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CHAPTER TWO 

 

WIND TURBINE PERFORMANCE MODELS 

 

 

 
 

 

 

 

 

 

     "There is something in the wind."    

| Shakespeare, Comedy of Errors 

 

 

 

 

2.1 Fundamentals of Wind Energy Systems 

 

Wind turbines transform the kinetic energy of moving air into useful work. In 

order to understand this process, a control-volume (c.v.) is constructed as shown in 

Figure 2.1, representing a three-dimensional streamtube of air. The rotor is represented 

by an actuator disk interspersed in the flow.  
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Although the process is described for horizontal axis wind turbines, the energy 

analysis is generally applicable for all wind turbines, and is appropriate for both 

horizontal (propeller-type) and vertical (Darrieus) wind turbines.  

UoPo PoUoUo

Uo

1 R+ 2

AW
UW

Q

Q

A1
T

UR
Actuator Disk

R

  

Figure 2.1 Streamtube control volume with actuator disk wind turbine model. 

 

The control volume method applied to wind turbine fluid dynamics is the 

actuator disk model, which was originally developed by Rankine [Spera, 1989] to 

model marine propellers. For wind turbines, the rotor is a homogeneous disk which 

removes (rather than furnishes) energy to the moving fluid. Although insufficient for 

analysis of rotor geometry, the model is appropriate for analysis of axial mass, 

momentum, and energy balances. The following physical assumptions are employed: 

 

•  Constant, incompressible, irrotational, flow at constant temperature 

•  No mass flow across the streamtube boundary 
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•  Point 1 is far upstream; point R is at the rotor, and point 2 is far downstream.  

    The position of point 2 is at the hypothetical point where the streamtube      

   boundary is parallel to the horizontal c.v. boundary. At this point downstream    

  the static pressure is constant and equals the free stream static pressure, Po.  

The actuator disk approach to the momentum theory analysis of wind turbines 

does not include turbulent mixing between the air in the streamtube and the air in the 

balance of the c.v. Thus, the placement of the downstream boundary of the c.v. is 

arbitrary once the streamtube lines become parallel. When the condition that the 

streamtube lines are parallel is met, then the mass transfer Q ( and the momentum 

associated with Q) leaving the c.v. due to the existence of the rotor is completed. The 

following variables are defined: 

  U0 : Velocity in the free stream 

  P0 : Pressure in the free stream 

  A1: Area of the c.v. far upstream of the rotor. 

  UR : Velocity through the rotor 

  PR

+
: Pressure just upstream of the rotor 

  PR

−
: Pressure just downstream of the rotor 

  UW : Velocity far downstream in the rotor wake 

  AW : Area far downstream in the rotor wake 

  Q : Mass flux out the sides of the c.v.  

 

2.1.1  Momentum Theory 

  

If it is assumed that the density of the air does not change, then mass continuity 

through the streamtube requires 
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    A1U 0 = ARUR = AWUW                             (2.1) 

 

Since   U0 >UR >UW  then it follows that   A1 < AR < AW  and the streamtube 

expands. The mass balance for the c.v. is  

 

   A1U 0 − AWUW − A1 − AW( )U 0 − Q = 0                     (2.2) 

 

Rearranging equation 2.2, and solving for Q yields an expression for the mass 

flow rate out of the c.v. 

 

     Q = AW (U0 −UW )                               (2.3) 

 

Mass flow rate can be expressed as   ρAU . Conservation of momentum in the 

horizontal direction results in 

 

   ρA1U0

2 − ρAWUW

2 − ρ A1 − A2( )U 0

2 − ρU0Q − D = 0              (2.4) 

 

or, after rearranging,  

 

   D = ρAWU0

2 − ρAWUW

2 − ρU0Q                        (2.5)  

 

Substituting for Q by using equation 2.3 results in 

 

 
  
D = ρAWU0

2 − ρAWUW

2 − ρU0 AW U 0 −UW( )[ ]                (2.6) 
 

which, after rearranging, becomes 
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D = ρAWUW U0 −UW( )                             (2.7) 

 

Figure 2.2 shows the wind speed, plus static, dynamic and total pressure across 

the rotor. Bernoulli's equation is next used to describe the pressure difference across the 

rotor. Upstream of the rotor: 

  
p0 + 1

2
ρU0

2 = pR

+ + 1

2
ρUR

2
                           (2.8) 

 

and downstream of the rotor: 

 

  
pR

− + 1

2
ρUR

2 = p 0 + 1

2
ρU 0

2
                          (2.9) 
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 Figure 2.2 Wind speed, plus static, dynamic and total pressure across the rotor. 

The pressure difference across the rotor is then equivalent to the difference 

between equation 2.8 and 2.9, or 

 

  
pR

+ − pR

− = 1

2
ρ U 0

2 −UW

2( )                           

 (2.10) 
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The thrust force, D can be expressed as the pressure difference applied to the 

rotor area (hence, actuator disk). The expression in this case is 

 

  
D = AR pR

+ − pR

−( )                              

 (2.11) 

 

It is then possible to combine equations 2.10 and 2.11 to create an expression for 

the thrust: 

 

  
D = 1

2
ρAR U0

2 −UW

2( )                            

 (2.12) 

 

Two expressions for thrust have been developed. Combining them leads to the 

following expression 

 

  
ρAWUW U0 −UW( )= 1

2
ρAR U0

2 −UW

2( )                   

 (2.13) 

 

Recall that   AWUW = ARUR , so that equation 2.13 becomes  

 

  
ρARUR U0 −UW( )= 1

2
ρAR U0

2 −UW

2( )                    (2.14) 

 

Canceling out like terms and simplifying, results in 

 

  
UR U0 −UW( )= 1

2
U0

2 −UW

2( )                        

 (2.15) 
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Recalling that
  
U0

2 −UW

2( )= U0 −UW( )U0 +UW( ) then equation 2.15 reduces to an 

expression for the wind velocity at the rotor, 

 

  
UR =

U0 +UW

2
                               

 (2.16) 

which means that the wind speed at the rotor is the average of the upstream and 

downstream wind speeds. The term a is defined as the axial induction factor (or the 

retardation factor) and is a measure of the influence of the rotor on the wind, such that 

 

  UR =U0 1 − a( )                                

 (2.17) 

 

Equations 2.16 and 2.17 can then be combined to yield an expression for the 

downstream wind speed in terms of the free stream wind speed, or 

 

  UW =U0 1 − 2a( )                               

 (2.18) 

 

The power output of a wind turbine can then be written as the product of the 

thrust times velocity, or 

 

  P = DUR                                   

 (2.19) 

 

Equation 2.12 can be substituted into equation 2.19 to create an expression for 

the power output 
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P =

1

2
ρAR U 0

2 −UW

2( ) 
 

 
 
UR                          

 (2.20) 

 

Equation 2.17 can be used to replace   UR , and equation 2.18 can be used to 

replace   UW  in equation 2.20, resulting in 

 

  
P = 1

2
ρARU 0 1 − a( )U0

2 − U0 1− 2a( )[ ]2( )                  
 (2.21) 

Simplifying equation 2.21 yields  

 

  
P = 1

2
ρARU 0

3
4a 1 − a( )2                            (2.22) 

 

  The power coefficient for a wind turbine,   Cp , is defined as the power of the 

turbine divided by the power in the wind, where the power in the wind is 

 

    
P = 1

2
ρARU 0

3
                                    

 (2.23) 

 

Dividing equation 2.22 by 2.23 yields an expression for the power coefficient as 

a function of the axial induction factor 

 

    Cp = 4a 1− a( )2                                 

 (2.24) 

 

The maximum power coefficient, Cpmax, is found by finding dP/da = 0 using 

equation 2.22 and solving for a, where the solutions are a = 1 and a = 1/3. The solution 
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for a = 1 results in the minimum value of Cp, 0, while a = 1/3 results in the maximum 

value of Cp, where 

 

  
    
Cpmax = 4 1

3()1 − 1

3[ ]2  = 1627  = 59.3%                     (2.25) 
 

The value of 59.3% as a maximum power coefficient was first derived by Betz 

in 1919, and has since been called Betz's limit. The value of the coefficient is that, when 

multiplied by the area of the rotor and power in the wind, it describes the power output 

of the wind turbine, or 

 

   P = CpρAU0

3
                               (2.26) 

 

Figure 2.3 shows Cp as a function of the axial induction factor. The value of Cp 

for a wind turbine is determined by its tip-speed-ratio (the ratio of blade tip speed in the 

plane of the rotor to the free stream wind speed   U0 ). For variable pitch or variable 

speed wind turbines, tip-speed-ratio is selected by the turbine for maximum Cp up to the 

rated power output, then for operation at wind speeds above the rated wind speed, Cp 

falls in order to maintain constant rated power. For stall-regulated turbines, rotational 

speed is fixed, so tip-speed-ratio is a measure of the ratio of free-stream wind velocity to 

the fixed rotor speed. Figure 2.4 shows Cp as a function of wind speed for a typical 

stall-regulated wind turbine and power-regulated turbine. 

 

The Cp values applicable for most wind turbine applications are those associated 

with axial induction factors between 0 and 0.5; values less than 0 are associated with 

propeller operation, and values above 1.0 are associated with propeller brakes. For wind 

turbines, values between 0.5 and 1.0 are not encountered in practice because in this 

region stall regulated turbines have lower tip-speed-ratios, and pitch-regulated wind 
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turbine feathering to a lower, rather than a higher thrust coefficient. Pitching to the 

lower thrust coefficient achieves lower structural loads than pitching to the higher thrust 

coefficient.         
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          Figure 2.3 Cp as a function of axial induction factor 
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Figure 2.4 Typical Cp versus wind speed curves for stall-regulated and      

        power regulated turbines. 

 

 

 

2.1.2 Thrust Coefficient 

 

The thrust coefficient, CT, for a wind turbine is defined as the ratio of the wind 

turbine drag force divided by the force of the wind over an equivalent swept area. 

Determination of CT is required for turbine wake and cluster calculations. The term 

\thrust" is commonly used instead of \drag" because turbine design shares a significant 

amount of its nomenclature and theoretical development with propeller theory. Most 

manufacturers do not explicitly publish thrust coefficient data. However, it is possible to 

derive the thrust coefficient at a given wind speed if the Cp or turbine power output is 

known, based on momentum theory. 

Wilson and Lissaman (1974) developed a method for relating CT to the axial 

induction factor. Recall from equation 2.19 that   P = DUR , so   D = P UR . Substituting 

for P using equation 2.17, and canceling like terms results in the expression  

  
D = 1

2
ρARU0

2
4a 1 − a( )[ ]                           (2.27) 

The thrust coefficient is the turbine thrust divided by the wind force applied to 

the rotor swept area, or 

  

CT =
D

1

2
ρARU0

2                                

 (2.28) 
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Eliminating T between equations 2.28 and 2.27 results in an expression for   CT  

as a function of a, 

  CT = 4a a −1( )                                (2.29) 

Recalling from equation 2.24 that Cp can also be expressed as a function of the 

axial induction factor,   Cp = 4a 1− a( )2 , then it is possible to relate the thrust coefficient 

to the power coefficient through the axial induction factor. Figure 2.5 shows CT and Cp 

as a function of the axial induction factor in the a = 0 to 0.5 region. Figure 2.6 shows the 

curve of CT as a function of Cp, for Cp between 0 and 0.593 and CT between 0 and 1.0. 

The region CT = 0 to 1.0 is appropriate for practical wind turbines because Cp cannot 

exceed Betz's limit and because commercial turbines, with low rotor solidities, do not 

commonly exhibit thrust coefficients greater than 1.0.  
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Figure 2.5 CT and Cp as a function of the axial induction factor. 

Because equation 2.16 is implicit, it is not possible to explicitly characterize Cp 

as a function of the axial induction factor. However, it is possible to determine a value 
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for CT by using the axial induction factor as a numeric solution parameter, as shown in 

Figure 2.6. An EES listing is included in Appendix A. 
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Figure 2.6 CT as a function of Cp. 

2.2 Factors Influencing Wind System Performance 

 

It has been shown earlier in this chapter that the energy extracted by a wind 

turbine results from a change in momentum of the air moving through the rotor plane. 

The mass flow rate of air is affected by its density, which is a function of temperature 

and pressure, and velocity. Estimated wind velocity at the turbine rotor is a based on 

information concerning flow obstructions and assumptions made concerning speed-up 

with height above ground. In addition, the power conversion efficiency of a wind 

turbine is influenced by variance in the wind speed (turbulence), orthogonality to the 

flow (yaw error) and aerodynamic effects (blade cleanliness).  

2.2.1 Air Density 
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The energy extracted by a wind turbine results from the change in momentum of 

the air moving through the rotor. The mass flow rate of air is a function of its density; 

therefore, the change in momentum is a function of the density of the air passing 

through the rotor. As described by the ideal gas law, the density of air is a function of its 

temperature and pressure. Air density is also dependent on humidity ratio, although 

Rohatgi and Nelson (1994) have shown that this influence is negligible for wind energy 

applications.  

In the atmosphere, the air density at a particular altitude is a function of the 

temperature and pressure of the air at the time and at that location. Both air pressure and 

temperature fall as a function of altitude. Hydrostatic pressure is commonly described as  

  

dp

dz
= −ρg                                   

 (2.30) 

So the pressure difference from one altitude to the next is              

  

∆P = − ρgdz
1

2

∫                                 (2.31) 

Introducing the ideal gas law   p = ρRT , substituting for ρ  in equation 2.30, 

separating the variables, and integrating between two points yields 

  

    

dp

p
= ln

p
2

p
1

= −
g

R

dz

T
1

2

∫
1

2

∫                            (2.32) 
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Assuming constant temperature, integrating equation 2.32 over z yields an 

expression for the pressure difference from point 1 to point 2 in elevation 

   

    

p2 = p1 exp −
g z 2 − z1( )

RT

 

  
 

                           

 (2.33) 

For elevations where wind energy applications apply, temperature decreases 

linearly with altitude. The temperature "lapse rate" (White, 1994) is  

     T ≈T 0 − Bz     where B = 6.5 K/km of altitude.             (2.34) 

Equation 2.34 can be inserted into equation 2.32 and integrated, resulting in an 

expression for pressure decrease with altitude taking into the temperature lapse rate 

   

  

p2 = p1 1 −
Bz

T 0

 

  
 

  

g

RB

                              (2.35) 

where the dimensionless exponent 
  
g

RB
 = 5.26 for air, and   T 0 = 288K .  

The air density at an elevation is a function of the combined effects of pressure 

and temperature, according to the ideal gas law. The air density at an elevation, in 

kg/m3, is therefore 

  

ρelev=

pelev

RT elev

                                 

 (2.36) 
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The resulting variation in air density is shown in Figure 2.7. The left axis shows 

the percent of sea-level density, while the right axis shows the numeric value. At an 

altitude of 3,000 meters, the density has fallen to approximately 80 percent of sea-level 

density. An EES program listing of the air density calculation model is contained in 

Appendix A. 
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Figure 2.7. Air density as a function of elevation. 

In most cases, wind turbine power output at a given wind speed is a linear 

function of air density. Wind turbines are usually not considered practical at high 

elevations, despite the stronger wind speeds. Since temperature and pressure also vary 

with weather, air density varies as well over time. Figure 2.8 shows percent of standard 

air density for weather conditions which are typical over the course of a year. 
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 Figure 2.8  Percent of standard air density for weather conditions   

       which are typical over the course of a year. 

Wind turbine power output also varies slightly due to variations in air density 

because the Reynolds number, upon which airfoil performance depends, also depends 

on ρ . However, the influence on power output, at the variations in density occurring in 

the atmosphere are small, so that Reynolds effects are not usually considered in power 

output modeling. Different types of turbines respond differently to air density changes 

depending on the method of power regulation employed. The output of fixed pitch wind 

turbines (stall-regulated and Darrieus vertical axis wind turbines) varies linearly with air 

density ratio. In this case, the vector addition of free-stream and rotor wind velocities 

results in an apparent airfoil angle of attack which moves into the "stalled" region of the 

airfoil lift-drag curve. Fixed pitch is problematic for commercial operators of wind 

turbines because the pitch of the turbine, as installed, is fixed and therefore based on a 

mean assumption for site air density. Since air density varies constantly, the turbine is 

rarely operating at an optimum. Fortunately, the range of "near-optimum" is broad. 

However, it is common practice to set conservative pitch angles on stall-regulated 

turbines to avoid overloading the turbine generator at times of high air density and high 

wind (typically, winter conditions).  
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Turbines with variable speed rotors and pitch-controlled blades are of a "power-

regulation" class. For these turbines, output is linearly proportional to air density up to 

the maximum power rating of the turbine. Maximum power is achievable, albeit at a 

higher wind speed in low density conditions. The wind speed at which the rotor cuts-in 

and can reach its rated output occurs at a wind power density equivalent to the wind 

power density at standard conditions. Wind power density (W/m2) is a cubic function of 

wind speed, therefore 

   
    
Urat ed,ρ =Urat ed ρ0 ρ( )

1
3                            

 (2.37) 

Figure 2.9 shows power curve variations for a power-regulated turbine as a 

function of air density. Note that the turbine reaches a fixed maximum, but that the 

point at which it reaches the maximum depends on air density.  
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     Figure 2.9 Output of a power-regulated wind turbine as a function of air    

           density.  
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2.2.2 Vertical Wind Shear 

The modeling of vertical wind shear (the change in wind speed per change in 

height above the ground), is historically based on boundary layer theory applied to the 

atmosphere. Two vertical wind shear models are used in wind energy applications.  

The first is the "one seventh power- law" model, based on the theoretical work 

of Von Karman (Koeppl, 1982): 

 
  

U 1

U 2

 
 

 
 =

Z 1

Z 2

 
 

 
 

α
   

 (2.38) 

A single parameter, α , determines the rate of wind speed increase as a function 

of height. Under ideal boundary layer conditions, the value of alpha is taken to be 1/7 

(0.14). However, under actual conditions, the value of alpha constantly varies, and 

depends on a variety of factors influencing vertical turbulence intensity, including: 

•  Local upwind surface roughness, determined by whether the air is moving over 

water, prairie, bushes or trees. 

•  Large scale surface characteristics in the "fetch", or upwind area, such as 

mountainous far upwind, or buildings and other structures nearby upwind. 

•  Atmospheric stability, as defined by the temperature gradient with height. 

•  Other wind turbines. Turbines increase turbulence due to vortex shedding.  
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Efforts to include these effects into more detailed, multiple-parameter shear 

models for wind energy applications have produced a variety of alternatives. The 

logarithmic profile 

    
U2 =U1 ln Z2 Z 0( )/ ln Z1 Z 0( )                       

 (2.39) 

is incorporated in the WaSP computer model used in Europe. The value of   Z 0  is the 

surface roughness length. In some circumstances, a value for the surface roughness is 

not known, or is a source of subjectivity. For this reason, the power law model 

continues to be most often used by meteorologists, especially where multi-height wind 

data is obtainable from a site. In this case, the shear exponent, alpha, implicitly 

incorporates influences due to surface roughness. For this reason, many wind data 

collection sites monitor wind velocity at two or more heights, allowing the 

meteorologist to infer a vertical wind shear exponent between heights. Combined with 

the capability to disaggregate time series data into directional components, then it is 

possible to map the shear exponent by time and direction.  

In time series modeling of wind turbine performance, vertical wind shear data is 

important in two cases. In the first case, the wind turbine power curve may have been 

collected at a height which was not the turbine hub height. For example, wind data may 

have been collected at ten meters for a wind turbine which was operating at 25 meter 

height above the ground. Though not a common situation, power curve data have been 

published with this height mismatch, since it can misleadingly represent a more 

powerful turbine. 
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In the second case, it is more common that site wind data has been collected at a 

different height from the turbine hub height. In this case, a hierarchy of approaches is 

appropriate. The most rigorous approach is to utilize a time series of vertical wind shear 

values calculated from two wind speed data sets, each from a different height above 

ground bracketing the height of the wind turbine. The equation for determining the 

alpha value from heights 1 and 2 is obtained by solving the power law equation for α : 

    

α =
lnU2 − lnU1

lnZ 2 − lnZ1
                              

 (2.40) 

A less rigorous approach is to calculate wind speeds based on wind data where 

both heights were below the turbine hub height: in this case the very same model is 

employed, but for extrapolation, rather than interpolation. 

The least rigorous approach is to apply an alpha estimate which does not vary 

with time. Unfortunately, this is often the case with typical availability of historic wind 

data, where annual average alpha exponents for sites are often provided with average 

wind speed data and wind roses. 

The sensitivity of hub height wind speed on the value of the vertical wind shear 

exponent is very strong. Figure 2.10 was prepared to present an \envelope" of possible 

variations in wind speed estimates, based on vertical wind shear assumptions, where the 

value of 1/7 was used as a baseline. The figure shows that an error of 10% in wind 

power output can occur with a five point error in shear exponent. Considering the fact 

that wind power is a cubic function of wind speed, the importance of vertical wind shear 

data cannot be overstated. 
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     Figure 2.10 Example variation in wind turbine power output as a        

           function of shear exponent. Lines represent various  

            typical data height and turbine height values across 

            a probable range. 

2.2.3 Turbulence 

Turbulence has a variety of impacts in wind energy applications. As discussed 

earlier in this chapter, turbulence is major factor in contributing to the fatigue of turbine 

components. Turbulence is also important from an energy perspective. It contributes to 

errors in the preparation of power curves. Higher turbulence fosters mixing, reducing 

wake effects in clusters. It also causes power fluctuations, since pitch controlled blades 

may not be able to adjust their blade pitch sufficiently quickly to follow the rapidly 

varying wind speeds, which can result in potentially unstable power output events. For 

stall-regulated wind turbines, turbulence has a similar effect, due to a hysteresis 
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phenomenon, termed dynamic stall. Data from wind tunnel tests have confirmed the 

existence of dynamic stall; if the angle of attack of an airfoil is changed rapidly, stall is 

delayed. The same effect occurs as angle of attack is returned from the stall condition; 

stall is maintained for a brief amount of time before settling back. When a turbine airfoil 

encounters turbulence, the effect is a change in apparent angle of attack. This effect has 

been one of the areas NREL has attempted to mitigate in its development of airfoils 

designed specifically for wind turbines. 

The U  component is downwind, the V  component is vertical, and the W  

component is the crosswind component of the wind velocity vector. Turbulence is 

described as the variation in wind velocity, where the associated turbulence intensities 

are defined as   ′ U , ′ V  and   ′ W . The only component which is actually measured in most 

wind energy site assessments is ′ U , based on the variation in the wind speed 

measurements from a cup anemometer or propeller anemometer mounted on the front of 

a wind vane. ′ U is important from an energy perspective because of its role in airfoil 

aerodynamics, such as dynamic stall.   ′ W  is important because it influences the 

horizontal component of the rotor wake structure, and ′ V  influences vertical wind shear 

and the vertical component of the rotor wake structure. 

The time base for turbulence data is usually over an hour, with measurements 

stored at 1 Hz. A turbulence intensity of 10% is equivalent to a standard deviation of 

1m/s in an hour with a mean value of 10 m/s. 

Connell (1986, 1988) has investigated turbulence in the atmosphere, as it relates 

to wind power applications. His research revealed that turbine blades pass through a 

combination of turbulence components as a rotation is completed. This mixing effect 

was simulated by computer re-sampling of turbulence data from a ring of anemometers, 
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using a rotational approach. Veers (1994) has made important contributions in the 

characterization of the turbulent flow field, especially as it applies to fatigue damage, to 

the extent of creating algorithms based on Connell's findings for synthesizing turbulent 

flow fields with properties similar to observed data. 

 Typically, for energy calculations, turbulence data is most important for cluster 

effects calculations. Simplifying assumptions are made of the crosswind structure. First, 

it is assumed that ′ V  and   ′ W  are similar. This is important, since otherwise wakes 

would be anisotropic in the radial direction. The modeling of ovoid wakes would then 

be required, resulting in increased computational complexity with negligible 

improvement to the accuracy of cluster energy calculations. 

The second simplification is the assumption that crosswind radial turbulence 

(using a cylindrical coordinate system) is linearly proportional to longitudinal 

turbulence, about 60 percent of the longitudinal turbulence intensity. This assumption 

has not been challenged since it was presented by (Lissaman 1982), principally because 

of the unavailability of field research in the area of radial turbulence characteristics. 

Turbulence also becomes important in cluster analyses because upwind turbines 

impart additional turbulence to the flow-field. Builtjes and Vermeulen (1992) described 

this effect, showing that the turbulence from upwind turbines is superimposed on the in-

flow turbulence. Figure 2.11 shows this effect. The additional turbulence is given by 

    

′ U 

U
⋅
1

CT

=
1

7
1−

2

5
ln 2x( ) 

 
 
 
                        (2.41) 



 

 

 

48 

where the expression on the left side is a dimensionless number expressing turbulence 

divided by the mean speed and thrust coefficient of the turbine, and the right side is a 

dimensionless number based on x, defined as rotor radii downwind.  
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       Figure 2.11 Turbulence added to free stream turbulence, as a function    

             of diameters downwind. 

 

When turbulence data from multiple sources are combined, the resulting net 

turbulence is the r.m.s of the constituent components. So, when adding free-stream and 

wake-induced turbulence, the net result is calculated as 

  ′ U net = ′ U free− st ream

2 + ′ U induced
2

                         

 (2.42) 

Applying the assumption of 60% tangential turbulence intensity to equation 2.42 

results in  
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    σnet = 0.6 ⋅ ′ U free−stream
2 + ′ U induced

2
                       

 (2.43) 

where the term   σnet  refers to the tangential turbulence intensity (parallel to the plane of 

the rotor). 

2.2.4 Wakes 

When installed in multiple-unit arrays or clusters, wind turbines have the 

potential to interact with each other when a downwind turbine is in the wake of an 

upwind wind turbine. The wake of the upwind turbine can be visualized as a plume of 

reduced flow having a generally Gaussian shape and boundary-layer characteristics in 

the radial crosswind direction. The extent of the wake interaction is dependent on the 

general wind direction (placement), turbulence intensity in the radial crosswind 

direction (mixing), and distance between turbines (strength), the number of upwind 

turbines (superposition), and whether wind speeds are reduced below the turbines rated 

speed (sensitivity). Figure 2.12 shows a typical wake interaction situation for a 

hypothetical wind cluster. 

In general, the impact of wake effects on a wind turbine cluster is a reduction in 

power output for certain wind speeds and directions. Knowledge of the wind speed by 

direction distribution at a site results in a determination of an efficiency factor 

associated with the layout of the wind cluster. Thus, it is possible to perform scenario 

analyses of possible cluster layouts in order to minimize wake effects. In real life 

projects, the easiest approach is to increase the distances between turbines. This can 

increase the cost of a project, however. The costs per land area are then introduced in 

the analysis to seek an optimum.  
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In the case of wind turbines arranged along ridge lines, some wind project 

operators have shut off wind turbines along the rows. This has had two effects: the first 

influences the apparent turbine distances. The second (and most important to the 

operator) is the reduced in-flow turbulence (and resulting increase in service-life) 

experienced by the operating wind turbines. The detailed modeling of wind turbine 

clusters is presented in Chapter 3. 

U

 

 

Figure 2.12 Wake interactions in a hypothetical wind cluster. 
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2.2.5 Other Factors 

A variety of other factors influence wind turbine power output. These can be 

divided into two categories: aerodynamic and operational. Aerodynamic impacts are 

those influences on the aerodynamic performance of the rotor airfoils. The most 

important aerodynamic impacts are the sources of increased surface roughness of the 

blades, and the prime cause is dead insects built up on the leading edges of the blades. 

Also recognized are ultra-violet light degradation of the surfaces of the blades, and air 

pollution. Installations near highways have reported that turbine blades had been soiled 

by aerosols from the exhaust of diesel engines powering trucks on the highway.  

Operational influences are either external- or control-system sources of sub-

optimal operation. External causes include power outages or inadvertent shut-down. 

Control-system causes include sub-optimal cut-in of the rotor due to anemometer or 

software error. A common cause of sub-optimal operation of horizontal axis turbines is 

yaw-error: the misalignment of the rotor to the wind which can happen when variation 

in wind direction occurs faster than the response rate of the yaw drive. 

Operational factors are commonly lumped into a percent-loss factor or efficiency 

factor. 

2.3 TRNSYS Type 85: Wind Turbine 

The algorithms discussed earlier in this chapter were formalized into a TRNSYS 

module, Type 85. The single wind turbine component simulates the energy output of a 

wind turbine based on input characteristics. After reading in a file containing turbine 

performance parameters and power curve data, Type 85 determines shear corrections, 
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air density, and resulting air density effect on the power curve each timestep. Vertical 

wind shear corrections are based on a power-law model, with exponent values derived 

from a time-series, calculated from available data, or input by the user. Air density is 

calculated using the ideal gas law and the temperature lapse rate model. Air density 

corrections for empirical power curves are applied using the AWEA / IEA 

methodologies (AWEA, 1988) (IEA, 1982).  
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Figure 2.13 TRNSYS Type 85: Wind Turbine. 

The simulation of the wind turbine produces outputs of power output, coefficient 

of performance, on/off status, etc. In the first section of the code, the variables are 

dimensioned, the parameters are identified, and the inputs are listed.  

Because multiple units of the type may be used, Type 85 sets up a data array, 

where each column of the array is the data for each unit of Type 85. Since power curve 

data are two-dimensional (Power versus wind speed) the data array contains: 

•  A unit (turbine) number: up to 60 
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•  Variable names and wind speed values: up to 99 values of wind data 

•  Values for variables and power output (kW) corresponding to wind speeds 

 

After the turbine data files are read in, and the parameters are read in, Type 85 

determines what kind of data are available for air density calculations. If time series data 

are available, then they are used. Otherwise, if temperature and pressure data are 

available, they are used to calculate air density over time. If temperature and pressure 

data are not available, then a fixed value is used as an input. 

The next operation corrects the power curve wind data to hub height when the 

power curve data collection height was lower than the hub height. This routine adjusts 

the wind speed values in the power curve data file to hub height values using the power 

law and an exponent. Next, the power curve terms are interpolated to estimate a power 

output value. This is performed in all cases by determining the power coefficient at the 

bracketing wind speeds, then applying the interpolated power coefficient and timestep 

air density. This variable-density cubic approach allows for the use of standard tabular 

lists of power curve data, but also handles sparse data tables more accurately than 

simple linear interpolation: the interpolation in the power regulation region of the power 

curve is more realistic, and corresponds with the mechanistic model of rotor 

performance. 

Type 85 calculates maximum power differently based on the type of power 

control. If the rotor is stall-regulated, maximum power is determined by the ratio of 

hourly air density over power-curve air density. If the turbine is power regulated, the 

maximum power is not affected by air density. The speed at which the wind turbine 

reaches rated power output is altered, however. The new rated wind speed is calculated 

using equation 2.28.  
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The cut-out wind speed (if there is one) is the wind speed at which the force of 

the wind is at a maximum. Recalling that thrust forces are a function of the square of the 

velocity, the equivalent force determines the new cut-out wind speed, or 

    
Ucut−out ,ρ =Ucut −out ρ0 ρ( )

1
2                          

 (2.34) 

A \turbine hours" value is calculated as the time step hourly fraction, and is 

valuable in the event a user wishes to know the number of total run hours per year, for 

example. The outputs of the Type 85 are: 

•  Energy per time step 

•  Power Coefficient 

•  Turbine hours. 

A listing of Type 85 is given in Appendix B. A demonstration TRNSED deck is 

listed in Appendix C. 


