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ABSTRACT

Renewable energy systems, especially wind turbines, are often proposed as additions
to diesel power systems. The intended role of renewable components in such systems is
to reduce fuel requirements and overall costs. In many parts of the world, the expense
and logistic effort required for diesel fuel deliveries can be very high. In most cases,
wind turbines and/or photovoltaic modules are employed, often as retrofits to diesels

already in operation.

The potential economic benefit of hybrid power systems is offset, to some extent, by
associated increases in capital cost and complexity. Technical challenges include power
management strategies and maximizing the benefits attributed to the renewable energy
components. An effective approach to understanding hybrid power systems is to
simulate their operation using time-series weather and loads data from a specific
location. A modular approach to simulation allows for comparative analyses of various

system configurations.
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This thesis describes the creation and application of a modular simulation of hybrid
power systems. The application has been created using TRNSYS, a transient system
simulation environment developed and maintained at the Solar Energy Laboratory
(SEL) at the University of Wisconsin-Madison. In order to build the system simulator,
several component models were newly created, and several existing component models
were modified. New wind turbine, wind cluster, power converter, diesel engine and
diesel engine controller components were created for the hybrid simulator. Existing

storage battery and data-reading software was modified for use in the application.

A major portion of this work was devoted to the development of the wind turbine and
wind cluster models, including their computer codes. The wind turbine component and
wind cluster components described in this thesis are the first detailed wind energy
components developed for TRNSYS. The wind cluster component is the first time-
series implementation of a wind turbine \array" model. Hybrid systems are an excellent

application for the exercise of these component simulations.

Simulations of a hypothetical hybrid application in Wisconsin are presented. The
results demonstrate the value of a modular design approach for optimizing system
design. In addition, it is shown that the combination of wind and PV in a hybrid power
system increases the load matching of the renewable component of such systems in

Wisconsin.
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