CHAPTER 1

Introduction

There are many components of building design, and with the supply of non-
renewable eénergy resources decreasing, the manner and amount of a building's
energy consumption is an increasingly important and cost-significant aspect of the
design. Actoal testing of building energy systems is not often practical due to the
dependence of system performance upon solar radiation, ambient temperature,
humidity, and windspeed. These weather variables are neither completely random
nor deterministic; they can best be described as irregular functions of time, both vn
small (e.g., hourly ar daily) and large (¢.g., seasonally or yearly) ime scales. Iris
this irregular behavior of the weather which complicates the analyses of energy
systems and makes experimental determinations of system performance time
consuming, expensive. and inconclusive with regard 1o the manner in which they
would have perfarmed under other climatic condidons. An experiment run for one
year will yield only the performance for that particular vear; it will not give a good
indication of the average performance over the life of the system. Two alternative
techniques o experimentation are the use of correlation methads and computer

simulations.

Carrelation methods, such as £-Chart [Klein et al, 1976], permit the designer to
quickly obtain an estimate of system performance from several design parameters

and the appropriate correlation. For several standard system configurations,



simulation results obtained while varying several design parameters are expressed as
functions of these design parameters. From these correlations, only the final
performance estimate (for f-Chart, the fraction of the load met by solar) is obtained;
nothing is learned about the system dynamics. Correladon methods are limited in
that they are applicable only for the system configurations and range of parameters
for which they were developed.

Simulatdons are more versatile; the designer is able o model many different
systems and configurations without the expense and time required for
experimentation. The simulations, like actual testing, are dependent upon weather
inputs, therefore the same problem of one year of weather data not providing
meaningful results still exists. On the other hand, since simularions are not run in
real time, they can be run for a sufficientdy long time (e.g. twenty years) ta obtain an
average performance estimate, assuming long-term weather data exists for the
desired location, Twenty ycars of hourly weather measurements is a lot of data,
requiring large amounts of storage. More significantly, such detailed weather
records do not exist for many locations; in the U.S., they are available for
approximately 26 sites. Such large amounts of data are often awkward to work
with; simulations run for that length are dme consuming {on small computers) and

expensive (on large computers).

Design years, which consist of one year (or some other amount) of data which
will supposedly yield a sufficiently accurate estimate of the average long-term
performance, are commonly used. They allow designers to consider more options
and alternatives by speeding up the simulation process. An example these design

vears are the "Typical Meteorological Years" (TMY), developed for 26 U.S,



locations [Hall et al, 1978]. They consist of 12 tvpical months, where the months
were chosen from 23 vears of recorded data to be representative of the long-term.
The cumulative distributions, means, medians, and persistence structure of thirteen
variables were compared. Since it is virmally impossible to find one month out of
the 23 in which all variables display characteristics identical 1o long-term, a
weighting system was devised and the best possible month was chosen. While the
use of TMY data is an improvement over using just one year of actual data, ir still
cannot accurarely represent the statistics of the long-term. It is, in effect, a
compromise between using a reduced set of weather data and accurately portraying
the statistics represented in long-term data, Other examples of design vears are the
"Test Reference Years" (TRY) [National Climatic Center,1976] and those developed
by [Arens, 1980].

These design years do not salve the problem of providing data for other
locations; their development requires the existence of long records of data for the
location. The need to provide data elsewhere has resulied in the concept of weather
data generation. There are nwo major areas of peneration; extrapolation and
synthesis. Extrapolation invalves using the data at one or more similar or
neighboring locations to infer the weather data ar a location for which dam are not
available. Extrapolation of existing data requires great care, as large errors may

result [Suckling,1985]. Even so, il is still necessary to have data to extrapolate

from:.

Synthesis of hourly weather data involves taking monthly-average inputs and

combining them with documented long term statistical patterns of weather (and

Lid



correlatdons) to "make up" or synthesize weather data. Surprisingly, when observed
over a long enough period of time, weather data can often be shown to behave in a
location independent manner, This concept is what allows synthesizers to work;
however, the accuracy of the data produced from such a synthesizer is limited by the
ability of the location independent correlation w reproduce the long-term weather
statistics at a particular site. Generated data will nol reproduce location specific
tendencies, such as morning fog, as these will be erased by the location independent
correlations used, Numerous authors have developed models for the generation of
radiation sequences (both daily and/or hourly), for example [Amato,1986;
Brinkworth,1977; Hittle and Pedersen,1981; Graham,1985]. Degelman [1976]
develaped a weather generator which requires only limited monthly-average values
as input and outputs hourly radiation (both total and direct normal), dry bulb and
dewpoint temperatures, relative humidity, and windspeed all with a statistical

behavior similar to that observed in long-term weather data records.

There are two basic approaches to the development of a weather data
synthesizer. The first, a "Type I" or "realistic” generartor, is ta combine the existing
information concerning distributions, autoconelations, and ¢rosscorrelations of the
meteorological variables into a formar which is driven by a random number
generator and produces, over the long-term, weather statistics which are
indistinguishable from those of recorded data. Techniques commonly used involve
modeling of the deterministic trends with Fourier series or other means followed by
use of time series analyses for the stochastic component, Most of the generation
mdels for the different weather variables developed so far have been autoregressive
models of order 1 or 2 (AR1 or AR2). These generators do not in any way predict

the weather; they only provide a statistically possible weallier sequence.



The disadvantage of these models, however, is that the generated data is subject
to the same variability as real data and consequently simulations would have to be
run for long periods in order to reproduce statistics apparcnl in long-term weather
records. From this synthetic data a TMY year could be constructed, but as with
actual data, it is ditficuit to choose one year of data which closely represents all of
the statistics observed in the long-term data. However, since the data are being
generated, it should be possible to generate a year in which alf of the statistics match
the long-term much more accurately than in the TMY years. This type of generator
is an "average" or "Type II" generator, and it is the approach originally taken by
Degelman and continued in this study. The only required inputs are latitude,

monthly-average radiation, ambient temperature and humidity ratio values.

This study consisted of evaluating the Degelman generator, both by analyzing
the technigues invalved and the resulting generated data. Long-term statistics wers
compiled from 22 years of recorded hourly weather data [ SOLMET, 1979] at three
U.5. locations to provide a basis for comparison. Areas of weakness in the
Degelman generator were identified and improved upon with more recent work. In
addition, the statistics of the TMY data were compared. The analysis was done for
three locations; Madison, W1, Albuguerque, NM, and New York, NY, representing

three different climates.

Chapter 2 provides an overview and snmmary of the startistics used and the
observed long-term properties of the various weather variables. Chapter 3 describes
the radiation generation process, beginning with the descripdon and evaluation of the

Degelman generator, describing modifications, and comparing results. Chapter 4



presents the method of ambient temperature generation, again starting with
Degelman's technique, followed by an evaluation, an altiemative technigque, and the
comparison of generated and long-term data, Comparisons of the TMY data for the
three locations are also included. Chapter 5 summarizes the Dlegelman approach to
generating relative humidity and windspeed data; no attempt to improve npon his
technigues has been made due to time limitations. The appendices include some of

the many statistics and graphs collected during the data analysis.



CHAPTER 2

Statistical Overview

Statistics provide the only means for characterizing and comparing large groups
of data. In particular, the adequacy of the generated weather data can be evaluated by

comparing its statistics with those of the long-term data.

Weather varies greatly from place to place and month to month, and on a short-
term basis seems highly random and unpredictable. Over the long-term, however,
many of the statistics which describe weather data can be sufficiently represented by

location-independent correlations.

The various statistical quantities and documented long-term meteorological

properties used throughout this work are summarized in this chapler,

2.1 Statistics

2.1.1 Distributions

To construct a distwribution from a set of dara, the data must be grouped, or
"binned”, by placing all values within a small range into a bin and recording the
mumber of values within each hin. For example, in constructing & dismribution of

ambient temperature, all temperatures between 16 and 18 degrees C might make up



one bhin and all be considered as 17 degrees C. Doing this with all of the data results
in a histogram, where the width of the hins is 2 degrees C. The bin width is not
arbitrary; selection of too small of a bin width results in some bins without data,
while too large a bin width smooths out the distribution and loses resclution,
consequently losing information, Afler consirucling a histogram, the mamber of
values in each bin are divided by the total number of values and then by the bin
width, yielding the probability density for each bin. The histogram can be smoothed
and a function fit which deseribes the variation in probability density as a function of
the variable. This is called the probability density function (pdf). As an example,
the pdf of the normal or Gaussian distribution is the familiar bell-shaped curve
(Figure 2.1). The integral of the pdf berween the limits negative infimty and positive
infinity must always be one (the probability of all possible values mmst be equal o

one); that iz

[ perdy = 1
o (2.1.1)

where p(y) is the pdf. The cumulative disiribution function {cdf) is the function

ohtained by integrating the pdf.

B = [ty dy
- (2.1.2)

It can also be constructed directly from the data, The cdf relates the cumulative
fraction of oceurrence (the fraction of time the variable under consideration takes on

a value less than some particular value) to a particular value of the variable. The cdf
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Cumulative Distribution Function of the Normal Distribution

Figure 2.2
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as defined is always an increasing function; an example of the edf corresponding to

the normal distribution is shown in Figure 2.2

A convenient way to characterize a distribution is by its moments, The ith

central mament, or ith moment ahout the mean, is defined as

m; = E[(_‘f - H]i] (2.1.3)

where | is the mean. The moments of a distribution are unique, so that if all of the
central moments and the means of two distributions are the same, then the
distributions are equivalent. While there are an infinite number of moments, for the

purposes of this study, only the first four will be used to compare distributions,

The sample estimate of the mean 18 obtained from

- 1 =
=l (2.1,4)

where n is the number of data points.

The first four central moments can then be written as

m = E[Y-p| = 0 (2.1.5)

=1 (2.1.6)
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my = E|[(Y-)) | = —EF; - TE}’a + TZ:n - 3y
i=1 i=1 i=l rzl_g}

Rather than dealing with the moments direetly, four related measures with more
intuitive meaning are the mean, the standard deviation, the coeflicient of skewness,
and the coefficient of excess kurtosis. The mean, as defined in Equation (2.1.4), 1s
simnply the average of the data. The variance of the data, a2, is equal to the second
moment, however, the square root of the variance, the standard deviation, is
measured in the same units as the data, and as such is intuitvely more appealing.

The standard deviation, G, i8 a measure of the scatter or spread of the data.

i(}h ‘-’} Vi}’ (E}}ﬁfn
(2.1.9)

The numerator under the square root sign is called the sum of squares of the data; the

divisor n-1 is used instead of n due to the loss of a degree of freedom in estirating

the mean.

The coefficient of skewness, (L3, MEASUres the lack of symmetry of a
distribution. For a symmetrical distribution, ay={0, while if skewed to the left, g is
positive and if skewed to the right, o3 is negative. The skewness is related to the

third moment by
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(2.1.10)

The coefficient of excess kurtosis, o4, measures the relative peakedness of a
distribution. Itis defined such that ay=0 for a normal distribution, Positve values
of tr4 reflect 2 more peaked distribution, while a negative value indicates
less peakedness. The relation of the exeess kurtosis to the fourth moment 1s

miy
o, = — =

m3 (2.1,11)

For a normal, or Gaussian, distribution, approximately 95% of the data is
contained within plus or minus two standard deviations from the mean. The
skewness and kurtosis are always zero; hence the normal dismibution is uniguely

defined hy its mean and standard deviation.

2.1.2 Carrelation
Sometimes it 15 useful not only to have information about the distribution of a
variable, but also how it relates to itself and other variables at different tines. A

measure of the correlation between two variables. x and y, is the cross-correlation

coefficient.,

The value of a correlation coefficient ranges berween -1 and . A value of zero

indicates no correlation, -1 indicates perfect negative correlaton, (if x Increases, y
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decreases), while +1 indicates perfect posilive correlation, (it x increases, y

increases).

Correlations can be calculated between variables at different times, £.g., between
the present value of x (today's temperature) and the value of y two timesteps
previously (the radiation two days ago). The difference between the timesteps is

called the lag.

The cruss-correlation coefficient between two variables x and y at lag k can be

estirmated as follows:

n-k
D (- Y - Y)

t=1

&l 3 e ® Y ey
r=] =1

(2.1.12)

where n is the total mamber of values of x (or y) and x; indicates the value of x at

e b

Similarly, the correlation between values of one variable at different times can be

caloulated:; this is called the autocorrelation coefficient

n-k
Y 5P G ¥

i=1

pw.k i = 7
2 (¥,- ¥
el (2.1.13)



where again, k is the lag, v, is the value of y at e 1, and n is the number of ¥
values., The subscript yy will be subsequently dropped, such that the autocorrelation
coefficient will be denoted simply by py. and the crosscorrelation will be indicated by

Py k-

Both Equation (2.1.12) and (2.1.13) are approximations; a minimum of 50
comsecutive values are usnally considered necessary to obtain a sufficiently accurate
estimate, An assumption involved is that the joint probability distribution is
independent of absolute time, being solely a function of lag. This might not in fact
be the case, for example, the autocorrelation between temperature at 2 and 3 am

could be higher than the autocorrelation between 1 and 2 pm.

2.1.3 Time Series Models

The modeling of autocorrelated variables is often done with stochastic, or time
series, models. The models estimate the current value of a variable as a function of
past values and/or past random disturbances. Assuming a time series model is fit
correctly, it should reproduce a series with the correct autocorrelation structure. A
common fechnigue for identification of a specific model involves the examination of

the antocorrelation and parrial antocorrelation funcrions [Box and Jenkins, 1976].

To use & time series model, the series to be modeled must be stationary. A
stationary maodel is one in which the the probability structure is independent of time,
dependent only upon the lag. This definition is often relaxed. such that any series

with a constant mean and variance, and autocovariance dependent solely on lag is
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vonsidered weakly stationary.

Another requirement of proper mode! fitting is that the residuals must be
normally-distributed random independent values, To obtain this end result, often the
maodeled series must itself be normally distribured or else transformed in such a way

as to obtain normal residuals.
The family of autoregressive models are those in which the present value of a

variable, yy, is estimated from n past values plus a random error term, g, called an

ARn model.
o = '1313"[_1 + ¢'2:f[-2+ s ¢n:'rt-ﬂ+ g (2.1.14)

$1. $7, ... 9 are the autoregressive parameters, estimated by linear regression.
Far an AR1 model,

Yo = $¥iat g (2.1.15)
the autgregressive parameter, $1, can be estimated as being equivalent to the lag ane
autocorrelation of the seres. The mean of the random error term is zero, while an

estimation of the variance can be obtained from Uz='|—¢-11.

Moving average models predict the present value of a variable from the past n
values of the random disturbance, called MAn models.
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vi = & -0 ,-9.8,-... -0, (2.1.16)
The coefficients, Ei], E'Z- . ﬁn are estimated by non-linear regression.

Models which are a combination of the two can also be used to describe a

sequence of data, for example an ARMA(Z,1) model:
Yo = 0¥+ Op¥i2+ € - 0.8, (2.1.17)

2.1.4 Error

One way of testing the accoracy of a model is to compare the values estimated
from the madel, ¥, with the known or experimental values, y, Twa general
measures of the error between the estimated data and the experimental data are the
bias error and the root-mean-square {(RMS) error. They can be thought

of as the direction and magnitude of the error, respectively.

The bias error, as its name implies, measures the bias of the estimated data with

respect to the known data.

: 1=y ~
el (2.1.18)

While the actual difference between the values may be small, if the model
consistently underpredicts values, a negative bias error would result. Likewise, if it

consistently overpredicts, the bias error would be positive. If the errors were
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symmetric abour the kmown values, the bias error would be zero.

On the other hand, while the bias error may be zero, the model might be
predicting values significantly different from the known values. The RMS error is

an indication of the magnitude of the error:

o LS ey
EMS Ermor = Ez{}’l-‘_’fl}
Fl (2.1.19)

2.2 Long-Term Weather Statistics

2.2,1 Radiation

Radiation is often described in a dimensionless form called the clearmess index.
which is simply the ratio of the total radiation on a horizontal surface over at a
specified time to the extraterrestrial global solar radiation on a horizontal surface at
the same time. The instantaneous values can be integrated over any time period;
commonly used guantities are hourly (k=I/1.), daily (K=H/H_), and monthly
(Kfﬁfﬁa} clearness indices, Equations for calculating the extraterrestrial radiation
are presented in [Duffic and Beckman, 1980]. It is important to recognize that the
daily clearness index (K;) 15 not the same as the average of the hourly clearness
indices for the day. Likewise, the monthlv-average daily clearness index and the
monthly clearness index are not identical (Table 2.1), however, the difference is
small since IT, does not vary greatly throughout the month, and the quantities can

generally be used interchangeably.
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Table 2.1
Comparison of monthly-average daily clearness index and monthly clearness index

Albuguerque NM Madison WI MNew York NY

H H H

B, @2 H RZK B 32K
Tan 0.638 0.637 0.445 0.444 0.38¢ 0.389
Feb 0.667 0.666 0.496 0.496 0.416 0.414
Mar 0.685 0.685 0.500 0.499 0.439 0.437
Apr 0.715 0.713 0.479 0.476 0.450 0.430
May 0.727 0.728 0.506 0.507 0.472 0.474
Jun 0.740 (.739 0.536 (L5336 0.473 0473
Jul 0.702 0.702 0.544 0.543 0.474 0474
Aug 0.704 0.703 0.552 0.552 0.474 0474
Sep 0.716 0.716 0.519 0.518 0.473 0.473
Ot 0.702 0.703 0.497 0.493 0.469 0.4567
Nov 0.672 0.670 0.396 0.385 0.384 0.354
Dec (.633 D.633 D.381 0.381 (0.3530 0.349

The dismibution of daily radiation, when expressed in terms of the daily
cleamess index, K. has been shown to be primarily dependent on the monthly-
average daily clearness index. ﬁT [Lin and Jordan, 1960]. Analytical expressions
for the cumulative distribution function have been proposed by Bendt et al| 1981 ]
and Hollands and Huget[1983] (Figure 2.3). There are slight differences between
the two in terms of interpretation. The Hollands and Huger expression is a fit to the
original work of Liu and Jordan, which defines the distribution in such a way that
the mean is the long-term average value for a pardcular calendar month at a locaton.
Bendt analyzed approximarely 20 years of daily radiation dara from 90 U.S,

locations, completing a more comprehensive study. The distribution in this case,
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however, was defined such that all months with a mean of a specified value are part
of the same distribution. For example, the Liu and Jordan distribution assumes all
Januarys in Madison are part of the same distribution, while the Bendt distribution
assurnes all individual month's with K values of 0.5 are part of the same
distribution. As it turns out, the two sets of curves are very similar, differing mainly
at the high fractdonal values, which Bendt attributes to Liu and Jordan's usc of a
constant exmaterresirial radiation throughowt the month. A more rigorous
axamination of the shape's dependence on the mean was made by Graham[1985],
wha plotted the higher moments againat the mean to demonstrate that all of the

moments, and therefore the distribution, are in fact primarily functions of the mean.

There are several different distributions describing the variation of the hourly
cleamess index, ky. One is the distributon of the hourly values about the monthly-
average hourly value. This distribution has been found to be similar to the Liu and
Jordan dismribution described previously |Lin and Jordan, 1960]. Another type of
hourly k; distribution is that of the k; values at a particular hour of the month (e.g.
10-11 am) about the average value at that hour. This distribution was observed to be
similar in shape to the distribution of daily K; values, but exhibiting sumewhat less

variability [Theilacker, 1980].

The long-term average diurnal variation of hourly total radiation (when divided
by the averape daily toral radiadon) and the hourly diffuse radiation (when divided
by the average daily diffuse radiation) have been shown to be primarily a function of
the hour angle, w, and the sunset hour angle, ;. An expression for the average

diffuge diurnal variation was developed by Liu and Jordan [1960]



7 COS00 - COSW,
Iga = =57 3
24 sina - (Zrw, /360)cosm, (2.2.1)
while a correlation for the average diurnal variation of the total radiation was
developed by Collares-Pereira and Rabl [ 1979]
r, = ry(a+bcosw) (2.2.2)

where
a = (1409 + N.5016 sin(m;ﬁﬁ}

b = 0.6609 - 0.4767 sin(m -60)

Many authors have considered the estimation of diffuse radiation from total or
direet normal radiation, Some of the more recent work has been by Orgill and
Tlollands[ 1977] and Erbs et al[1982], who developed expressions for estimating the
hourly diffuse fraction (the ratio of the hourly diffuse radiation to the hourly total
radiation) as a function of the hourly clearness index. Erbs alzo included work on a
daily and monthly-average basis, in which a slight seasonal variation was observed
and accounted for with a dependence on sunset hour angle. Equation (2.2.3) is the
hourly expression developed by Erbs.

[,/1=1.0-0.09k, ky < 0.22
I,/1=0.9511-0.1604k, + 4388k’

- 16.638k; + 12,336k, 0.22 < ky < 0.80

o/ 1=0.165 ky > 0.80 (2.2.3)



Hollands and Crha[1987] studied the probability structure of the hourly diffuse
fraction, and concluded that the distribution is strongly dependent upon k¢ and may

be guasi-universal.

The autocerrelation of daily total radiation and daily clearness index, while often
considered to be the same, are in fact slightly different (Table 2.2). The sequence of
radiation values has an underlying wend due to the changing earth-sun geometry; this
trend is absent in the K, sequence. The lag one autocorrelation of K; has been
observed by many authors to be in the approximate range of 0,15 10 0.35
[Amato,1986; Brinkworth,1977; Graham,1985; Klein, 1987]. Graham[1985]
developed an expression which approximates pq as a function of monthly-average
ambient temperature and the difference between ET and the vearly-
average K, ET?

Prg = 0.259 + 0.551 (Kq-Ky,) +0.008 T-0.086<T-17> (2.2.4)

The < > around the last term indicates that it should be included only when it is

positive.



Table 2.2
Comparison of lag one daily autocorrelation values of total solar radiation (H) and
clearness index (Exr)

Albugquerque NM Madisan W1 New York NY

H K H K H Bt
Jan 0.25 0.17 020 0.16 0.04 0.03
Feb 0.29 0.22 020 0.14 0.10 0.05
Mar 0.26 0.17 0.25 0.22 0.19 0.15
Apr 0.26 0.22 0.18 0.17 0.14 0.12
May 020 0.20 0.24 0.25 0.12 0.12
Jun 0.25 024 0.16 0.16 021 021
Jul 0.23 021 0.11 011 013 Q.12
Aug 029 026 0.16 0.14 0.16 0.16
Sep 030 022 024 0,17 0.25 022
Oct 0.43 0.32 0.41 0.35 0.24 (.19
Nov 029 0.23 0.23 0.19 0.14 0.12
Dec 0.26 0.27 0.18 0.18 0.08 0.07

2.2.2 Ambient Temperature
Erbs[1984] analyzed 22 years of ambient temperarure data at 9 U.S. locations
and found that both the distobution and the diumal variation could be characterized

by location independent correlations.

The distribution of the daily-average ambient temperature, T, about the monthly-
average daily ambient temperature, Tm, exhibits wide variations in the mean and
standard deviation for different months and locations. Although the disribution is
not Graussian, Erbs showed that when expressed in terms of the normalized variable

h, the cumulative distribution can be representad by the following equation



| ]
Ln

1 + tanh(1.698h) _ 1

Fomp = 3 ~ 1 +exp(-3.396h) (2:2:3)
where
h = (T-Tyic, YN24) (2.2.6)

Tn Equation (2.2.,6), N is the number of hours in the month and o, is the standard
deviation of Ty, aboul its long-term average value; Erbs was able o relate Oy,

1o Tm and Oyp the standard deviation of the 12 Tm's abour the yearly-average
temperature:

O, = 145-0.0290T,+0.0564 c,,

m

(2.2.7)

Erbs pbserved differences in the skewness for different locations and months,
but was not able to correlate it to any other weather variable, and as such
recommends Equation (2.2.5) which is a symmerric "average" disributon (Figure

2.4).

Erbs also explains that the expression for the distribution is equally valid for the
distribution of the hourly temperatures about their howrly monthly-average
values, Th, if Th is substituted for Tmin Equation (2.2.6). The same relation for

Gy €40 be used since O, i3 approximately equal to the standard deviation of the

hourly temperamres.

The diurnal variation of the hourly monthly-average temperatures, Th, has a

lacation and month independent shape when standardized by submacting the mean
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and dividing by the amplitude (Figure 2.5). Erbs demaonstrated that the average

normalized diurmnal temperatre varation is well represented by

(Ty- T VA = 0.4632co0s(t*-3.805) + 0.0984cos(2t*-0.360)
+ 0.0168cos(31*-0.822) + 0.0138cos(4r*-3.513) (2.2.8)

= 2m(-1)/24

where T,y is the monthly-average daily ambient temperature and t is the hour of the
day defined such that t=1 at 1 am and =24 at midnight. The amplilude, A, while
varying considerably with month and location, was shown by Erbs to be related

o K
where the amplitnde is in degrees C.

2.2.3 Relative Humidity
Erbs completed analogous work in the area of relative humidity, developing

location-independent expressions for both the distribution and diumnal variadon.

The distribution of hourly relative hurnidity about the monthly-average relative
hurnidity, similar 1o that of daily clearness index about the monthly-average
clearness index, was found by Erbs[1984] to be primarily dependent upon the
monthly-average relalive humidity, Slight variatons in skewness were obscrved,

however the variation was not regarded as significant enough to warrant inclusion in
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the model. A Wiebull distribution was fit by Erbs to approximately 22 years of data
collected from 9 17,5, locations (Figure 2.6). Since relatve humidity values only
vary between 0 and 1, the integral of the pdf between the limits ( and 1 must be
eqgual to one, rather than between the limits negative infinity and posifive infinity.
Erbs included in the expression the division by a parameter-dependent constant in

order to force the integral of the pdf between the limits  and 1 to be one.

g,
1 -mp[-[RH}fEI} w

B,
1-exp l-{lﬂ‘a,} ] (2.2.11)

FRH=

where

e —2
B, = -0.02691 + 1.2276RH - (0.14880 RH

9, = 0.08165 exp (5.3801 RH) + 2.2747 exp (-0.59958 RH)

For the case in which the variable (of whose pdf we are interested) is consirained to
vary between 0 and 1 (such as for relative humidity and clearness index), it can also
be shown that the integral of the cdf between 0 and 1 is equal to 1 minus the mean,
or alternatively, the mean is equal to 1 minus the integral of the cdf between 0 and |
In other words, when the cdf is plotied with the variable, for example RH, as the
mdependent variable and the cumulative fraction of occurrence, F, as the dependent
variable, the area above the curve is equal to the mean value of that curve. Possibly
due to the difficulties involved in fitting one set of curves to many slightly different
ones, the Wiebull dismibution when fit, was apparently not constrained so as to

ensure the corract mean. That is, the area above the curve (and hence the mean value
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of that curve) is not exactly the mean associated with that curve. This can be
ahserved in Figure 2.6, laken from Erbs[1984], where the area under the curve
representing the data and that representing the correlation are not the same. This
discrepancy is particularly noticeable for the curve representing a monthly-average
relative humiditics of 0.6. The difference in the means is summarized in Table 2.3,
where the correlation values were obtained by numerically integrating the expression

for the cdf,

Table 2.3
Comparison of monthly-average relative humidities to
the monthly means obtained from Erbs' distribution

exXpression
Monthlv-averape Cormelation Mean
0.10 0.084
0.20 (L.188
0.30 0.291
0.40 0.390
0.50 0.488
0.60 0.587
0.70 0.691
0.80 0.796
0.90 0.888

While no study of the distribution of daily-average relative humidity about the
monthly-average reladive humidity was completed by Erbs, it wounld be reasonable to
expect that the daily distribution would have the same shape as the hourly
distribution, as this was observed for both clearness index and ambient temperature.

In this study, the distribution of the daily-average relatve hunudity will be compared
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to the hourly expression of Equation (2.2.10) to see if this is indeed the case.

Erbs also demonsmated that the monthly-average diurnal variation of relative
humidity, which varied in amplitude and mean for different months and locations,
could be represented by a single correlation by subtracting the mean and dividing by
the amplitude, as was done with the diurnal variation of ambient temperature {Figure
2:7).

(RH-RH_ WAy = D.4672cos(t*-0.666) + 0.0958cos(21*-3.484)
+ 0.0195c0s(3t%-4.147) + 0.0147cos(4t*-0.452) (2.2.11)

where

¥ = Zr(t-1)/24

The amplitude, Aggy, was shown by Erbs to be expressible as a function of the

monthly-average ambient temperature and monthly-average clearness index:

iy A st i
Apy = -0.516 + 1.933K 1- 1.663K 1+ 0.00669T - 1.993x10 T, ran

whete Tm is in deprees C.

2.2.4 Windspeed

The distribution of hourly windspeed has been investigated by various authors,
[Corads, 1977; Exell,1985], and is often described by 2 Weibull distribudon with the
parameters estimated from the mean and variance, A different approach is that taken

by Balouktsis et all 1986] in which the hourly and dailv windspeed values are
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rransformed and analyzed. The daily windspeed is transformed by subtracting the
mean value for the day and dividing by the standard deviation for the day, both of
which are obtained by interpolating between the monthly means and standard
deviations. A Weibull distribution with constant parameters was found sofficient to
represent this distribution. The hourly values were transformed in a similar manner,
however including a factor to remove the diumal cycle; this distribution was found

to be well approximated by a Gaussian distribution.

2.2,5 Craoss-correlations

Cross-correlations berween hourly values of ambient temperature and clearness
index (both after subiracting their hourly monthly-average values), and ambient
temperature and relative humidiry (again after subtracting their hourly monthly-

average values) were tabulated by Erbs[ 1984].

In 7 out of the 9 U.S. locarons studied by Erbs, negative cross-correlations
between k; and ambient temperature were observed for the winter manths, changing
to positive correlations for the rest of the year, For some months and some

locarions, cross-correlation values were significant, while for others they were not.

The cross-correlation of hourly ambient temperature and relative humidity was
observed to be negative during the summer months, however the magnitudes varied
considerably from place to place. For the other months, the magnitudes were
cenerally small, however there was no consistency in the signs of the cross-

correlation values,

Degelman[1976] computed various daily cross-correlation values for Columbig,



MO. Significant positive correlations between solar radiation and dew point
depression, solar radiation and ambient temperature amplitude were observed. High

cross-correlations were also observed between the various temperature variables.

In this smdy, daily cross-correlation values for the three locations were
calculated from the 22 vears of weather data and will be analyzed in the comparison

sections at the end of each chaprer.

Due to the lack of any observed location-independent behavior, no attemnpt has
been made to model any cross-correlations other than what is achieved coincidentally

from the independent models,
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CHAPTER 3

Radiation Generation

This chapter presents the radiation portion of the generation process, including a
descripion of both Degelman'’s technigque and the maodifications developed to
improve it Results of the generation process, long-term data and TMY data for the
Albuquerque, NM, Madizon, W1, and New Yark, NY are exhibited and discussed.
The radiation model consists of two major parts, First the daily radiation is
penerated and then it is broken down into hourly values. This is the mannerin

which it will be presented.

3.1 Degelman Radiation Model

3.1.1 Daily Radiation Generation

Onee the cumulative distribution functon for a variable is known, it becomes
relatively easy to generate a specified number of values from that distriburion,
Specifically, once the cumulative distribution function of the daily K; values is
kmown, a value for cach day of a month can be found from the distribution; recalling
Chapter 2, all that is required to determine the distribution function is the manthly-
average daily clearness index [Liu and Jordan,1960], ET, which is a required input
for gpeneration. A Ky value 1s needed for each day of a month; or in other words, N
K values are required for each month, where N is the number of days in the month

(31,20 or 28). To truly represent the long-term condidons and make up and
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“average” month, the K; values must be selected from the known long-term

distribution and must themselves make up a replicate of that long-term distribution.

As described in Chapter 2, the cumulative distribution functon relates the
cumulative fraction of accurrence, F, to Ky, The cumulative fraction of occurrence
specifies the fraction of time the K; variable will be less than a specified value of K;.
Assurmning a 31-day month, there is a value of K; corresponding to F equal 1o 1/31,
meaning that only 1/31 of the time will a K value less than a some particular value
occur, or alternatively, only 1 out of 31 days will be less than some particular value
of Ky, Addidonally, 1 out of 31 days must be less than this value of K;, Where
within the range from 0 to this value of K is unspecified; a logical way to choose a
value i8 to take the value of Ky at the average of this F-value (1/31) and the previous
one (0), for example, F=1/62. The K, value corresponding to this F-value can then
be found from the expression for the cumulative distribution function. Likewise,
one and only one K value will ovcur between the K; value associated with F=1/31
and F=2/31; the K; value corresponding to an average F value of F=3/62 is found,
and so on. 31 days can be generated in this manner. This analysis can easily be

extended to a 30 or 28 day month.

While this technique provides N values of K; for a month, it does not specify the
order in which the K; values should occur. They should not occur in eirher
ascending or descending order, vet neither chould they be ordered randomly. As
noted in Chapter 2, the lag one autocorrelation of daily Ky values is generally in the
range of (.15 10 0.35, an indication of weak positive correlation. Degelman’s
approach capitalizes on this similarity in autocorrelation over all locations, and fixes

the order 1 which the days oceur so as to approximate the correct lag one daily K,
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autocorrelation. Specifically, the numbers 1 to 31 are assigned to the 31 values
obtained from the daily "source” distribution {the Lin and Jordan distribution), with
1 corresponding to the smallest Ky value and 31 to the largest. The numbers 1 to 31
are then placed in an order such that when the K values corresponding to the
numbers are placed in that order, the lag one autocorrelation value is obtained.

Figure 3.1 illustrates this process for a 3 day month.

The same sequence of the numbers 1 1o 31 is always used for ordering the daily
values of K, however, the starting position within the sequence is determined
randomly at the beginning of the generation process. For months of other than 31
days, only that number of davs (i.e., 28 ar 30) are obtained from the 3 I-day
distribution, resulting in slight differences between the generated and "source”
distribution for these months. The method whereby the daily values are obtained
from the distribution is a common one; the method of ordering the days is unique to
Degelman. Degelman’s method allows the generation of one "long-term” month,
falling in with the goals of the "average”, or Type II generator, namely that each

month has the long-termn mean, distributon, and autocorrelaton.

3.1.2 Critigue of Degelman's Daily Radiation Generation

Several problems were api:na;n:nt upon exarmnation of the dailv portion of the
Degelman radiaton generator. First, and foremost, his work was completed prior to
the work of Bendt ¢t al [1981] and Hollands and Huget [1983] in which expressions
for the Liu and Jordan distribution were developed. The form of the weather
generator being examined contained an approximation to the Liu and Jardan

distribution based somewhat upon the normal distribution. As no reference to the
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origin of the algorithm could be found, it was assumed to be an approximation
developed by Degelman, While it reasonably reproduces the Liu and Jordan
distribution for months with RT'S of 0.5 and 0.6, significant differences are
apparent for other values of J:_{.T (Figure 2.2). Not only is the shape different, bur
the mean also differs considerably (Figure 3.3), Degelman's algorithm was
subsequently replaced by the Bendt expression [Bendt, 1981].

The lag one daily autocorrelation value generated from Degelman's fixed
sequence was observed to be somewhat high while also varying as a function of e
(Table 3.1). The aurocorrelation value can be lowered simply by changing the
sequence slightly, although it will have some effect upon the crosscorrelation with
other weather variables. The variation in autocorrelation with K, however, is not
so easily removed. Due to the variarion and uncerainty in the long-term
autocorrelation values, some variation is appropriate, however, the marked variation
as a function of K is a problem. The reason for this variation lies in the differing
shapes of the K; distribution curves. While the F-values are equally spaced, the K,
values are not, For example, for E—r of 0.5, the distribution is near normal in
shape, with approximately half of the K; values less than Ky and half greater.

For KT equal ta 0.7 however, there will be many K; values just slightly greater
than I_{T and somewhat fewer K; values less than ET, although they will be [arther
from Ky in value; this different "spacing" would tend to impart a different
autocorrelation value, As no analyzed technigue for obtaining a sequence of the

numbers 1 to 31 as a function of ]':_CT has been found, a trial and error method has
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Table 3.1
Variation of lag one daily autocorrelation when K,
values are ordered by a single sequence

K, Lag One Autocorrelation
0.2 0.28
0.3 0.27
0.4 (.31
0.5 0.359
0.6 (.44
0.7 0.44
0.8 0.44

been used to abiain three sequences ta be used for three ranges of Ko, namely 0.0 to
0.45, .45 o 0.55, and 0.55 1o 1.0. These three sequences eliminate, to a large

extent, the variation of the autovorrelation with I_{T,

Another minor change made (o Degelman's aripinal daily Ky peneralion process
is the use of a 28 or 30 day distribution for those months of length other than 31
days, rather than the 31-day distribution, The original algorithm has a minar
problem in that a day number in the sequence could exceed the number of days in the
month, for example, the number 31 might be assigned to the sixth day of February,
and there would not exist a day 31 for February. If this case arises. the number 1n
the sequence is simply skipped. While thizs does have a slight affect upon the daily
autocorrelaton, it is small and considered less Important than maintzining the long-

terrn distribution,



3.1.3 Hourly ERadiation (Generation

Once the daily values of K have been generated for each day of the month, the
hourly radiation is literally generated one day at a time. Take a day, for example; the
daily K, is known, and now it is necessary to generate hourly values which combine

to give that value of Ky,

The general premise of Degelman's hourly radiation generation scheme is to first
generate the direct normal radiation for the hour, then the diffuse radiation, and then

combine them to obtain the total solar radiation on a horizontal surface for the hour.

The hourly direct normal radiation is calculated from the following commonly

used expression:

Iy = ool o/co8s)

(3.1.1)
Iy is the apparent solar constant and 9, is the zenith angle of the sun; both are easily
calculated from knowledge of the latitude, date and ime combined with known

earth-sun geometry | Duffie and Beckman, 1980].

o in Equation (3.1.1) is the atmospheric extinction coefficient for the hour; it is
an indication of the sky condition. Degelman exarmines the value of K for the day,
and uses that along with several comrelations to calculate two atmospheric extinction
coefficients for the day, one for clear sky conditions and one to represent cloudy sky

conditions. The cloud cover fraction (CCE) for the day is estimated from:
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CCF = 1 Ky < 0,333
CCF=2- 3Kt 0.333 < K, £0.667
CCE= 0 K¢ > 0.667 (3.1.2)

To determine whether the clear or cloudy sky extinction coefficient is to be used for
an hour, each hour, a random number between 0 and 1 1s selected; if it is greater
than the CCF for the day, the clear sky coefficient is used, else the cloudy sky
coefficient is chosen for the hour. For very high (K=0.667) and very low
{(K4=(0.333) values of K, the two extinction coefficients are assumed identical,
resulling in a constant sky condition throughout the day. For a more detailed
explanation of the process by which the extinction coefficients are determined, see

[Degelman,1970].

The relations between the daily diffuse and daily direct normal transmittance
coefficients for cloudy days presented by Liu and Jordan [1960] are applied by
Degelman an an heurfy basis to obtain the diffuse radiation each hour. The diffuse
ransmittance coefficient (Kg) is defined as the mtio of the diffuse radiadon on a
horizontal surface to the extraterrestrial radiation on a horizontal surface; the direct
transrnittance cocfficient (Kpy) is defined as either the ratio of the direct (or beam)
radiation on 2 horizontal surface to the extraterrestrial radiation on a horizontal
surface or as the ratio of the direct normal radiation to the exiraterresirial normal
radiation. Liu and Jordan [1960] presented a plot of K4 versus Ky for cloudy
skdes, from which Degelman developed the following relatons:
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Equation (3.1.3) is the equation used by Degelman to estimate the hourly diffuse
transmnittance coefficient from the direct ransmittance coelficient; the values obtained

are significantly different from the results presented by Liu and Jordan (Figure 3.4).

The diffuse radiation for the hour is obtained simply by multiplying the diffuse
transmittance coefficient by the extrarerrestrial radiation on a horizontal surface (Tg);
likewise the direct normal radiation for the hour is obtained by multiplying the direct
transmittance coefficient by the extraterrestrial normal radiation for the hour (I p).
The direct normal radiation (Ig5) is converted to the direct (or beam) radiatdon on a
herizontal surface and summed with the diffuse radiation (Ig4) to yield the toral
radiation for the hour.

I=T4+ Idﬂcnsez (3.1.4)

It is important to note that once the hourly radiaton values have been generated
for a day and are consequently summed to vield the day's total radiation, their sum
miay 1ot be equal to the daily value previously generated in the daily generation

porticn of the program.
3.1.4 Critigque of the Degelman Hourly Radiation Generation
The single most important statistic to reproduce 1s undoubtedly the monthly-

average mean. To check the accuracy of the radiation model, January radiation data

were generated for input K values ranging from 0.2 to 0.8 at larirudes of 10, 20,
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30, 40, 50, and 60 degrees. The hourly radiation values were summed to compute
the generated ﬁrr values, A plot of the generated versus input I_{T (Figure 3.5)
revealed not only errors in the means, but additionally a dependence of the error on
latitude. As was previously demonstrated in Figures 3.2 and 3.3, the form of the
equation which Degelman was using to represent the Liu and Jordan K, distribution
curves used in generating the daily K| values was inaccurate, and this error is
reflected to a grear extent in Figure 3.5. Data were obtained in a similar manner,
however this time substituting the expression of Bendt ¢t al [1981] for Degelman's
equation for the K, distribution; it was expected that this would correct a large
porton of the error. As can be seen in Figure 3.6, this is indeed the vase. There
are, however, still significant differences berween the input and generated values

of Ky ata latitude of 60.

The average diurnal variation of the total radiation on a horizontal surface
(divided by the daily total radiation on a horizontal surface) of the Degelman
generared data for Madison, W1 can be seen in Figure 3.7. Each point represents the
generated monthly-average value for that hour; the solid lines are the correlation for
the long-term average [Collares-Pereira and Rabl, 1979]. While at a first slance the
data appear to agree well with the correlation, further study shows 4 definite hias; the
values at the hours around noon are too high, while the values at the early and late
hours are low. This indicates that the Degelman model is proportioning the radiation

incorrectly,

The average diurnal variation of the diffuse radiaton (divided by the daily

diffuse radiation) shows much better agreernent with the lon g-termn and is quite
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satisfactory (Figure 3.8). This indicares a difficult problem within the model, Since
the total radiation is obtained by combining the diffuse and direct normal radiation, it
is the direct normal radiation which i in error. However, the diffuse radiation
values are obtained from the direct normal radiation values, so that an attempt to
corregt the direct normal radiation would undoubtedly adversely affect the diffuse
radiation values. The problem therefore lies in both the direct normal model and the

diffuse generating component.

While the diurnal variation of the diffuse radiation indicated the correct spread of
the diffuse throughout the day, it in no way yielded any information about the total
amount of diffuse radiation being generated. Since diffuse radiation is not one of the
inputs to the generation model, there is no way to compare it to the input data as was
done with the toml radiation. An alternative is to compare it with the correlations
developed by Erbs[1982] representing the long-term average diffuse fraction
(diffuse radiation divided by total radiation) as a function of clearmness index, both on

an hourly and daily scale.

Figures 3.9 and 3.10 are the hourly and daily diffuse fraction plots, respectively.
Both clearly show that the fractional amount of diffuse radiation being generated
relative to the clearness index is incorrect, even though the manner in which it is
distributed throughout the day (the diurnal variation) is correct. The wrong
percentage of an hour's radiation is diffuse, and likewise, the wrong percentage of a

day's generated radiation is diffuse.

In addition, the random selection of the ammospheric extinction coefficient each
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hour makes no atternpt to reproduce any autocorrelation existing between hourly k¢

values.

Due to the inconsistencies revealed in the analysis of the generated radiation data,

a replacement of the existing hourly radiation model was deemed necessary.

3.2 Modification of the Radiation Maodel

3.2.1 Model Selection
In selecting an appropriate hourly radiation model to replace Degelman's model,

several characteristics were considered, namely:

1. Location independence, The medel should be locadon independent to the
extent that all necessary parameters and correlations can be determined from the
inputs to the generator program, specifically latitude, monthly-averuge daily

radiation, ambient lemperature, and humidity ratio.

2. Simplicity, The maodel should require as lirtle computation as possible; one of
the aims of the weather data penerator is to decrease simmulation time. However, the

amount of required computation would be weighed against any increase in accuracy.

3. Reprodueibility of hourly autocorrelation, The use of the long-term average
hourly radiation values, such as determined by Equation (2.2.2), can lead to
significant performance predicton errors. It is therefore important to maintain some

degree of randomness within the hourly radiation structure, In particular, a realistic
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representation of the hourly autocorrelation would appear important for solar
systems with a critical amount of starage and systems requiring a minimum level of

radiation for operation.

The performance of a systern which has no storage would have a strong
dependence on the distriburion of the hourly radiation values, but would be
independent of the hourly autocorrelation. Since there is no storage. the previous
hour's value has no effect on the present hour's value. Tf a system had a large
amount of storage, any effects of hourly autocorrelation would be dampened out. In
between no storage and a large amount of storage, there is some "critical” amount of
starage for which performance would be affected by the hourly autocorrelation.
While the effect of hourly autocorrelation is probably much smaller than that of daily

autocorrelation, it should be realistically represented if possible.

4, Ability to generate hourly values from dailv valugs, While not essential, this
allows the retention of the daily portion of Degelman's radiation generation model,
which is a convenient way to ensure that each generated month will have the long-

rerm daily radiation distribution and the appropriate daily autocorrelation.

The first objective of obtaining a location independent model suggests finding a
rodel which replicates the hourly ky sequence rather than the hourly radiation
sequence, The amount of incident radiation at a site is location dependent, and
would require vonsiderable complexity to model directly. However, the state of the
atmosphere, such as indicated by the ransmittance (the clearness index), would be
expeeted ta possess a more universal character, such that the behavior of the ki

sequence could be modeled independent of location.



38

Stochastic models, such as the AR and MA models described in Chapter 2, are
convenient for reproducing sequences of autocorrelated values. A logical choice

therefore is 1 employ a stochastic model o generate the hourly ki sequences.

Graham[1985] completed a comprehensive analysis of the K; sequence,
developed a stochasiic model for replicating the sequence of daily clearness indices
and extended the results to include the sequence of hourly ki values. Since the K
variahle is not normally distributed [Liu and Jordan, 1960], direct modeling by an
AR model results in non-normally distributed residuals. To eliminale this problem,
Graham transforms the K¢ values to a normally-distributed varable, y, with & mean
of {0 and a variance equal to 1, by equating the cumulative distribution functions and
solving for the corresponding value of . An AR1 model was found to be an
accurale means for reproducing the autocorrelation inherent in the sequence of ¥
values, in which the autoregressive parameter was either set to a constant value of
0.29 or estimated monthly from Equation (2.2.5). While these parameter values are
the lag one autocorrelations of the Ky values rather than the i values, Graham
observed that the lag one autocorrelatons of the two series were approximately
equivalent, and therefore used the lag ane autocorrelation of K as an estimate of ¢y
rather than the lag one autocorrelation of . To generale a sequence of K; values, as
cach value of ¥ is obtained, it is transformed back to the non-normal K variable,

again by equating the F values of the cumulative distribution functions.

The majority of Graham's work dealt with the development of the model for the

daily K, however one chapter was devoied o applying an analogous procedure



replicate the hourly k; sequence; this hourly maodel is the one used in the modified

gENEeTator,

The daily model developed by Graham is an example of a Type T or "realistic”
generation model, not suitable for the generator being developed in this study.,
Likewise, this type of procedure will produce Type I hourly values; that is the
hourly k; values will follow a typical, realistic pattern, not necessarily a long-tarm
average pattern. Days in which the hourly values of k; are equal to their lonp-termn
average values are smooth and symmetric; such behavior is not typical and generated
data with this behavior can lead to significant errors in performance estimates. The
goal is 10 produce an average month of weather data, but the davs within this month
should be realistic in the sense that the hours should display the same variahility

observed in actual days,

3.2.2 The ki Sequence

Graham suggested that the sequence of k; values can be considered to consist of
a deterministic component and a random component, The deterministic trend is due
o the geomeitric relatdon of the earth and the sun; the random component is brought

about by various uncertainties such as cloud movement and pollution,

3.2.2.1 The Deterministic Component
The deterministic portion of the hourly k; sequence is equivalent to the long-term
average estimate of k¢ for an hour, and can be computed by combining the daily K;

value with Eqguoations (2.2.1) and (2.2.2):
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where ky, represents the long-term mean value of k; for an hour.

Graham apparently did not recognize that Equaton (3.2.1) can be used to
estimate the mean k; value, and instead developed a regression model from 185 days
of data (approximately 2000 hours) from three Canadian cities: Toronto, Swift
Current and Vancouver, The model presented by Graham expressed the variation in
k¢ as a function of K; and zenith angle.

-1.141 [1-]{,‘}‘|
K:E,L'.IEH‘ (3_2+2}

k. canen = K- 1.167 Kj (1-K.)+0.979 (1-K) exp[

Equation (3.2.2) generates different values of ki, than those obmined from
Equation (3.2.1). Comparison of the two models on June 15 at latitudes of 30, 40
and 30 degrees for several K values is shown in Figures 3.11 a-e. While the two
models appear similar for most values of K, Graham's model suggests the diurnal
variation of ki, for a very high value of K (¢.g., 0.9) to be almost nonexisient,
whereas the values of kyy, obtained from Equation (3.2.1) show a very marked
variation on such a day, Atvery low values of K, (e.g.. (.1) the same is true;
Graham's model predicts an almost constant value of kyp, while Equation (3.2.1)
shows a slight variadon. More disconcerting, however, is the comparison at K.=0.5
(Figure 3.11 c). While the shapes are similar, the values as predicted by Graham are
higher for all hours of the day. Therefore, for one of the two models, the value of k;

as calculared by summing the hourly values obtained from the ki, model must not
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Table 3.2
Comparison of the K, values obtained from a day in which k, =k,
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K, 0.10 020 030 040 050 0.60 070 0.80 0.90

Jan I3
K, r/fry 0.10 020 030 040 0530 060 Q.70 Q.80 Q.89
Graham 0.10 0.19 028 036 046 055 Q.66 077 0.8%

Mar 1S
K,k 010 020 030 040 050 0.60 0.70 079 0.89
Graham  0.10 0.19 029 039 050 0.60 070 0.80 0.89

Jun I5
K, 1/ 0.10 020 030 040 050 060 0.70 0.80 090
(Graham 0.10 020 030 042 453 063 0.72 081 0.90
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be equal to the value of K from which the kqy values were obtained. To check
which model was in error, K; values were generated from both models for input K4
values of 0.1, 0.2, ..., 0.9 at 40° latitude on the 150 day of each month, The
abbreviated results presented in Table 3.2 clearly indicate that Graham's model
inaccurately recreates K. Therefore, further reference to the variable ke will be to

the value of ki as defined in Equation (3.2.1), unless explicitly stated otherwise.

3.2.2.2 The Random Component
The random component of the k; sequence, ayy, is simply the difference berween
the actual value of k; and the long-term mean value:

ay = k¢ - ki (3.2.3)

As an indicaror of the size and spread of the deviations, Graham computed the
mean and standard deviation of the ayy values, Gy, as a function of K and developed

a model for estimating o.:

= 0.1557 sin |t
G = WSS lireman (3.2.4)

Similarly, the mean and standard deviation of the ajy's as a function of K; was

calculated from the long-term hourly records for Albuquerque, Madison, and New

York The resulrs are listed in Table 3.3.
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Table 3.3
Mean and standard deviation of a,
Mean Standard Desiadon

. Alb Mad NYC Alb Mad NYC
0.1 .0097 0.0059 (.0087 0.058 0.050 0.065
0.2 0.0051 0.0082 0.0068 0.099 D.0va 0.107
0.3 0.0135 0.0104 0.0047 0.151 {.138 0.141
0.4 0.0097 00055 0.0006 0.172 0.160 0.154
0.5 0.0068 -0.0016 -0.0037 0,203 0.158 0.131
0.6 -0.0002 -0.0030 -D.0030 0.185 0.124 0.091
Q.7 -0.0009  0.0022  -D.0016 0.139 0.068 0.066
0.8 0.0088 -0.0012 0.0053 0.057 0.094 0.064

Figure 3.12 shows the mean ay; values as a funcdon of Ky; a definite
dependence on K| is apparent. It is also evident that the kyyy, value as predicted from
Eguation (3.2.1) is somewhat more accurale than the ki value predicted from
Equation (3.2.2). However, the size of the deviations is very small; for the model
of Equation (3.2.1), the maximum deviation is less than 0.015. If the kg moedel 15

correct, the mean ay; value should be zero; it is very close.

A comparison of the values of o, as calculated in this study to the values as
prediceed by Equation (3.2.4) is shown in Figure 3.13. Agreement is quite good for
the smaller values of K, however, particularly for values of ¥ greater than (0.4,
there is a considerable amount of location dependent spread within the data.
Albuquerque consistently has a larger standard deviation, while Mew York hasa

consistently smaller standard deviation. Yet if a single expression 18 necessary (o
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represent o, for all locations, Equation (3.2.4) appears adequate.

A common technigque in stochastic modeling involves first estimating any
deterministic trends and then reproducing the residuals (i.e., the random component)
with an AR or MA model, It is therefore the autocarrelation sirucnure of the

deviations, apy, which is of interest in applying a time series model.

The sequence of ay; values, however, unlike that of hourly temperature or daily
K; values, is discontinuous. No values are recorded during nighttime periods; an
attemprt to make a continuous k, series by catenating the daily sequences of hourly
ks would introduce erroneous terms into the estimation of the autocorrelation.
While undoubtedly there is some degree of correlation between the last ky value of
one day and the first k; value of the following day, it is different than that between

consecutive hourly k; values within a day.

3.2.2.3 Autucorrelation of the Hourly Disturbances, api=ki-kim

To obtain a reliable estimate of the autocorrelation coefficient, approximately 50
sequential values of a variable are necessary [Box and Jenkins, 1976]. Obviously
when a single day is considered, there are only somewhere in the neighborhood of
10 ayy values, definitely too few to obtain a reliable estimate of the autocorrelation.
Howewver, within just one vear of data there are 365 days, creating many short sets
of consecurive hourly aj; values, bur as previonsly noted they are not continuous.
There should be a way to utilize the many sets of scquences o obtain a useful

estimate of the autocorreladon.
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The standard expression for estimating the lag one autocorrelation coefficient
consists of the sum of the lag ane product terms in the numerator and the sum of the

lag zero product terms in the denominator.

fi-1
z {Yt‘ ?:l (}'I:-Z-i - S;)

=1

Py =

2 -t
eI,
b=l (3.2.5)

A "pooled estimate” of the lag one autocorrelation, applicable for the existing

situation of many sets of a short sequence, can be obtained as follows:

i E Y- Y-y

T= =l

ny _
ZE(FF}')

= &= (326‘]

P =

where ng is the number of days and ny, is the number of hours cach day (for which

there are kg values).

The pooled estimate, Equation (3.2.6), can be thought of as the aulocorrelation
of the catcnated ky serics, but omifting the product terms in the numeraror which
cross over the day boundaries. In other words, the numerator for cach day is
computed separately, and all the numerators are then combined to yield the "total"
numeratar for the autocorrelation coefficient. Additionally, since there is one less

termn in the numerator egch day, one term must also be omitted in the denominator
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each day; the partcular formulation of Equation (3.2.6) omits the last term each day.
Normally, when using Equation (3.2.5), there is only one additional term in the
denominaror and due to the large number of terms, the effect of its inclusion is

small.

Ciraham obtained estimares of the lag one autocorrelarion using a sirnilar
expression (instead of discarding the last value of each day in the denominator, the
first value of the day was discarded). However, the values of ay were compuled
using kym as calculated in Equation (3.2.2). No dependence on location was
evident, although there appeared o be some dependence on K. Graham fita
regression model to represent the variation in by a3 a function of Ky, although its

ability to predict pj was not statistically different from the mean value of p1=0.54.

2
Pia, = 03435 + 1.0745K, - 1.1327 K| (3.2.7)

The hourly a4 lag one autocorrelations were computed from the 22 years of
Albuquergue, Madison and New York data using Equation (3.2.6). Days with K
values of 0.09 10 0.11, (.19 to (.21, etc. were grouped together. The mean, ay¢.
was assumed 1o be zero, a reasonable approximation based on the data of Table 3.3.
The first and last hour for which radiation was recorded each day were discarded, as

the radiation amounts are small and often inaccurate.

The py values computed in this study are displayed in Figure 3.14, along with
the values as computed by Equation (3.2.7). The agreement between the data from

this study and Graham's data is pood, particularly when in consideration of the
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Lag One Autocorrelation of the ay Values as a Function of K

Figure 3.14
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different ki models used. Unformunately, some location dependence is apparent;
the values calculated for Albuyuerque are consistently lower, however, only by 0.1

ar less,

3.2.3 Distribution of k¢ about ki

One possible echnique for madeling the k; series would be to valculate ke, for
an hour, and obtain the deviation, ay;, from the ay; distribution (using a stochastic
model to ensure the correct autocorrelation). The ag; value waould then be added to
the Ky value to produce the value of k; for an hour. However, Graham concluded
that the distribution of the ky's about ki, is similar to the distribution of the ajg
values about zero and more convenient to wark with since it is bounded by Q and 1.
Therefore, Graham recommends instead modeling the ki series directly, that is, to
caleulate kyy for an hour, and obtain the k; value from the distribution of k; about

kim.,

The distribution of k; ahout the long-term average value for an hour was first
considered by Graham, and is distincdy different from the hourly k, distributions
described by Hollands and Huget[1983] and Theilacker[1980]. The shape of this
particular k; distribution is dependent on both the hour of the day and the value of K;

(see for example, Figures 3.16, 3.17 , and 3.18 ).

For a particular value of Ky, the variance associated with a k; value at an hour far
from noon will be larger then the variance associated with a ke value at an hour near
noon. Assume that the total amount of radiation has been calculated for a day, but

the exact hourly values are unknown. There are virtually an infinite number of
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possible combinations of hourly radiation values which will sum o yield the
specified amount of radiation for the day. One possible combination is that in which
all hourly values are assumed equal to their long-term mean values. In selecting
another possible set, if there is a deviarion from the mean radiation value at some
hour in the day, some other hour or combination of hours must also deviate fron
their mean by an equivalent amount so that the total radiation for the day is still the
same. However, constraints are placed on the size of the deviation For an hour, as
the maximum radiation for an hour cannot exceed the extraterrestrial radiation nor

can it be less than zero.

Thinking in terms of the variable k; instead of the radiation, a large deviadon of
ky from ki for an early morming hour represents only a small deviation in radiation.
If this radiation devialion was to be offset at the noon hour, it would tanslate into
only a small deviation in k. Conversely, a large deviation of k; from ey, at the
noon hour represents a large radiation deviation; the number of possible
combinations which could offset this deviation is much smaller, and hence the
probability of a large k; deviation at the noon hour is much smaller than the
probability of a large ky deviation at an carly moming hour. This is essentially the
same as saying the variance of the k; values at noon is smaller than the variance at an

hour far fram noon,

The value of K, for the day also has an effect on the shape of the k; distribution.
Because the distribution is bounded by k=0 and k=1, for days with a hi gh value of
Ky, the distribution should be skewed to the right; similarly, for davs with a low
value of K, the distribution should be skewed to the left. For the mid-range K;

values, a more symmetrical distribution would be expected. It would also be
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expected that the variance of the k; distribution would be smaller for extremne values
of K¢ and larger for the mid-range values. For example, on days with a high K¢

value, every hour must be clear (a small variance), while for days with a mid-range
value of Ky, every hour could be overcast or half of the hours could be clear and the

ather half clondy (a larger variancel,

Graham did not complete a detailed study of the distribution, but based upon
reasoning similar to that above and histogram plots of the data for Toronto, Swift
Current, and Vancouver, approximated the distribution by a beta distribution.
Instead of analyzing the ky values directly, the normalized variable u=(k-x))/(x-% )
was used, where x; and x;; are the lower and upper bounds, respectively, and were

estimated from the histogram plots.

X = 0.0 Kt< (.5
X = 2.68 Ky - 1.29 05K = 0705 (3.2.8)
X, = 0.6 Ktz 0.705

el
X, = 0864 K, (3,2.9)

Graham did not believe that the variation in variance with hour of the day would
have a significant enough effect upon the generated data to warrant its inclusion in

the distriburion model.

The form of the pdf used by Graham is:
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plk.) = cxy xl}“‘*Hu“‘lﬂ -wP! (3.2.10)

T{o+B) L
T TE) (x x )2

Expressions for the mean and variance of Equation (3.2.10) were equated to the
mean, ki, and the variance, o2, of the data, and then solved to yield equations for

the parameters:

(3.2.11)

kim Wwas estimated by Graham from Equation (3.2.2) , and 62 was calculated by
squaring o as obtained from Equation (3.2.4), While 62 computed in this manner is
the variance of the deviations, ay4, rather than that of the k; values about ki,
Graham stated thar the two distributions are similar in shape, and the variances
should also be similar., This representation of the distribution includes the
dependence on K through the value of “a2= while neglecting any vanation in shape

due to hour.

Unfortunately, the beta distribution has no analytic representatian for the

cumulative dismbution function, which is used in the transformation of the normally



distribured variables to the k; variables. Therefore, to calculate each hourly kg value,

interpolation in a table is required.

In an attempt to develop an explicit expression for the k; distribution, preliminary
plots of the cumulative disaibution function were collected from the Albuquerque
and Madison TMY data. Because of the small sample size, and so that all of the
available data could be utilized, the size of the K¢ bins was large (0.1). Rather than
examining each hour separately, the data was sorted by hour pairs (e.g., 10 am & 3

pm), as no difference was expected for hours symmetric about solar noon,

Because of the different locations and groups of days making up a curve for a
specified Ky value, the mean value of all of the k; values for each curve, representing
kim. was used to deseribe the curve rather than the value of K. In other words,
although the curves were binned by K., they are used as distribution curves fora

specified value of kgy rather than for a specified value of K.

Examinartion of the cdf curves for the different hour pairs and kg values
followed those expectations described previously. Hawever, the curves for
Madison and Albuquerque for equivalent hours and ki, values were not as similar
as had been hoped. indicating a dependence on some other variables besides kyy, and
hour, The Albuquerque curves appearad to have a larger variance than those for
Madison. The k; enmulative distribution functions of the Seattle, WA TMY Data

were also plotted; they agreed well with the Madison curves,

Several ransformations of the k; variable were tried in an artempt to find a more

location-independent form. The distribution of the variable, u, as studicd by
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Graham, was plotred for Albuguerque and Madison; the problem of different
variances was still apparent. Plotting the distribution of the variable hyy = (k-
Kkym)/©, where kg, and © are the mean and standard deviation calculated for each
curve, collapsed all of the curves (all hours, all ks, and all locations) such that
they could be represented by a single expression. An example of the iy distribution
is shown in Figure 3.15. While to an extent, the plotting of many curves so close to
each other hides any variation in skewness, it is also evident that the curves do not

differ considerably.

Similarity ta the normalized ambient temperarure distribution [Erbs, 1984] and
the hyperbolic tangent function prompted a linear least squares regression to estimate

the parameter o in the following expression,

_ 1 +manh(ohy,)
s 2 (3.2.12)

h = (k-kp)/0

The Albuguergue and Madison data was regressed in three ways: separately for cach
hour and each location, for each location at all hours, and for all hours and all
locations combined. Tables 3.4 and 3.5 summarize the results, listing the estimated
value of the coefficient and the residual sum of squares for each case. Since the
form of Equation (3.2.12) is not linear, the coefficient ¢ was estimated by
regressing tanh-1(2F-1) on hy; therefore the units associated with the residual sum

of sguares is not the same as the F-values, but rather tanh-L(2F-1). The increase in
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residual sum of squares is very small, while in the worst case, R only dropped

from 96% to 93%, indicating that a single parameter value is reasonable to use for all

hours and locations,

Table 3.4
ALBUQUERQUE, NM (TMY Data)
Residual surn of squares for model fits to k¢ distribution

K. 01 02 @3 04 a5 06 07 08 09 ALK
Hour= 12,1

L.H 08 20 1.2 85 45 86 392 107 18 773
L 0.8 20 1.1 87 44 81 401 105 18 775
All 0.8 21 1.0 90 41 73 41,8 103 19 783
Hour=11,2

L.H 0.8 1.2 1.7 48 32 9.6 19.1 219 29 742
L 0.8 12 112 46 25 990 19.5 238 3.0 756
All 0.8 1.3 116 46 22 8.7 199 253 2321 715
Hour = 10, 3

L.H B D7 28 05 351 8.9 322 163 146 0683
L 0.8 07 22 D9 5.6 10.2 30.7 167 1.5 693
All 0.8 07 21 0.8 52 93 317 164 1.6 687
Hour =9, 4

L,H 0.8 43 38 30 07 13 58 531 03 791
L 08 42 40 31 07 78 59 525 03 793
All 0.8 42 38 30 07 74 59 530 03 791

LI indicates coefficients specific to the location and hour pair
L indicates coalficients specific to the location
All indicates coefficients for all locations and all hour pairs
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Table 3.5
MADISON, W1 (TMY Data)
Residual sum of squares for model fits to kg distribution

K 01 02 03 04 05 06 07 08 09 Al

Hour=12,1

L.H 9.2 5.1 57 45 38 123 7.7 2.3 13 525
L 8.3 5.0 5.8 5.2 3.9 133 7.8 2.7 12 53.2
All 79 S50 59 58 4.1 135 8.0 238 1.1 543
Hour= 11,2

LH 156 7.2 4.1 25 54 157 175 1.4 1.0 70.1
L 143 7.5 4.2 3.0 6.1 14,1 184 1.3 0.9 T0.E
All 136 7.8 43 34 66 132 208 15 09 721
Hour =103

LH 30 74 29 B6 88 11.9 367 1.5 1.1 §1.9
L 36 75 31 389 9.1 122 353 1.5 1.1 81.7
All 32 7.8 34 95 48 129 332 1.7 11 82.6
Hour = 9,4

L.H 1.2 11.6 2.7 4.7 122 100 27.0 352 1.3 75.9
L 1.0 143 1.8 38 101 86 334 335 1.4 799
All 1.0 133 20 40 107 8% 312 34 13 778

L, H indicates coefficients specific to the location and hour pair
L indicates coefficients specific to the location
All indicates coefficients for all lecations and all hour pairs
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Therefore, the form of the k; distribution used to represent the hourly k; data is

the single parameter model:

1 + tanh(0.7925 hy,)

F =
Kt 2 (3.2.13)

An equivalent representation which 1s computationally more convenient is

1
1T+ exp(-1.585 hy,) (3.2.14)

Fi, =

To use this distribution model for generating data, k;,,; is estimated from Equation
(3.2.1) . and the standard deviation can be estimated from the expression for Ty

developed by Graham, Equation (3.2.4).

While Figure 3.13 indicates discrepancies between the caleulated o, and that
predicted by Equartion (3.2.4), it is not believed that effect of these differences will
be significant, A new expression could possibly be developed, including some
other parameters, however, using Equation (3.2.4) has the advantage of not being
developed from the data used in the comparison. This distribution expression, like
the beta distribution used by Graham, neglects any hour dependence in the shape of

the dstribution.

ky distributions were also developed from the long-rerm data for Albuquerque,
Madison, and New York. Since a large amount of data were available, the size of

the K; bins used in selecting the data for each curve was 0.02 (e.g..0.0%ta 0.11,
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0.19 10 0.21, etc.). 40 bins of width 0.025 were used to group the ki values.
Distributions were compiled for four hour pairs (Jam&4pm, 10am&3pm,
11am&2pm, 12pmé&lpm). The total number of ky values collected for cach
individual disiribution curve ranged from 2 (Albuquerque, Ki=(.1) to 2248
(Albuquerque, K;=0.8), with most of the curves consisting of berween 100 and 700

values.

The long-term k; distributions for the three locations are plotted in Figures 3.16,
3.17, and 3.18, along with the cumulative distribution functions as gbrainad from
Equation (3.3.7) with kyy and ¢ estimated from Equations (3.2.1) and (3.2.4).
Agreerent tends to be better for the curves corresponding to the lower K; values;
this is in part due to the greater inaccuracy of the o, model at the higher K values.
While the fit is not exact, it does provide an approximation to the diszibution curves
suitable for this generarion model; the exact shape of the distribution is not expected

to have a signilicant effect.

In the analysis leading to Equation (3.3.7) and the work completed by Graham,
no formal check of the distributions to determine whether kyy, Ky and hour were
sufficient to describe the variadons was made. That is, can the standard deviadon,
skewness and kurtosis be sufficiently represented as functions of some combination

of K, ki, and hour pair?

The modeling of the distribution of k¢ about kyy, causes some confusion, in that
while the individual curves were created by taking days with only a specified value
of Ky, the mean value of k; as calculated from the curves is not the same as K. In

the generation process, the value of kyp is known for an hour, and the acmal value
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of ky must be found from these distribution curves, Therefore, the curves must be
used as kyp, curves rather than K, curves, that is, each curve must represent the
distribution of k; for that particular value of kg, net for that particular value of K,
even though the curves were created for a specific K¢ value, IF the curves were used
such that the particular curve was specified by K, instead of ki, an inaccurate
reproduction of the diurnal variation would occur (and if the hour differences were
ignored as in Equation (3.2.10) ar (3.2.13), no distinct diurnal variation would be
generated at all). Modelling of the k; distribution also clouds the issue as to whether
K¢ or kyy is the appropriate variable of which the standard deviation, skewness, and
kurtasis should be dependent upon. It was realized upon completion of this study
that if the distribution of the deviations, aj, had been examined instead of the
distribution of the k; values about k., this discrepancy would have been removed.
In the generation process, the mean value of ay would always be zero, and the
appropriate curve could be selected as a function of Ky The k; distribution was
selected initially instead of the ay. distribution as this was the approach taken hy

Graham.

The standard deviation of the k; distributions, as shown in Figure 3.19 a-c,
indicate a definite dependence upon hour and Ky, as expected. There are, however,
significant differences between the different locations. While all appear 1o have the
same general shape, somewhat similar o a sine wave, the size of the amplitude and
the locadon of the peak differ between the three locations examined, This indicates
that K and the hour are not sufficient to indicate the standard deviation of k, abour
km. This should have been expected from both visual inspection of the distribution

curves and the location dependenee apparent in the o, values (Figure 3.13).
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Poszibly the inclusion of Ektjw* the standard deviation of the 12 E_{t values abaut

their average value or K; may could explain these differences.

The skewness and kurtosis of the kg distribution do not show the strong hour
dependence evident in the standard deviation (Figores 3.20 and 3.21). They would
seem to be reasonably represented solely by the value of K, especially in
consideration of the large uncertainty in these estimates (they are extremely sensitve
to rounding errors and cutliers). Both the skewness and kurtosis do show some
dependence on K, which the simplified medels of Equation (3.2.10) and (3.2.13)

neglect,
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3.2.4 The Graham k¢ Model

The stochastc k; model as developed by Graham([ 1985], rather than modeling
the series of k; values directly, transforms the ki values to a sequence of normally
distributed values which can be represented by an AR | model.

As was demonstrated in Section 3.2.3, the distribution of ky about ki, is
dependent on both the hour of the day and the daily value of K,. Modeling the Ik's
therefore requires modeling a variable whaose prabability stucture changes each hour
and each day. The kg sequence is not stationary, and due to its non-Gaussian
distribution would surely have non-Gaussian residuals when modeled by an AR
process. To eliminate this problem, Graham transforms the k; values through their
cumulative distribution functon to 2 normally distributed variable, o, with mean 0
and variance 1. This mansformed variable can then be represented by an AR 1
model:

X = §Xe + g (3.2.15)

In Graham's modeling of the daily K, sequence in a similar manner, the AR
parameter, ¢, was found to be not significantly different from the lag ane
autocorrelation of the K¢ sequence. Assuming that again the effect of the
rransformarion on the lag one autocorrelation value will be small, Graham
recommends the use of Py as calculated from Equation (3.2.7) to represent the

parameter ¢.

To generate the k; values, each hour a ¥ value is obtained by randomly selecting



a value for g; from a Gaussian distribution and applying Equation (3.2.153), where
the mean of & is zero and the variance is equal to l-¢2. ¥, is transformed to the non-

Gaussian k; by equating the cumulative distribution functions.

The expression for the normal (or Gaussian) cumulative distribution function

with a mean of () and variance of 1 is

o
Vim J. (3.2.16)

where
(3.2.17)

The cumulative distribution funetion of the k; distribution is represented by

1
By =
B 1 +exp(-1.585 hy,) (3.2.18)

where

hyy = ki-kpl/o

which 1s not the dismibubon equation nsed by (Graham, but the expression developed
in Section 3.2.3. ki is estimated [rom Equation (3.2.1) and ¢ from Equation

(3.2.4).

Equating the curmnulative distribution functions and solving for k; yields:
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T, 1
" 1.55:51“ - 1

k= k
X
'[},5[1 +€I‘f{T—£]]

T

(3.2.19)

Since the sequence of k¢'s is not continuousg, a new sequence of ¥'s must be
generated each day (the last ¥ of a day should not be used as the y;_q for the first
hour of the next day),

3.2.5 Adaption to the Degelman genmerator

The hourly k; model of Section 3.2.4 requires as inputs only the daily value of
K and various quantities which are calculated from latitude and tme. The Graham
stochastic k model 1s easily substituted in place of Degelman's hourly radiation
model, as the daily value of K; is conveniently generated in the daily portion of the
Degelman generation programt.

3.2.6 Dilfluse Radiation

The diffuse radiation each hour is compuied deterministically using the hourly
diffuse fraction correlation developed by Erbs[1982]. While realistcally there is
considerable variation of the diffuse fraction about the long-term average values , a
study by Hollands and Crha[ {987] indicates that the error due 1o neglecting this

variarion is on the order of 3% or less.

3.2.7 Correction of hourly k; values
The stachastic approach used W generate the hourly k¢ values does not ensure

that a day’s total radiation as obtained by summing the hourly values is equivalent to



the daily radiation value as set forth in the daily portion of the generation process.
To correct this, the entire day's k; values are generated on the first hour of each day,
converted to radiation values and summed to yield the total daily radiation. A
correcton factor equal to the ratio of the "targer” daily radiation value (the value
calcunlated in the daily portion) to the actual generated daily radiation value is
computed. Each hourly k¢ value is then multiplied by the comrection factor, such that
the generated daily radiation and the "target" daily radiation value are the same.
Checks are included to make sure that no hour's k; value exceeds a maximum value
of (1964 (the maximum k; value observed by Graham; see Equation (3.2.9)). This
correction has an insignificant effect on the diurnal variation and the hourly
autacorrelaton of the radiation values, while ensuring that the long-term daily

statiztics are maintained,

3.3 Comparison

Much of the statistical data collected fram the long-term weather records for
Albuquenque NM., Madison W1, and New York, NY is presented along with the
statistics of the generated and TMY dara in the Appendices. Appendices A throngh
D contain the numerical quantities used to describe the variables, that is, the means,
standard deviations, skewness, kurosis, lag one and two daily autocorrelations, lag
zera daily cross-correlatons, and lag one, two, and 24 hourly autocorrelations for
clearness index, ambient temperature, relative humidity, and windspeed.
Appendices E and F contain plots of the daily distributions and monthly-average
diurnal vuriations for the four variables at the three locadans, The mean has not
been subtracted from the distribution curves, so that a difference in the mean will
shift a curve and may give a curve the appearance of having the wrong shape, The

dimrnal variation curves, on the other hand, are presented with the mean subtracted.
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The monthly-average K| values, I_VIT, of the generated data are listed in
Appendix A along with the means as computed from the TMY data and the long-
term data. For the long-term data, however, two values are presented: the long-term
average and the average of the monthly-average values, called the average long-term
value. For the means, these values will be the same, however, for a stadstic such as
the maximums, the long-term maximum is different from the average of the monthly
maxitums, Also listed is the standard deviadon of the monthly values about their

long-term average values,

Since the hourly radiation values were generated at the beginning of the day and
corrected 50 as to match the daily value determined from the K; distribution, the
monthly-average K; values are virtually identical for the generated and long-term
data. Slight differences are apparent due to round-off errors and the limits imposed
on the corrected hourly values (0 = k; < 1); the correction process does not always
vield the exact total. The differences, hawever, are negligible. The TMY values
differ only slightly; most are within 0.02 of the long-term value.

The standard deviations of the K; values obtained from the different data sets are
all appraximately equivalent. The skewness of the New York data is better
replicated by the TMY data, as it reflects some of the location peculiarities unable to
be replicated by the generator; for Albuquerque and Madison significant differences
arc apparent only for several months. The minimum and maximum K; values for
each generated month should be equal to the average yearly maximum value rather
than the long-term value. The object of this weather data generator is to synthesize

"average” weather conditions, not to test the cxtremes. The minimum values for
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Albuguerque were close to the long-term yearly average values. For Madison, the
generated minimums were consistently low (particularly for the summer months);
the TMY data provided a better approximation. For the New York data, the
generated minimums were high in the winter and low in the summer, although the
differences are only about 0.02. The generated maximums were high far both
Madison and New York, while for Albuquerque they were approximately

equivalent.

The lag one antocorrelation values are better replicated by the generated data at all
three locations, For example, the lag one autocorrelation value for Seprember in
Albuguergue is -(.20 while the average long-term value iz +0.22. The vear-to-year
variation in the K autocorrelation coeflicient is high, which accounts for the wide
variety of autocorrelation values computed from the TMY dara. The generated
autocorrelations tend to be high, particularly for New York; the lonp-lerm values
calculated for these locations tended 0 be lower than the "location average” value of

approximately 0.29.

The plots of the average diurnal variation of the generated, TMY, and long-term
data ¢an be seen in Appendix E. For Albuquerque and Madison, the TMY data
shaws the most scatter about the correlation lines, however, for New York, the
pencrated data exhibited considerable scatter, particularly art the noon hour, The
reason for this has not been determined, however it is worth noting thar it is still

comparable in quality (0 the TMY data for New York.

Examination of the RMS error associated with the K, distributions revealed that
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the generated distributions generally provided a slightly better approximation m the
long-term curve than did the TMY data in Madison; in New York, the opposite was
trug, while for Albuguergue the TMY and generated data were equally able o
reproduce the long-term distribution. The reason that the TMY data is at imes better
at reproducing the lonp-term distribution is due to the limitations of the Bendt
correlation in describing the long-term distribution. An example is the August
distribution in New York (Figure 3.22); the shape of the long-term distribution is
noticeably different from that of the correlation (and therefore the generated data).
The TMY data in this instance, while differing from the long-rerm, tends ta better
follow the shape of the long-term curve. February in Madison, however, is a case
in which the generated distribution 1s a better replication than the TMY (Figure
3.23). Plots of the other months are included in Appendix F.

The lag one autecorrelations of the generated hourly ay; values are slightdy low
in comparison to the long-term values. This result was surprising; since the values
were penerated from a stochastic model, the correct autocorrelation would be
expected. Several possible explanations were considered, First, it is possible that
the estimate of the autocorrelation as obtained from Equarion (3.2.6) might not be an
accurale estimate. A simple test was performed in which 5 years of howdy values
were calculated from an AR1 model with ¢=0.54. Fourteen values were removed
every 10 values, creating a discontinuous sequence similar to that of the haurly k;
valuge., The autocorreladon of the full series was computed and compared to the
autocorrelation of the fragmented series as computed by Equation (3.2.6). Both
estimates were equal to 0.54, indicating that Equation (3.2.6) is a valid estimator,
Another possible explanation, and the mast prabable, is that Graham's assumption

that the ransformation to the Gaussian domain has no effect on the AR parameter is
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incorrect, and that the transformartion causes a lower value of the autocorrelation to

be computed upon generation,

The cross-correlation berween Kpand T for the three locations examined was
positive during the summer and negative during the winter, however the magnitude
of the cross-correlations for a specific month diffared berween the lacations. The
TMY dara tended to follow this pattern slightly better than did the generated data,
however the magnitudes were often greater than those calculated from the long-term
values. The standard deviation of the long-term estimates is high, so again a wide
variation in the TMY values would be expected. This also indicates that the degree

of uncertainty associated with the long-term value is greater.

Cross-carrelations between daily-average windspeed and daily clearness index
are small (0,25 or less) and negative for Albuquerque and Madison, but small and
mostly posidve for New York, The standard deviations of the monthly cross-
correlations about their average value is also on the order of (1.25: there is
considerable year-to-year variation. This is reflected in the TMY data, where values
range from -0.52 to +0.57. The generated data, while not matching the long-term
exactly, tends ta be less than (.30 in magnitude and negative, thus pencrally

replicating the long-term values better than the TMY

The cross-correlations between daily-average relative humidity and daily
cleamess index calculated from the long-term data are strong and negative for all
three locations. For Madison and New York, the values were approximately

constant, ranging from -0.62 to -0.77, while the values for Albuyuerque were
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similarly comstant, however, at a value of -0.52. The standard deviations are
relatively small (about ().15), indicating that the values are significant. Intitively
this abservation makes sense; the more water in the atmosphere, the smaller the
transmittance. The generated values are small, indicating no cross-correlation within
the generation model. The TMY values are similar to the long-term, but like the

cross-correlations between other variables, the variadon is wider.

Ovwerall, after comparing the generated statistics with the long-term statistics, the
generated radiation data is quite good. The only major weaknesses are in the hourly
autocorrelation which is slightly low and in the cross-correlation between daily-
average relative humidity and daily cleamess index; the effect of both of these is
unknown. Other differences between the generated data and the long-term data are
due to the inability of the location-independent correlations to fully describe the
weather pattern at a particular site; only by further improving on these correlations

can impravements be made.
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CHAFPTER 4

Ambhient Temperature Generation

This chapter describes the procedure by which the hourly ambient temperature
values are generated in Degelman's model, including a critique of the resulting data,
and presents an alternative stochastic model, with the results compared to long-term

data, TWMY data, and correlations,

4.1 Degelman Temperature Model
Similar to the generation of radiation values, daily-average ambient temperatures

are generated first, and the hourly ambient temperatures are then obmined from a

decomposition of the daily values.

4.1.1 Input Reducing Madifications

[n the version of the weather data generator developed by Degelman, there were
several additional required inpurs, namely the standard deviaton of the daily-averags
ambient temperatures about their monthly-average values, the monthly-average
maximum daily temperature, and the standard deviation of the maximum daily
temperatures about their monthly-average values. The particolar version which was

used in this study had been modified by Erbs 1o eliminate these inputs.

The standard deviation of the daily-average temperatures about their monthly-

average values is different from the standard deviaton estimnated in Equation (2.2.7),
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but it i related. Erbs[unpublished] developed a similar expreszion relating the daily
standard deviation, o4, to the monthly-average ambient temperarure and the standard

deviation of the monthly-average temperatures about the yearly-average value, Gy

04 = 9.273-0.07952 T + 0.0097111 0y (4.1.1)

The monthly-average maximum daily temperature can be estmated from the
monthly-average ambient temperarure and the monthly-average clearness index. The
peak-to-peak amplitude of the monthly-average diurnal variation of ambient
temperature is approximated from Equation (2.2.9); adding half of this amplitude to
the monthly-average ambient temperature vields an estimation of the maonthly-

average maximum daily emperature,

=
|
k3] —

L (4.1,2)

The standard deviarion of the daily maximum temperatures about the monthly-
average daily maximum temperature is estimated from the standard deviation of the

daily-average ambient temperatures about the monthly-average value.

(4.1.3)

where 1 indicates the month and C| and Co are constants determined from Table 4.1.
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Table 4.1

Coefficients used to estimate the standard deviation

of the maximum daily ambient temperatures from the
standard deviation of the average daily ambient temperature

Month Gy G
L 0.8033 0.7900
2 1.8151 (0.6899
3 29018 (.5823
4 2297 0.6053
5 0.6159 0.7343
6 0.3275 0.7920
7 1.2187 Q0.9717
8 1.4222 1.0269
9 0.2053 0.8326
10 3.0621 0.5167
11 3.0242 0.3811
12 5.084¢9 0.3777

Equations (4.1.1), (4.1.2), and (4.1.3) were included in the generator to replace

the requirement of inputting the 64, Timax. and Omay Values, respectively.

4.1.2 Daily Temperature Generalion

The zame procedure used to determine the daily K values is applied by
Degelman to generate the dailv-average ambient iemperatures. Specifically, daily
values are obtained from a distribution and ordered by a fixed sequence to replicate

the daily autocorrelation.

The shape of the daily distribution is assumed to be normal; while this is not the

case, and was recognized by Degelman, no formulation for the tremperature
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distribution existed at the time (Degelman's model was completed prior to the worl
of Erbs[1984]). Due to the similarity in the two distributions, the assumption of
normality is reasonable. Knowledge of hoth the mean and standard dewviation 1s
required o uniquely specify the normal distribution. The mean is simply the
monthly-average ambient temperature, which is input, and the standard deviation is
calculated internally from Equation (4.1.1).

Canceptually, generation of the daily-average ambient temperatures for a month
consists of twa steps, 1) obtaining N values from the distribution in a2 manner such
that the N values will recreate the distribution, where N is the number of days in the
month, and 2} ordering these N values such that they produce the correct daily
autocorrelation. As was done with the K values, the order is determined from a
fixed sequence, however the sequence used o order the ambient tlemperature values

15 a distinctly different sequence from the one used to order the Ky sequence.

Like the ordering of the K values, the starting position within the sequence is
derermined at the beginning of lhe gencration process. However, for all of the
sequences used in the generator, the starting position is the same. Therefore, by

careful selection of the sequences, daily cross-correlations may be introduced.

In practice, rather than first obtaining all N temperature values and then ordering
them, the temperature values are selected from the distribution in the order as
specified by the sequence, allowing the daily-average value for each day to be

determined on that day.



109
In addition to determining the daily-average ambient temperatures for each day of
the month, the daily maximum temperarures are also generated in a similar manner.
The distribution of the maximum temperatures is assumed to be normal, with the

mean and standard deviation calculated from Equartions (4.1.2) and (4.1.3),
respecrively.

A different sequence is used to order the daily maximum temperature values,
however, the sequence was chosen such that significant correlation exists berween

the daily maximum and average values.

The minimum daily ambient temperatures are calculated by assuming the daily
mean is equivalent o the median, meaning that the daily-average temperature is equal

to the average of the daily maximum and minimum.

4.1.3 Critique of the Daily Generation Model

The nommal distribution used by Degelman to generate the daily-average ambient
remperatures is compared with the average long-lerm distribution in Figure 4.1; the
difference is significant. Both distributions are plotted with a mean of () and
standard deviation equal to 1, and both are symmetric about . The difference

between the distribution curves is an example of a difference in kurtosis,

The daily lag one autocorrelation values as calculated from the generated data are
in the range of 0.60 o (.70, which are equivalent to values calculated from long-

term data,
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Figure 4.1
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4.1.4 Hourly Ambient Temperature Generation

To generate the hourly ambient temperature values, Degelman uses a cosine
interpolation between the maximum and minimum daily temperatures. This produces
a continuous series of hourly temperanres, in the sense that there are smooth

transitions hetween adjacent days.

The minimum hourly ambient temperature is agsumed 1o be the value for the
hour in which the sun rises: the maximum hourly ambient temperature is assumed to
be the value for 3 pm. All of the daily values are generated one day in advance, so
that the following day's minimum temperature is available for the interpolation

between the maximum of one day and the minimum of the next day,

The equation used to calculate the temperature each hour is:

TA
+ A cosf——

T =T
R (4.1.4)

avic

Tyve is the median ambient temperature for the particular portion of the day. Fur
the hours hetween sunrise (the minimum temperature) and 3 pm (the maximum
temperamure), Taye is equivalent to the daily-average ambient temperature. For the
hours between 3 pm and midnight. Tyye is nor the daily-average ambient
temperature, but the average of the maxdimum temperature and the next day's
minimum temperature. Likewise, for the hours between midnight and sunrise, Ty
is the average of the minimur temperature and the previous day's maximum

temperature. In other words, as Far as the hourly temperatures are concerned, the
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month consists not of 31 daily-average ambient temperarures, but of 31 sunrise-to-

3pm average temperatures and 31 3pm-lo-sunrise average temperatures.

R is the number of hours in the apprapriate time period; A is equal to the number

of hours into the time period.

A 1s the amplirude, likewise defined as the amplitude for the particular portion of
the day. This is not the peak-to-peak amplitude, but one half of the difference
between the appropriate maximum and minimum. To coincide with the definitions

of R and A, the amplitude is negative during the sunrise-to-3pm period.

4.1.5 Critique of Generated Hourly Ambient Temperature Data
The cosine interpolation method produces a diumal variation, but not the long-
term monthly-average diurnal variation documented by Erbs[1984]. An example of

the generated diumal variation and the Erbs correlation is shown in Figure 4.2,

Additionally, the hourly ambient temperatures as generated by this method are
purely deterministic. In the case of hourly radiatdon, simulation prediction errars can
result from neglecting the random deviations from the long-term mean. It would be
reasonable, then, to suspect that reproducing the randomness within the hourly

ambient lemperature structure might also be imporrant.

The daily-average temperature as obtained by summing the hourly values is not
identical to the "target” daily-average temperarure value as set forth in the daily

portion of the temperarure generation. However, the differences are small, such that
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neither the shape of the distribution or the daily autocorrelation are significantly

affected.

4.2 Madification of the Ambient Temperature Model

The deterministic approach emploved by Degelman does not attemnpr to preserve
the aurocorrelation structure of the hourly ambient temperatures or the long-term
distribution and diurnal variation documented by Erbs[1984]. While it is unknown
exactly what the effect of neglecting the randomness within the hourly ambient
temperatures will be, a uly representative weather model should include this aspect of

the remperature variable,

Since one of the desired features of the temperature model includes reproducing
the aurocorrelated hourly deviations from the average diurnal variation, some type of

stochastic madel is indicated.

4.2.1 The Hourly Ambient Temperature Sequence
The hourly ambient temperamre values from the Albuquerque WM, Madison W1,
and Miami FL. TMY data were analyzed to further understand the behavior of the

hourly ambient temperature sequence and to attempt to improve upan the deterministic

model.

The first step in the analysis of any data set is to plot the data. Rather then plotting
one entire year of hourly temperature data, the data was plotted month by month and
cxamined. [mmediately apparent is the strong diurnal variation and the difference in

amplitude of the diurnal variation throughout the year, As observed by Erbs[1984],
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the amplitude appeurs to vary as a function of KT. As expected, an annual variation is

also apparent, meaning that the mean is dependent on the time of year.

Several days of hourly data were plotted ar a tme to allow a more detailed
examination. While the diumal variation is srong, thers are noticeable deviations,
particularly during the manths in which the amplitude is small. There are many days
in which the pattern of the ambient temperature values throughout the day does not
resemble the monthly-average diumnal variation. However, since the degree to which
the diurnal variation is degraded appears to be somewhat dependent on the size of the
amnplitude, this suggests that the size of the deviations from the monthlyv-average
diurnal variation are roughly constant throughout the year. In other words, this
suggests that the variance of the deviations (a;) of the hourly ambient temperatures

from their monthly-average hourly values may be approximately constant.

4.2.2 Autocorrelation of the IHourly Sequence

Due to the presence of the diurnal variation, calculating the autocorrelation of the
raw hourly terperature data does not yield much information about the deviatons
from the monthly-average diurnal variation. More information can be gained by first

removing the diumal rend and then computing the autocarrelation,

The guestion then arises as to how to remove the diumal variadon. or more
dircetly, how to compute the "average” valuc for an hour, Considering that the
eventual goal is to be able to generate the hourly temperature values, somehow
subtracting the average diurnal variation seems appropriate, since for generation it can

be determined from Equadon (2.2.8).
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One possible technique involves computng an average diurnal variation for each
day, using T (the daily-averape ambient temperature) for Tm in Equation (2.2.6).
The amplitude could be computed in one of two ways; by either using the monthly-
average amplitude as predicted from Eguarion (2.2.9) or by using the actual amplitude
as determined from the emperature data for the day, Thus, the "mean” value for each
hour of a day could be determined from Equation {2.2.8), The reasoning here is that
the temperature series could be reproduced simply by computing the daily-average and
maximum temperatures from Degelman's fixed sequence method, with the amplitudes
computed from the maximums and averages. The deviations could be computed from
a fime series model and added to the "mean” hourly values to produce simulated

temperatures.

The problem with this method is that in caleulating the average diurnal variation for
each day from Equation (2.2.8), given the dailv-average and the amplitude, a
discontinuiry results berween the last temperature of one day and the first temperarure
af the next day. Such step changes have an insignificant effect when they cccur every
few davs [Arens et al, 1980], however, when these discondnuities oceur every day,

they would undoubtedly have a more significant effect.

An alternative is to instead subtract the monthly-average hourly value from each
hourly temperature. This technique largely remaoves the diurnal mend, however the
autocorrelation of the hourly deviations as calculated in this manner 18 somewhat
confounded with the autocorrelation of the daily-average temperatures. For example,
if the average temperature for a day is higher then the monthly-average value, then itis

likely all of the hours will also be higher than the monthly-average hourly values.
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Subtracting the daily means would eliminate this problem, but as discussed
previously, would introduce discontinuities. A stochastic model should be able to
replicate this series (temperature minus hourly monthly-average values), and this was
the technique used to remove the diurnal trend. The lag one hourly autocorrelation
values were observed to vary between (1.95 and (.98 independent of location or

monlh.

Also to be considered is the annual variadon. It was originally unclear as to
whether or not neglecting this variation would leave a trend remaining within each
month. As a check, Fourier coefficients were determined from the Madison and
Albuguerque TMY hourly ambient temperature data. Yearly average values for each
hour were then computed and subtracted from the data. Hourly monthly-gverage
values were then caleulated and subtracted. Lag one to twenty-four autocorrelations of
this twice de-mrended series were compared to those of a series de-wended only by
subtracting the hourly monthly-average temperamres. Mo significant differences in the
aulocorrelation values were observed, therefore it was assumed that the annual
variation could be neglected. That is, the long-term daily temperature can be assumed

to have a constant value for all days within a month.

4.2.3 Model Development

A logical extension of the method for generating the hourly k; values would be to
generate the hourly ambient temperanires from the daily-average values in a similar
manner. The temperature series, however, is different from the kg series in that it is
continuous. Once the daily-average is fixed, it is difficult to generate hourly values
stochastically without introducing discontinuities between the last hour of one day and

the first hour of the next day.
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An alternative to predatermining the daily values and ordering then with a 31-day
sequence is to predetermine the 24 hourly monthly-average temperatures from the
diurnal termperature variaton relation proposed by Erbs[1984]. The hourly
temperatures can then be generated by a stochastic model which replicates the
autocarrelated hourly deviations from the monthly-average dinrnal variation. The
autocorrelation function to be analyzed for such a model is the autocorrelation as
calculated in Section 4.2.2, that is, the autocorrelation of the sequence of hourly

temperatures minus their hourly monthly-average values.

In stochastic modeling, the series to be modeled must be stationary and the
residuals must be Gaussian and uncorrelated. Stationarity means that the mean and
variance of the series must be independent of time, Eliminating the diurnal variation
by subtracting the hourly monthly-average values removes dependence of the mean on
time, while the variance can be assumed constant thronghout a month. To ensure
(Gaussian residuals, this implies that the series itself should be Gaussian; the

distribution of the hourly ambient temperatures is not Gaussian, however it is similar.

TMY data from Albuguerque NM, Madison WI, and Miami FI. were used in the
identification and fitting of the model rather than the long-term data, so that the long-

term data could be used for an evaluation of the model performance.

For a moving average (MA) model, the autocorrelation function (act) can be used
to tentatively identfy the appropriate model, as the acf will be approximately zero after
the nth lag, Similarly , an AR model can be identified by examinadon of the partial
autocorrelation functon [Box and Jenkins, 1976]. An ARn model exhibits a partial
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autocorrelation function which "cuts off” after lag n. The values of the pacl can also

be used as initial estimates of the AR parameters,

Monthly plots of the acf of the hourly time series (temperature - hourly monthly-
average) show a slowly decaying function. This indicares that the series is close to
unstationary; a better technique of detrending would help make the series more
stationary, Examination of the acf does not indicate a MA model; neither isx an AR1
model indicated, as the acf of an AR | model should be an exponential decay. This
indicates either a higher order AR or a mixed ARMA maodel. The pacf of the time
series indicates that possibly an AR2 or AR3 model would sulfice. Sample plots of
the autocorrelation function, partial antocorrelation function, and the residual
aurocorrelation function are shown in Figures 4.3 A, B, and C. The set of plots
representing August in Madison are an example of a month to which the model fits
well, The pacf is essentially zero after lag 2, indicating an ARZ moxdel, while the
tesiduals are uncorrelated. January in Miami shows similar results, however the
autocorrelation function tends 1o suggest examining an AR3 medel. Ocrober in
Albuguerque is an example of a2 month for which the fit was not particularly good;
there are several significant antocorrelations apparent at lags past lag two, and the
residuals show some autocorreladon, Owerall, Octaber in Albuquerque represents the

worst months while January in Madison is indicative of the best months.
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A previous study of the hourly ambient temperature sequence was conducted by
Hittle and Pedersen[1981]. Hourly weather data from four U.5. locations, Charleston
SC, Fort Worth TX, Santa Maria CA, and Madison WI were analyzed. The approach
employed by Hittle and Pedersen consisted of three stages, 1) deterministic modeling
through rhe use of the discrete Fourier ransform, 2) stochastic modeling by an
ARMA(2n.2n-1) model, and 3) modeling with a combined deterministic-stochastic
model. Analysis of the ambient temperarure sequence and the adeguacy of the various
fitted models indicated the third technique to be the most appropriate. The
deterministic portion represented the diurmnal variation, and was modeled by a Fourier
series; the stochastic portion modeled the residuals obtained after removing the diurnal
mend. An ARZ model was found by Hittle and Pedersen to be appropriate in
describing the residual behavior at all of the locations. The autoregressive parameters,
however, were different for the four locations and hence this model could not be

directly inserted into the weather generation model.

The analysis of the Madison, Albuguerque, and Miami TMY data was similar to
that of Hittle and Pedersen, except that rather than using a Fourier series to remove the
diurnal variation, the hourly monthly-average values were simply subtracted, As
previously noted, either an ARZ or AR3 model seemed to be indicated for modeling
the residuals. Since Hirtle and Pedersen also found the AR2 model to be appropriate.

an AR2 model was developed to model the hourly ambient temperature deviations.

The AR parameters were determined for each manth by a linear least squares
regression. Similar to the results obtained by Hitlle and Pedersen, the parameters

were different for the various months and locations. Inspection of the parameters,
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however, indicated some degree of compensation between them, such that it might be
possible to use a single set of parameters for all locations and all months without
sigmificantly affecting the fit of the model. The monthly parameters for the three

locations are shown in Table 4.2,

Table 4.2
AR2 coefficients for each month at the thoree locations

Madison WI Albuquerque NM Miami, FL
& ) 9 by O %
Tan 1.69 -0.74 3.96 000018 1,26 -0.28
Feb 1.25 -(0.28 1.00 -0.01% 171 -(.72
Mar 1.73 -0.74 1.67 -0.68 1.65 -0.70
Apr 1.34 -(1.36 1.58 -0.61 1.03 -0.077
May 1.23 -0.25 0.98 -0.017 0.21 0.00052
Jun 1.19 0.22 1.56 -0.59 0.82 -0.037
Jul 1.64 -0.67 0.92  (0.0022 Q.30 -0,00058
Aug 1.14 (.18 0.86 0.038 (.89 -(1.0493
Sep 112 -0.15 146  -0.50 0.81  0.051
Oct 1.63 -(1.65 1.65 -0.67 1.66 .69
Nov 1.73 -0.74 0.92 0.056 1.00 -0.047
Dec 1.18 -0.21 1.02  -0.035 1.73 -0.74

For some of the months, particnlarly summer months in Albuguerque and Miami,
the second AR parameter is approximately egqual to zero, indicating that an AR1 madel
might be adequate [or those months. However, for many of the other months, the
second parameter is significant, indicatng the need for the AR2 model. Itis
interesting to note that there does not appear to be any pattern o the variation in the
parameters. For example, in Madison, the January parameters are the same as the July

paramelers; no dependence on tme of vear is indicated. Alse, the variation between
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months at one location is just as great as the variation between different lacations,

supporting the nodon of location-independent parameters.

Parameters were then fit to the entire year's data at one time for each location. The
results are listed in Table 4.3. Also included are parammeter estimales from two years
of Madison data, 1953 and 1970, and rhe values estimated by Hitde and Pedersen.
While Madison, Albuquerque, and Miami are vastly different climartes, the parameters
are similar. Also, the parameters estmated from the different years of Madison data
indicate that the variability from vear to year in the estimates is considerable, more so
than the variation between locations, The parameters estimated by Hittle and Pedersen

are also very similar to those estimated in this study.

To test if any set of parameters could be used withowt significantly affecting the fit
of the model, the different parameters listed in Table 4.3 were fit to the Albuquerque,
Madisan, and Miami TMY dara. The ratio of the increase in sum of squares is listed in
Table 4.3, along with the standard deviation of the residuals from each fit. While
theoretically any ratio value over 1.00 is significant for such a large set of data, the
increase in sum of squares is small and for engineering purposes can be ignored.
Looking at the standard deviadons shows the effect; at the worst, the standard
deviation increases from roughly 0.7 degrees C to 1 degree C; this is very small,

particularly in consideration of the accuracy of the measured temperature data.

A single set of parameters was then estmated for the TMY data at all three
locations combined. These values are also listed in Table 4.3, along with the resulting
sum of squares ratio and residual standard deviations. The increases are small,

indicating that a single set of parameters can be used in the AR2 model to adequately
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Table 4.3
ARZ parameter fits to the TMY dara

Madison Albuquerque Miami
Coefficients 0, B, G/55 ratio S/55 ratio /88 ratio
Madison TMY 1.330 -0.269 .79 1.00 0.90 1.07 0.74 1.08
Albuquerque TMY  1.089 -0.117 .82 1.08 0.87 1.00 0.71 1.00
Miami TMY 1.064 -0.103 0.83 1.11 D.87 1.0 0.71 1.00
Madison 1953 1.172 -0.193 .80 1.04 0.87 1.01  0.72 1.02
Madison 1970 1.695 -0.708 0.84 1.14 1.02 1.37 0.84 1.40

Fort Worth (Hittle) 1.363 -0.377 0.79 1.00 190 1.08 0.74 1.09
Madison (Hittle) 1.18  -0.206 0,20 1.04 0.87 1.01 0.72 1.01
Santa Maria (Hittle) 1.073 -0.283 1.27 2.59 1.11 1.64 0.85 1.42
Al TMY 1.178 -D.202 0.80 1.04 0.87 1.01 0.72 1.02

describe the behavior of the temperature deviations at all locations, Tables 4.4 A, B,
and C show the sum of squares ratio and the residual standard deviadon for each
month of the TMY data as the various coefficients are used in the ARZ model. Again,
while theoretically the ratio increase is significant, it is minimal and the increase in
residual standard deviation is small in comparison with the accuracy of the temperarure
measurements, The final parameters used in the AR2 model were those abtained from

the fit to all of the TMY data, 07=1.178 and §9=-0.202.
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Table 4.4A
Ratio of sum of squares and residual standard deviation for increasingly general
paramerer estimates MADISONWT  (TMY Data)
Monthly TMY Yearly TMY Overall TMY
January 1.000  0.531 1.249  0.593 1.350 0.662
February 1.000  0.820 1.011  0.825 1.009 (0.823
March 1.000 0412 1.365 0.482 1,762  0.548
April 1.000  0.958 1.0 0.959 1.029 0.972
May L.aogd 0992 1.015 0,999 1.0D4 0,993
June 1.00O  0.906 1.027 0918 1.000 0.906
July 1.000  D.4d61 1.158  0.497 1.386 0.5343
August 1.000  0.892 1.044 D912 1.003 .894
September 1.000  0.945 1.052  0.969 1.002 0.946
October 1.000  0.642 1,134 0.684 AL 0.745
November 1.000  0.449 1.317 0.516 1.669 0.582
December 1.0a0  0.827 1.034  (0.841 1.002 0.828
Table 4.4B
Ratio of sum of squares and residual srandard deviation for increasingly general
parameter estimates ALBUQUERQUE, NM  (TMY Dat)
Monthly TMY Yearly TMY Owverall TMY
January LOOO  0.884 1.017  0.892 1.048 0.905
February 1.000  0.973 1.011  0.978 1.035 0.989
March LON0  0.440 1.664  0.567 1.469 0.533
April 1.000 0,478 1.378 0D.562 1.256 0.526
May 1.000 1.124 1.011 1.130 1.037 1.145
June 1.0D00  0.577 1.357  Q.a72 1.244 (0.643
July 1.000 1.215 1.037  1.237 1.072 1.258
August 1.000 1.059 1.066  1.094 1.113 1.118
September 1.ao0  0.526 1.197  0.375 1.121 0.356
October 1.000  0.434 1.583  0.544 1.410 0.515
November 1.000  0.839 1.030  0.872 1.068 (L8RS

December L.00  0.878 1.007  0.882 1.028 0.891
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Table 4.4C
Ratio of sum of squares and residual standard deviation for increasingly general
parameter estimates MIAMI, FL.  (TMY Data)

Monthly TMY Yearly TMY Overall TMY
January 1.000 0.726 1.054 0.745 1.008 0.729
February 1.000 0325 1.971  0.455 1.629 0412
March .00 0.320 1.697  0.417 1.487  0.390
April 1.000  0.680 1.003  0.680 1.024 0,688
May 1.000  0.667 1.033  D.678 1.085 0.694
June 1.000 0977 1.099  1.024 1.162 1.053
July 1.000  0.943 1.105  0.991 1.175 1.021
August 1.000  (.308 1.0B5  (.841 1.133 (1.B59
September 1.000  0.752 1.081 (.783 1.150  (.807
October 1.000  0.292 1.683 0.377 1.460  0.352
November 1.000 0.688 1.003  0.690 1.035 0.701
December 1.GOO  0.344 2.125  0.502 1.705 0451

The residuals from this model are uncorrelated, but are not completely GGaussian.
This problem was also apparent in the modeling of the k; sequence, and 1o eliminate it,
the k¢ variable was transformed to a normally distributed variable, X, and ¥ was
modeled by an AR process. Likewise, the ambient temperature sequence can be
transformed to a normally-distributed variable and modeled in the Gaussian domain.
The transformation involves equating the cumulative disrribution functions; an
expression for the long-term average distribution of hourly ambient teniperatures about
their monthly-average value was developed by Erbs[1984]. Graham| 1985] found the
transformation of the K; variable to a narmally distributed variable to have only a small
effect on the autocorrelation, and nsed the parareter estimates obtained from the

untransformed data in the AR model. Sinee the distibution of T is morg similar to the
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normal distribution than was the Ky distribution, the paramelers used in the modeling
of the i series will be assumed equal 1o those obtained from fitting the AR2 model

directly to the de-trended remperature dara.

4.2.4 Ambient Temperature Generation
To use the AR2 mode] in the generation process, first, 24 hourly monthly-average
lcmperatures are estimated using Equation (2.2.8). Tm. the monthly-average daily

temperature is known and the amplimade, A, is estimated from Equation (2.2.9).

For each hour of the month, a % value is generated according to the AR2 model:
X = ¢'lxt-l * ¢'2x1.-2 + g (4.2.1)

where 3 is a normally distributed variable with mean Q and variance 1, ¥,_1 is % from
the previous hour, ¥, 5 is % from 2 hours ago, and g; is a Gaussian disturbance with

mean § and variance 02=l—q:-1p1-¢|3p2 {(py and py are the lag 1 and 2 autocorreladons

of x}.

The generated , value is then transformed to an hourly temperature by equating the
cumulative distribution function of 3 (Equation 3.2.16) and the cumuylarive distribution
function of hourly temperature, The cdf of the hourly ambient temperamre is given by
Equation (2.2.5), where for this application, Th, is substituted for Tiy in Equation
[2.2.!5]. The shape of the distribution is the same throughout the month, but the mean

is dependent on the hour of the day. Solving for the hourly remperature, T, gives:
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= Tm |

T =T In = - 1

h "™ 1598 [ 3 ]
0.5]1 +erf (22
2 (4.2.2)

The stochasde model just described does not guarantee that the generated monthly-
average daily temperature is as originally specified. This discrepancy can be
eliminated in a similar manner as was done with the radiation by comparing the
generated monthly-average 1o the long-term average and adding the difference ta each

howrly temperarre.

The hourly temperatures generated in this manner are actually Type I iemperatures,
In that they represent realistic weather data. Since the daily-average values were not
predetermined, the daily-average values are not fixed so as to replicate the long-term
distribudon and autocorrelation. Rather the daily-average values are realistic daily
values, creating a Type I daily sequence. This means that the distribution will not
always exactly march the long-term distribution as predicted by Erbs correlation, and
the daily autocarrelation may vary from the long-term average value, as a real month's
aurocorrelation value is observed to do. Since this was not the goal of this weather
generator, both Degelman's deterministic hourly temperature model and the stochastic
hourly temperature model were inclided in the weather generator, allowing the user to
choose whichever model is most appropriate for the particular application. If the
autocorrelation of hourly ambient temperature is thought to have an important effect,
the stochastic model would be more appropriate, whereas if maintaining the long-term
daily autocorrelation was thought to be mors impartant, the deterministic model should

be used,.
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4.3 Comparison

The monthly-average ambient temperature values for the generated data and the
long-term data are identical due to the adjustment of the generated values, The TMY
monthly-average values are also very similar, differing ar the most by approximarely
one degree C. If the monthly-average values for a particular calendar month were
assumed to be normally distributed independent random values, then the standard
deviation of the long-term mean would vary from approximately 0.22 to 0.54 for the
different months, indicating that for 2 95% confidence interval, the actual long-term

mean value could be within +/- one degree.

The standard deviation of the daily-average ambient temperatures as estimated hy
the generated and TMY data is generally within 2 degrees C of the long-term values,
however, the TMY is often closer to the long-term. For example, for August in
Albuquerque, the long-term standard deviation is 2.1, the TMY value is 1.8, and the
generated value is 3.9. This two degree discrepancy causes the differences apparent
between the long-termy/TMY curves and the penerated/correlation curves in Figure 4.4
The skewness and kurtosis vary slightly from the long-term for both the generated and
TMY data, with neither the generated or TMY being significandy better, The average
long-term monthly minimums are more closely reproduced by the TMY data; the
largest deviations of the generated minimums from the average long-term values are 5
degrees C. Similarly, the maximums are better reproduced by the TMY data. however

not as significantly as with the minimums,
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Examination of the RMS error associated with the monthly-average hourly diumal
variation of ambient temperature indicates that the TMY data often does a better job of
simulating the long-term diurnal variation. The reasan for this lies in the accuracy of
the correlation. An example is the diurnal variation for November i Albuquerque
(Figure 4.5). The long-term average curve is shifted in relation o the correlation; the
generated curve lies on top of the correlation, indicating that this is the best that can be
achieved without further research into developing a more detailed correlation. Some
months, however, are quite accurately represented by the generated data, for example
March in Madison (Figure 4.6). This month also indicates how the TMY is not

always an aceurate portrayal of the long-term,

The distributions of the daily-average ambient temperatures about their monthly-
average value show one of the problems associated with having a "realistic" model.
The May distribution in Madison (Figure 4.7) is an example of the generated data not
replicating the correlation distribution. The correlation in this case approximated the
long-term quite well, but due to the randomness in the stochastic temperamre model,
the generated data does not exactly recreate the correlation distribution. However,
there are many months in which the distribution replication is very good. for example

November in Madison (Figure 4.8 ).

The generated daily autocorrelations are slightly low; instead of yielding values of
about 0.6 or 0.7, the generated values vary considerably and appear to have a mean ot
approximately 0.5, This is most likely due to an inadequacy in the ARZ model, such
that the lag 24 hourly autocarrelations are not correctly reproduced. The lag one daily
autocorrelation of the TMY data also exhibits a higher degree of variability than the
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long-term data.

The cross-correlation between daily-average ambient temperature and daily-
average windspeed is negligible for Albuguerque and Madison: for the non-summer
months in New York values ranged from -0.2 to -0.3, indicating a slight negative
correlation. The standard deviarion of these values was relatively large, on the order
of 0.2 for all three locations. Bath the TMY data and the generated data exhibited
vross-correlations which varied considerably in sign and magnitude (-0.47 to +0.46),
however, the magnitude of the correlations computed from the generated data tended
to be smaller. This behavior would be expected because of the large standuard

deviations associated with the long-term values

The long-term average cross-correlation between daily-average ambient
temperature and daily-average relative humidity varies considerably berween the three
locations. Madison and New York both exhibited strang positive correlations (0.6)
for the winter months, changing o weaker negative correlations (-0.25) for the
surnmer months. Albuquerque, on the other hand, shows strong negative values
during the summer months, and weaker negative values during the winter months.
The TMY data, while varving considerably, replicates the patterns evident at the three
locations. The generated dara produces swong negative cross-correlatons for all

months at all locations, mostly in the range -0.4 to -().7.

Since the ambient temperature data generator is more of a Type I generator than a
Type I generator, some of the statistical values computed are smongly a function of

the random number seed. To determine the effect of the random number sead, ten
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years of weather data for Madison were generated using a different random number
seed for each year. The first six months of the month-by-month results are listed in
Table 4.5; the italicized values are the standard deviations. The monthly-average does
1ot vary at all, as would be expected since the hourly values are scaled so as to match
the monthly-average value. The average lag one autocorrelations for the different

months are in the range of .48 to 0.60.

Table 4.5
Effect of the random number seed on the statistics associated with ambient temperature

Mean SiDev  Skew Kurt Min Max pl p2

Jan -3.20 6.88  -0.23 0.40 -24.11 6.10 Q.58 0.18
0.00 1.22 0.35 1.00 4.11 3.85 0.14 0.27
Feb =873 322 -0.06 -0.12 -1696 5:17 0.51 0.17
0.00 0.83 0.36 0.66 2.65 2.95 (.09 0,13
Mar  -0.24 3.7  -0.41 0.14 -13.43 1009 0.54 0.11
0.00 (.56 0.59 147 330 242 0.07 aI7
Apr 7.83 4,38 0.13 -009 -090 1679 0.50 0.09
0.00 .99 0.67 1.10 3.25 2.95 0.11 Q.14
May 1396 4.26 0.21 0.34 5.14 2412 0.52 0.17
0.00 0.61 041 0.97 1.89 2.18 0.12 027
Jun 19.65 382 -0.05 -0.09 11.85 27.69 (.56 0.15
0.0a (.61 0.66 .97 113 2.03 0.13 0.23
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CHAPTER 5

Relative Humidity and Windspeed Generation

This chapter covers the methods employed by Degelman to generate the hourly
relative humidity values and hourly windspeed values. No madifications were
attempred to cither model, whether or nat they were necessary, due to the tme
limitations of this project. A comparison of rhe generated statistics, distributions and

diurnal variations with the long-term and TMY is included.

5.1 Relative Humidity Model Inputs
Rather than generating relative humidities directly, Degelman generates dewpoint
temperatures which, along with knowledge of the dry bulb emperature and

barometric pressure, are converted into relative humidities,

Several modificadons to the required inputs dealing with humidity were made by
Erbs. Originally, Degelman required inputs of monthly-average dewpoint
wemperanre and the standard deviations of the daily-average dewpoint temperatures
about their monthly-average values. Erbs changed and reduced the required inputs
to include just the monthly-average humidity ratios. The monthly-average humidity
ratios are then converted (o monthly-average dewpoint temperatures using a relation

developed by Erbhs[1984].

The standard deviation of the daily-average dewpoint temperatures about their
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monthly-average value is assumed equal to the standard deviation of the daily

maximum ambient temperatures about their manthly-average value,

The altimde of a location is an optional input, used to caleulate the barometric

pressure. If the altitude is not input, the altitude is assumed to be sea level,

5.2 Daily-Average Dewpoint Temperatures

Similar to the modeling of the daily clearness indices, daily-average ambient
temperatures, and daily maximum ambient temperatures, the daily-average dewpoint
temperatures are obtained from a distribution in 2 predetermined order, The
maximum and minimum dewpoint temperature for each day is determined as a
function of the average dewpoint and minimum and maximum dry bulb

temperatures.

The distribution of the daily-average dewpoint temperatures about their monthly-
average value is assumed to be normal. The mean is the monthly-average value and
the slandard deviation, as stated above, 15 set equal to the standard deviation of the

daily maximum ambient temperatures about their monthly-average value,

5.3 Hourly Relative Humidities

Once the minimum, maximum, and average dewpoint and dry bulb temperature
values are known for a day, the hourly relative humidity values arc indirectly
determined from hourly dewpoint temperatures. The dewpoint depressions (the dry
bulb temperature minus the dewpoint temperature) at the maximuom (3 pm) and
minimum (sunrise) temperature hours are computed by assuming the maximum and

minimum dry bulb and dewpoint temperarures coincide. The dewpoint depressions
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for each hour are found by linear interpolation between the depressions at the
maximum and minimum hours. Dewpoint temperatures are simply computed by
subtracting the dewpoint depression from the dry bulb temperature. A
psychrometric routine written by Degelman is used to convert the hay rly drv bulb
and dewpoint temperatures (along with the barormetric pressure) o hourly relative

humidity values,

.4 Comparison of the Relative Humidity Data

The data on the hourly weather tapes did not include relative humidity valucs,
but instead contained hourly dewpaint iemperatures, While it would have made
some sense to output the dewpoint temperamires from the generator and compare
them ro the long-term dewpoint temperatures, all of the location-independent
correlatons developed by Erbs were for relative humidity. The TMY data consisted
of hourly humidity ratios, which also had to be converted into relative humidities for
comparison. The procedures used for hoth conversions are listed in Appendix H.
Some of the recorded data, when converted into relative humidides, yielded values
greater than 100%. In these cases, the relative humidity was assumed equal to
100%.

The generated monthly-average relative humidity values varied from the long-
term values by as much as 16% relative humidity, however, most months were
within 5%. The TMY data is generally more representative, with the exception of
the summer months in Albuquerque for which the generated data provided a better

approximation to the long-term value.
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The TMY standard deviations are generally better than the standard deviations of
the generated data at reproducing the long term standard deviations. This is
expected, as Lhe standard deviations obtained from the gencrated dara are functons
of the mean. Since the means are more accurately represented by the TMY data, it
follows that the standard deviations would also be more accurare, Similarly, the
skewness and kurtosis of the long-term data are generally better represented by the
TMY dara.

The average monthly maximum daily-average relative humidity values of the
long-term data are slightly better emulated by the TMY data then the generated data
for Madison and New York. In Albuquerque, however, the generated maximum
values are more representative, Examination of the Albuquerque results indicates
some: discrepancies; the maximum TMY value is greater than the overall maximum
long-term value for several months (October, November, and December). Since the
TMY months are supposedly months taken from the long-term data, the TMY

maximum should not exceed the long-term maximum.

The average monthly minimum daily-average relative humidity values of the
long-term data are equally reproduced by the TMY and generated data in
Albugquerque, within approximately 4 degrees C of the average long-term
minimums. For Madison, the TMY values provide better approximations. More
importantly, in June through December., the generated minimums are less than the
overall long-term minimum values by a significant amount. In New York, the
generated minimums, like the TMY minimums, are within roughly 5 degrees C of
the average long-term values with the exception of November and Decernber, in

which the generated minimum values are again less than the overall long-term
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values,

The distributions of daily-average relative humnidity for the long-term, generated
and TMY data for Albuguerque, Madison, and New York are compared in Appendix
E. They are sometimes difficult to compare due to significant differences in the
mean values, which shift the distribution curves. Analysis of the bias error and
RMS error indicates that Frbs correlation[1984] is better than both the TMY and the
generated data at reproducing the long-term distribution. The muin reason for this
result, however, is probably due to the fact that the means of the correlation and the
long-term data are virtnally identical, For December in New York (Figure 5.1), the
generated, long-term, and TMY means are approximately the same (the TMY is 2%
low), so they can easily be compared. The generated distribution is quite different
from the other three, which are all very similar; this is due to a larger standard
deviation. The curve corresponding to the Erbs correlaton, however, indicates the
possible distribution which could be obtained from a better relative humidity
generation model. October in Albuquerque (Figure 5.2) is another month in which
all of the means are very similar, although the TMY mean is 4% higher. This is an
example of a month in which the distribution is well reproduced by the generated
data. Comparison of the Erbs correlation with the lang-term distributions also
indicates that the correlation provides a good approximation to the daily distribution

in addition to the hourly distribution from which it was developed.

The long-term monthly-averape diurnal variation of relative humidicy is mare

accurately reproduced by the TMY data than the generated data. This is mainly due
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to the straight line shape of the generated diurnal variations and differing amplitades,
for example, August in Madison (Figure 5.3), The TMY data is also generally better
than the variation predicted by Erbs correlation. April in Albuguerque (Figure 5.4)
is one of the months with the best generated diumal variatons; this happens to be a
poor month for the TMY data, although it is interesting that Erbs correlaton and the
TMY data agree quite well,

The average long-term lag one autocorrelations of the daily-average ralative
humidity values show no systematic variation and are roughly constant (the range of
values for cach locations is abour 0.17). The values for Madison and New York are
approximately the same, with means of 0.45 and 0.40 respectively, however, the
values for Albuquerque are significantly higher, with a mean of about 0.61, The
mean of the generated autocorrelation values is close o that computed from the long-
term values for Albuquerque, however the range is much greater, about 0.30. The
TMY autocorrelation values are close to the long-term values, with the exception of

several months for Madison and New York.

The average long-term cross-correlation between daily-average relative humidiry
and daily-average windspeed is essentially zero for Albuguerque and Madison, but
in New York, for all of the months except those in late summer, cross-correlation
values between -0,20 and -0.33 were computed. The standard deviation associated
with each of the monthly values is relatively high, about 0.22, independent of
location. The generated dara produces no significant cross-correlations between
daily-average relative humidity and daily-average windspeed; the cross-correlations

computed from the TMY data vary widely, yet they are appropriately higher for the
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New York data.

3.5 Windspeed Simulation
Monthly-average windspeed is an optional input to the weather generator; if it is

not available, an average value of 9 mph (4 m/s) is assumed.

Daily-average windspeed values are assumed to be normally distributed, with a
standard deviation equal to 0.31 times the monthly-average valve. A fixed 3 1-day

sequence i8 used lo order the values obrained from the distribution.

Hourly values are randomly selected from a normal distribution with a mean
equal to the daily-average value and and a standard deviation equal to 0.35 times the

daily-average value.

3.6 Windspeed Comparisen

The distribution of hourly and daily-average windspeed has been observed 1a
have either a Weibnll or a ;.:2 distribution [Corotis, 1977; Exell, 1985; Balouktsis,
1986] rather than a normal distribution as used by Degelman. There is a diurnal
variation of hourly windspeeds and the hourly values are autocorrelated, hoth of

which were neglected by Degelman.

The long-term windspeed data never exceeded 9 mys; hourly values appeared to
‘cut off” at 9 m/s. Because of this, the long-term daty characteristics presented are

not necessarily accurate representations of the long-rerm,
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No monthly-average windspeed values were input; the monthly-average value of
4 m/s was assumed, While this does not produce the most accurate generated dara,

this tests the generator with 2 minimum of inputs.

The monthly-average windspeed values, as expected, are all approximately 4
m/s. The yearly-average long-term values for Albuguergue, Madison, and New
York are 3.6, 4.3, and 5.3 respectively. The range of the monthly-average values is
approximately 1.5 for each location. The assurmnpton of 4 m/z is reasonable,
although it is better for Albuguerque and Madison than for New York. The TMY
monthly-average values are more accurate than the generated averages, not
surprising in consideration of the relatively small standard deviations (0.3 to 0.7)

associated with the long-term means.

The average long-term lag one autocorrelation of daily-average windspeed is
small and positive with no apparent month-to-month systemaric variation. At each
location, the monthly values are approximately constant at values of 0.17, 0,23, and
0.27 in Albuquerque, Madison, and New York. respectively. The srandard
deviation associated with the monthly values was approximately 0.17 at all three
locations, which is very large in comparison with the autocorrelarion values, The
generated values are good replications of the long-term, however, they are most
appropriate for Albuquerque, seeming to vary about a constant value of about 0. 16.

The TMY values vary considerably, ranging from -0.07 o +0.51.

The distributions of the daily-average windspeed values aboul their monthly-
average values for the long-term, generated, and TMY data are compared in

Appendix E. Similar to the distributions of clearness index, ambient lemperature,
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and relative humidity, again the inclusion of the means complicales the comparison
of the distribution shapes, An example of the best generated windspead
disiributions is June in Albuquerque (Figure 5.5), An example of the difference
between the long-term windspeed distribution and the normal distribution i

December in Albugquerque (Figure 3.6),

The long-term monthly-average diurnal variations of windspeed generally show
higher windspeeds during the day and lower speeds during the night. The amplitude
of the diurnal variaton is stronger during the summer months, becoming almost
nonexistent during the winter. In Albuquerque, the dinrnal variation peaks ar about
Jpm every month; the minimum ocecurs at approximately 7am (Figure 5.7). The
diurnal variations computed from the New York data are similar, although the peaks
tend to be less pronounced. In Madisor, the diurnal vaation has no well-defined
peak; the windspeeds are roughly constant during the day, dropping quickly to a
lower nighttime value (Figure 5.8). The generated data has no diurnal variadon, but
rather is a random sequence of windspeeds selected from a distribution. Therefare,
the months in which the generated data most accurately reproduces the long-term
diurnal variations are the winter months. The TMY data, while not producing very

smooth curves, follows the pattern of the long-term data well.,
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CHAPTER 6

Conclusions and Recommendations

The goal of this project was ta evaluate and maodify an hourly weather generation
program written by Degelman[1970] which generated nort realistic wearher dara, but
one "typical"” year's data in which the statistics march those of the long-term data.
The results presented in Chapters 3, 4, and 5 indicate that synthetically generating
hourly weather data from limited monthly-average inputs is possible. The
distributions and diumnal variations produced, while not always exact. are
comparable to the TMY data in their ability to reproduce the long-term distributions
and diurnal variations. Further refinement of some of the models is necessary, byt
long-term location-independent correlations already in existence illustrate the current
potendal of a weather generator. The development of correlations berter able to
describe the weather at a locadon will result in Zenerated dara more capable of
reproducing the long-term statistics. The drawback of a weather generator is that it
will only be able to reproduce those characteristics of a location's weather pattern
which are able to be reproduced solely from location-independent correlations and
the inputs. Cross-vorrelations and site specific tendencies, such as morning fog, are
not able to be reproduced, as neither hag yet to be classified in any locadon-

independent manner,

The weather generation program written by Degelman showed a need for

improvement. A stochastic model for teplicating k; values developed by
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Graham[1985] was substituted into the hourly generation portion, vielding more
realistic hourly radiation sequences. The hourly autocorrelation of the generated I
sequence is slightly lower than the long-term, indicating a need to adjust the
parameter of the AR1 model. The hourly ambient temperatures were generated
deterministically in Degelman's original model; an AR2 mode] with location-
independent parameters, similar to the model developed by Hirtle and
Pedersen[1981], was included as an option in the pragram. The hourly ambient
temperalure model was not completely replaced because the stochastic model
generates a realistic sequence of hourly ambient temperatures, such that the long-

term statistics arc not necessarily well represented by one yvear's data.

This study has lead to many recommendations for further study, Maosr useful
would be to smdy the effect of the different variables and variable interactions so as
to determine what is important to reproduce accurately, and what can be roughly
approximated. For example, do the differences in the monthly-average diurnal
variation of ambient temperature shown in Figure 4.5 have an effect on simulation
results? s is necessary to reproduce the random variation in the hourly ambient

temperatures or can a deterministic model be used?

Some manner of cTeating the sequences used to order the daily values obtained
from the distributions should be found, such that the program can generare a
zequence given an appropriate sutocorreladon value, A more detailed investigation
of the k; distribution should be undertaken, possibly modeling instead the ap,

distribution. If possible, some attempt 1o model cross-correlations should be made.

The ambient temperature model should be investigated further and a berter means
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of removing the diurnal trend found. This would yield a more stationary series, and
most likely a better fitting model.. Improved models for relarive humidity and
windspeed should be developed; for relative humidity, the work of Erhs[1984]
provides a basis. The k; model should be investigated further to determine why the
generated hourly autocorrelations are too low. A stachastic model of the diffuse
radiation should be included, rather then the deterministic model used in the
generator. A possible extension of the hourly generation process might include

generaring minute-by-minure data.



