(j/n)-l.)*rJ/n

if (xx.le.O.) then

xx = sl-(n-real(j/n))*rl/n

yy = rw-sw-ll*rr

end if

FS(i) = cfw(xx,yyzz,rr,tt,0.)

goto 11
end if

if (j/n.eq.n-nint(wkpln/(rh/n))) then

zz =0.
frac = (wkplhfrac)-int(wkpln/hfrac)

if (frac.ILO.5) then

tt = hfrac-frac*hfrac

else

tt = hfrac+(1.-frac)*hfrac

end if

end if

goto 12

end if
20 continue

12 FS(i) = cfw(xx,yy,zz,rr,tt,90.)

11 11 =11+1

k =k+l

148

end if

10 continue

return

end

C *** Subroutine LIGHT determines the illuminance at the sensor including
C the interreflected component.

Subroutine light(F,FS,winelem,surfelemfloorbeam,wallbeam,lda,n,

@ lumwinreflgreflwreflfreflc,beaml,beam2,bearn3,

@ beam4,beam6,daylightreflectplight,

@ dlightnw,nnw)

real F(lda,6*n*n), FS(5*n*n), lumwin
integer winelem(5,n*n), surfelem(5*n*n), floorbeam(3*n*n)
integer wallbeam(3*n*n)

pi = 4.*atan(1.)

reflect = 0.

plight = 0.
dlight = 0.

daylight = 0.

dayll = 0.
daylsl = 0.

dayls2 = 0.

dayls3 = 0.
dayls4 = 0.
dayls6 = 0.

do 10 1 = 1,5*n*n

if (int(real(l-.5)/(n*n))+ 1.1t.5) then

rho = refiw

else

149

rho = reflc

end if

do kk= 1,nw
do 11f=,n*n

if (winelem(kkU).eq.surfelem(1)) then

rho = reflg

end if

end do

end do

Fsuml =0.

Fsum2 = 0.

Fsum3l = 0.

Fsum32 = 0.
Fsum33 = 0.

Fsum34 = 0.

do 20 j = 1,n*n

if ((winelem(nnwj).eq.0) .and.

(floorbeam(j).eq.0) .and.

(wallbeamo).eq.0)) then

goto 11
end if

if (winelem(nnwj).ne.0) then

Fsuml = Fsuml+F(surfelem(1),winelem(nnwj))

end if

if (floorbeam(j).ne.0) then

Fsum2 = Fsum2+F(surfelem(1),floorbeam(j))

end if

if (wallbeam(j).ne.0) then

if (wallbeam(j).le.n*n) then

150

Fsum31 f= Fsum3l+F(surfelem(l),wallbeam(j))

else if (int((wallbeamo)-0.5)/(n*n))+1.eq.2) then

Fsum32 = Fsum32+F(surfelem(l),wallbeam(j))

else if (int((wallbeam(j)-O.5)/(n*n))+l.eq.3) then

Fsum33 = Fsum33+F(surfelem(l),wallbeam(j))

else if (wallbeam(j).gt.3*n*n) then

Fsum34 - Fsum34+F(surfelem(1),wallbeam(j))

end if

end if

20 continue

C *** reflected components due to the window and beam patches on surfaces

C #6,#1,#2;#3,#4

11 dayll = dayll+rho*Fsuml*FS(surfelem(1))*pi*lumwin

dayls6 = dayls6+rho*Fsum2*FS(surfelem(l))*reflf*beam6

dayls1 = daylsl+rho*Fsum3 l*FS(surfelem(l))*reflw*beam1

dayls2 = dayls2+rho*Fsum32*FS(surfelem(l))*reflw*beam2

dayls3 = dayls3+rho*Fsum33*FS(surfelem(l))*reflw*beam3

dayls4 = dayls4+rho*Fsum34*FS(surfelem(l))*reflw*beam4

daylight = daylight+rho*Fsuml*FS(surfelem(l))*pi*lumwin

@ +rho*Fsum2*FS(surfelem(l))*reflf*beam6

@ +rho*Fsum3 1*FS(surfelem(l))*reflw*beanl

@ +rho*Fsum32*FS(surfelem(l))*reflw*beam2

@ +rho*Fsum33*FS(surfelem(l))*reflw*beam3

@ +rho*Fsum34*FS(surfelem(l))*reflw*beam4

10 contiue

C *** light at sensor position due to interreflection from all sources

reflect = daylight

C*** Add direct diffuse component from windows and beam patches

C to interreflected light

dirwin-" .t

151

dirbeam1 =0.

dirbeam2 = 0.

dirbeam3 =0.
dirbeaM4 =0.

do i = 1,3*n*n

if (i.gt.n*n) goto 13

if (winelem(nnw,i).ne.0) then

dirwin = dirwin + FS(winelem(nnw,i))

end if

13 if (wabeam(i).ne.0) then

if (wallbeam(i).ie.n*n) then
dirbeaml = dirbeaml + FS(wallbeam(i))

else if (int((wallm(i)-0.5)/(n*n))+1.eq.2) then

dirbeam2 = dirbeam2 + FS(wallbeam(i))
else if (int((wallbeam(i)-0.5)/(n*n))+1.eq.3) then

dirbeam3 = dirbeam3 + FS(walbeam(i))

else if (wallbeam(i).gt.3*n*n) then
dirbeam4 = dirbeam4 + FS(wallbeam(i))

end if

end if

end do

dlight = dirwin*pi*lumwin + dirbeaml*beaml*reflw

@ + dirbeam2*beam2*reflw

@ + dirbeam3*beam3*reflw
+ dirbeam4*beam4*reflw

daylight -- daylight+dlight

C *** reflected plus direct light due to beam patches.
plight =- dayls l+dayls2+dayls3+dayls4+dayls6+dirbearl'beam l*reflw

152

@ +dirbeam2*beam2*reflw

@ +dirbeam3*beam3*reflw
@ +dirbean4*beam4*reflw

return

end

C *** Function CFW calculates the Configuration Factor for vertical Windows
C according to Pierpoint and Hopkins.

C note: phi in degrees!

Function cfw(x,y,z,r,t,phi)

pi = 4.*atan(1.)

g = z*sind(phi)-x*cosd(phi)

h = z*cosd(phi)+x*sind(phi)

a = x*x+y*y+z*z-y*r

b = a+t*t+2.*t*g
c = y*y+h*h+g*g+t*g

d (y-r)*(y-r)+h*h+g*g+t*g

C Devide check

if (a.eq.O) then

a= 1.e-10
end if

if (b.eq.0) then

b= 1.e-10

end if

if (c.eq.0) then
c- 1.e-1O

end if

if (d.eq.O) then

d=- 1.e-10

153

end if

argl = r*sqrt(x*x+z*z)/a

arg2 = r*sqrt(x*x+z*z+t*t+2.*t*g)/b

arg3 = t*sqrt(y*y+h*h)/c

arg4 = t*sqrt((y-r)*(y-r)+h*h)/d

targl = atan(argl)

targ2 = atan(arg2)

targ3 = atan(arg3)

targ4 = atan(arg4)

if (argl.ltO) then

targl = targl + pi

end if

if (arg2.Lt.O) then

targ2 = targ2 + pi

end if

if (arg3.lt.O) then

targ3 = targ3 + pi

end if

if (arg4.lt.O) then

targ4 = targ4 + pi

end if

cfw = x/sqrt(x*x+z*z)*targl+(t*cosd(phi)-x)/sqrt(x*x+z*z+t*t+

@ 2.*t*g)*targ2+y*cosd(phi)/sqrt(y*y+h*h)*targ3-

@ (y-r)*cosd(phi)/sqrt((y-r)*(y-r)+h*h)*targ4
cfw = 0.5/pi*cfw

return
end

C *** REFLIGHT calculates the ground reflected light on the window plane

C taking into acount the window transmittance.

subroutine reflight(diffuse,totalreflgr,tOoutrefl)

pi = 4.*atan(1.)

groundr = .5/pi*reflgr*(93.+18.*diffuse total)*total*tO

outrefl = groundr

! [lm]

return

end

C *** WINLUM calculates the luminance of the window plane as seen by a point
C in the center of the window and averaged over 25 evenly distributed

C points.

subroutine winlum(sn,fiml,dfl,finr,dfrww,ovrhwh,wb,lumwin,tO,

@ sunaz,sunaltdiffuse,totalbetaomega,phase)

real azangle(5), altangle(5), skylum(25), lumwin

integer sn, beta

pi = 4.*atan(1)

if (ov.eq.0.) then

eps = i.e-05
else

eps =0.
end if

do i= 1,5

altangle(i) = atand((rh-wb-wh/2.)/(ov+eps))/5. * real(i)

end do

azangle(1) = atand(finl/(dfl+ww/2.)) -90.

azangle(5) = 90.- atand(finr/(dfr+ww/2.))

154

155

azfrac = (azangle(5)-azangle(1))/4.

azangle(2) = azangle(1) + azfrac
azangle(3) = azangle(1) + 2.*azfrac

azangle(4) = azangle(1) + 3.*azfrac

if (sn.eq.1) then

doi= 1,5

azangle(i) = azangle(i) + raz

end do

else if (sn.eq.2) then

doi= 1,5

azangle(i) = azangle(i) +raz - 90.
end do

else if (sn.eq.3) then

doi= 1,5

azangle(i) = azangle(i) + raz - 180.

end do

else if(sn.eq.4) then

doi= 1,5
azangle(i) = azangle(i) + raz + 90.

end do

end if

doi= 1,5
if(azangle(i).lt.-180.) then

azangle(i) = 360.+azangle(i)

end if

156

if(azangle(i).gt. 180.) then

azangle(i) = azangle(i)-360.

end if

end do

k=0

do i= 1,5

doj= 1,5

kfk+1

call sky(azangle(i),altangle(j),sunaz,sunaltdiffuse,

@ totalbeta,omegaphaseskylum(k))
end do

end do

lumwin 0.

do i = 1,25

lumwin = lumwin + skylum(i)

end do

lumwin = lumwin/25. * tO ! [Im]

return

end

C *** SKY calculates the luminance of the patch of sky seen by the window.
C pirameters :
C diffuse = Diffuse horizontal soar radiation (W/(m*m))
C total = Total hoprizontal solar radiation (W/)m*m))

C paz = Azimuth angle of point in sky
C palt = Altitude angle of point in sky
C sunaz = Solar azimuth angle

C sunalt = Solar altitude angle
C beta = Climatic region (1lrurl,2furban,3=industrial)

C omega = Water vapor content of atmosphere in cm of water
C cr = Cloud ratio (diff. horiz. radiation/total hor. rad.)

C phase = Clear sky fraction

157

C jul =Julian date

Subroutine sky(paz,palt,sunazsunalt,diffuse,total,beta,omega,

@ phase,skylum)

real lpclear,lpover

integer beta

pi = 4.*atan(1.)

C *** Phasing technique according to Gary Gillette (NBS) to find
C intermediate state between clear and overcast sky conditions

cr = diffuse/total

phase = (1.+cos(cr*pi))/2.

skylum = (lpclear(pazpalt,sunaz,sunaltbetaomega)*phase

@ +Ilpover(diffusepalt)*(1.-phase)) ! [cd/(m*m)]

return

end

C *** LPOVER calculates of the overcast sky luminance distribution

C with an assumed diffuse horizontal luminous efficacy of 115 lm/W

Function lpover(diffusepalt)

real ipover

pi = 4.*atan(1.)

ipover = 3/7./pi* 1 15.*diffuse*(1.+2.*sind(palt)) ! [cd/(m*m)]

return

end

158

C *** LPCLEAR calculates of the clear sky luminance at a specific point

C in the sky according to KITrLER.

C Parameters:

C paz = Azimuth angle of sky element
C palt = Angle between sky element and horizontal

C sunalt = Solar altitude angle

C sunaz = Solar azimuth angle
C lzclear = Zenith clear sky luminance

C lpclear = Clear sky luminance at specified point
C coef(3,3,6) = Array containing coefficients for Kittler zenith

C clear sky luminance formula

C psi = great circle angle between specified point and sun
C beta = climactic region (1--rural,-urban,3=industrial)
C omega = water vapor content of atmosphere in cm of water

C thetaz = solar zenith angle

Function lpclear(paz,palt,sunaz,sunalt,beta,omega)

real coef(3,3,6),lzclear,lpclear

integer beta

pi = 4.*atan(1.)

data (coef(1,1,i),i-1,6) /936.104 909.278,872.698,854.731,846.000,

@ 840.993/
data (coef(1,2,i),i=1,6) /2.015,1.792,1.433,1.239,1.146,1.103/

data (coef(1,3,i),i=l,6) /-0.0002,-0.0001,4*0./
data (coef(2,1,i),i-1,6) /1032.875,1020.647,1007.411,1001.928,

@ 999.066,998.493/
data (coef(2,2,i),i=1,6) /2.418,2.215,1.894,1.718,1.631,1.575/
data (coef(2,3,i),i=1,6)/2*-0.0002,4*-0.0001/

data (coef(3,1,i),i=1,6) /1139.868,1149.857,1169.805,1183.266,

@ 1189.851,1196.765/
data (coef(3,2,i),i=1,6)/3.049,2.831,2.506,2.319,2.220,2.141/

data (coef(3,3,i),i=l,6) /2"-0.0003,4"-0.0002/

if (beta.eq.1) then

159

else if (beta.eq.2) then

i=2

else if (beta.eq.3) then
i=3

else

write(*,*) * Error: Input for climate has to be'

write(*,*)' 1 (rural), 2 (urban) or 3 (industrial)!'

stop

end if

if (omega.eq.0.5) then

j=l

else if (omega.eq.1.0) then

jf2

else if (omega.eq.2.0) then

j=3

else if (omega.eq.3.O) then

j=4

else if (omega.eq.4.0) then

j=5

else if (omega.eq.5.0) then

else

write(*,*) " *** Error : The water vapor content input (omega)'
write(*,*)' has to be 0.5, 1.0, 2.0, 3.0, 4.0 or'

write(*,*)' 5.0!t'

stop

160

end if

a = coef(i,1j)

b = coef(i,2j)

c = coef(i,3j)

lzclear = a+b*sunalt*sunalt+c*sunalt*sunalt*sunalt ! [cd/(m*m)]

C *** solar zenith angle

thetaz = 90.-sunalt

C *** great circle angle between sky element and sun (scattering angle),

psi = cosd(palt)*sind(thetaz)*cosd(abs(paz-sunaz))

@ +sind(palt)*cosd(thetaz)
psi = acos(psi)

C *** luminance at point p

lpclear = lzclear*(1.-exp(-.32/sind(palt)))*(.91+10.

@ *exp(-3.*psi)+.45*cos(psi)*cos(psi))
@ /(.274*(.91+10.*exp(-3.*(pi/2.-sunalt*pi/180.))

@ +.45*sind(surzalt)*sind(sunalt)))

return

end

C *** TRANSMIT calculates of the angular dependent transmittance
C of a vertical window for the direct beam component.

C Nomenclature:

C surfaz = Azimuth angle of considered room surface
C sunalt = Solar altitude angle

C sunaz = Solar azimuth angle

C raz = building azimuth angle

C inc = incidence angle
C tO =Visible transmittance value (from manufacturer)

161

Function transmit(raz,snsunaltsunaz,tO)

real inc

integer sn

C *** Determine azimuth angle of room surface

if (sn.eq.1) then

surfaz = raz

else if (sn.eq.2) then

surfaz = raz-90.

else if(sn.eq.3) then

surfaz = raz-180.

else if (sn.eq.4) then

surfaz = raz+90.

end if

if (surfaz.lt.(-180.)) then

surfaz = 360.+surfaz

end if

if (surfaz.gt.180) then

surfaz = surfaz-360.

end if

C *** Calculate incidence angle (angle between sun and normal of
C window plane)

inc = acosd(sind(90.-sunalt)*cosd(sunaz-surfaz))

C * Angular dependent transmittance
transmit = 1.018 * tO * cosd(inc) * (1.+sind(inc)**3)

return

end

162

C *** BEAM calculates the direct beam illuminance using an atmospheric

C extinction coefficient of 0.21

Function beam(sunaltjul)

real jul

beam = 127500.*(1.+0.033*cosd(360.*j/365.))

@ *exp(-0.2l/sind(sunalt))

return

end

163

BIBLIOGRAPHY

Beckman, W.A., "Solution of Heat Transfer Problems on a Digital Computer,"

Solar Energy, Pergamon Press, vol. 13, pp. 293-300, 1971.

Dogniaux, R., "Representation Analytiques des Composantes du Rayonnement

Lumineux Solaire," Publication Srie A, Institut Royal M6teorologique de

Belgique, No. 83, 1974.

Dongarra, J.J., Moler, C.B., Bunch, J.R., and Stewart, G.W., LINPACK,

Philadelphia, Siam, 1979.

Duffle, J.A., and Beckman, W.A., Solar Engineering of Thermal Processes, New

York, Wiley-Interscience, 1980.

Gillette, G., "A Daylighting Model for Building Energy Simulation," NBS

Building Science Series 152, 1983.

Hamilton, D.C., and Morgan, W.R., "Radiant-Interchange Configuration Factors,"

Technical Note 2836, National Advisory Committee for Aeronautics, 1984.

Karayel, M., Navvab, M., Ne'eman, E., and Selkowitz, S., "Zenith Luminance and

Sky Luminance Distribution for Daylighting Calculations," University

of California - Berkeley, Lawrence Berkeley Laboratory, LBL-15622, 1983.

Kaufman, J.E., ed., IES Lighting Handbook, Illuminating Engineering Society of

North America, Baltimore, Waverly Press, 1981.

Klein, S., Class Handouts from "Heat Transfer", Mechanical Engineering 364,

University of Wisconsin - Madison.

164

Littlefair, P.J., "The Luminous Efficacy of Daylight: A Review," Lighting

Research and Technology, vol. 17, No. 4, 1985.

Narasimhan, V., Saxena, B.K., and Maitreya, V.K., "The Internal Reflected

Component of Daylight," Indian Journal of Pure Applied Physics, vol. 6,

February 1968.

Pierpoint, W., and Hopkins, J., "The Derivation of a New Area-Source Equation,"

Journal of IES, April 1984.

Solar Energy Laboratory, "A Transient Simulation Program," University of

Wisconsin - Madison, 1983.

