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Chapter 2

Static Experimental Technique

Contact resistance measurements were made using a physically stationary, thermally

transient technique. Time temperature responses were measured for a system with a metal –

plastic interface. The measured response was then compared with a predicted response to

obtain a total resistance value using statistical techniques. As the thickness and thermal

conductivity of the plastic was known, the contact resistance could be determined.

2.1 Background and Derivation

The test procedure for the initial experimental phase is similar to the one outlined by

Beckman and Mitchell (1969) for measuring the thermal conductivity of paint. In the present

study, two blocks at different initial temperatures with a known weight on the top block were

brought together with the plastic between them. The blocks were insulated on all remaining

sides. From the resulting temperature time profile of the two block system, the total thermal

resistance between the blocks was determined. The total resistance between the blocks

consists of the conduction through the plastic sample and two contact resistances of the

plastic – aluminum interface. The contact resistance was assumed to be the same at each

interface. Relating the measured resistance to the contact resistance:
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A lumped thermal capacitance model was used to derive an analytical expression for the

temperature vs. time responses of the two blocks placed in contact during the experiment.

The lumped mass approach assumed the blocks to be isothermal, but at different

temperatures for each block. The plastic sample between the blocks was assumed to have

negligible thermal capacitance, but its resistance to steady state heat flow is considered.

All considered heat flows are shown in figure 2.1.1 below:

Plastic Sample

Hot block (block 1)

qloss

T∞

Cold block (block 2)

qlossT∞

qtransferred

Figure 2.1.1: Heat Flows in Experimental Setup.
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Over time the energy in the hot block is conducted through the plastic to the cold

block and also conducted through the insulation to the surroundings. The cold block gained

thermal energy from the hot block and lost energy by conduction through the insulation and

to the surroundings. The heat flows of each block can be modeled with a first order

differential equation. When the blocks are placed in contact, the differential equations of the

two blocks are coupled, and must be solved simultaneously.

2.2 Lumped Capacitance Technique

The energy balance for a block can be represented by a model having the differential

equation relating the energy increase (or decrease) of a block to the heat loss from the block

to the surroundings and the energy transfer between the blocks. For each block the

Energy balance related the energy inflows and outflows to the internal energy change of the

blocks. For both blocks:

τd

dE
EE outin =− &&                          (2.2.1)

The energy out for both blocks was expressed as:

)( ∞−⋅⋅= TTAhE blocksurfaceblockout
& (2.2.2)
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The hot block was considered block 1, and the cold block was block 2. For the hot block the

energy transferred to the cold block was also a loss:
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contact
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=& (2.2.3)

The energy in for the cold block was:
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The mechanism equations were related to form the differential equation for each block.

For block 1:
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for block 2:
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(2.2.6)

The initial conditions for the differential equations were the initial temperatures of the

blocks:
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initialToT =)( (2.2.7)

The solution is similar to the one given by Kreith and Bohn (1997). The above first

order differential equations can be combined into a single second order differential equation.

Then from the initial block temperatures, the temperature time response can be predicted.

The derivation of the solution follows.

Equations 2.1.5 and 2.1.6 can be rewritten, using the D operator to represent the derivative:
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The equations can be simplified by defining:

1
1 `` mcR

A
K

pTotal

contact

⋅⋅
=  , 

1

1
12 mc

Ah
K

p

surface

⋅
⋅

=            (2.2.10)

2
2 `` mcR

A
K

pTotal

contact

⋅⋅
= , 

2

2
22 mc

Ah
K

p

surface

⋅
⋅

=                       (2.2.11)



17

Solving eq. 2.1.5 for T2 and eq. 2.1.4 for T1 :
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Equations 2.1.4 and 2.1.5 can then be written solely in terms of the temperature of that block

only and the ambient temperature parameter by substituting equations 2.1.12 into 2.1.8 and

2.1.13 into 2.1.9:
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Equation 2.1.10 and 2.1.11 can be written in non-operator notation as:
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Where:

11 =a ;                                     1221221 KKKKb +++= ;                             (2.2.18)

)( 222122211 KKKKKc +⋅+⋅= ; )( 222122211 KKKKKd +⋅+⋅=

As the systems are thermally equivalent, it is apparent that the parametric expressions for the

differential equations (2.1.16) and (2.1.17) are equal so that:

21 aa = ; 21 bb = ; 21 cc = ; 21 dd =            (2.2.19)

The value of the constants a, b, c and d for the two blocks would vary, as the masses, surface

areas and loss coefficients could vary, but the parametric expressions would not. In the

experiments, identical blocks were used, and the numerical value of the constants were equal.

The system of two first order differential equations has been converted into one

second order differential equation. The conversion of both block equations has been shown,

but only one conversion would be needed to solve for the temperature of both blocks as a
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function of time. Once one block temperature was determined, the other could be found from

substitution into eq. 2.2.14 or 2.2.15.

As the differential equation for each block is non-homogenous and second order, it

requires both a general and a particular solution. The use of subscripts denoting each block

has been dropped, as the derivation is the same for each block. The homogenous solution to

2.1.12 and 2.1.13 is:

tmtm
h eCeCT *

2
*

1
21 +=                                                                                                 (2.2.20)

m1 and m2 are the roots of the characteristic equation for each block. Assuming real, unequal

roots:

a
cabb

m
⋅

⋅⋅−+−=
2

42

1            (2.2.21)

a
cabb

m
⋅

⋅⋅−−−=
2

42

2            (2.2.22)

The particular solution for the differential equation is:

3CTp =                                   (2.2.23)



20

The complete solution is:
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The initial temperature of each block is established from measurement, and the first

derivative is defined from equations 2.2.5 and 2.2.6. The initial conditions are:

oi TT =  at 0=τ                  (2.2.25)
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C1, C2 and C3 are found from:
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where Ti and Tj are the initial block temperatures.
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Equations 2.1.23 and 2.1.24 are two independent equations with two unknowns,

which can be simultaneously solved for both C1 and C2. Once the constants are known, eq

2.1.20 can be used to predict the temperature time response of the two blocks.

2.3 Experimental Equipment

The important independent parameters of the experiment are the thermal conductivity

of the interface plastic, the surface roughness, flatness and mass of the blocks in contact, the

interface pressure, and the loss characteristics of the insulating material.

Aluminum blocks were chosen, due to their ready availability as well as ability to be

accurately machined. In addition the high thermal conductivity of aluminum (170 W/m-K)

reduced the temperature gradients within each block. The blocks were machined to a surface

roughness of 2.5 x 10-7 m Ra, close to the surface finish found on production Thermalon(1-

5 x 10-7 m). A representative surface scan of one of the blocks is shown below.

Figure 2.3.1: Representative Block Surface Profiles.
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On the vertical axis, each of the four major vertical divisions is 1x10-6 m, or 3.93x10-5

in. On the horizontal axis each major division is 1x10-5 m. The average roughness for the

surfaces is 0.20 µm.

Expanded polystyrene solid cell insulation, having a thermal conductivity

approximately equal to 0.029 W/m-K was used to make the insulation enclosing the blocks

and the plastic. The insulation was split into three pieces to totally enclose the block system,

as shown in figure 2.3.2 below.

Bottom Insulation

Top Insulation

Cover

Lower Cavity

Upper Cavity

Weight

Figure 2.3.2: Block Insulation System.

An Omega Dyna-Res Data Acquisition System was used in this study to record the

temperature measurements. It has 16 channels and 16 bit resolution on the analog inputs.

Quick Log PC, also by Omega, was used as the data logging and control software. A lab 486
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computer running Windows 95 was the host computer. Type ‘T’ thermocouples were used,

with an accuracy of 0.7 °C relative to ambient. The hot block and cold block thermocouples

track together to a maximum error of 0.3 °C over the range of the test conditions.  The

tracking error determined the error in the measurements as the change in energy of the blocks

was needed, and systematic errors in the measurements, due to the cold junction

compensation for example, were cancelled out in the data reduction techniques.

Type T  thermocouples were embedded in the blocks along the centerline at half the

height of each block. Silicone sealant insured good thermal connection between the

thermocouple and the block. Additional thermocouples were inserted in the insulation to

determine the heat loss through the insulation through the environment. The signal

conditioning board of the data acquisition system provided noise filtering and cold junction

compensation for the thermocouples.

At the start of each experiment the cold block, which was approximately at room

temperature, was placed inside the lower cavity of the bottom insulation. The plastic sample

used to evaluate the contact resistance was cut into a circle to the same diameter of the

aluminum blocks (7.62 cm).  It was then placed on top of the polished surface of the cold

block. The hot block was then heated with a propane torch to a temperature below the

softening point of the sample being tested. Typically this was 60-80 °K above ambient. The

hot block was then placed on top of the sample with the polished surface of each block

towards the sample.
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As quickly as possible the top insulation was placed around the hot block. The upper

cavity had been cut larger than the block diameter to allow the top insulation to completely

surround the hot block. The top cover was placed on top of the hot block. The cover was cut

so that it entirely rested on the top block and had a small clearance to the sides of the top

insulation. The additional weight needed to produce the required interface pressure between

the two blocks was then placed on top of the cover. The entire system could be assembled in

approximately 10 seconds after the top block had been placed on top of the cold block,

minimizing the energy lost to the surroundings.

The energy lost through the insulation from both blocks varied from 3 to 20 % of the

total energy transferred from the top block to the bottom block. The low energy losses were

for the thin polypropylene sample where the hot and cold blocks equalized quickly. The

higher losses occurred with the relatively thick embossed polyethylene where the high

resistance between the blocks gave more time for them to leak heat to the ambient. In both

cases this energy loss is accounted for by including the loss parameter in developing the

differential equations. See section 2.1 for more information.

2.4 Data Reduction Technique

In order to determine the contact resistance, measured temperature – time response

data is compared with the response predicted by the lumped thermal capacitance
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approximation. The error between the measured block temperatures and the predicted

temperatures was calculated at each time step. The total error for the run was then calculated

as:
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Where h, c, p and m stand for hot, cold, predicted and measured respectively. i was the value

at each time step, and j was the final time step. A least squares approach was used in order to

minimize the sum of the absolute value of the error at each time step.

An optimization program written in EES  (Klein and Alvarado 1998) was used to

solve for the values of the parameters that yielded the ‘best fit’ of the analytical solution to

the measured temperatures for each run. The error between the analytical solution and the

measured values was minimized by varying the contact resistance, the initial temperatures of

the two blocks and the loss coefficient of the blocks.

The value of the error had no intrinsic meaning, and was only a qualitative measure of

how well the analytical solution fit the measured data. Smaller errors were better, but were

not related to the experimental error in the contact resistance value. One hundred sample

points, usually spaced at 2 second intervals, were used in each optimization run. Two

hundred seconds of data was sufficient to show the exponential effect of the transient

response and the losses to the ambient sink. Figure 2.4.1 below shows the both measured and



26

predicted hot and cold block temperatures during a test. The difference between the measured

and predicted temperatures was used to find and reduce the error.
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Figure 2.4.1: Predicted and Experimental Block Temperature Response.

Guess values and variable bounds were provided to the EES optimization routines.

The guess values for temperature were taken from the measured temperature of the blocks,

and the guess values for the loss coefficients and the contact resistance were extracted from

the final results of the last run. The error for each run was quite sensitive to the varied

parameters, and if the bounds of any parameters were unduly restricted a high error would

result. A visual check of a plot of the best-predicted response and the actual measured

temperature response of the two blocks was a good indicator of both whether the

optimization had found the true minimum and how sensitive the reduction technique was to

certain variables.
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The figure 2.4.2 shows the effect on the predicted block temperature response of

varying the contact resistance. For the ‘best fit’ case the temperature response follows the

measured response very closely. With a contact resistance that is too low the blocks are

predicted to come together too quickly. With a contact resistance that is too high, the blocks

take too long to reach equilibrium.
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Figure 2.4.2: Predicted Block Temperature Response for Various Contact Resistances

Figure 2.4.2 is based on a 0.127 mm thick polyester run at an intermediate pressure

(2-3 kpa). In the length of the test, 200 seconds, the blocks have come with in 15 °K of each

other. For the same initial conditions and interface pressure, the blocks would have reached

with in 5°K or 25°K of each other for the 0.0203 mm polypropylene and 0.0508 mm

embossed polyethylene respectively.
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The initial temperature proved to be a critical parameter in the optimization process.

If the initial temperatures were assumed that were more than a degree or two off of the true

optimum, bad fits could be created. In the plot below, this is clearly shown.

Underestimating the value of the initial temperature difference between the two

blocks caused the optimization routine to overestimate the value of the contact resistance.

This can be seen in the curves of the predicted responses in figure 2.4.3 where the predicted

temperature response curves do not match the measured curves.

0 20 40 60 80 100 120 140 160 180 200
300

310

320

330

340

350

360

370

380

Time [sec]

T
em

p
er

at
u

re
 [

K
]

Effect of Initial Block Temperatures 

'Best Fit'   ∆Τo  - 4 Deg. K 

'Best Fit'   ∆Τo  + 4 Deg. K 

Figure 2.4.3: Effect of Initial Block Temperatures.

Due to the sensitivity of the best fit R�tc the initial temperatures of the block were

varied by the optimization routine. Although the initial temperatures were measured with the

data acquisition system, the actual temperature when the blocks were brought together and
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the initial temperature used in the lumped capacitance response differential equation for the

best fit could differ. Upon contact the blocks internal temperature profile takes time to

establish. The temperature at the contacting surface of the bocks would be closer to each

other than the temperature measured at the centerline of the blocks by a small amount. The

lumped capacitance model by definition sees the blocks at a single temperature, so that

temperature was treated as an unknown.

The actual loss parameter is measured by allowing both blocks to come to

equilibrium and then recording the temperatures as the blocks cool to room temperature. Due

to the difference in how the insulation was assembled around the blocks, each block had its

own loss parameter. The loss parameter is assumed to be constant throughout each test.

2.5 Verification of Technique

Initial verification of the data reduction technique was accomplished by measuring

the thermal conductivity of a known sample. Polystyrene in expanded bead form was used

because it has a relatively low value of conductivity, and the thermal conductivity does not

vary with temperature. Each side of the sample was coated with conductive grease, to reduce

the contact resistance to essentially zero. The total resistance between the two blocks was

measured and then the thermal conductivity of the polystyrene was deduced from the total

resistance. The temperature response of the cold block for the first 400 seconds is shown in

figure 2.5.1 below. The best-fit value of conductivity is 0.37 W/m-K in this test.
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Figure 2.5.1: Polystyrene Conductivity Tests

The thermal conductivity of the polystyrene was measured repeatedly and found to

vary 2.7 %.  The thermal conductivity measured correlated to the accepted value given in

Incropera and Dewitt (1996), to within 8%. There is however some variation in the published

conductivity of polystyrene, with Osswald and Meneges (1996) giving a value 25% lower

than the one given in Incropera and Dewitt.

Representative data was used to examine the effect of sampling periods on the

determined contact resistance. Both the number of samples used in the data reduction and the

initial time of the samples after the blocks were placed in contact were varied. Any

systematic variation in the determined contact resistance would be due to an error in the data

reduction method. Plots of the contact resistance determined are shown in figure 2.5.2 and



31

2.5.3 below. The time of reduction is shown on the x-axis, and the measured contact

resistance is shown on the y-axis.
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Figure 2.5.2: Determined Contact Resistance vs. Sample Time.

The resistance values are larger for small sample periods than they are for longer data

runs, and reach an asymptote at approximately 100 seconds. This is due to the initial transient

response of the conduction heat flows internal to each block. The heat flows internal to the

block set up an internal temperature profile based on Fouriers’ law of conduction. The time

constant of the temperature profile development is much quicker than the time constant of the

overall transient response of the hot and cold blocks together. All tests use at least 200

seconds of temperature data to ensure that the initial transients within each block are over.

Additionally allowing the optimization routine to vary the initial temperatures reduces the

effect of the initial transients.
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If only twenty seconds worth of samples (10 actual samples) are used, but taken from

different time periods in the measured response, there is a small variation in the measured

contact resistance. The small variation is much less than the variation between tests for any

of the samples and is probably due to thermocouple errors. Figure 2.5.3 shows the variation

as a function of when the samples were taken in the test.
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Figure 2.5.3: Determined Contact Resistance vs. Time after Initial Contact.

There is no pattern in the variation of the contact resistance based on the different

sample times, and the standard deviation for the series is less than 2% of the measured

contact resistance. For the data taken from the start of the test, the temperatures of the blocks

would still be changing rapidly, after 100 seconds however the blocks temperature would be

changing more slowly. The change in temperature at the start would be much greater than the



33

noise in the measurements, at the end of the measurement period the signal to noise ratio

would be lower.

The Biot number parameter is critical to the assumption of thermally lumped mass.

The Biot number is defined as the ratio of the resistance to conduction heat transfer through

the solid to the resistance to heat transfer from the solid top the surroundings. At ratios less

than 0.1, the solid can be thermally lumped. For the two blocks and the contact resistance, the

Biot number was equal to:
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Where Lblock is the height of each block. For any run where the Biot number parameter was

not less than 0.1, a lumped capacitance approach was not applicable. As the Biot number was

based on the total resistance between the two blocks, the conduction resistance of the plastic

sample was important in the Biot parameter. For some of the thin polypropylene samples the

Biot numbers approached 0.1, and a different approach had to be found for the data

reduction. The distributed capacitance technique is described in the next section.

2.6 Finite Difference Technique

A distributed capacitance technique was used to examine the limits of the lumped

capacitance technique as well as the effect of the capacitance of the insulation on the
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experiments. A two dimensional transient finite difference program was written to model the

heat flows through the blocks, the plastic sample and the surrounding insulation. The

distributed capacitance technique had some advantages over the lumped capacitance

technique. It accounted for the internal temperature profile within the blocks, accommodated

the difference in temperature between the thermocouple insertion point and the surface

temperature of the blocks, and allowed insulation to be modeled as having a distributed

thermal capacitance.

Analytical solutions like the lumped capacitance method are difficult to obtain when

systems become more complex with non-ideal characteristics. Various numerical methods

have been used to solve differential equations over irregular boundary conditions. For

conduction heat transfer the finite difference is the most straightforward and easiest to apply.

With the finite difference method, the domain under consideration is divided into discrete

volumes, with each volume having a singular temperature representing the average

temperature of the whole volume. The solution to the difference equation is found at those

discrete points, and the system of equations describing all of the nodes in the domain is

solved simultaneously.

The differential equation of interest is Fourier’s law of heat conduction, usually

written as:

x

T
kq xx ∂

∂−=``  (2.6.1)
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Using the definition of the derivative and discretizing the numerical derivative is:
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The temperature gradient is based on temperatures found at the nodal points used in

the domain mesh. The transient energy balance for each node is written using the first law of

thermodynamics, as was done with the lumped capacitance technique, see equation 2.1.2.

The finite difference form of the conduction heat flows including storage is shown below:
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Equation 2.6.13 has been discretized in space but not time. The first order differential

equation can then be integrated with any applicable technique.  See Anderson (1995).

2.7  Model Grid and Resistance Network

A model of the blocks, the plastic and the insulation was used in the formation of the

finite difference code. The blocks and plastic were linked by an axial coordinate system

running vertically through the test apparatus. The blocks were modeled with 5 nodes each

and three nodes in the plastic sample. The blocks were thermally linked with the insulation

by assuming each vertical section of block was at a constant temperature and conducted heat
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outward radially. The insulation surrounding the blocks was modeled using a radial

coordinate system, with three nodes in an outward direction. The insulation was divided up

into vertical slabs of the same thickness as the block slabs, and the conduction resistance

between the inner nodes in the insulation and the block nodes was equal to the conduction

resistance in the insulation and the blocks. Figure 2.7.1 below shows a schematic of the

thermal resistance network modeled in the distributed capacitance analysis.

Plastic Sample

Hot block (block 1)

Cold block (block 2)

Full node Half node

Insulation (Radial)

R``tc

R``tc

Figure 2.7.1: Distributed Capacitance Model Schematic.
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Although not shown in figure 2.7.1, there were also radial insulation nodes wrapped around

the bottom block. The aluminum blocks were divided into ‘slices’ with each slice being

represented by a single temperature at the nodal point. The actual resistance between the

nodes of the blocks and the insulation was set to the total of the conduction resistance of the

aluminum slice and the conduction resistance of the insulation. As the expended bead

polystyrene insulation had approximately the same thermal conductivity as air (0.032 W/m-K

for polystyrene and 0.029 W/m-K for air), the contact resistance between the insulation and

the aluminum block was negligible.

The integration scheme must be used to model the energy inflows and outflows over

time. The program was written using EES, and the INTEGRATE function was used to

predict the changes with time. EES uses a second-order predictor-corrector algorithm for

evaluating the integral, and the automatic step size function was used. The temperature of

any given aluminum node i , in the block was given as;
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   (2.7.1)

Figure 2.7.2 below shows the top and bottom node temperatures predicted by the

finite difference model.  A reference case of an average contact resistance and a polyester

sample are shown. The top and bottom node of the hot and cold blocks, as well as the top and

bottom node of the plastic sample is also shown.
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Figure 2.7.2: Predicted Temperature Contours for Polyester Sample, R�tc = 0.0007 m2-K/W

The temperature distribution through the blocks and the plastic can be clearly seen.

The cold block is absorbing energy from the hot block and heating up. The plastic

temperature is at the average of the inside surface temperatures of the two blocks, and stays

relatively constant throughout the tests. The temperature drop across the block and the

plastic, which is due to the contact resistance, can also be seen. The thermocouple insertion

points used in the actual experiments were half way up the blocks and would be between the

top and bottom node temperature extremes shown for each block. The cooling due to the heat

loss through the insulation is hard to discern on the plot, and has little effect on the

measurements.
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The relative temperature drops from surface to surface determine the resistances in

the system. The three temperature drops from the aluminum surface to the top plastic surface,

through the plastic from the bottom plastic to the top aluminum surfaces are roughly equal.

The equal temperature drops mean that the plastic properties must be well known to achieve

an accurate measurement.

The temperature profiles within the blocks can best be seen by plotting the nodal

temperatures for each block. As the blocks are put together they quickly assume an internal

temperature profile.  The sharpest gradients at the start of the test and the smallest gradients

as the blocks approach each other in temperature. Figure 2.7.3 below shows the predicted

temperature gradients in the cold block during a typical run.
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Figure 2.7.3: Predicted Temperature Differences at Nodal Locations Through Cold Block
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The cold block starts out isothermal at the start of each test. After about 10 seconds however,

the block assumes a temperature difference of about 7 degrees K from top to bottom.  This

temperature difference within each block decreases throughout the test as the temperature

difference between the hot and the cold blocks decreases.

2.8  Biot Limit Effects

Using contact resistances found at the extremes of the study, the predicted

temperature responses of the blocks were compared with the lumped and distributed

capacitance systems. When the distributed capacitance method was compared with the

lumped capacitance technique, the results were close, with a small error at a low contact

resistance. Figure 2.8.1 shows the ratio of the temperature difference of the blocks divided by

the initial temperature difference for both the lumped and the distributed capacitance

technique. Two different contact resistances are used to illustrate Biot number effects.
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Figure 2.8.1: Comparison of Predicted System Response for Lumped and Distributed

Systems.

Both methods are used to interpret measured block response data, but they interpret

the data in different ways. Looking at how they predict the block response given a contact

resistance value shows how well they will interpret block response data. In figure 2.8.1, the

predicted response for two contact resistances at the extremes of the study are shown. For the

contact resistance measured with the embossed polyethylene, 0.003 m2-K/W, the two

methods predict the same temperature response. At 0.0005 m2-K/W, the predicted responses

differ substantially. The lumped capacitance method predicts a quicker response (more

negative response slope) by the two blocks. This is due to the driving potential defined by the

contact resistance.
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The contact resistance is defined as:

q

TT
R coldhot

tc ′′
−=′′                     (2.8.1)

The joint temperatures used by the lumped and distributed capacity technique differ

slightly, affecting the measurements. The lumped capacitance technique defines the driving

potential across the average temperature of the two blocks, whereas the distributed

capacitance defines it across the slice of block in contact with the plastic. As the average

temperature difference is greater than the temperature difference across the contact surfaces,

for the same contact resistances there will be higher heat flow for the distributed case and the

blocks will equilibrate faster.

When the contact resistance is being measured based on recorded temperature data,

the lumped capacitance technique will predict a higher contact resistance than the distributed

capacitance method. The same heat flow between the blocks is seen, and the distributed

capacitance method will see a lower driving temperature potential across the interface and

will then find a smaller contact resistance.

For an actual joint contact resistance of 0.0005 m2-K/W, the difference between what

was measured by the lumped capacitance technique and the distributed capacitance technique
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would be 20%. The distributed capacitance technique would still over predict the contact

resistance, but by a much smaller amount. For this reason, the contact resistance of the

relatively thin polyester and polypropylene plastics was calculated using the distributed

capacitance analysis.

The above error analysis would not have been possible without the distributed

capacitance model. The plane wall corrections available in the literature Heisler (1947) are

not strictly applicable given the transient nature of the sink temperature for each block, i.e.

the other block.

There was also the Biot parameter for the ratio of the resistance inside each block to the

resistance to the surroundings. The Biot parameter for convection proved much smaller than

the Biot parameter for the total resistance and was on the order of 2 X 10-5.

2.9 Heat Flows In Insulation

For the lumped capacitance model of the static block test equipment, the losses to the

surrounding insulation were modeled with a constant loss coefficient. A constant loss

coefficient was an idealization as the insulation has a distributed thermal capacitance of its

own, and its low conductivity may give rise to transient temperature effects in the insulation.

In the formulation of the finite difference model of the blocks, plastic and insulation, the
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temperature distribution in the insulation was explicitly determined. The temperatures were

modeled in each of the concentric insulation rings around the aluminum slices.
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Figure 2.9.1: Predicted Insulation Temperature Response for Test Case.

Figure 2.9.1 shows the temperatures in the concentric insulation around the middle

aluminum node in the hot bock.  Each full slice in the aluminum block has a corresponding

insulation layer. The middle aluminum node temperature is also shown for reference. As

expected, the insulation ring closest to the aluminum node heats up the fastest. As the

aluminum node is cooling due to the heat loss to the cold block, its temperature is decreasing

as well. After 180 seconds, the aluminum block has cooled to close to the insulation

temperature. If it went below the insulation temperature, energy would then flow from the

insulation back to the block.
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A comparison of the predicted and actual energy losses in the test apparatus was

performed.  The actual energy loss to the ambient per time step was measured by finding the

change in the average temperature of the blocks from one time step to the next. Ideally all

energy should be transferred between the blocks, and none lost to the environment. The

lumped capacitance technique considered each block to have a constant loss coefficient, and

the distributed considered each block slice to be conducting out to its surrounding insulation.

Figure 2.9.2 below shows the measured heat losses during a block test with a 0.127

mm polyester sample. In addition the predicted losses from the lumped and distributed

capacitance methods is also shown. The assumption of a constant heat loss parameter

approximates the data better then the distributed capacitance method does. The better fit is

partially due to allowing the loss coefficients to be ‘best fit’ to the data during reduction. The

‘best fit’ convection coefficients were determined to be 6.7 and 2.9 W/m2-K, for the top and

bottom block respectively. The difference is expected due to the way the insulation is placed

together during an experiment. The cold block is enclosed in a single piece of tightly fitting

insulation, and the hot block is more exposed during the test.  For a schematic see figure

2.2.1. The conductivity of the insulation was 0.029 W/m-K, based on manufacturer

specifications.

The ratio of energy lost to the environment to energy transferred to the cold block in

this experiment was 9.8 %. The average heat loss ratio in the polypropylene runs was 1-3 %

and for the embossed polyethylene it was approximately 15%. As the energy loss was
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accounted for in either of the models used, it had little effect on the accuracy of the contact

resistance measurements.

The predicted heat losses to the insulation were compared with the measured losses.

The scatter in the measured loss data shown in figure 2.9.2 is due to the sampling error and

noise in the thermocouple and data acquisition system.
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Figure 2.9.2: Predicted and Experimental Energy Losses.

The distributed capacitance technique does not do an adequate job of predicting the

heat losses to the environment. It matches the measured losses until approximately 50

seconds into the tests, and then diverges. The distributed capacitance model shows a transient
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effect to the heat loss that is not shown in the data. It is unexpected that the rate of the losses

(Watts) from the blocks was almost constant. Although the average temperature and internal

energy of the two blocks are almost constant throughout the test, energy is begin transferred

to the cold block, which has a much lower convection coefficient. The average measured heat

losses at the start and end of the polyester tests were  9.7W and 7.4W respectively.

2.10 Combination of Models

The final result of the model comparison was that the distributed capacitance method

was the most accurate model of the block-plastic system, except for the energy losses.

However it was relatively easy to change the distributed capacity insulation from the model

and use a constant heat loss mechanism equation with the distributed capacitance model. The

aluminum conduction to the insulation was changed to a convective loss to the ambient

temperature. The heat loss coefficients could then be ‘best fit’ to the data for each run as they

had been in the lumped capacitance system.  The loss coefficients for each run were best fit

using a least squares approach as done with the lumped capacitance approach.
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Figure 2.10.1: Predicted and Experimental Energy Losses.

As seen in figure 2.10.1, the predicted losses could be adjusted with the convection

coefficients to accurately match the losses shown in the data. A comparison of figure 2.9.2

and 2.10.1 shows how much closer the constant loss model was. The ‘best fit’ convection

coefficients were similar to ones measured in the lumped capacitance case, between 6-8 and

2-4 W/m2-k for the top and bottom block respectively.

Once the analysis techniques were perfected for the range of data recorded, the time-

temperature data could be reduced for each experimental run. Those results are shown in the

next chapter.
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