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The new heat and mass transfer component models require the use of parameter estimation to replicate catalog data.  This parameter estimation is based on minimizing the error between the calculated performance and the cataloged performance.  The minimization is accomplished using an optimization routine.



Throughout the course of this project, pre-packaged optimization routines have been used to perform the parameter estimation.  The Engineering Equation Solver (EES) Min/Max function was used initially to develop and test the individual component models.  In order to use the new component models in thermal system simulations, the parameter estimation was moved into the TRNSYS environment.  This environment is Microsoft PowerStation 4.0 for Windows, which contains built-in links to the International Mathematics and Statistics Libraries (IMSL) routines.



6.1  EES 



In developing the heat and mass transfer component models, the EES software package was used.  EES contains an optimization feature for locating an extremum with multiple degrees of freedom.  Powell's method (Pike, 1986) is used in conjunction with Brent's method to locate a maximum or a minimum.  Figure 6.1 illustrates a simple application of Powell's method for two degrees of freedom, x1 and x2 (Pike, 1986).
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Figure 6.1  Application of Powell's method.



In Figure 6.1, point 0 is the initial guess (x1,0, x2,0).  Powell's method begins by finding the optimum, corresponding to point 1, along one of the coordinate directions.  Two more optimums are located (points 2 and 3) along alternating coordinate directions.  At this point, an acceleration direction is determined using points 1 and 3.  In Figure 6.1, the optimum lies along this acceleration direction, and the search is completed.  In more complicated problems with more degrees of freedom, a series of acceleration directions would be calculated until the optimum is reached.



A recursive quadratic approximation method called Brent's method is used to determine the optimum along a particular direction.  This method begins by calculating the function value for three values along the search direction.  A quadratic function is fit to these function values, and the location of the optimum is estimated as the point at which the derivative of the fitted quadratic function is 0.  If this point is not the optimum, this point along with the two of the three previous points are used in fitting a new quadratic function and obtaining a new estimate of the location of the optimum point.  This process is repeated until the true optimum is found within the specified convergence criterion.



Use of any optimization routine requires initial guess values for each of the independent variables.  The importance of reasonable initial guess values is illustrated by Figure 6.2.  Figure 6.2 is a contour plot of the error between the calculated heat transfer rate and the cataloged heat transfer rate for a range of values of the inner and outer heat transfer coefficient-area product coefficients for the Modine 25B1-1 shell and tube heat exchanger.  A constant value of 0.5 was used for the outer fluid Reynolds number exponent.  Near the minimum error, gradients are large and the minimum could be located quite easily.  However, at locations far from the minimum, the error gradients become small.  Using guess values in this flat region would make it much more difficult to locate the optimum point.
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Figure 6.2  Contour plot of the heat transfer error as a function of the two heat transfer coefficient-area product coefficients for the Modine 25B1-1 shell and tube heat exchanger.



Determination of guess values for the EES models is accomplished using the first catalog data point.  Because a reasonable value of the outer fluid Reynolds number exponent C2 is known (0.5 or 0.6 is a reasonable guess for Equations 2.8, 3.6, 3.17, 3.19, 4.9, and 4.10 of the heat exchanger and cooling coil models), Equations 6.1 and 6.2 can be inserted into the equation set to solve for guess values of the two heat transfer coefficient-area product coefficients.
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Equation 6.1 constrains the model so that the calculated heat transfer rate is equal to the catalog heat transfer rate of the first catalog data point.  Equation 6.2 specifies that the heat transfer resistances are equal.  This condition is reasonable for a properly designed heat exchanger.  These same equations are used to calculate guess values for the chilled water cooling coil and direct expansion cooling coil models.



6.2  IMSL



In order to use these new component models in TRNSYS, the parameter estimation must be performed within TRNSYS.  This meant that the parameter estimation had to be moved out of EES and into standard FORTRAN.  The parameter estimation could be done either with a custom-written routine or a standard routine.  A standard routine from the IMSL libraries was chosen due to the difficulty of writing an effective optimization routine and because Microsoft PowerStation 4.0, which is used to run TRNSYS 14.2 for Windows, has built-in links to the IMSL libraries.



The IMSL libraries are a collection of mathematical and statistical numerical routines.  The mathematical library contains routines to handle a variety of problems such as eigensystems, differential equations, and optimization.  There are 32 optimization routines which can be used with either real or double precision accuracy.  The optimization routines can be further classified by the nature of the problem to be solved:  nonlinearly constrained minimization, linearly constrained minimization, minimization with simple bounds, and unconstrained minimization.  The fitting of the heat and mass transfer component parameters is a minimization problem with simple bounds.  The double precision accuracy routine DBCONF was chosen.  It uses a quasi-Newton method, a finite-difference approximation of the gradient, and a line search to locate the parameter values yielding a function minimum.  Many of the other routines for minimization with simple bounds require that the first derivative, the second derivative, or the Jacobian matrix be determined for a given set of parameters.  For the new TRNSYS heat and mass transfer components, calculating derivatives analytically is not possible because the models are highly non-linear due to the effectiveness-Ntu equations and property (both thermodynamic and transport) correlations.



In order to use the DBCONF routine, the function to be minimized must be defined.  In the case of the sensible heat exchanger, chilled water cooling coil, and direct expansion cooling coil models, this function is a normalized sum of squares error between the calculated heat transfer rate and the catalog heat transfer rate.  This definition is given by Equation 6.3.



� EMBED Equation  ���                                    (6.3)



Before using the IMSL routine with TRNSYS, its use and results were investigated in a series of stand-alone programs.  A separate program was constructed for each set of characteristic parameters to be fit.  For example, independent programs were written to fit the sensible heat exchanger characteristic heat transfer parameters, the sensible heat exchanger characteristic outer fluid pressure drop parameters, and the sensible heat exchanger characteristic inner fluid pressure drop parameter.  The structure of each of these stand-alone programs is illustrated by Figure 6.3.
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Figure 6.3  Schematic of the parameter fitting routine using the IMSL routine DBCONF.



The main program reads the performance data from the Input Data File, calculates parameter guess values, sets variable bounds, writes some of the Output Files, and performs any required initializations.  The main program calls DBCONF, which in turn calls the subroutine ERRCALC.  Subroutine ERRCALC calls the TRNSYS Type of interest to calculate the component performance using inputs from the Input Data File and the characteristic parameter values from the DBCONF routine.  The TRNSYS Type may use the new TRNSYS utilities NEWFLUIDS and REFTRANS, which calculate transport properties of non-refrigerant fluids and saturated liquid refrigerants, respectively.  Existing TRNSYS utilities such as PSYCH (psychrometrics) and FLUIDS (thermodynamics properties of refrigerants) may also be used.  Subroutine ERRCALC then calculates the total error between the calculated component performance and the catalog performance from the Input Data File according to Equation 6.3.  DBCONF adjusts the characteristic parameter values based on this calculated error.  This process is repeated until the error is minimized.  The Output Files are then created to give the final characteristic parameter values and to compare the calculated performance with the catalog performance at these final characteristic parameter values.  



To begin the DBCONF optimization routine, guess values, lower bounds, and upper bounds are required for each of the parameters to be fit.  For the heat and mass transfer components, good guess values, lower bounds, and upper bounds are known for the Reynolds number exponents.  For the outer convection coefficient-area product, the Reynolds number exponent can be guessed as 0.6, for example, with bounds of 0 and 1.  If the outer fluid pressure drop is being considered, the Reynolds number exponent can be guessed as -0.8 with bounds of -2 and 0.  Using the Reynolds number exponent guess value and one of the catalog data points allows guess values for the other characteristic parameters to be calculated, at least for these heat and mass transfer components.  This is best illustrated by the example of calculating the sensible heat exchanger characteristic heat transfer parameters.  The value of the Reynolds number exponent C2 can be guessed as 0.6.  The first catalog data point includes the mass flow rate and inlet temperature of each fluid as well as the heat transfer rate.  Using the specific heat of each fluid, this information can be used to calculate the outlet temperature of each fluid.  The log mean temperature difference LMTD can be calculated using the two inlet temperatures and the two outlet temperatures.  The overall heat transfer coefficient-area product UA is the heat transfer rate divided by the LMTD.  If it is assumed that the inner and outer heat transfer resistances are equal, each convection coefficient-area product hA equals twice the UA value.  Finally, rearranging the heat transfer coefficient-area product correlations of Equations 2.8 and 2.10 allows the coefficients C1 and C3 to be calculated.



The results of DBCONF were similar to those of EES after the fitted characteristic parameter values from EES were converted to the SI units used in TRNSYS.  Table 6.1 compares the best-fit characteristic parameter values obtained with EES (after conversion to TRNSYS SI units) to those from DBCONF. 



Table 6.1  Characteristic heat transfer parameters for the sensible heat exchanger, chilled water cooling coil, and direct expansion cooling coil models determined using EES and the IMSL routine DBCONF.
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For some of the entries in Table 6.1, there are significant differences between values of characteristic heat transfer parameter C1 as calculated by EES and DBCONF.  These differences are due to interaction between characteristic parameters C1 and C2, where C1 is the coefficient in the calculation of the outer heat transfer coefficient-area product and C2 is the exponent on the ratio of mass flow rate to dynamic viscosity for the outer fluid.  Because the ratio of mass flow rate to dynamic viscosity is generally a large number, a small change in the value of exponent C2 results in a large change in the value of coefficient C1.  This interaction leads to the differences in the results obtained from EES and DBCONF.



Variations in the parameter values obtained from the two programs may also result from two other sources.  One source is the way in which specific heats are handled.  Because the EES models are stand-alone models, variable specific heats are used.  The TRNSYS models, however, must be used in conjunction with other TRNSYS components, all of which use constant specific heats.  Use of variable specific heats throughout the new TRNSYS components would result in energy balance errors.  To get around this problem, variable specific heats are used only in the calculation of heat transfer coefficients.  Constant specific heats are used in the calculation of capacitance rates.  The second source of deviation between the parameters is differences between the transport property correlations of EES and those of the NEWFLUIDS subroutine.  An example is the calculated specific heat of air as shown in Figure 6.4.
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Figure 6.4  Specific heat of air as a function of temperature as calculated by EES and NEWFLUIDS.



Accurate transport property correlations are critical to the new component models.  The resulting characteristic parameter values allow extrapolation of component performance as well as prediction of component performance prediction using other fluids.



Use of the IMSL routine to perform parameter estimation independently of TRNSYS has several disadvantages.  First, the TRNSYS component of interest needs to be slightly modified in order to be used as standard FORTRAN code outside of TRNSYS.  The main required modification is commenting out the call to TYPECK.  TYPECK checks the number of parameters, inputs, and derivatives specified in the TRNSYS deck against the number of parameters, inputs, and derivatives required by the component model.  Obviously, the call to TYPECK has no meaning outside of TRNSYS.  Second, the method cannot be generalized.  The program used to calculate the characteristic heat transfer parameters of a sensible heat exchanger is different than the program that calculates the characteristic heat transfer parameters of a direct expansion cooling coil, for example.  Each program has its own way of calculating initial guess values for the characteristic parameters.  Each program also sets parameter values specific to a given TRNSYS Type and calls that TRNSYS Type only.  A much more general method is required to make this parameter estimation method work in conjunction with TRNSYS.  Thus, the final phase of this project focused on the problem of generalizing the parameter estimation routine and integrating it with TRNSYS.



6.3  TRNFIT:  TRNSYS and IMSL



A method has been devised that allows the IMSL routine to perform parameter estimation within TRNSYS 14.2 for Windows.  TRNSYS 14.2 can be run as a project through Microsoft PowerStation 4.0, which also has built-in links to the IMSL libraries.  This parameter estimation method, named TRNFIT, is more general and minimizes the work required of the user.  The routine is illustrated in Figure 6.5.
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Figure 6.5  Schematic of the TRNFIT parameter estimation routine.



In comparing Figures 6.3 and 6.5, it is obvious that the generalized routine is considerably more complex and requires many more subroutines and files than the IMSL-alone case-specific routines.  However, the user will never need to be concerned with most of this code, so this method will be easier to use.  Each required subroutine and file and its role in the generalized parameter estimation method will be discussed.



6.3.1  TRNSED TRNFIT



A TRNSED front-end program has been written to be used with the TRNFIT parameter estimation routine.  A copy of this program can be found in Appendix E.  A screen capture of the TRNSED screen seen by the user is included in Figure 6.6 and also in Appendix E.



The first three fields of the TRNSED TRNFIT screen allow the user to enter name, date, and an identifier of the component with which they are working.  These fields have no effect on running TRNFIT.



The fourth field lets the user specify the file in which the input data are located.  This is accomplished using the ASSIGN Open File Dialog Box statement.  When the user moves the cursor and clicks in the box where the path to the data file is shown, the Windows 95 Open File Dialog Box appears.  The path to the Input Data File can either be typed in or the file can be located by browsing through any of the drives to which the computer has access.



The fifth field specifies where the TRNFIT Output File will be written.  An ASSIGN Open File Dialog Box is again used.  The user can either type the name of a new output file to be created, or an existing file can be selected to be overwritten with the new output.





























































Figure 6.6  Screen capture of the TRNSED TRNFIT screen.

The sixth field allows the user to specify the TRNSYS Type and output quantity (i.e. heat transfer rate, outer fluid pressure drop, or inner fluid pressure drop for the Type 80 Heat Exchanger) for which characteristic parameters are to be fit.  This field uses a File Reference statement to display a scrolling list of all of the TRNSYS Types and output quantities with which TRNFIT can be used.  Selecting one of the entries in the list refers TRNSYS to a specific line in the 99MODES Data File for obtaining some other data.  The role of the 99MODES Data File will be discussed.



The seventh and final field of the TRNSED screen specifies the maximum number of iterations to be used in the parameter estimation routine.  The maximum number of gradient evaluations and function evaluations are automatically set to twice the maximum number of iterations in the Type 99 Fitter code.  If the maximum number of iterations, gradient evaluations, or function evaluations is reached, the IMSL routine quits and an error is written to the TRNSYS.OUT file.



6.3.2  99MODES Data File



The 99MODES Data File contains a listing of the TRNSYS Types and output quantities for which TRNFIT can be used.  The code for this file is shown in Table 6.2, Appendix E, and is included in the TRNFIT manual (Appendix F).  The code is commented describing the information in each line and is summarized in the TRNFIT manual text.



Table 6.2  Listing of the 99MODES Data File.

  

			       11

			       1,TYPE 80 HEAT EXCHANGER-Q,3,5,16,4,9

			       2,TYPE 80 HEAT EXCHANGER-dPo,2,8,16,4,9

			       3,TYPE 80 HEAT EXCHANGER-dPi,1,9,16,4,9

			       4,TYPE 85 DX COOLING COIL-Q,3,9,13,6,11

			       5,TYPE 85 DX COOLING COIL-dPo,2,10,13,6,11

			       6,TYPE 94 COOLING COIL-Q,3,8,18,5,11

			       7,TYPE 94 COOLING COIL-dPo,2,9,18,5,11

			       8,TYPE 94 COOLING COIL-dPi,1,10,18,5,11

			       9,TYPE 95 COOLING COIL-Q,3,8,15,5,11

			       10,TYPE 95 COOLING COIL-dPo,2,9,15,5,11

			       11,TYPE 95 COOLING COIL-dPi,1,10,15,5,11



The first line in the file is an integer that tells how many lines are following.  After the first line, the first field of each line is a line number.  The line numbers are in sequential order.



The second field contains the text that is seen in the scrolling list of the TRNSED screen.  The text makes obvious the TRNSYS component and the output quantity to which that line pertains.



The third field contains the number of characteristic parameters to be fit for that particular component and output quantity.  For example, referring to the 99MODES Data File in Table 6.2, the third field of line number 1 contains the number 3.  This means that reproducing heat transfer rate data for the Type 80 Heat Exchanger requires the fitting of three characteristic parameters:  the outer convection coefficient-area product coefficient, the outer fluid Reynolds number exponent, and the inner convection coefficient-area product coefficient.



The fourth field in a line of the 99MODES Data File designates the TRNSYS Type output number corresponding to the quantity of interest.  In the 99MODES Data File of Table 6.2, line number 1 pertains to fitting characteristic heat transfer parameters for the Type 80 Heat Exchanger.  The fourth field of this line contains a 5.  This means that the fifth output from the Type 80 code is the calculated heat transfer rate, and this is the output that will be compared to the catalog data.



The number of parameters required by the TRNSYS component, the number of inputs required by the TRNSYS component, and the number of outputs returned by the TRNSYS component code are given in fields 5, 6, and 7, respectively.



By including this information in the 99MODES Data File rather than placing it in the Input Data File, this information must be dealt with only once.  Once an entry from the scrolling list in the TRNSED screen is selected, all of this information is also specified.  Placing this information in the Input Data File would only make it easier to make a mistake in the construction of the Input Data File.  Also, there is no reason to include this information in the Input Data File because none of the values will change.  The information in the 99MODES Data File deals with quantities that are constant once the component code has been written.



The 99MODES Data File can be easily expanded when new components are written.  The first line must be incremented so that all of the selections will appear in the scrolling list of the TRNSED window.  The new lines can be tacked onto the end of the file.  They could also be inserted among the other lines to keep the TRNSYS Type numbers in numerical order, for example, in which case all of the following lines must be renumbered. 



6.3.3  Input Data File



Use of the TRNFIT parameter estimation routine requires an Input Data File with a specific structure.  Working Input Data Files can be found in Appendix E.  The Input Data File and its structure are also summarized in the TRNFIT manual text of Appendix F.  In this section, the Input Data File of Table 6.3 for estimating the characteristic heat transfer parameters of a Type 80 Heat Exchanger will be used as an example.





Table 6.3  Input Data File for estimating the characteristic heat transfer parameters of a Type 80 Heat Exchanger.



				        type 80

				        16

				        2

				        3

				        10

				        2.15d0

				        1

				        0

				        4.19d0

				        0.d0

				        0.d0

				        0.d0

				        0.d0

				        0.d0

				        0.d0

				        0.d0

				        0.d0

				        0.d0

				        9 10 11

				        1 1

				          48.9     13815.9    15.6       3410.2     189023.9

				          48.9     13815.9    15.6     11367.0     326490.0

				        126.7       1862.4    15.6       3410.2     317064.1

				        126.7       1862.4    15.6     11367.0     364762.9

				        126.7     13037.0    15.6       3410.2     695618.0

				        126.7     13037.0    15.6     11367.0   1201452.9

				        126.7       1862.4    82.2       3306.7     150687.7

				        126.7       1862.4    82.2     11021.9     173398.4

				        126.7     13037.0    82.2       3306.7     330602.0

				        126.7     13037.0    82.2     11021.9     571057.0

				          71.1       1941.9    65.6       3339.9       17143.7

				          71.1       1941.9    65.6     11133.0       19737.4

				          71.1     13593.3    65.6       3339.9       37640.3

				          71.1     13593.3    65.6     11133.0       65032.3

				          48.9       1973.7    15.6       3410.2       86161.5

				          48.9       1973.7    15.6     11367.0       99130.0

				        5

				        Q_(kJ\hr)

				        TYPE_80_HX_HEAT_TRANSFER_PARAMETERS

				       Outer_hA_coefficient_=

				      Outer_Reynolds_number_exponent_=

				       Inner_hA_coefficient_=

The first line is used to specify which TRNSYS Type is to be called during the parameter estimation routine.  The word 'type' (without quotes) is written and followed by the Type number of the TRNSYS component of interest.  For example, to use the Type 80 Heat Exchanger, the first line would read 'type 80' (no quotes).



The second line is an integer telling how many catalog data points to be used in performing the parameter estimation are included farther down in the Input Data File.



The next group of lines contains values for each of the parameters required by the TRNSYS Type to be called.  These values correspond to the conditions for which the subsequent catalog data points are valid.  Each value is placed on its own line, and they are listed in the order required by the TRNSYS Type as specified in the TRNSYS Component Descriptions of Appendix F.  TRNFIT knows how many parameter values to expect from the value in field 5 of the 99MODES Data File.  It is important to correctly handle lines corresponding to characteristic parameters that have yet to be fit.  This is best illustrated by using the sample Input Data File for estimating the characteristic heat transfer parameters of a Type 80 Heat Exchanger in Table 6.3 as an example.  



The first 8 values indicate parameters such as flow configuration and fluid number designations.  The final 8 parameters are all characteristic parameters that require values fitted from catalog data.  



If the user wants to fit characteristic heat transfer parameters for turbulent flow (designated by a suitably small value of parameter 8) in the tubes, parameters 9-11 (C1, C2, and C3) will be fit.  Values given to these parameters in the Input Data File will be replaced by guess values, so they can be given arbitrary values in the Input Data File.  Parameter 12 (C4) is used only for laminar flow in the tubes.  It will never be used so it can be assigned an arbitrary value, too.  Similarly, parameters 13-16 (C5, C6, C7, and C8) are coefficients and exponents used to calculate pressure drops, so they can be assigned arbitrary values.



The situation is similar for fitting characteristic heat transfer parameters for laminar flow (designated by a suitably large value of parameter 8) in the tubes.  Parameters 9, 10, and 12 (C1, C2, and C4) will be fitted using catalog data.  They will be given initial guess values, so they can be assigned any value in the Input Data File.  Parameter 11 (C3) is used only for turbulent flow in the tubes, so it can also be assigned any value.  Parameters 13-16 (C5, C6, C7, and C8) for calculating pressure drops can also be assigned arbitrary values.



Parameters 13 and 14 (C5 and C6) are fitted using outer fluid pressure drop catalog data.  Because the calculation of pressure drop uses temperature-dependent transport properties, the previously-fitted values of the relevant characteristic heat transfer parameters should be included in the Input Data File.  Failure to do so would result in inaccurate transport properties and fitted characteristic parameters.  If the relevant heat transfer parameters are given values of 0 in the Input Data File, a divide by zero error would occur in the calculation of the overall heat transfer coefficient-area product.  Parameters 15 and 16 (C7 and C8) deal with the inner fluid pressure drop, so they can be set to arbitrarily values.



Similarly, parameters 15 and 16 (C7 and C8) are fitted using inner fluid pressure drop catalog data for turbulent and laminar flow in the tubes, respectively.  The previously-fitted values of the relevant characteristic heat transfer parameters need to be included in the Input Data File for accurate fitting of the characteristic inner fluid pressure drop parameters.  Parameters 13 and 14 (C5 and C6) are used only in the calculation of the outer fluid pressure drop, so they can be set to arbitrary values.



The next line in the Input Data File specifies which of the TRNSYS Type parameters are going to be fit.  They must be listed in numerical order and separated by spaces, a comma, or a tab.  For example, if the user wants to fit characteristic heat transfer parameters for turbulent flow in the tubes of a Type 80 heat exchanger, this line would read '9 10 11' (no quotes).  For the case of laminar flow in the tubes, the line would read '9 10 12' (no quotes).



The following line in the Input Data File tells how many outputs are included in the catalog data and which of these is going to be used for the parameter fitting.  For the Input Data File of Table 6.3, the line ‘1 1’ means that there is one catalog data output (heat transfer rate), and this one output is going to be used for fitting the characteristic heat transfer parameters.  For a cooling coil, for example, typical catalog data outputs are the heat transfer rate, the leaving dry bulb temperature, and the leaving wet bulb temperature.  For fitting the characteristic heat transfer parameters, this line might read '3 1' (no quotes).  TRNFIT would then expect 3 outputs on each line of catalog data with the first of these being the heat transfer rate to be used in fitting the characteristic heat transfer parameters.



The catalog data points occupy the next portion of the Input Data File.  Each data point is put on a separate line.  The catalog data point inputs are listed first and must be in the same order as that required by the TRNSYS Type.  For example, the Type 80 Heat Exchanger component requires 4 inputs, and they are stored in this order:  outer fluid entering temperature, outer fluid mass flow rate, inner fluid entering temperature, and inner fluid mass flow rate.  Therefore, the catalog data inputs must be listed in this same order in the Input Data File.  For every catalog data point, a value must be given for every input required by the component code.  The catalog data outputs are listed after the inputs.  These outputs can be listed in any order as long as the quantity that will be used in fitting the characteristic parameters appears in the correct position, which was designated in the line immediately preceding the catalog data points.  Each number in a catalog data point is separated from the others by spaces, a comma, or a tab.



Following the catalog data points is a line containing a string of integers that match the catalog data outputs with those of the TRNSYS Type.  In the sample Input Data File of Table 6.3, the line ‘5’ means that the one catalog data output corresponds to output 5 of the Type 80 Heat Exchanger code.  For a cooling coil, the catalog data outputs might be listed in the Input Data File in the following order:  total heat transfer rate, leaving dry bulb temperature, and leaving wet bulb temperature.  These quantities correspond to output numbers 8, 1, and 2, respectively, for a Type 95 Chilled Water Cooling Coil.  Therefore, this line in the Input Data File would read '8 1 2' (without the quotes).  Again, the numbers are separated by spaces, a comma, or a tab.



The remainder of the Input Data File contains character strings that are used as labels for making the Output File easier to read.  First, the name and units of each of the catalog data outputs are written on a separate line in the order in which they are listed in the catalog data points.  The use of spaces, commas, or forward slashes within the character string will cause the remaining characters in the string to not be read.  Underscores and backward slashes are common substitutions for spaces and forward slashes, respectively.  For the heat transfer rate, the label 'Q (kJ/hr)' could be written as 'Q_(kJ\hr)'.



The next line of the Input Data File contains a title to help the user keep track of the specific case being investigated.  The title may include the TRNSYS Type number for which the fitted parameters are valid, an indication of whether the parameters are for heat transfer or pressure drop, and the model number of the cataloged component from which the catalog data points were taken.



The final lines of the Input Data File contain character strings used as names for the fitted characteristic parameters.  Each character string is placed on a separate line.  The names must be listed in the order corresponding to the listed order of the fitted characteristic parameters farther up in the Input Data File.  As was previously discussed, if the user wants to fit the characteristic heat transfer parameters for turbulent flow in the tubes of a Type 80 Heat Exchanger, the line '9 10 11' would appear in the Input Data File.  When the characteristic parameter names are listed at the end of the Input Data File, the first name would be assigned to parameter 9.  The name on the next line would be assigned to parameter 10, and the name on the last line would correspond to parameter 11.



Although this Input Data File is structured and must be carefully constructed, it is general enough and provides enough flexibility so that its format will be able to be used for any future TRNSYS components written to be used with TRNFIT.



6.3.4  D2ARRAYS Module



A module is a new feature of FORTRAN 90.  One use of a module is to replace a COMMON block in the definition of global variables.  Instead of passing variables in COMMON blocks and redeclaring them in each subroutine, variables declared within a module do not need to be redeclared within each subroutine.  Instead, placing a USE statement after the PROGRAM, SUBROUTINE, or FUNCTION statement allows that unit access to the global variables declared within the module.



A second use of a module is the declaration of global allocatable arrays.  An allocatable array is an array whose size is not specified at the time of declaration.  Instead, its size is determined later in the program through the use of the ALLOCATE statement.  An example is as follows:



					INTEGER SAMPLE(:,:)

					INTEGER X, Y

					ALLOCATABLE SAMPLE

						.

						.

					READ(*,*) X, Y

					ALLOCATE SAMPLE(X, Y)



Allocatable arrays cannot be passed in COMMON blocks.  Sizes of arrays passed through COMMON blocks must be specified in the program declaration section.



Modules replace COMMON blocks as well as allow arrays to be handled in unique ways that are not possible with COMMON blocks.  TRNFIT takes advantage of these ideas with the D2ARRAYS module.  The D2ARRAYS module can be found in Table 6.4 as well as Appendix E.  This module allows array sizes to be dependent on the parameter estimation problem being solved.  The role of each of global allocatable array defined in the D2ARRAYS module will be discussed.



Table 6.4  Listing of the D2ARRAYS module.



				module d2arrays


				implicit none


				integer typeout,fitpar


				character*15 outhead


				real partype


				doubleprecision input,output,xguess


				doubleprecision xlb,xub,xscale


				doubleprecision xsol,calc


				allocatable outhead(:),calc(:,:)


				allocatable input(:,:),output(:,:),xguess(:),xlb(:),xub(:)


				allocatable xscale(:),xsol(:),typeout(:),partype(:)


				allocatable fitpar(:)



The TYPEOUT array stores the TRNSYS Type output numbers corresponding to the catalog data outputs listed in the Input Data File.  For example, a data file for a Type 95 Chilled Water Cooling Coil may contain 3 catalog data outputs:  the total heat transfer rate, the leaving dry bulb temperature, and the leaving wet bulb temperature.  These correspond to output numbers 8, 1, and 2, respectively, of the Type 95 component code.  In this case, the TYPEOUT array would be allocated 3 elements based on the number of catalog data outputs specified in the Input Data File.  The array would store the values 8, 1, and 2 as read from the Input Data File in elements 1, 2, and 3, respectively.



The FITPAR array stores the TRNSYS Type parameter array indices of the characteristic parameters that are going to be fit using catalog data.  Fitting characteristic heat transfer parameters with turbulent flow in the tubes requires the fitting of parameters 9, 10, and 11 of the Type 80 Heat Exchanger.  FITPAR would be assigned a size of 3 based on the value in field 3 of the 99MODES Data File and would store the values 9, 10, and 11 as read from the Input Data File.



The OUTHEAD array contains the character strings giving the names and units of the catalog data outputs.  It is dimensioned according to the number of catalog data outputs as specified in the Input Data File.



The PARTYPE array contains parameter values sent to the TRNSYS type of interest.  The name PARTYPE is used to distinguish this array from the PAR array required by the Type 99 Fitter.  PARTYPE is dimensioned according to the number of parameters required by the TRNSYS Type of interest as specified by field 5 of the 99MODES Data File.



The INPUT array is a two-dimensional array for storing the catalog data inputs.  The first dimension is set equal to the number of catalog data points as specified in the Input Data File.  The second dimension is set equal to the number of inputs required by the TRNSYS Type of interest as specified by field 6 of the 99MODES Data File.



The OUTPUT array is a two-dimensional array for storing the catalog data outputs.  The first dimension is set equal to the number of catalog data points as specified in the Input Data File.  The second dimension is set equal to the number of catalog data outputs, which is also specified in the Input Data File.



The XGUESS array stores guess values for each of the characteristic parameters to be fit.  These guess values are used to start the parameter estimation routine.  Arrays XUB and XLB store upper and lower bounds, respectively, of the characteristic parameters to be fit.  Values for each of these arrays are returned from subroutine IGV, which will be described later.  Array XSOL returns the best-fit characteristic parameter values from the IMSL DBCONF routine.  XSCALE contains scaling factors for the variables, which are set to 1.0 for lack of better information.  The size of each array is set equal to the number of parameters to be fit, which is given by field 3 of the 99MODES Data File.



Finally, CALC is a two-dimensional array for storing all of the TRNSYS Type outputs for each catalog data point using the current characteristic parameter values.  The first dimension is set equal to the number of catalog data points as specified in the Input Data File.  The second dimension is set equal to the number of outputs returned by the TRNSYS Type of interest as specified by field 7 of the 99MODES Data File.



6.3.5  Type 99 Fitter



The Type 99 Fitter is a component with the standard TRNSYS format that allows TRNSYS, the IMSL optimization routine, and the other associated subroutines described here to work together.  The Type 99 Fitter code can be found in Appendix B.



The Type 99 Fitter requires 8 parameters.  These parameters are all assigned from the TRNSED TRNFIT screen and the associated 99MODES Data File.  The first parameter is the number of characteristic parameters to be fit and is taken from field 3 of the 99MODES file.  The second parameter is the TRNSYS Type output number corresponding to the quantity of interest and is assigned from field 4 of the 99MODES file.  The third parameter is the number of parameters required by the TRNSYS Type of interest, which is specified by field 5 of the 99MODES file.  The fourth parameter is the number of inputs required by the TRNSYS Type of interest as given in field 6 of the 99MODES Data File.  The fifth parameter is the number of outputs returned by the TRNSYS Type of interest, and it is set by the value in field 7 of the 99MODES file.  The sixth parameter is the maximum number of iterations to be performed by the parameter estimation routine.  This value is input by the user at the TRNSED TRNFIT screen.  The seventh and eighth parameters are the logical unit numbers of the Input Data File and the Output File, respectively.  These values are automatically assigned by the TRNSED TRNFIT file.



The Type 99 Fitter requires no inputs, and no outputs are returned.  All necessary input information is contained in the Input Data File.  Outputs are written to the Output File, which will be described later in this chapter.



The first task accomplished by the Type 99 Fitter is to read the Input Data File and allocate the appropriate storage space to each of the global allocatable arrays declared in the D2ARRAYS module.  Subroutine IGV is next called in order to assign an initial guess value, upper bound, and lower bound for each of the characteristic parameters that are going to be fit.  The IMSL routine DBCONF is then called to perform the parameter estimation.  After the parameter estimation is complete, the Type 99 code raises a flag to signal other subroutines that the Output File should now be written.  The Type 99 code writes part of the Output File, such as the number of iterations performed by DBCONF.



6.3.6  IGV



The subroutine IGV (Initial Guess Values) assigns a starting guess value, a lower bound, and an upper bound for each of the characteristic parameters to be fit.  These values can be calculated using the catalog data, or they can simply be assigned a constant value.



Calculating parameter guess values using catalog data requires use of one of the catalog data points contained in the Input Data File.  Use of the D2ARRAYS module allows the subroutine to access the INPUT and OUTPUT arrays, which store the catalog data inputs and outputs, respectively.



Knowledge of the component and the component model is required to calculate parameter guess values.  Portions of the model can then be used to back-calculate characteristic parameter values for known inputs and outputs with the addition of some reasonable assumptions.  A good example is the calculation of guess values for the three sensible heat exchanger characteristic heat transfer parameters.  For a given catalog data point, the inner fluid inlet temperature Tii, the inner fluid outlet temperature Tio, the outer fluid inlet temperature Toi, and the outer fluid outlet temperature Too are known or can be easily calculated using the known catalog heat transfer rate.  This situation lends itself to using the log mean temperature difference (LMTD) method, where the LMTD for a counterflow heat exchanger is defined by Equation 6.4.



� EMBED Equation  ���                                 (6.4)



The required overall heat transfer coefficient-area product can then be calculated from Equation 6.5 using the catalog heat transfer rate.



� EMBED "Equation" \* mergeformat  ���                                                   (6.5)



At this point, it is necessary to make an assumption regarding the relative sizes of the two convection coefficient-area products that comprise the sensible heat exchanger model.  For a well-designed heat exchanger, these quantities should be on the same order of magnitude and Equation 6.6 can be assumed.



� EMBED "Equation" \* mergeformat  ���                                          (6.6)



The coefficient of the inner convection coefficient-area product can now be calculated by rearranging Equation 2.10 to form Equation 6.7.



� EMBED "Equation" \* mergeformat  ���                                  (6.7)



A similar calculation can be performed for the parameters pertaining to the outer fluid flow if a value for the Reynolds number exponent is assumed.  The Reynolds number exponent is between 0.40 and 0.84 (Incropera and DeWitt, 1990), so a value of 0.6 would be a reasonable guess.  A guess value for the Reynolds number exponent could also be calculated if enough information is available to be able make some estimates of geometric dimensions.  Equations 6.8 and 6.9 can be used to calculate guess values for the 2 outer fluid heat transfer parameters.



� EMBED "Equation" \* mergeformat  ���                                                       (6.8)



� EMBED "Equation" \* mergeformat  ���                                (6.9)



A lower bound and an upper bound must also be specified for each of these characteristic parameters.  These bounds can either be calculated as a function of the guess value for that characteristic parameter, or they can be set to a constant value.  For example, tabulated values of the outer fluid Reynolds number exponent C2 run between 0.40 and 0.84.  Possible choices for lower and upper bounds of this parameter are 0.40 and 0.90 or 0 and 1.0.  Boundary values may be more difficult to estimate for the coefficients C1 and C3.  In this case, it is easier to specify boundary values as a function of the guess value.  The lower bound could be set to a small multiple of the guess value.  Similarly, the upper bound can be set to a large multiple of the guess value.



Each of these characteristic parameter guess values, lower bounds, and upper bounds must then be assigned to the proper location within the XGUESS, XLB, and XUB arrays.  The guess values are assigned to these arrays in the same order in which the fitted parameter numbers are listed in the Input Data File.  For fitting the characteristic heat transfer parameters of a sensible heat exchanger with turbulent flow in the tubes, the line '9 10 11' (without the quotes) is included in the Input Data File to indicate that the ninth, tenth, and eleventh parameters required by the Type 80 code are going to be fitted using catalog data.  This also means that the guess value and bounds for parameter 9 must be stored in XGUESS(1), XLB(1), and XUB(1).  The guess value and bounds for parameter 10 must be stored in XGUESS(2), XLB(2), and XUB(2).  The guess value and bounds for parameter 11 must be stored in XGUESS(3), XLB(3), and XUB(3).



Subroutine IGV must be modified for each TRNSYS Type and set of characteristic parameters for which TRNFIT is used.  A number of IGV subroutines can be written and stored under different names, each one determining guess values and bounds for a different TRNSYS Type and set of characteristic parameters.  The desired IGV subroutine can then be added and removed from the TRNSYS project as necessary.  



Because the determination of reasonable characteristic parameter guess values and bounds requires knowledge of the TRNSYS component model, all IGV subroutines required by the Type 80 Heat Exchanger, the Type 85 Direct Expansion Cooling Coil, and the Type 94 and 95 Chilled Water Cooling Coils have been written and are included in Appendix E. 



6.3.7  IMSL DBCONF



As was previously mentioned, the parameter estimation is performed by the IMSL optimization routine DBCONF.  DBCONF uses a quasi-Newton method with a finite difference approximation of the gradient to solve an optimization problem with simple bounds on the variables.  The call to DBCONF is of the following form:



CALL DBCONF(ERRCALC, N, XGUESS, IBTYPE, XLB, XUB, XSCALE, FSCALE, 

IPARAM, RPARAM, XSOL, FVALUE)



ERRCALC is an external subroutine that evaluates the function to be minimized at the current characteristic parameter values.  Calls to ERRCALC from within DBCONF are of the following form:



CALL ERRCALC(N, CVAL, ERR)



N is the number of parameters being varied, CVAL is the array of current characteristic parameter values, and ERR is the calculated error at the current characteristic parameter values.



Returning to the DBCONF calling statement, N is the number of parameters being varied.  XGUESS is an array storing the initial guess values for each of the variable parameters.



IBTYPE is an integer indicating how the variable bounds are to be handled.  Options are user-specified bounds on all variables, positive bounds on all variables, negative bounds on all variables, and identical bounds on all variables.  TRNFIT requires user-specified bounds on all variables.



XLB and XUB are arrays for storing the specified lower and upper bounds, respectively, for each variable.



XSCALE is an array of scaling factors, and FSCALE is a function scaling factor.  For lack of better information, all of these values are set to a value of 1.0.



IPARAM is an array involving initializations and stopping conditions in the form of the maximum number of iterations, the maximum number of function evaluations, and the maximum number of gradient evaluations.  The maximum number of iterations is specified by the user in the TRNSED TRNFIT screen.  The maximum number of function evaluations and the maximum number of gradient evaluations are then set equal to twice that number.



RPARAM is an array of tolerances.  TRNFIT uses the default value for each of these entries.  These default values are functions of the machine precision e.



XSOL is an array containing the best-fit values of the characteristic parameters.  XSOL(1) contains the best value of the parameter whose guess value and bounds are stored in XGUESS(1), XLB(1), and XUB(1), and so on.



FVALUE is the value of the function to be minimized at the best-fit characteristic parameter values.



6.3.8  ERRCALC



ERRCALC calculates the error to be minimized by the variation of the characteristic parameters.  This subroutine first calls RUNTYPE, which performs the call to the TRNSYS Type and will be discussed later in more detail.  The ERRCALC code is listed with the Type 99 Fitter code in Appendix B.



After the TRNSYS Type has been called for each of the catalog data points using the current values of the characteristic parameters, a measure of the total error is calculated.  The form of this error calculation is given by Equation 6.10.



� EMBED Equation  ���                                  (6.10)



In Equation 6.10, Xcalc is the calculated value and Xcat is the catalog value from the catalog data.  The index of the relevant calculated value within the TRNSYS Type output array was read from the Input Data File.  Similarly, the index of the relevant catalog data output within the array of catalog data outputs was read from the Input Data File.  The denominator Xcat, 1 is the catalog value from the first catalog data point and is used as a normalizing factor.  The total error is returned to the IMSL routine DBCONF to be used in the determination of the characteristic parameter values for the next iteration.



When the best-fit characteristic parameter values have been determined, the Type 99 Fitter raises a flag to signal ERRCALC that the characteristic parameter values being sent are the final values.  This flag causes ERRCALC to call RUNTYPE one last time, calculate the total error, and then call RESULTS to write the Output File.  Subroutine RESULTS and the Output File will be discussed later in more detail.



6.3.9  RUNTYPE



RUNTYPE is the subroutine that actually calls the TRNSYS Type to determine its performance at the current characteristic parameter values.  Before calling the TRNSYS Type, RUNTYPE assigns the current characteristic parameter values to the proper locations within the PARTYPE array.  The PARTYPE array contains all of the parameter values for the TRNSYS Type.  The indices of the characteristic parameter locations within the PARTYPE array were previously read from the Input Data File.  This assignment is performed once per iteration.



The XIN array, which contains the inputs for the TRNSYS Type, is then assigned from the catalog data inputs read from the Input Data File.



After the PARTYPE and XIN arrays have been assigned, the TRNSYS Type has everything it needs to be executed.  A general method is used to determine which TRNSYS Type is to be called.  The first line of the Input Data File contains an integer indicating which TRNSYS Type the user wants to run.  RUNTYPE is essentially a large if-then-else statement that allows the TRNSYS Type corresponding to this integer to be called.  The RUNTYPE code is in Appendix E.





6.3.10  TRNSYS Type, Standard TRNSYS Utilities, 

           NEWFLUIDS, REFTRANS, and User-Written Utilities 



TRNFIT requires the use of a TRNSYS component.  This TRNSYS component is in the standard format with one slight change.  This change has to do with the placement of the parameters assignment statements.  The typical structure of the first part of a TRNSYS component is as follows:



				    IF (INFO(7) .GE. 0) GO TO 100

	   				NI    =  4 

					NP    =  16

					ND    =  0

					NO    =  9 

					INFO(6) = NO

					INFO(9) =  1

					CALL TYPECK(IOPT,INFO,NI,NP,ND)



     					P1	=  PAR(1)

      					P2	=  PAR(2)

      					P3	=  PAR(3)

      					P4	=  PAR(4)

      					P5	=  PAR(5)

			    100	    CONTINUE

The INFO array contains information used by the TRNSYS components and the TRNSYS executable.  INFO(7) stores the number of iterative calls to a given component during the current timestep.  At the beginning of the simulation, INFO(7) has a value of -1.  The if-then statement is entered, and TYPECK is called.  TYPECK compares the number of parameters, inputs, and derivatives specified in the TRNSYS Deck with the number required by the TRNSYS Type as given by NP, NI, and ND, respectively.  If a discrepancy is found, the simulation is stopped.  Otherwise, the simulation is continued.  From this point on, INFO(7) always has a value of at least 0, equal to the number of calls to that Unit during the current timestep (in addition to a Type number, each component in a TRNSYS Deck is assigned a Unit number so that multiple components of the same TRNSYS Type can be used).  Placing the parameter assignment statements within this if-then statement has the advantage of assigning parameter values only once during the simulation.



For components used with TRNFIT, these parameter assignment statements must be moved outside of the if-then statement.  TRNFIT assigns INFO(7) a constant value of 0 because it is not performing a time-based simulation.  This results in the if-then statement being skipped.  If the if-then statement wasn't skipped, many errors would be written from TYPECK to the TRNSYS.OUT list file.  TYPECK would try to compare the number of parameters, inputs, and derivatives specified in the TRNSYS Deck with those required by the TRNSYS Type.  However, the TRNSYS Type does not appear in the deck.  The only component in the deck is the Type 99 Fitter.



The TRNSYS Type can use any utilities included in the PowerStation project.  Standard utilities include PSYCH (psychrometrics) and FLUIDS (thermodynamic properties of refrigerants).  Two new utilities have been written for use with the Type 80, 85, 94, and 95 components.  NEWFLUIDS calculates transport properties of non-refrigerant fluids.  REFTRANS calculates transport properties of saturated liquid refrigerants.  These utilities were discussed in detail in Chapter 5.  It is anticipated that these and other new utilities will be useful for future components written to take advantage of TRNFIT.



6.3.11  RESULTS



Subroutine RESULTS is responsible for writing a majority of the Output File.  The code can be found in Appendix E.  RESULTS is called when the best-fit values of the characteristic parameters have been determined.  The first task it performs is to read the last lines of the Input Data File, which contain names and units for the catalog data outputs, a title describing the TRNSYS Type and the output of interest, and a descriptive label for each of the characteristic parameters being fitted.



For each output included in the catalog data points of the Input Data File, subroutine RESULTS writes the calculated value, the catalog value, and the absolute difference between the calculated and catalog values.  For example, typical catalog data outputs for a cooling coil are the total heat transfer rate, the leaving dry bulb temperature, and the leaving wet bulb temperature.  If these three outputs are listed in the catalog data in this order, RESULTS first writes the calculated values, catalog values, and the differences for the total heat transfer rate, followed by those of the leaving dry bulb temperature and the leaving wet bulb temperature.



Following comparisons of the calculated outputs and the catalog outputs, RESULTS writes the best-fit characteristic parameter values to the Output File.  The title and descriptive parameter labels are used to make this section of the Output File easier to read.



Finally, RESULTS performs some statistical analyses of the parameter estimation results.  The bias and the RMS error are calculated by comparing the calculated and catalog values for each of the outputs included in the catalog data points of the Input Data File.    



6.3.12  Output File



The Output File is written after the best-fit characteristic parameter values have been determined.  Typical Output Files can be found in Appendix E.



The first sections of the Output File display the calculated value, the catalog value, and the absolute difference for each catalog data output for each catalog data point.  For example, the Input Data File may include 20 data points for a cooling coil with outputs of total heat transfer rate, leaving dry bulb temperature, and leaving wet bulb temperature listed in that order.  The first section of the Output File would then consist of the 20 calculated total heat transfer rates, catalog transfer rates, and absolute differences.  Similar sections for the leaving dry bulb temperature and the leaving wet bulb temperature would follow.  The information is displayed in a three column format using column headings read from the Input Data File by the subroutine RESULTS.



Following the calculated and catalog output values, the best-fit characteristic parameter values are displayed.  The title and descriptive parameter labels read from the Input Data File by RESULTS are also written.



The next lines show the calculated bias and RMS error in comparing the calculated and catalog values for each of the catalog data outputs.



The last section of the Output File contains other results returned from the IMSL routine DBCONF.  These results are the minimized value of the error function, the number of iterations performed, the number of function evaluations performed, and the number of gradient evaluations performed.



6.4  Comparison of EES and TRNFIT Parameter Estimation

      Results



Figure 6.7 compares the parameter estimation results of EES and TRNFIT for the Type 80 Heat Exchanger, the Type 85 Direct Expansion Cooling Coil, the Type 94 Chilled Water Cooling Coil for both totally dry and totally wet operation, and the Type 95 Chilled Water Cooling Coil.  EES results are shown in the left-hand graphs, and TRNFIT results are shown in the right-hand graphs.
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Figure 6.7  Calculated heat transfer rate vs. catalog heat transfer rate at the best-fit characteristic heat transfer parameters determined by both EES and TRNFIT for (a)  Type 80, (b)  Type 85, (c)  Type 94 (dry), (d)  Type 94 (wet), and (e)  Type 95.



The results of the TRNFIT software are in excellent agreement with those of EES.  Differences are most likely due to fluid properties.  EES uses built-in fluid property functions while TRNFIT uses the correlations of the NEWFLUIDS utility subroutine.  Also, the EES models use variable specific heats everywhere whereas the TRNSYS components require constant specific heats to calculate capacitance rates in order to maintain the system energy balance.



6.5  Conclusions



Developing component models in EES showed that characteristic parameters and parameter estimation result in models that can accurately replicate catalog data.  In order to use this method with TRNSYS, it was moved out of EES.  Initial testing of the method in a stand-alone PowerStation 4.0 environment using an IMSL routine to perform the parameter estimation provided results comparable to EES.  However, further work was required to bring the parameter estimation method into TRNSYS.



TRNFIT is a general method of calculating values of characteristic parameters for TRNSYS Types.  A TRNSED file, an IGV subroutine to set guess values and bounds, and an Input Data File provide the information required to estimate the characteristic parameters.  An IMSL routine is still used to perform the parameter estimation.  Results are written to an Output File.  The software has worked well for the 15 cases investigated to date.  These 15 cases concern heat transfer rates and pressure drops of the Type 80 Heat Exchanger, the Type 85 Direct Expansion Cooling Coil, and the Type 94 and 95 Chilled Water Cooling Coils .



TRNFIT will allow additional components to be written and take advantage of this parameter estimation technique. 
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