
Experimental Testing of sCO2 Switched
Bed Regenerators for Power

Applications

by

Logan M. Rapp

A thesis submitted in partial fulfillment of

the requirements for the degree of:

MASTER OF SCIENCE

(MECHANICAL ENGINEERING)

At the

UNIVERSITY OF WISCONSIN – MADISON
2017

Approved by:

__ Date: ____________________

Professor Gregory Nellis

i

Contents
1 Introduction .. 1

1.1 Background ... 1

1.2 SunShot Initiative and CSP: APOLLO ... 5

2 Experimental Setup .. 8

2.1 Data Acquisition Equipment ... 8

2.2 Labview ... 9

2.3 Experimental Equipment .. 12

2.3.1 Regenerators .. 12

2.3.2 Binary Valves .. 14

2.3.3 Compressor... 19

2.3.4 Molten Salt Heater ... 20

3 Data Analysis .. 22

3.1 Data Storage and Access .. 22

3.2 Thermodynamic Properties .. 23

3.3 Cycle Analysis ... 24

3.4 Heat Transfer Calculations ... 25

3.5 Pressure Drop ... 31

3.6 Heat Transfer Coefficient ... 35

3.7 Regenerator Design .. 38

3.8 Carryover .. 39

4 Results .. 40

4.1 Effectiveness Results .. 40

4.2 Pressure Drop Results .. 47

4.3 Carryover Results .. 50

5 Conclusions ... 51

6 Bibliography .. 52

7 Appendix A ... 55

8 Appendix B – CO2 Properties ... 56

9 Appendix C – Fast Average ... 61

ii

10 Appendix D – Calculate Q ... 65

11 Appendix E – FIT_HXR... 67

12 Appendix F – Create_averaged_vars .. 69

13 Appendix G – Linear Interpolation ... 70

Table 2.1 - Data Acqusition Module Information ... 8

Table 2.2- Instrument Information ... 9

List of Figures

Figure 1.1 - Illustration of a Power Tower CSP plant with the subsystems of interst and SunShot goals

[5] ... 3

Figure 1.2 - Comparison of Steam Rankine cycle with Recompression Brayton Cycle (RCBC) [8].

Analysis performed by NETL and figure from [2]. .. 4

Figure 1.3 - Cost reductions for parabolic trough and tower technologies since the SunShot Vision

Study [11]. SVS=SunShot Vision Study (DOE 2012). OTPSS = On the Path to SunShot. 6

Figure 2.1 - Labview Control Screen ... 10

Figure 2.2 - P&ID of test facility .. 11

Figure 2.3 - a) 3D model of regenerator showing temperature and pressure instrument locations

(spheres in model are larger than actual spheres in order to show detail . b) Image of spheres used

to fill packed bed. ... 12

Figure 2.4 - Regenerator with dimensions (in inches). Dashed area represents packed bed of spheres

 .. 13

Figure 2.5 - Image of low temperature binary valves used for regenerator switching 14

Figure 2.6-Valve Switching Sequence ... 16

Figure 2.7 - Tee connection between Regenerators and Valves .. 17

Figure 2.8 - Coned and threaded fittings.. 18

Figure 2.9 - Sleeved HIP tubing (a) welded end (b) open end .. 19

Figure 2.10 - Compressor used for regenerator experiments .. 20

Figure 2.11 - Image of (a) molten salt tank and (b) spiral tubing ... 21

Figure 3.1 – Section of Temperature Data File ... 22

Figure 3.2 - Example of DataFrame object structure ... 22

Figure 3.3 - Example of experimental data (top) split into various cycles (bottom – indicated by color)

 .. 24

Figure 3.4 - Thermocouple locations for regenerators .. 26

Figure 3.5 - Diagram of sub-heat exchanger model of a counter-flow heat exchanger. 27

Figure 3.6 - Cyclic Average of TI16 with error bars .. 28

Figure 3.7 - Experimental Temperature Data from 10-4-17. Red Highlighted section is a steady state

portion. ... 30

Figure 3.8 - A steady state portion of experimental data from 10-4-17 .. 31

Figure 3.9 - Schematic of differential pressure sensor connections to regenerator 34

https://uwprod-my.sharepoint.com/personal/lrapp_wisc_edu/Documents/Research/Thesis/Thesis_11.docx#_Toc500311712

iii

Figure 3.10 - heat transfer coefficient vs Reynolds number for various correlations, Pr=0.71 38

Figure 4.1 - Effectiveness vs Cm for the HTCB .. 40

Figure 4.2 - Effectiveness vs Cm for the CTHB .. 41

Figure 4.3 - Regenerator Wall Temperature .. 42

Figure 4.4 - Cold side temperature (TI07) of regenerator 1 during the CTHB. This can be used to

approximate a time constant ... 44

Figure 4.5 - Effectiveness vs Cm for HTCB original and corrected comparison 45

Figure 4.6 - Effectiveness vs Cm for CTHB original and corrected comparison 45

Figure 4.7 - Model vs experiment effectiveness .. 46

Figure 4.8 - Model vs Experimental Pressure drop through the regenerator for the HTCB 47

Figure 4.9 - Model vs experimental pressure drop through the regenerator for the CTHB 48

Figure 4.10 - HTCB pressure drop correction sensitivity to assumed static temperature (equation 20)

 .. 49

Figure 4.11 – CTHB pressure drop correction sensitivity to assumed static temperature (equation 20)

 .. 49

Figure 4.12 - Experimental vs Model carryover results .. 50

Figure 4.13 - Comparison of assumed linear temperature distribution and the experimental

temperature distribution ... 51

Figure 9.1 - Visual Depiction of fast_ave python script .. 61

1

1 INTRODUCTION

1.1 BACKGROUND
Electricity is the world’s fastest growing form of end use energy and global net generation is

forecast to increase 69% by 2040 from the levels of 2012 [1]. The majority of currently

installed electricity generation capacity is based on thermal power cycles that couple a heat

source to a thermodynamic power cycle. The thermal power cycles used in most

commercial power generation facilities today are either air breathing direct-fired open

Brayton cycles or indirect-fired closed Rankine cycles with water as the working fluid (coal

and nuclear) [2]. While installation of renewable generation capacity is expected to

continue grow, the U.S. Energy Information Administration forecasts that traditionally fired

power sources (coal, natural gas, and nuclear) will provide 71% of global net generated

electricity in 2040. Because electricity generation from traditionally fired thermal power

cycles will continue to be a dominant source of global electricity generation for the

foreseeable future, there is an economic incentive to minimize the construction costs and

maximize the operating efficiency (i.e., minimize fuel consumption) of these electricity

generation facilities. Additionally, with the current global movement towards implementing

policies and regulations to reduce the emission of greenhouse gasses and other pollutants

from electric power generation, the development of technologies to increase the efficiency

(and thus reduce consumption of fossil fuels) is made even more attractive.

While coal and natural gas are expected to remain important to the global energy

generation mix, the adoption of renewable energy sources is viewed as a crucial step to

2

reduce the emission of greenhouse gases and other pollutants to the environment.

Renewables are the fastest growing source of electricity generation, and their growth is

expected to continue at an average of 5.7%1 per year through 2040 [1]. One challenge and

restriction to implementing renewables such as photovoltaic solar and wind is the

intermittent nature of their operation. For the electric grid to operate effectively it must be

balanced; that is, electricity generation must match the load at all times. This matching has

traditionally been accomplished with large base load plants, such as nuclear and coal,

running near their name plate capacities while having “peaking plants” or dispatchable

plants, most commonly natural gas, ramp up or down generation to match the load. Wind

and photovoltaic solar without accompanying energy storage are inherently non-

dispatchable because power generation only occurs when the wind is blowing or the sun is

shining. Integration of these variable energy resources (VERs) sources into the grid is

therefore challenging and may limit the penetration of VERs into the electric grid [3]. One

renewable source that can be operated as either a dispatchable or base load source is

concentrated solar power (CSP) with thermal energy storage (TES) (or CSP-TES). CSP

collects solar energy and converts it to thermal energy, which can either be inexpensively

stored2 and used on demand or used immediately to generate electricity in a

thermodynamic power cycle. This discussion focuses only on central receiver CSP as

opposed to parabolic trough or dish/Stirling configurations because the central receiver

type power plant has the potential to achieve the highest efficiencies due to the intense

1 Non-hydropower renewables – wind, solar, geothermal, biomass, tidal
2 Cost of thermal storage is currently $72-$240/kWh versus >$300 kWh for electrochemical battery storage [6]

3

solar flux and resulting high temperatures at the receiver [4]. An illustration of a central

receiver (power tower) CSP plant is shown in Figure 1.1.

Figure 1.1 - Illustration of a Power Tower CSP plant with the subsystems of interst and SunShot goals [5]

Since the energy can be stored and used on demand, the value of dispatchable CSP-TES to

the grid is increased by 5-6 cents3 per kilowatt-hour compared with variable generation

sources. Additionally, as the penetration of variable generation sources increases, the

relative value of dispatchable sources (such as CSP-TES) is likely to increase [6].

3 Estimates based on utility-scale solar energy analysis in California under 2020 33% and 40% renewables
portfolio standards [6]

4

One technology that has the potential to improve the economics and efficiencies of

both fossil fuel fired power plants as well as CSP power plants is the supercritical carbon

dioxide (sCO2) Brayton cycle. As shown in Figure 1.2, the sCO2 Brayton cycle can achieve

higher cycle efficiencies compared with steam Rankine cycles for turbine inlet temperatures

of approximately 450 °C or greater and can achieve cycle efficiencies greater than 50% for

turbine inlet temperature greater than approximately 650°C [2], [7].

Figure 1.2 - Comparison of Steam Rankine cycle with Recompression Brayton Cycle (RCBC) [8]. Analysis performed by NETL

and figure from [2].

The sCO2 Brayton cycle has also been shown to achieve comparable efficiencies with a

helium Brayton cycle but at significantly lower temperatures (550 °C for CO2 vs 850 °C for

helium) [7]. This efficiency gain is primarily due to the reduction of compression work

achieved by the relatively high working fluid density of CO2 operating in the supercritical

region as well as a high degree of thermal recuperation in the cycle. The relatively high

5

density of sCO2 leads to significantly smaller turbomachinery sizes compared with steam or

other ideal gas turbomachinery for the same power output. Smaller turbomachinery

reduces the volume of material required for construction and thus also reduces the capital

cost and plant footprint. Additionally, the sCO2 Brayton cycle may be more practically

suited for air cooling making it more attractive in regions where water cooling is not

available or where water scarcity is a concern. However, additional research and

development is needed to demonstrate the practicality of implementing air cooling with the

sCO2 Brayton cycle [9]. CO2 is also non-toxic, non-explosive, non-flammable and abundant

further making its use as a working fluid in a power cycle advantageous [10]. The sCO2

Brayton cycle could theoretically be implemented in any application currently operating a

Rankine cycle, thus the potential applications are quite large. In general, the sCO2 Brayton

cycle offers the benefit of reduced fuel consumption for plants with significant fuel costs

such as coal and natural gas fired plants. For power plants with significant upfront capital

investments such as nuclear and CSP, the reduced capital cost of the power block

components as well as the increased electricity production for the same thermal input are

the primary benefits.

1.2 SUNSHOT INITIATIVE AND CSP: APOLLO

In order to drive the development and reduce the costs of solar energy, the United

States Department of Energy (DOE) launched the SunShot Initiative in 2011. The SunShot

initiative provided funding for research and development of solar technologies through

collaborations between private and public entities with the goal of making solar electricity

6

cost competitive with conventionally generated electricity by 2020 [11]. In 2011, this meant

a reduction in costs of PV and CSP by about 75%4. After four years and a number of

successful outcomes, the CSP: Advanced Projects Offering Low LCOE Opportunities

(APOLLO) program was launched in September of 2015 to specifically target CSP systems

and develop technologies necessary to meet the $0.06/kWh levelized cost of energy (LCOE)

cost target specified in the SunShot Initiative for CSP (shown in Figure 1.3).

Figure 1.3 - Cost reductions for parabolic trough and tower technologies since the SunShot Vision Study [11]. SVS=SunShot

Vision Study (DOE 2012). OTPSS = On the Path to SunShot.

In order to achieve the cost targets, it is estimated that the power cycle will need to achieve

at least 50% thermal-to-electric power conversion and because the optimal solar resources

4 Based on 2010 costs

7

are often located in arid regions and concerns over water scarcity are growing, the cooling

must be accomplished without utilizing water (known as dry cooling) [11]. These

requirements must be met with a total power block cost less than $900/kW. The sCO2

Brayton cycle has the potential to meet both the required thermal efficiency as well as the

dry-cooling requirement and thus it appears to be a challenger to the Rankine cycle for CSP.

The Rankine cycle has over a hundred years of industry operating experience and therefore

a large amount of expertise exists relative to this cycle. In contrast, the sCO2 Brayton cycle

is a relatively young and immature technology. Components including the sCO2 turbo

machinery and heat exchangers have limited development or operational experience in the

laboratory or in industry [2]. Before this technology can be commercialized, the

technological risk must be reduced by demonstrating its performance. As a part of the CSP:

APOLLO program, the University of Wisconsin – Madison has been awarded funding to

design and test regenerative type heat exchangers for use in the sCO2 Brayton cycle. The

regenerative type heat exchangers potentially offer improvements in the economics and

thermodynamic performance of the sCO2 Brayton cycle compared with the recuperative

style heat exchangers currently proposed, and thus may help realize the cost targets of the

SunShot Initiative.

8

2 EXPERIMENTAL SETUP

2.1 DATA ACQUISITION EQUIPMENT

Data acquisition, display and equipment control was accomplished with Labview. A

National Instruments cDAQ-9178 (Compact Data Acquisition) was used for all I/O. The

cDAQ-9178 is an 8-slot, USB chassis which is capable of handling a mix of analog and digital

I/O. The modules used are listed in Table 2.1.

Slot Module Number Type

1 NI 9265 4 Channel, 0-20mA, Analog Out
2 NI 9205 16 AI Diff/32 AI Single Inputs, programmable input range
3 NI 9476 32-Channel,24V, Digital Out
4 NI 9213 16 TC,±78mV
5 NI 9213 16 TC,±78mV
6 NI 9214 16 TC,±78mV,Isothermal Terminal Block
7 Empty
8 Empty

Table 2.1 - Data Acqusition Module Information

The experiment includes 48 thermocouples5, 7 absolute pressure sensors, 4 differential

pressure sensors, and 1 Coriolis flow meter. For the current experiment, pressure and flow

measurements were sampled at 4 Hz and temperatures were sampled at 2 Hz. Information

on the specific instrumentation is listed in Table 2.2 and the layout of the equipment and

instrumentation is shown in the piping and instrumentation diagram (P&ID) in Figure 2.2.

5 Thermocouples 33-48 are used in a separate experiment involving the PCHE recuperator and thus are not
shown on the P&ID

9

Type Manufacture Span Accuracy Serial Number

All Thermocouples Omega ±2.2 °C Type K

PT01 Rosemount 0-2000 psi 3051S1CG5A2B11A1A

PT02 Omega 0-5000 psi

PT03 Siemens 0-3000 psi ≤ 0.1% 7MF4033-1GA10-1AC8-2

PT04 Omgea 0-5000 psi

PT05

PT06 Siemens 0-1500 psi ≤ 0.1% 7MF4032-1GA10-1NC1-Z

PT07 Siemens 0-3000 psi ≤ 0.1% 7MF4032-1GA10-1NC1-Z

DP01 Siemens -7 to 7 psi ≤ 0.1% 7MF4532-1GA30-1NC1-Z

DP02 Siemens 0-20 psi ≤ 0.1% 7MF4432-1HA62-1NC1-Z

DP03 Siemens -15 to 7 psi ≤ 0.1% 7MF4553-1GA32-1AC8-Z

DP04 Siemens -15 to 7 psi ≤ 0.1% 7MF4532-1GB30-1NC1-Z

FI01 Endress-Hauser ±0.5% o.r. EC137D020000

Table 2.2- Instrument Information

2.2 LABVIEW

A screenshot of the Labview control screen is shown in Figure 2.1. The Labview program

records all temperature, pressure, and flow data and also provides real time graphing. All

equipment is also controlled from the program including the pump on/off, heater power

levels, and valve switching. Some safety interlocks were also included to turn off heaters or

the pump if temperature or pressure levels became unsafe.

10

Figure 2.1 - Labview Control Screen

11

Figure 2.2 - P&ID of test facility

12

2.3 EXPERIMENTAL EQUIPMENT

2.3.1 Regenerators

A model of the regenerator used in the experiment is shown in Figure 2.3a and the 3mm

diameter spheres used for packing are shown in Figure 2.3b.

Figure 2.3 - a) 3D model of regenerator showing temperature and pressure instrument locations (spheres in model are larger

than actual spheres in order to show detail . b) Image of spheres used to fill packed bed.

As shown in figure 2-1a, there are three thermocouples placed within the packed bed and a

thermocouple in each end cap of the regenerator. The three thermocouples in the packed bed

are inserted such that the tip of the thermocouple is in the middle of the packed bed. This was

done to capture the fluid temperature as a function of position in the packed bed. A drawing

with dimensions of the regenerator is shown in Figure 2.4.

a
b

13

Figure 2.4 - Regenerator with dimensions (in inches). Dashed area represents packed bed of spheres

14

2.3.2 Binary Valves

The binary valves used for this experiment are HIP6 air operated diaphragm valves. The valve

body is 316SS with Grafoil packing. They have a maximum operating pressure of 10,000 psi

with 9/16" medium pressure7 female connections. The actuation type is air to open and air to

close controlled with a solenoid valve manifold. The actuation time of the valve is ≈0.4

seconds. An image of two of the low-temperature binary valves is shown in Figure 2.5.

Figure 2.5 - Image of low temperature binary valves used for regenerator switching

6 HIP-High Pressure Equipment Company
7 medium pressure connection type is rated to 20,000 psi

15

There are 8 valves in total, and the arrangement as well as the open/close sequence is shown in

Figure 2.6. In the figure, flow direction and temperature are indicated with colored arrows8 and

valve position is indicated with either a green (open) or red (closed) colored block.

During State 1, Regenerator 1 is experiencing the HTCB (hot to cold blow) and

Regenerator 2 is experiencing the CTHB (cold to hot blow). That is, the hot fluid is transferring

heat to the matrix during the HTCB and the matrix is transferring heat to the cold fluid during

the CTHB. In State 2a, all the valves close; this is approximately 0.6 s. Then in State 2b, two

valves open to allow the high-pressure regenerator to depressurize, and the low pressure

regenerator to pressurize this is also approximately 0.6 s. During State 3, each regenerator

experiences the opposite process it underwent in State 1.

 The original design for the connection between the valves and the regenerators called

for an HIP fitting to be used between the regenerator and all valve connections. This is shown

in greater detail in Figure 2.7 and is also shown Figure 2.5.

8 Red arrow=Hottest temperature, Blue arrow = cold (inlet temperature), Orange arrow = intermediate
temperature

16

Figure 2.6-Valve Switching Sequence

17

17

Figure 2.7 - Tee connection between Regenerators and Valves

The HIP fittings performed well for the first several months of initial testing. However, when

high temperature-high pressure tests (500 C and 15 Mpa) began, a leak developed in the high

temperature fittings. During the high temperature experiments, the temperature leaving the

regenerator can vary up to 250 °C over 10-20 seconds. This large temperature transient seems

to be creating a temperature difference between the tubing and the fitting, which is shown in

Figure 2.8

18

18

Figure 2.8 - Coned and threaded fittings

The tubing has a much smaller mass compared with the fitting and there is also significantly

more surface area exposed to the fluid in the tubing than the fitting. Thus, the tubing will

respond more quickly to a temperature change than the fitting. The leaks were observed when

the fluid flowing through the fitting was initially at a high temperature and was cooling with

time. This likely resulted in the tubing contracting faster than the fitting, causing the fitting to

leak. After the fitting had adequate time to equilibrate in temperature with the fluid, the fitting

contracted and the seal was re-established. To try and isolate the tubing and fittings from

these large temperature fluctuations, the tubing was sleeved with ¼” x 0.035” tubing resulting

in an annular gap of 1/32”. An image of a sleeved tube is shown in Figure 2.9.

19

19

(a) (b)

Figure 2.9 - Sleeved HIP tubing (a) welded end (b) open end

The annular gap should insulate the outer tube from the temperature changes of the fluid, and

intial calculations show the resistance to heat transfer from the fluid to the wall should increase

by approximately 30x. The system was tested at maximum temperature and pressure and the

sleeved fittings did not fail. This design seems to perform well, and will be recommended for

use in future, higher power test facilities.

2.3.3 Compressor

A Hydro-Pac LX compressor was used to circulate CO2 for the experiment. It is a double ended

hydraulically driven intensifier single stage type compressor. An image of the compressor is

shown in Figure 2.10.

20

20

Figure 2.10 - Compressor used for regenerator experiments

Flow control for the experiment was accomplished using a bypass valve which could be

manipulated to achieve the desired flow rate through the experiment. The maximum mass

flow rate achievable is 1.6 kg/s.

2.3.4 Molten Salt Heater

A molten salt heater was used as the primary heat source for this experiment. The design of

the heater is a tank of molten salt with submerged spiral tubing for the fluid to flow. An image

of the tank and spiral tubing is shown in Figure 2.11. The large thermal mass of the molten salt

helped to dampen out effects of unsteady flow due to valve switching. The maximum power of

the salt heater is approximately 12kW provided by two band heaters wrapped around the

outside of the tank.

21

21

Figure 2.11 - Image of (a) molten salt tank and (b) spiral tubing

22

22

3 DATA ANALYSIS

3.1 DATA STORAGE AND ACCESS

The recorded data were exported from LabView in three tab separated text files corresponding

to temperature, pressure/flow, and valve position. The files include the time of data capture

and the value of the measured variable(s). A small section of a temperature data file is shown in

Figure 3.1.

Figure 3.1 – Section of Temperature Data File

The tab separated files were read into a Python program and stored as a Pandas DataFrame

object. The DataFrame object is a 2-dimensional data structure that stores data along with

index (row labels) and column (column labels) arguments. An example of a DataFrame

constructed from the first 4 rows and first 3 columns of the temperature data shown in Figure

3.1 is shown in Figure 3.2.

Figure 3.2 - Example of DataFrame object structure

23

23

The data can then be selected based on the index (date and time-left most column) or the

column name (TI01,TI02,or TI03). The DataFrame object can also be read and written from

various file formats including CSV, text, Excel, and HDF5. This enables the DataFrame to be

constructed one time from the raw data, and then loaded from a saved DataFrame at any time

in the future for a variety of post-processing purposes. This significantly reduces computational

time, especially when mathematical operations must be performed on the data.

To calculate thermodynamic properties of the fluid from the experimental data, a single

temperature and pressure must be used for each time of interest. In order to make the

temperature and pressure data sets the same length (pressure is sampled twice as fast as

temperature), the pressure data is averaged. This is accomplished by selecting the first

temperature point index and averaging all of the pressure data points with an index that is less

than or equal to the temperature point index and greater than the previous temperature index.

The averaged pressure is assigned the same index as the temperature point, and this procedure

is repeated for all temperature indexes. The function used for this process is shown in

Appendix F – Create_averaged_vars.

3.2 THERMODYNAMIC PROPERTIES

The Fluid Property Interpolation Tables (FIT) program developed for the Solar Energy

Lab by Northland Numerics was used to calculate the thermodynamic properties of carbon

dioxide from the experimental temperature and pressure. FIT uses a piecewise interpolation of

Helmholtz free energy and all other thermodynamic properties are derived from its analytical

derivatives. To facilitate calculation of properties within the Python program used for data

24

24

reduction, the FIT Fortran modules were 'wrapped' using Python packages 'f2py' and 'f90wrap'.

These Python packages allow Python extension modules to be built which call Fortran modules

and subroutines from Python. The development of the Python/Fortran modules are described

further in Appendix B – CO2 Properties.

3.3 CYCLE ANALYSIS

In order to analyze the experimental data on a ‘per-cycle’ basis, the data was divided

into various “states” based on the valve switching times. Each state corresponds to a unique

condition of the valves. An example of this is shown in Figure 3.3.

Figure 3.3 - Example of experimental data (top) split into various cycles (bottom – indicated by color)

In order to ensure each “state” had data representing the entire switching time, points are

added to the beginning and end of each state so that they lie exactly on the switching time;

25

25

these points are added using a linear interpolation routine named “lin_int_cycle2” and

contained in Appendix G – Linear Interpolation.

In Figure 3.3, the solid vertical lines indicate the times when the valves switch position. In

this example, states 1 and 3 have switching times of 79.4 seconds and all other switching times

are 0.5 seconds. The top plot shows the data before they are split into the different states and

the bottom plot shows the states in different colors. With the data split into the various states

as shown in Figure 3.3, the states can be averaged over a steady state operating period to get

cycle-averaged values. See Python function “fast_ave” in Appendix C – Fast Average for

additional information.

3.4 HEAT TRANSFER CALCULATIONS

The total heat transfer from the hot fluid during one cycle is represented by 𝑄𝐻𝑇𝐶𝐵 and the

total heat transfer to the cold fluid is represented by 𝑄𝐶𝑇𝐻𝐵. The number included in the

subscript for the heat transfer indicates for which regenerator the heat transfer is calculated.

Equations 1 and 2 describe the heat transfer calculations for regenerator 1 and Equations 3 and

4 describe heat transfer for regenerator 2.

Regenerator 1:

 𝑄𝐻𝑇𝐵𝐶1 = ∫ �̇�(ℎ11 − ℎ07)𝑑𝑡
𝑡𝐻𝑇𝐶𝐵

0
 (1)

 𝑄𝐶𝑇𝐻𝐵1 = ∫ �̇�(ℎ11 − ℎ07)𝑑𝑡
𝑡𝐶𝑇𝐻𝐵+𝑡𝐻𝑇𝐶𝐵

𝑡𝐻𝑇𝐶𝐵
 (2)

Regenerator 2:

26

26

 𝑄𝐶𝑇𝐻𝐵2 = ∫ �̇�(ℎ16 − ℎ12)𝑑𝑡
𝑡𝐻𝑇𝐶𝐵

0
 (3)

 𝑄𝐻𝑇𝐶𝐵2 = ∫ �̇�(ℎ16 − ℎ12)𝑑𝑡
𝑡𝐶𝑇𝐻𝐵+𝑡𝐻𝑇𝐶𝐵

𝑡𝐻𝑇𝐶𝐵
 (4)

Where h is the specific enthalpy of the fluid and the subscripts indicate what temperature was

used to calculate the enthalpy. The locations of the thermocouples in the packed bed are

depicted in Figure 3.4.

Figure 3.4 - Thermocouple locations for regenerators

The effectiveness of the regenerator is calculated using Equation 5:

 𝜀 =
𝑄

𝑄𝑚𝑎𝑥
=

𝑄

�̇�𝑚𝑎𝑥(𝑡𝐻𝑇𝐶𝐵+𝑡𝑣𝑎𝑙𝑣𝑒𝑠)
 (5)

Where Q is the experimental heat transfer calculated in either equation 1, 2, 3, or 4. Qmax is

calculated by using the averaged properties from a steady state operating portion of the

27

27

experimental data to calculate the total heat transferred in an equivalent counterflow

recuperator with an effectiveness of 1 (which corresponds to a maximum heat transfer rate

multiplied by an operating time). The sub-heater exchanger approach as described in [1] is

used to calculate the maximum heat transfer rate from prescribed temperature, pressure, and

mass flow rate. In this approach the heat exchanger is divided into N segments that are each

separately tasked with dealing with 1/Nth
 of the total duty. Each sub-heat exchanger is

analyzed using the effectiveness-NTU technique. A diagram of this approach is shown in Figure

3.5.

Figure 3.5 - Diagram of sub-heat exchanger model of a counter-flow heat exchanger.

The inlet temperatures and pressures used in the counterflow heat exchanger model are

calculated by finding their cyclic average value across a steady state portion of the experimental

data as described in Section 3.3. A 12 cycle average for TI11 and TI07 is shown in Figure 3.69.

9 Data taken from 6-7-17 experiments

28

28

Figure 3.6 - Cyclic Average of TI16 with error bars

The average value of TI11 during the HTCB is used as hot inlet temperature to the recuperator

and the average value of TI07 during the CTHB is used as the cold side inlet temperature. The

same procedure is done for the cold and hot side pressure. To calculate an averaged mass flow

rate that is comparable to a flow rate in an equivalent recuperator, Equation 6 was used.

 �̅̇� =
1

𝑡𝐻𝑇𝐶𝐵+𝑡𝑣𝑎𝑙𝑣𝑒𝑠
∫ �̇� 𝑑𝑡

𝑡𝐻𝑇𝐶𝐵

0
 (6)

Where tHTCB is the HTCB switching time and tvalves is the time for states 2a and 2b to complete

(typically 1.2 seconds). Note that tvalves is included in the denominator of Equation 6 even

though the integration time is only tHTCB in order to account for the valve switching time, during

which the mass flow rate is zero. In this way, the averaged mass flow rate is more similar to

what an equivalent recuperator would experience.

29

29

This process results in all of the inputs needed for the counterflow heat exchanger program:

𝑇𝐶,𝑖𝑛 , 𝑇𝐻,𝑖𝑛 , 𝑃𝐶,𝑖𝑛 , 𝑃𝐻,𝑖𝑛 , �̇�𝐶,𝑖𝑛, �̇�𝐻,𝑖𝑛, 𝜀

These inputs are supplied to a Fortran function developed by Northland Numerics that

calculates the performance of a counter-flow heat exchanger. The function is described in

more detail in Appendix E – FIT_HXR. The counterflow heat exchanger program returns a

maximum heat transfer rate, �̇�𝑚𝑎𝑥 and the effectiveness can then be calculated using Equation

5.

To get an average value for heat transfer and effectiveness for the steady state portion of the

experiment, the procedure described above was done for each HTCB and CTHB in the steady

state region. For example, the experimental temperature data from 10-4-17 is shown in Figure

3.7 with a steady state portion highlighted in red.

30

30

Figure 3.7 - Experimental Temperature Data from 10-4-17. Red Highlighted section is a steady state portion.

The highlighted portion from Figure 3.7 is shown in greater detail in Figure 3.8.

31

31

Figure 3.8 - A steady state portion of experimental data from 10-4-17

Each peak in Figure 3.8 represents a switch from HTCB to CTHB for Regenerator 1, which is

shown in greater detail in Figure 3.6. Heat transfer, Q, maximum heat transfer, Qmax, and thus

effectiveness can be calculated for each HTCB and CTHB. The average and standard deviation

of these values can then be calculated and these are the results presented in Section 4.

3.5 PRESSURE DROP

Erdim et al. [2] collected 38 pressure drop correlations for flow through packed beds of spheres

and from literature and developed a uniform notation to allow for comparison among the

various correlations. All correlations are expressed in terms of the friction factor ‘f’, which is

defined by:

32

32

 𝑓 =
1

3

−∆𝑃𝑑𝑝

𝜌𝑣𝑠
2𝐿

𝜙3

(1−𝜙)
 (7)

and is derived based on normalization by the kinetic force due to the flow of fluid on the solids

of the packed bed.

The porosity of a packed bed is defined as the ratio of void volume to combined particle and

void volume:

 𝜙 =
𝑉𝑜𝑙𝑣𝑜𝑖𝑑

𝑉𝑜𝑙𝑡𝑜𝑡𝑎𝑙
 (8)

And 𝑣𝑠 is the superficial velocity based on the empty cross-section of the bed:

 𝑣𝑠 =
�̇�

𝜌𝑓𝐴𝑐𝑠
 (9)

For ease of comparison among the various correlations, Erdim et al. adopted an alternative

definition referred to as the particle friction factor:

 𝑓𝑝 =
∆𝑃 𝑑𝑝

2

𝜌𝑣𝑠
2𝐿

 (10)

Perhaps the most widely used correlation found in literature for pressure drop through a

packed bed of spheres was proposed by Ergun and has the form:

 𝑓𝑝 = (𝑐1 + 𝑐2 (
𝑅𝑒

(1−𝜀)
))

(1−𝜀)2

𝜀3𝑅𝑒
 (11)

While the Ergun correlation is the most widely used correlation, it has been shown to over

predict pressure drop for flows above Rem= 500 ([3], [2]) where Rem is the modified Reynolds

number, defined as:

 𝑅𝑒𝑚 =
𝑅𝑒

(1−𝜙)
 (12)

33

33

with

 𝑅𝑒 =
𝑑𝑝𝜌𝑉

𝜇
 (13)

where dp is the particle diameter, ρ is the fluid density, V is the fluid velocity, μ is kinematic

viscosity, and ϕ is porosity [2]. The modified Reynolds numbers for the tests conducted here

are 2700 < Rem < 5300, thus a correlation with better agreement in the range of modified

Reynolds number of interest is needed. The Fahien and Schriver correlation has shown good

agreement with experimental data and was chosen to calculate the pressure drop. The friction

factor definition for the Fahien and Schriver correlation is given by [2] :

 𝑓𝑝 = (𝑞
𝑓1𝐿

𝑅𝑒𝑚
+ (1 − 𝑞)(𝑓2 +

𝑓1𝑇

𝑅𝑒𝑚
))

(1−𝜙)

𝜙3 (14)

 𝑞 = exp (−
𝜙2(1−𝜙)

12.6
𝑅𝑒𝑚) (15)

 𝑓1𝐿 =
136

(1−𝜙)0.38 (16)

 𝑓1𝑇 =
29

(1−𝜙)1.45𝜙2 (17)

 𝑓2 =
1.87𝜙0.75

(1−𝜙)0.26 (18)

34

34

The pressure drop is then calculated by:

 Δ𝑃 =
𝑓𝑝𝜌𝑉2𝐿

𝑑𝑝
 (19)

A correction to the measured differential pressure across the bed is needed to account for the

static pressure of the fluid in the tubing to the pressure sensor. A schematic of the differential

pressure sensor is shown in Figure 3.9.

Figure 3.9 - Schematic of differential pressure sensor connections to regenerator

The differential pressure correction is calculated with:

 d𝑃𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = d𝑃𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 − d𝑃𝑡𝑜𝑝−d𝑃𝑏𝑜𝑡𝑡𝑜𝑚 (20)

where

 d𝑃𝑡𝑜𝑝 = 𝜌𝑔∆ℎ𝑡𝑜𝑝 (21)

 d𝑃𝑏𝑜𝑡𝑡𝑜𝑚 = 𝜌𝑔∆ℎ𝑏𝑜𝑡𝑡𝑜𝑚 (22)

35

35

The density was calculated using the pressure at the inlet of the bed and a temperature of 40

°C. This temperature was used to attempt to approximate the temperature of the stagnant

fluid in the instrument tubing. In future experiments, a temperature measurement should be

added at the tubing to calculate a more precise density.

3.6 HEAT TRANSFER COEFFICIENT

 Presented here are some of the most commonly cited correlations for Nusselt number

found in literature for flow through packed beds of spheres. Gnielinski introduced a correlation

in which the Nusselt number for flow over a single sphere is adapted for flow through a packed

bed by means of an empirical arrangement factor. The Nusselt number for flow around a

sphere is given by a combination of the laminar and turbulent solutions [4]:

 𝑁𝑢𝑠𝑝 = 2 + (𝑁𝑢1
2 + 𝑁𝑢𝑡

2)0.5 (23)

with

 𝑁𝑢1 = 0.664𝑃𝑟1/3 (
𝑅𝑒

𝜀
)

1/2
 (24)

And

 𝑁𝑢𝑡 =
0.037(

𝑅𝑒

𝜀
)

0.8
𝑃𝑟

1+2.443(
𝑅𝑒

𝜀
)

−0.1
(𝑃𝑟2/3−1)

 (25)

To apply this expression (equation 23) to a packed bed, an empirical arrangement factor is

defined:

 𝑓(𝜀) = 1 + 1.5(1 − 𝜀) (26)

36

36

The overall Nusselt number is given by:

 𝑁𝑢𝐺𝑛𝑖𝑒𝑙𝑖𝑛𝑠𝑘𝑖 = 𝑓(𝜀)𝑁𝑢𝑠𝑝 (27)

Achenbach (1995), completed experiments using a bed with 0.983 m diameter and 0.84 m

height filled with spheres of 0.06 m diameter and porosity 0.387 and compared his results with

the Gnielinski correlation. The heat transfer experiments performed by Achenbach were

carried out by using the method of an electrically heated single sphere in an unheated packing.

His results matched the Gnielinksi correlation reasonably well for Re > 500 and he presented an

empirical correlation (eq. 28) from his experiments.

 𝑁𝑢𝐴𝑐ℎ𝑒𝑛𝑏𝑎𝑐ℎ = [(1.18𝑅𝑒0.58)4 + (0.23𝑅𝑒𝑚
0.75)

4
]

1/4

 (28)

Wakao and Kaguei collected a number of experimental results and compared them in [5]. The

result of this comparison is given by equation 29:

 𝑁𝑢𝑊𝑎𝑘𝑎𝑜 = 2 + 1.1 𝑃𝑟
1

3⁄ 𝑅𝑒0.6 (29)

The heat transfer coefficient can be calculated from the Nusslet number using equation (30).

 ℎ̅ =
𝑁𝑢 𝑘𝑓

𝑑𝑝
 (30)

Where kf is the conductivity of the fluid.

37

37

Kays and London presents a correlation based on the Colburn factor (𝑗ℎ):

 𝑗ℎ = 0.23𝑅𝑒𝐾𝐿
−0.3 (31)

With

 𝑅𝑒𝐾𝐿 =
4 𝐺 𝑟𝑐ℎ𝑎𝑟

𝜇𝑓
 (32)

Where 𝜇𝑓is the fluid viscosity, 𝑟𝑐ℎ𝑎𝑟 is the characteristic radius:

 𝑟𝑐ℎ𝑎𝑟 =
𝜙𝑑𝑝

6(1−𝜙)
 (33)

And G is the mass flux:

 𝐺 =
�̇�

𝜙𝐴𝑓𝑟
 (34)

Where 𝐴𝑓𝑟 is the frontal area of the regenerator. The Colburn factor can then be related to the

heat transfer coefficient with equation (35)

 ℎ̅ =
𝑗ℎ 𝐺 𝑐𝑓

𝑃𝑟
2
3

 (35)

38

38

Figure 3.10 shows the ℎ̅ vs Re using the various correlations with a Prandtl number of 0.71:

Figure 3.10 - heat transfer coefficient vs Reynolds number for various correlations, Pr=0.71

The range of Reynolds numbers for these experiments is typically between 1000-3500. The

Kays and London correlation was chosen for this analysis, however the relatively large

discrepancy among these correlations may be a source of uncertainty when calculating

quantities such as NTU.

3.7 REGENERATOR DESIGN

An important dimensionless parameter in the design of regenerators is the matrix capacity

ratio:

 𝐶𝑚 =
𝑚𝑏𝑐𝑏

𝑃0�̇�𝑚𝑖𝑛
 (36)

39

39

where mb is the mass of the matrix material, cb is the specific heat capacity of the matrix

material, P0 is the HTCB and CTHB switching time, and �̇�𝑚𝑖𝑛 is the minimum capacitance rate of

the fluid flowing through the bed. The capacitance rate of each fluid stream is defined by:

 �̇� = 𝑐𝑝,𝑎𝑣𝑒�̇� (37)

where cp,ave is the average specific heat of the fluid and �̇� is the mass flow rate of the fluid.

3.8 CARRYOVER

One characteristic inherent to regenerator operation is carryover. Carryover is fluid that

remains trapped in the regenerator matrix material after the valves are switched. This affects

the overall efficiency of the Brayton cycle because some fluid that was pressurized by the

compressor is returned to the compressor without expanding through the turbine.

Experimental carryover was calculated by using the five temperature measurements in the

regenerator bed and the pressure at the inlet of the bed to calculate a density profile of the

fluid in the regenerator. The total void volume of the regenerator was divided into five equal

parts and multiplied by the density at each respective location to get a fluid mass. The masses

were then summed to get the total fluid mass. To calculate carryover, the mass was calculated

at two different times and then subtracted. Since there are two regenerators in the system,

this difference is multiplied by two:

 𝑐𝑎𝑟𝑟𝑦 𝑜𝑣𝑒𝑟 = 2(𝑚𝑒𝑛𝑑 𝑜𝑓 𝐶𝑇𝐻𝐵 − 𝑚𝑠𝑡𝑎𝑟𝑡 𝑜𝑓 𝐻𝑇𝐶𝐵) (38)

40

40

4 RESULTS

4.1 EFFECTIVENESS RESULTS

The measured effectiveness as a function of the matrix capacity ratio are shown in Figure

4.1 and Figure 4.2 based on the HTCB and CTHB, respectively.

Figure 4.1 - Effectiveness vs Cm for the HTCB

41

41

Figure 4.2 - Effectiveness vs Cm for the CTHB

Notice that there are some instances where the measured effectiveness is greater than one,

which is not physically possible. One possible explanation could be the participation of the

regenerator wall in the heat transfer process somehow confounding the measurement results.

Figure 4.3 shows the temperature of the exterior regenerator wall as a function of time.

42

42

Figure 4.3 - Regenerator Wall Temperature

At the hot end of the regenerator, the temperature of the wall fluctuates by approximately

50°C during each cycle. If a lumped capacitance is used to model the wall material then the

amount of energy being stored and released in each cycle can be approximated. For the

temperature plot shown, this energy is about 100 kJ which corresponds to approximately 30%

of the total energy being transferred to the fluid. As can be seen in Figure 4.3, the wall

temperature is slightly out of phase with the flow in the bed, meaning that for some time the

wall is extracting heat during the CTHB and adding heat during the HTCB. This makes correcting

for wall participation difficult. In future experiments, the regenerator bed will be insulated so

the ability of heat to enter the wall will be dramatically reduced. Additionally, as the size of the

43

43

regenerators increase for larger scale systems, the mass of the walls compared to the mass of

the matrix will be much smaller, which will reduce this effect even more.

Another possible explanation could be a “shift” in the data due to the time constant of the

thermocouple. A thermocouple can be modeled as a lumped capacitance which is then

governed by the first-order ordinary differential equation:

𝑑𝑇

𝑑𝑡
+

𝑇

𝜏
=

𝑇𝑓

𝜏
 (39)

where T is the temperature recorded by the thermocouple, Tf is actual the temperature of the

fluid, and τ is the time constant. As a first attempt at correcting the data, the ODE was

approximated numerically using the backwards difference technique:

𝑇𝑖−𝑇𝑖−1

∆𝑡
+

𝑇𝑖

𝜏
=

𝑇𝑓,𝑖

𝜏
 (40)

and solving for Tf:

 𝑇𝑓,𝑖 = 𝜏 (
𝑇𝑖−𝑇𝑖−1

∆𝑡
+

𝑇𝑖

𝜏
) (41)

The time constant τ is defined as the product of the thermal resistance and total heat capacity

which therefore corresponds to the time required to reach 63.2% of an instantaneous (step)

temperature change. This step temperature change approximately occurs at the switching

points and therefore the time constant can be approximately evaluated by using the

temperature data from cold end of the regenerator during the CTHB. The cold side

temperature of regenerator 1 (TI07) during the CTHB is plotted in Figure 4.4 along with lines

showing an approximate step change and an interpolated point at 63.2% of the approximate

step change.

44

44

Figure 4.4 - Cold side temperature (TI07) of regenerator 1 during the CTHB. This can be used to approximate a time constant

The time constant shown in Figure 4.4 is approximately 0.82 seconds. Using Equation 41 the

temperature data can be corrected to determine the actual fluid temperature from the

thermocouple measurement, accounting for the time constant of the thermocouple. The heat

transfer, maximum heat transfer, and effectiveness can then be calculated using these

corrected fluid temperature values. A comparison between the original and corrected

calculated effectiveness for the HTCB is shown in Figure 4.5 and the CTHB in Figure 4.6. Notice

that the non-physical results (>1) are essentially eliminated.

45

45

Figure 4.5 - Effectiveness vs Cm for HTCB original and corrected comparison

Figure 4.6 - Effectiveness vs Cm for CTHB original and corrected comparison

46

46

The NTU-Cm-Effectiveness model previously developed by colleagues at UW-Madison describes

the performance of a regenerator system; the model is described in detail in [6]. Experimental

information such as mass flow rate, average cycle temperatures and pressures, and switching

time were fed into this model and values of effectiveness, pressure drop, and carryover were

then compared with the experimental results (after correcting for the thermocouple dynamics).

The effectiveness results for the CTHB are compared in Figure 4.7.

Figure 4.7 - Model vs experiment effectiveness

As shown in Figure 4.7 the model is generally in good agreement with the experimental results.

47

47

4.2 PRESSURE DROP RESULTS

The experimental pressure drop through the regenerator is plotted against the predicted

pressure drop in Figure 4.8 and Figure 4.9 for the HTCB and CTHB respectively. The Fahien and

Schriver correlation is used for the ‘model’ value shown in these plots.

Figure 4.8 - Model vs Experimental Pressure drop through the regenerator for the HTCB

48

48

Figure 4.9 - Model vs experimental pressure drop through the regenerator for the CTHB

The pressure drop results show generally good agreement with the model predictions; however

the pressure drop is frequently under-predicted, especially during the CTHB. The disagreement

may be explained by the lack of an accurate temperature measurement for use in calculating

the density used for the correction described in Equation 20. A simple sensitivity analysis was

performed to determine to what extent the correction calculation (equation 20) is dependent

on the assumed static fluid temperature in the instrument tubing. Three reasonable values of

the temperature were assumed and the results are plotted in Figure 4.10 and Figure 4.11.

49

49

Figure 4.10 - HTCB pressure drop correction sensitivity to assumed static temperature (equation 20)

Figure 4.11 – CTHB pressure drop correction sensitivity to assumed static temperature (equation 20)

50

50

As can be seen in Figure 4.10 and Figure 4.11, the pressure drop is strongly dependent on the

assumed temperature of the static fluid. Thus the assumption of a constant 40 °C in the

instrumentation tubing is not a good approximation and a temperature measurement should

be added to the experiment to improve the ability calculate a density of the static fluid.

4.3 CARRYOVER RESULTS

Figure 4.12 shows the carry over results versus a NTU-Cm-Effectiveness model as described in

[6].

Figure 4.12 - Experimental vs Model carryover results

The carry over experimental results generally do not agree well with the model predications.

The model assumes a linear temperature distribution whereas the experiment calculates the

carry over using the actual, measured temperature distribution. The disagreement between

model and experiment is therefore directly related to the non-linearity of the temperature

51

51

distribution associated with the experimental conditions. An example of the model versus

experimental temperature distribution is shown in Figure 4.13.

Figure 4.13 - Comparison of assumed linear temperature distribution and the experimental temperature distribution

The temperature distribution is clearly not linear and the model assumption that the fluid varies linearly

from the hot inlet temperature to the cold inlet temperature is not correct.

5 CONCLUSIONS

An experimental system to test the performance of switched bed regenerators with sCO2 has

been constructed at the University of Wisconsin-Madison. The first-generation regenerator

design has been tested and the key results are presented in Section 4. The results generally

agree with the NTU-Cm-effectiveness model for effectiveness and pressure drop and give

confidence for its use in designing future, larger scale regenerators. The results suggest that

the carryover model should be improved before it can be used for this purpose. The next stage

52

52

of the project will be scaling up from the current, approximately 10kW size system to a 50kW

scale system to be built at Sandia National Laboratory. From the experience constructing and

testing at the 10kW scale, a few recommendations for the larger system are:

• The connections at the high-temperature side of the regenerator should be sleeved as

described in Section Binary Valves2.3.2 or welded to avoid leaks caused by thermal

expansion/contraction

• The differential pressure across the regenerator bed should either be mounted in such a

way as to minimize the static pressure in the instrument tubing, or temperature

measurements should be made of the stagnant fluid in order to calculate accurate static

fluid properties.

Additionally, the Python scripts written for the data analysis presented in this thesis should be

adapted and used for data analysis on the larger scale system data. This will save significant

time and also ensure consistency of methods. An attempt will be made to include an electronic

package with the code, and many of the scripts used are attached to this document as

Appendices.

6 BIBLIOGRAPHY

[1] G. Nellis and S. Klein, Heat Transfer, Cambridge, 2009.

[2] E. Erdim, O. Akgiray and I. Demir, "A revisit of pressure drop-flow rate correlations for packed beds

of spheres," Powder Technology, vol. 283, pp. 488-504, 2015.

53

53

[3] R. Hicks, "Pressure Drop in packed beds of spheres," Industrial & Engineering Chemistry

Fundamentals, vol. 9(3), pp. 530-502, 1970.

[4] V. Gnielinski, "Fluid-Particle Heat Transfer in Flow Through Packed Beds of Solids," in VDI Heat

Atlas, Second ed., P. Stephan, S. Kabelac, M. Kind, H. Martin, D. Mewes and K. Schaber, Eds.,

Berlin, Spinger-Verlag, 2010.

[5] N. Wakao and S. Kaguei, Heat and Mass Transfer in Packed Beds, New York: Gordon and Breach,

Science Publishers, Inc., 1982.

[6] J. F. Hinze, G. F. Nellis and M. H. Anderson, "Cost comparison of printed circuit heat exchanger to

low cost periodic flow regenerator for use as recuperator in a s-CO2 Brayton cycle," Applied

Energy, vol. 208, pp. 1150-1161, 2017.

[7] U. E. I. Adminsitration, "International Energy Outlook 2016," 2016.

[8] DOE, "Quadrennial Technology Review," 2015.

[9] Executive Office of the President of the United States, "Incorporating Renewables into the Electric

Grid: Expanding Opportunities for Smart Markets and Energy Storage," 2016.

[10] M. Romero-Alvarez and E. Zarza, "Concentrating Solar Thermal Power," in Handbook of Energy

Efficiency and Renewable Energy, Taylor and Francis Group, LLC, 2007, pp. 21-1 - 21-98.

[11] Department of Energy Office of Energy Efficiency and Renewable Energy, "Concentrating Solar

Power: Advanced Projects Offering Low LCOE Opportunities - Funding Opportunity Announcement

Number: DE-FOA-0001186," 2014.

[12] NREL, "Energy Storage - Possibilities for Expanding Electric Grid Flexibility," 2016.

[13] V. Dostal, M. J. Driscoll and P. Hejzlar, "A Supercritical Carbon Dioxide Cycle for Next Generation

Nuclear Reacots," MIT , 2004.

[14] National Energy Technology Laboratory, "Analysis of Brayton Cycles Utilizing Supercritical Carbon

Dioxide," 2014.

[15] A. Moisseytsev and J. Sienicki, "Investigation of a Dry Air Cooling Option for an S-CO2 Cycle," in The

4th International Symposium - Supercritical CO2 Power Cycles, Pittsburgh, 2014.

[16] V. T. Cheang, R. A. Hedderwick and C. McGregor, "Benchmarking supercritical carbon dioxide

cycles against steam Rankine cycles for Concentrated Solar Power," Solar Energy, pp. 199-211,

2015.

[17] National Renewable Energy Laboratory, Sandia National Laboratories, "On the Path To SunShot,"

2016.

54

54

[18] C. K. Ho, M. Carlson, P. Garg and P. Kumar, "Cost and Performance Tradeoffs of Alternative Solar-

Driven s-CO2 Bratyon Cycle Configurations," in Power and Energy Conversion Conference, San

Diego, California, 2015.

[19] C. S. Turchi, Z. Ma, T. W. Neises and M. J. Wager, "Thermodynamic Study of Advanced Supercritical

Carbon Dioxide Power Cycles for Concentrating Solar Power Systems," Journal of Solar Energy

Engineering, vol. 135, no. 041007, pp. 1-7, 2013.

55

55

7 APPENDIX A

Main python program – this program is run on the original raw data and performs all of the required

analysis to calculate values of interest. While this program can be run from the command line, it was

written and is most effective when used in the Python IDE Sypder, although a verison to be used in the

command line is available on Github : https://github.com/lrapp/UW-Madison-Switched-Bed-

Regenerator-Data-Analysis.git

1. ##---- Main ----####
2. from class_def import props,Q,HT_results,main_char
3. import time as time
4.
5. class Timer(object):
6. def __init__(self, name=None):
7. self.name = name
8.
9. def __enter__(self):
10. self.tstart = time.time()
11. def __exit__(self, type, value, traceback):
12. if self.name:
13. print('[%s]' % self.name,)
14. print('Elapsed: %s' % (time.time() - self.tstart))
15.
16. with Timer():
17. from get_data2 import get_data2 #function used to import raw data
18. from create_averaged_vars import create_averaged_vars #function to average pressure data s

o there are equal number of temperature and pressure points
19. from cycle_analysis2 import split_cycles2
20. from lin_int_cycle2 import lin_int_cycle2
21. from fast_ave2 import fast_ave2
22. from ave_for_fit import ave_for_fit
23. from calc_Q import calc_Q
24. from heat_transfer_coef_fn import ht_coef_fn
25. import props5
26. import os
27.
28. refresh_data=True
29. refresh_sub=False
30. calc = True
31.
32. file_date="10_4_17" #Specify file date
33. root="C:\\Users\\lrapp\\OneDrive - UW-Madison\\Research\\Data Store\\Data\\"
34.
35. folder=root+file_date
36. file_list=os.listdir(folder)
37.
38. if refresh_data==True:
39. print("Getting Data...")
40. with Timer():
41. [Temp,Pressure,BV]=get_data2(folder)
42. print("Get Data Complete")
43. print("Averaging Data...")
44. with Timer():
45. [df]=create_averaged_vars(Temp,Pressure,folder)
46. print("Averaged Data Complete")
47.
48. print("Interpolating Data...")
49. with Timer():

56

56

50. df_lin=lin_int_cycle2(df,BV,folder)
51. print("Interpolating Complete")
52.
53. print("Getting thermophysical properties...")
54. with Timer():
55. df_full_cols=split_cycles2(df_lin,BV,folder)
56.
57. ##Used to correct dP, corrected dP was then written to file so this does not need to be run

every time
58. # with Timer():
59. # L_top=5*0.0254
60. # L_bottom=14*0.0254
61. # g=9.81
62. # T=40
63. # dp_corrected=[]
64. # for i in range(0,len(df_full_cols)):
65. # Conditions=props(props5.f90wrap_tp(T+273.15,df_full_cols['PT01'][i]*6.89475729))
66. # dp_top_i=(Conditions.density*g*L_top)*0.000145038
67. # dp_bottom_i=(Conditions.density*g*L_bottom)*0.000145038
68. # dp_corrected.append(df_full_cols['DP01'][i]-dp_top_i-dp_bottom_i)
69. #
70. del df_full_cols['DP01']
71. df_full_cols['DP01']=dp_corrected
72.
73.
74. if calc == True:
75. start=1020
76. end=1260
77. with Timer():
78. [S1_ave,S2a_ave,S2b_ave,S2c_ave,S3_ave,S4a_ave,S4b_ave,S4c_ave,full_cycle]=fast_av

e2(start,end,df_full_cols)
79.
80.
81. Regen_Results=HT_results(ave_for_fit(full_cycle,1))
82.
83. q_dot_max_RE1=Regen_Results.q_dot_max_RE1
84. q_dot_max_RE2=Regen_Results.q_dot_max_RE2
85.
86. Q_re=Q(calc_Q(start,end,df_full_cols))
87.
88. MC=main_char()
89.
90. MC=ht_coef_fn(start,end,df_full_cols)

8 APPENDIX B – CO2 PROPERTIES

The thermodynamic properties of CO2 were calculated using “FIT Carbon Dioxide” developed by
Northland Numerics for the Solar Energy Laboratory at the University of Wisconsin-Madison. This
function was provided for this project as a Fotran90 module. The header information for this file is
shown below:

module_CO2_properties.f90 :

Temperature Range: 216.592 K to 2,000.0 K
! Pressure Range: 0.001 Pa to 800.0 MPa

57

57

! FIT Version: 2a71ddde4717
!
! --
! Copyright (c) 2017, Northland Numerics LLC
! All rights reserved.
!
! THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, NONINFRINGEMENT AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL ANY WARRANTY BE CREATED IN
CONNECTION WITH THE SALE OF SOFTWARE, UNLESS THE WARRANTY WAS CREATED SOLELY DUE TO A WRITTEN
AGREEMENT SIGNED BY SELLER. IN NO EVENT SHALL ANY WARRANTY BE IMPUTED OR PRESUMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, BUSINESS INTERRUPTION;
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; OR LOSS OF USE, DATA, OR PROFITS) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
OF SUCH DAMAGE.
!
! This copy of FIT Carbon Dioxide is for use only by members of the Solar Energy Laboratory (SEL) at the University
of Wisconsin-Madison for SEL-related projects.
! --- -----
!
! This Fortran module contains a number of subroutines that return carbon dioxide properties calculated using an
interpolated Helmholtz free energy and its analytical derivatives. The main property subroutines are:
!
! CO2_TD(T, D, error_code, temp, pres, dens, vol, qual, inte, enth, entr, cv, cp, ssnd, visc, cond)
! CO2_TP(T, P, error_code, temp, pres, dens, vol, qual, inte, enth, entr, cv, cp, ssnd, visc, cond)
! CO2_PH(P, H, error_code, temp, pres, dens, vol, qual, inte, enth, entr, cv, cp, ssnd, visc, cond)
! CO2_PS(P, S, error_code, temp, pres, dens, vol, qual, inte, enth, entr, cv, cp, ssnd, visc, cond)
! CO2_HS(H, S, error_code, temp, pres, dens, vol, qual, inte, enth, entr, cv, cp, ssnd, visc, cond)
! CO2_TQ(T, Q, error_code, temp, pres, dens, vol, qual, inte, enth, entr, cv, cp, ssnd, visc, cond)
! CO2_PQ(P, Q, error_code, temp, pres, dens, vol, qual, inte, enth, entr, cv, cp, ssnd, visc, cond)
!
! The first two arguments are required inputs that correspond to the known independent properties:
!
! T -- temperature (K)
! D -- density (kg/m3)
! P -- pressure (kPa)
! H -- enthalpy (kJ/kg)
! S -- entropy (kJ/kg-K)
! Q -- quality on a mass basis
!
! Each subroutine requires only a single output (error_code), which is an integer used to indicate
! success (value is 0), an error (positive value), or a warning (negative value). If an error or warning occurs, the
function CO2_error_message(error_code), which returns a 255 character string, can be used to get more
information about the error code.
!
! All of the remaining arguments in the subroutines are optional outputs:
!
! temp -- temperature (K)
! pres -- pressure (kPa)
! dens -- density (kg/m3)
! vol -- specific volume (m3/kg)

58

58

! qual -- quality on a mass basis that follows the REFPROP convention of:
! q < 0 is a subcooled liquid
! q = 0 is a saturated liquid
! q = 1 is a saturated vapor
! q > 1 is a superheated vapor
! q = 998 is a superheated vapor with temperature greater than the critical temperature
! q = 999 is supercritical, with temperature and pressure greater than the critical point
! inte -- internal energy (kJ/kg)
! enth -- enthalpy (kJ/kg)
! entr -- entropy (kJ/kg-K)
! cv -- specific heat at constant volume (kJ/kg-K)
! cp -- specific heat at constant pressure (kJ/kg-K)
! ssnd -- speed of sound in the fluid (m/s)
! visc -- viscosity (uPa-s)
! cond -- thermal conductivity (W/m-K)
!
! Partial derivatives of various properties are available from the subroutine:
! CO2_derivatives(T, D, error_code, dPdD_T, dhdD_T, dsdD_T, dPdT_D, dhdT_D, dsdT_D, dDdP_T, dDdT_P)
! dPdD_T -- derivative of pressure with respect to density at constant temperature (m3-kPa/kg)
! dhdD_T -- derivative of enthalpy with respect to density at constant temperature (m3-kJ/kg2)
! dsdD_T -- derivative of entropy with respect to density at constant temperature (m3-kJ/kg2-K)
! dPdT_D -- derivative of pressure with respect to temperature at constant density (kPa/K)
! dhdT_D -- derivative of enthalpy with respect to temperature at constant density (kJ/kg-K)
! dsdT_D -- derivative of entropy with respect to temperature at constant density (kJ/kg-K2)
! dDdP_T -- derivative of density with respect to pressure at constant temperature (kg/m3-kPa)
! dDdT_P -- derivative of density with respect to temperature at constant pressure (kg/m3-K)
! (all the above derivative outputs are optional; only error_code is required)
!
! Additional functions that are available:
! CO2_sat_pres(T) -- saturated pressure (kPa) as a function of temperature (K) [valid for sat_temp_min <= T < T_critical]
! CO2_sat_temp(P) -- saturated temperature (K) as a function of pressure (kPa) [valid for sat_pres_min <= P < P_critical]
! CO2_sat_temp_derivative(P) -- derivative of sat. temperature w.r.t. pressure (K/kPa) as a function of pressure (kPa)
! CO2_surf_tension(T) -- surface tension (N/m) as a function of temperature (K) [valid for sat_temp_min <= T < T_critical]
! Warning: The above functions will return -9e99 if the input is not valid.
!
! Notes:
! 1) The thermodynamic state is only explicitly defined in temperature and density. Therefore, any other combination of
! known properties requires iteration and may result in a state that does not exactly correspond to the provided properties.

! For this reason, the values that are returned for the specified properties may not be identical to the inputs.
However, the returned values do exactly correspond to the thermodynamic state defined by the returned
temperature and density. 2) The CO2_info subroutine provides the molar mass and the critical temperature,
pressure, and density of the fluid. 3) The CO2_limits subroutine provides temperature and pressure limits for this
implementation of FIT.
! 4) All values are double precision with the exception of 'error_code', which is an integer.
! 5) All subroutines and functions are elemental, meaning arrays of inputs and outputs can be used.
!
! Examples:
! call CO2_TD(T=T, D=D, error_code=error_code, pres=pressure, cp=spec_heat)
! call CO2_TP(T=temp, P=pres, error_code=err_flag, ssnd=speed_of_sound)
! call CO2_PH(P=pres_array, H=enth_array, error_code=error_code_array, dens=D_array, temp=temp_array)
! call CO2_PS(P=pres_out, S=entr_out, error_code=err, enth=enth_out, temp=temp_out)
! call CO2_TQ(T=T, Q=1.0_dp, error_code=error_code, pres=sat_pres, cv=sat_vap_cv)
!

59

59

! For more information, contact Northland Numerics at: support@nnumerics.com

To use the various functions defined in “module_CO2_properties.f90”, another Fortran file was written
with subroutines that called specific subroutines from the “moduel_CO2_properties.f90” file. For
example, to calculate properties given temperature and pressure, a subroutine TP was defined as:

props5.f90 :

subroutine TP(T1,P1,temp1, pres1, dens1, vol1, qual1, inte1, enth1, entr1, cv1, cp1, ssnd1, visc1, cond1)
 use CO2_properties
 implicit none
 integer, parameter :: dp = selected_real_kind(15)
 Real(dp), INTENT(IN) :: T1,P1

Real(dp), INTENT(OUT) :: temp1, pres1, dens1, vol1, qual1, inte1, enth1, entr1, cv1, cp1, ssnd1, visc1,
cond1

 integer :: er
call CO2_TP(T=T1,P=P1,error_code=er,temp=temp1, pres=pres1, dens=dens1, vol=vol1,qual=qual1,

inte=inte1,enth=enth1, entr=entr1, cv=cv1, cp=cp1, ssnd=ssnd1, visc=visc1, cond=cond1)
end SUBROUTINE TP

gfortran was then used to compile both “module_CO2_properties.f90” and “props5.f90”.

 $gfortran –c module_CO2_properties.f90

 $gfortran –c props5.f90

This creates an object and module file for “module_CO2_properties.f90” and an object file for
“props5.f90”. Because derived data types were used in the “module_CO2_properties.f90” file, it can not
be used directly with f2py. First, it must be run through another python script, f90wrap, which creates
an interface which is suitable for wrapping with f2py. To use f90wrap, run from the command line:

$python f90wrap –m properties module_CO2_properties.f90 props5.f90

This command creates “wrapped” fortran90 files that can be read by f2py:

$python f2py.py –c –m props5 module_co2_properties.o props5.o
f90wrap_moduel_CO2_properties.f90 f90wrap_toplevel.f90

This creates a props5.pyd file, which is similar to a windows DLL. The props5.pyd can be imported into
python just like any other external package:

 >>>import props

running the python help with the custom module results in:

60

60

61

61

9 APPENDIX C – FAST AVERAGE

In order to get cyclic averaged experimental data, the various states were averaged over a steady state
operating period as described in Section 3.3.

The python script goes through the dataframe of experimental data and creates lists of each unique
state between the given ‘start’ and ‘end’ cycle numbers as shown in Figure 9.1.

Figure 9.1 - Visual Depiction of fast_ave python script

62

62

Each list can then be averaged by the ‘state_index_number’ to create an averaged state. The “fast_ave”
python script returns each averaged state as well as a dataframe called full_cycle which is each averaged
state combined to form a full cycle.

1. def fast_ave2(start,end,df_full_cols):
2. import numpy as np
3. import pandas as pd
4.
5. st1_list=[]
6. st2a_list=[]
7. st2b_list=[]
8. st2c_list=[]
9. st3_list=[]
10. st4a_list=[]
11. st4b_list=[]
12. st4c_list=[]
13.
14. ave_list=[st1_list,st2a_list,st2b_list,st2c_list,st3_list,st4a_list,st4b_list,st4c_list]
15. possible_states=['STATE1','STATE2a','STATE2b','STATE2c','STATE3','STATE4a','STATE4b','STATE

4c']
16.
17. for i in range(start,end):
18. num=len(df_full_cols.loc[df_full_cols['unique_state_num']==i])
19. for k in range(0,len(possible_states)):
20. if df_full_cols.loc[df_full_cols['unique_state_num']==i]['state'][0] == possible_st

ates[k]:
21. df_i=df_full_cols.loc[df_full_cols['unique_state_num']==i]
22. time_d=[]
23. for j in range(0,num):
24. time_d.append((df_i.index[j]-df_i.index[0]).total_seconds())
25. df_i.insert(0,'rel_time',time_d)
26. ave_list[k].append(df_i)
27.
28.
29. min_list=[]
30. for i in range(0,len(ave_list)):
31. min_list.append(len(ave_list[i]))
32.
33. min_array=np.asarray(min_list)
34. min_length=np.min(min_array[np.nonzero(min_array)])
35.
36. cut_ave_list=[]
37. for i in range(0,len(ave_list)):
38. cut_ave_list.append(ave_list[i][0:min_length])
39.
40. mean_list=[]
41. std_list=[]
42. for i in range(0,len(ave_list)):
43. if len(cut_ave_list[i])!=0:
44.
45. mean_list.append(pd.concat(cut_ave_list[i]).groupby('state_index_num').mean())
46. std_list.append(pd.concat(cut_ave_list[i]).groupby('state_index_num').std())

47. k=0
48. if len(mean_list[-1])!=len(cut_ave_list[i][0]['state'].tolist()):
49.
50. while k < len(cut_ave_list[i]) and len(mean_list[-

1])!=len(cut_ave_list[i][k]['state'].tolist()):
51. k=k+1
52.

63

63

53. mean_list[-1]['state']=cut_ave_list[i][k]['state'].tolist()
54. # std_list[-1]['state']=cut_ave_list[i][0]['state'].tolist()
55.
56. for i in range(0,len(std_list)):
57. del mean_list[i]['unique_state_num']
58. del std_list[i]['unique_state_num']
59. new_cols=[x+'_ave' for x in mean_list[i].columns[0:-

1].tolist()]+[mean_list[i].columns[-1]]
60. # new_cols_std=[x+'_std' for x in mean_list[i].columns[0:-

1].tolist()]+[mean_list[i].columns[-1]]
61. new_cols_std=[x+'_std' for x in mean_list[i].columns[0:-1].tolist()]
62. mean_list[i].columns=new_cols
63. std_list[i].columns=new_cols_std
64.
65. mean_list_state=[]
66. for i in range(0,len(mean_list)):
67. mean_list_state.append(mean_list[i]['state'][0])
68.
69. average_state_list=[]
70. for i in range(0,len(mean_list)):
71. average_state_list.append(pd.concat((mean_list[i],std_list[i]),axis=1))
72.
73. for i in range(1,len(average_state_list)):
74. if average_state_list[i-1]['TI16_ave'][-

1:].values[0] == average_state_list[i]['TI16_ave'][0:].values[0]:
75. average_state_list[i]=average_state_list[i].drop(0)
76. average_state_list[i].reset_index()
77.
78. #clean up
79. full=pd.concat(average_state_list,ignore_index=True)
80. full1=full
81. for i in range(1,len(full1)):
82. if full1['rel_time_ave'][i]==0:
83. full1=full1.drop(i)
84. cols=full1.columns.tolist()
85. st=cols.pop(cols.index('state'))
86. cols2=cols[0:1]+[st]+cols[1:-1]
87. full1=full1[cols2]
88. full1=full1.reset_index()
89. del full1['index']
90.
91. #check if any states are empty, if so do not include them in the final full dataframe
92. asl2=[]
93. if len(full.loc[full['state']=='STATE1'])!=0:
94. st1=full.loc[full['state']=='STATE1']
95. asl2.append(st1)
96. if len(full.loc[full['state']=='STATE2a'])!=0:
97. st2a=full.loc[full['state']=='STATE2a']
98. asl2.append(st2a)
99. if len(full.loc[full['state']=='STATE2b'])!=0:
100. st2b=full.loc[full['state']=='STATE2b']
101. asl2.append(st2b)
102. if len(full.loc[full['state']=='STATE2c'])!=0:
103. st2c=full.loc[full['state']=='STATE2c']
104. asl2.append(st2c)
105. if len(full.loc[full['state']=='STATE3'])!=0:
106. st3=full.loc[full['state']=='STATE3']
107. asl2.append(st3)
108. if len(full.loc[full['state']=='STATE4a'])!=0:
109. st4a=full.loc[full['state']=='STATE4a']
110. asl2.append(st4a)

64

64

111. if len(full.loc[full['state']=='STATE4b'])!=0:
112. st4b=full.loc[full['state']=='STATE4b']
113. asl2.append(st4b)
114. if len(full.loc[full['state']=='STATE4c'])!=0:
115. st4c=full.loc[full['state']=='STATE4c']
116. asl2.append(st4c)
117.
118.
119. for i in range(1,len(asl2)):
120. asl2[i]['rel_time_ave']=asl2[i]['rel_time_ave'].values+asl2[i-1]['rel_time_ave'][-

1:].values[0]
121.
122. full2=pd.concat(asl2,ignore_index=True)
123. cols=full2.columns.tolist()
124. st=cols.pop(cols.index('state'))
125. cols2=cols[0:1]+[st]+cols[1:-1]
126. full2=full2[cols2]
127.
128. S1_ave=full.loc[full['state']=="STATE1"]
129. S2a_ave=full.loc[full['state']=="STATE2a"]
130. S2b_ave=full.loc[full['state']=="STATE2b"]
131. S2c_ave=full.loc[full['state']=="STATE2c"]
132. S3_ave=full.loc[full['state']=="STATE3"]
133. S4a_ave=full.loc[full['state']=="STATE4a"]
134. S4b_ave=full.loc[full['state']=="STATE4b"]
135. S4c_ave=full.loc[full['state']=="STATE4c"]
136.
137. return [S1_ave,S2a_ave,S2b_ave,S2c_ave,S3_ave,S4a_ave,S4b_ave,S4c_ave,full2]

65

65

10 APPENDIX D – CALCULATE Q

1. import numpy as np
2. import pandas as pd
3. from scipy import integrate
4.
5. def calc_Q2(start,end,df_full_cols):
6.
7.
8. def integrate_method(self, how='trapz', unit='s'):
9. '''''Numerically integrate the time series.
10.
11. @param how: the method to use (trapz by default)
12. @return
13. Available methods:
14. * trapz - trapezoidal
15. * cumtrapz - cumulative trapezoidal
16. * simps - Simpson's rule
17. * romb - Romberger's rule
18.
19. See http://docs.scipy.org/doc/scipy/reference/integrate.html for the method details.
20. or the source code
21. https://github.com/scipy/scipy/blob/master/scipy/integrate/quadrature.py
22. '''
23. available_rules = set(['trapz', 'cumtrapz', 'simps', 'romb'])
24. if how in available_rules:
25. rule = integrate.__getattribute__(how)
26. else:
27. print('Unsupported integration rule: %s' % (how))
28. print('Expecting one of these sample-

based integration rules: %s' % (str(list(available_rules))))
29. raise AttributeError
30.
31. result = rule(self.values, self.index.astype(np.int64) / 10**9)
32. #result = rule(self.values)
33. return result
34.
35. # pd.TimeSeries.integrate = integrate_method
36. pd.Series.integrate = integrate_method
37.
38.
39. Q_C1=[]
40. Q_H1=[]
41. Q_C2=[]
42. Q_H2=[]
43. Q_H2_ST2a=[]
44. Q_C1_ST2a=[]
45. Q_H2_ST2b=[]
46. Q_C1_ST2b=[]
47.
48. Q_H2_ST4a=[]
49. Q_C1_ST4a=[]
50. Q_H2_ST4b=[]
51. Q_C1_ST4b=[]
52.
53. Q16=0
54. Q12=0
55. Q11=0
56. Q07=0

66

66

57.
58. possible_states=['STATE1','STATE2a','STATE2b','STATE2c',
59. 'STATE3','STATE4a','STATE4b','STATE4c']
60.
61. possible_states=['STATE1','STATE3','STATE2a']
62. Q_combos={'STATE1' : [[Q_H2,Q16,Q12],[Q_C1,Q11,Q07]],
63. 'STATE3' : [[Q_H1,Q11,Q07],[Q_C2,Q16,Q12]],
64. 'STATE2a' : [[Q_H2_ST2a,Q16,Q12],[Q_C1_ST2a,Q11,Q07]],
65. 'STATE2b' : [[Q_H2_ST2b,Q16,Q12],[Q_C1_ST2b,Q11,Q07]],
66. 'STATE4a' : [[Q_H2_ST4a,Q16,Q12],[Q_C1_ST4a,Q11,Q07]],
67. 'STATE4b' : [[Q_H2_ST4b,Q16,Q12],[Q_C1_ST4b,Q11,Q07]]}
68.
69. half_cycle_time=[]
70. for i in range(start,end):
71. df_i=df_full_cols.loc[df_full_cols['unique_state_num']==i]
72. Q16=(integrate.trapz(df_i['h16']*df_i['FI01'],df_i.index.astype(np.int64)/10**9))
73. Q12=(integrate.trapz(df_i['h12']*df_i['FI01'],df_i.index.astype(np.int64)/10**9))
74. Q11=(integrate.trapz(df_i['h11']*df_i['FI01'],df_i.index.astype(np.int64)/10**9))
75. Q07=(integrate.trapz(df_i['h07']*df_i['FI01'],df_i.index.astype(np.int64)/10**9))

76. Q_combos={'STATE1' : [[Q_H2,Q16,Q12],[Q_C1,Q11,Q07]],
77. 'STATE3' : [[Q_H1,Q11,Q07],[Q_C2,Q16,Q12]],
78. 'STATE2a' : [[Q_H2_ST2a,Q16,Q12],[Q_C1_ST2a,Q11,Q07]],
79. 'STATE2b' : [[Q_H2_ST2b,Q16,Q12],[Q_C1_ST2b,Q11,Q07]],
80. 'STATE4a' : [[Q_H2_ST4a,Q16,Q12],[Q_C1_ST4a,Q11,Q07]],
81. 'STATE4b' : [[Q_H2_ST4b,Q16,Q12],[Q_C1_ST4b,Q11,Q07]]}
82. for k in range(0,len(possible_states)):
83. if df_full_cols.loc[df_full_cols['unique_state_num']==i]['state'][0] == possible_s

tates[k]:
84. Q_combos[possible_states[k]][0][0].append(Q_combos[possible_states[k]][0][1]-

Q_combos[possible_states[k]][0][2])
85. Q_combos[possible_states[k]][1][0].append(Q_combos[possible_states[k]][1][1]-

Q_combos[possible_states[k]][1][2])
86. if df_full_cols.loc[df_full_cols['unique_state_num']==i]['state'][0] == 'STATE1':

87. half_cycle_time.append((df_i.index[-1]-

df_i.index[0]).total_seconds())
88.
89.
90. Q_C1_ave=np.mean(Q_C1)
91. Q_H1_ave=np.mean(Q_H1)
92. Q_C2_ave=np.mean(Q_C2)
93. Q_H2_ave=np.mean(Q_H2)
94. half_cycle_time_ave=np.mean(half_cycle_time)
95. Q_C1_std=np.std(Q_C1)
96. Q_H1_std=np.std(Q_H1)
97. Q_C2_std=np.std(Q_C2)
98. Q_H2_std=np.std(Q_H2)
99.
100. Q_C1_st2a_ave=np.mean(Q_C1_ST2a)
101. Q_C1_st2b_ave=np.mean(Q_C1_ST2b)
102.
103.
104.
105.
106. return [Q_C1_ave,Q_H1_ave,
107. Q_C2_ave,Q_H2_ave,
108. Q_C1_std,Q_H1_std,
109. Q_C2_std,Q_H2_std,
110. half_cycle_time_ave,
111. Q_C1_st2a_ave,Q_C1_st2b_ave]

67

67

11 APPENDIX E – FIT_HXR

The FIT_HXR Fortran function was developed by Northland Numerics for use by the Solar Energy

Laboratory at the University of Wisconsin-Madison. It employs a sub-heat exchanger model as

described in [1] to calculate the performance of a counterflow heat exchanger given inlet conditions and

a minimum delta T, a UA, or an effectiveness target value. The Fortran subroutines were made callable

in Python by a similar procedure as described in Appendix B – CO2 Properties. The python function

“ave_for_fit2” is shown below. This function is used to calculate q_max using the FIT_HXR Fortran

subroutine with the averaged cycle data and target effectiveness as inputs.

ave_for_fit2.py

1. import FIT_HXR
2. from scipy import integrate
3.
4. def ave_for_fit2(full,target):
5. # target=1
6. target_code=1
7. n_hxrs=25
8.
9. dp_1=0
10. dp_2=dp_1
11.
12. fluid_1='carbondioxide'
13. fluid_2='carbondioxide'
14.
15. P_convert=6.89475729
16.
17. S1_time=list(full.loc[full['state']=='STATE1']['rel_time_ave'])[-1]
18. valve_time=0
19.
20. #t_in_1 is T12_ave of state1
21. t_in_1_RE2=full.loc[full['state']=='STATE1']["TI12"+"_ave"].mean()
22. t_in_1_RE2_std=full.loc[full['state']=='STATE1']["TI12"+"_std"].mean()
23.
24. #t_in_2 is T16_ave of state3
25. t_in_2_RE2=full.loc[full['state']=='STATE3']["TI16"+"_ave"].mean()
26. t_in_2_RE2_std=full.loc[full['state']=='STATE3']["TI16"+"_std"].mean()
27.
28. #p_in_1 is PT03_ave of state1
29. p_in_1_RE2=full.loc[full['state']=='STATE1']["PT03"+"_ave"].mean()*P_convert

30. p_in_1_RE2_std=full.loc[full['state']=='STATE1']["PT03"+"_std"].mean()*P_convert
31.
32. #p_in_2 is PT03_ave of state3
33. p_in_2_RE2=full.loc[full['state']=='STATE3']["PT03"+"_ave"].mean()*P_convert
34. p_in_2_RE2_std=full.loc[full['state']=='STATE3']["PT03"+"_std"].mean()*P_convert
35.
36. m_dot_1_RE2=integrate.trapz((1/(S1_time+valve_time))*full.loc[full['state']=='STATE1']["FI

01"+"_ave"],full.loc[full['state']=='STATE1']['rel_time_ave'])
37.
38. m_dot_1_RE2_std=full.loc[full['state']=='STATE1']["FI01"+"_std"].mean()
39. m_dot_2_RE2=integrate.trapz((1/(S1_time+valve_time))*full.loc[full['state']=='STATE3']["FI

01"+"_ave"],full.loc[full['state']=='STATE3']['rel_time_ave'])
40.
41. m_dot_2_RE2_std=full.loc[full['state']=='STATE3']["FI01"+"_std"].mean()
42.

68

68

43. #t_in_1 is T12_ave of state1
44. t_in_1_RE1=full.loc[full['state']=='STATE3']["TI07"+"_ave"].mean()
45. t_in_1_RE1_std=full.loc[full['state']=='STATE3']["TI07"+"_std"].mean()
46.
47. #t_in_2 is T16_ave of state3
48. t_in_2_RE1=full.loc[full['state']=='STATE1']["TI11"+"_ave"].mean()
49. t_in_2_RE1_std=full.loc[full['state']=='STATE1']["TI11"+"_std"].mean()
50.
51. #p_in_1 is PT03_ave of state1
52. p_in_1_RE1=full.loc[full['state']=='STATE3']["PT01"+"_ave"].mean()*P_convert

53. p_in_1_RE1_std=full.loc[full['state']=='STATE3']["PT01"+"_std"].mean()*P_convert
54.
55. #p_in_2 is PT03_ave of state3
56. p_in_2_RE1=full.loc[full['state']=='STATE1']["PT01"+"_ave"].mean()*P_convert
57. p_in_2_RE1_std=full.loc[full['state']=='STATE1']["PT01"+"_std"].mean()*P_convert
58.
59. m_dot_1_RE1=integrate.trapz((1/(S1_time+valve_time))*full.loc[full['state']=='STATE3']["FI

01"+"_ave"],
60. full.loc[full['state']=='STATE3']['rel_time_ave'])
61. m_dot_1_RE1_std=full.loc[full['state']=='STATE3']["FI01"+"_std"].mean()
62.
63. m_dot_2_RE1_std=full.loc[full['state']=='STATE1']["FI01"+"_std"].mean()
64. m_dot_2_RE1=integrate.trapz((1/(S1_time+valve_time))*full.loc[full['state']=='STATE1']["FI

01"+"_ave"],
65. full.loc[full['state']=='STATE1']['rel_time_ave'])
66.
67.
68. [epsilon_target_RE1,dt_min_RE1,ua_RE1,q_dot_RE1,q_dot_max_RE1,t_1_RE1,t_2_RE1]=FIT_HXR.cou

nter_flow(fluid_1,fluid_2,target,target_code,n_hxrs,m_dot_1_RE1,m_dot_2_RE1,t_in_1_RE1,t_in_2_
RE1,p_in_1_RE1,p_in_2_RE1,dp_1,dp_2)

69.
70. [epsilon_target_RE2,dt_min_RE2,ua_RE2,q_dot_RE2,q_dot_max_RE2,t_1_RE2,t_2_RE2]=FIT_HXR.cou

nter_flow(fluid_1,fluid_2,target,target_code,n_hxrs,m_dot_1_RE2,m_dot_2_RE2,t_in_1_RE2,t_in_2_
RE2,p_in_1_RE2,p_in_2_RE2,dp_1,dp_2)

71.
72.
73. return [[epsilon_target_RE1,dt_min_RE1,ua_RE1,q_dot_RE1,q_dot_max_RE1,t_1_RE1,t_2_RE1],
74. [epsilon_target_RE2,dt_min_RE2,ua_RE2,q_dot_RE2,q_dot_max_RE2,t_1_RE2,t_2_RE2]]

69

69

12 APPENDIX F – CREATE_AVERAGED_VARS

This program takes in the raw temperature and pressure data and averages the pressure data to be the

same length as the temperature data.

1. def create_averaged_vars(Temp,Pressure,folder):
2. import pandas as pd
3. import os
4. from dateutil import parser
5.
6. file_list=os.listdir(folder) #List the files in the directory
7.
8. end_search=""
9. file_found=""
10.
11. for file in file_list:
12. if file == "df.csv":
13. end_search=True
14. if file == "Pressure_ave.csv" or file == "Temp.ave.csv":
15. file_found="True"
16.
17. if end_search!=True:
18. if file_found=="True":
19. Pressure_average=pd.read_csv(folder+"\\Pressure_ave.csv", index_col=[0])

20. Pressure_average.index=Pressure_average.index.map(parser.parse)
21. Temp_average=pd.read_csv(folder+"\\Temp_ave.csv", index_col=[0])
22. Temp_average.index=Temp_average.index.map(parser.parse)
23. else:
24. Temp_average=Temp[0:1]
25. Pressure_average=pd.DataFrame()
26. old_k=0
27. k=0
28. for i in range(0,len(Temp)-1):
29. print(i)
30. Temp_i_index=Temp.index[i]
31. Pressure_i_index=Pressure.index[k]
32. while Pressure_i_index<=Temp_i_index:
33. k=k+1
34. Pressure_i_index=Pressure.index[k]
35.
36. df=pd.DataFrame(Pressure[old_k:k].mean().to_dict(),index=[Temp_i_index]

)
37. Pressure_average=Pressure_average.append(df)
38. Temp_average=Temp_average.append(Temp[i:i+1])
39. old_k=k
40. df=pd.concat([Temp_average,Pressure_average],axis=1)
41. df.to_csv(folder+"\\df.csv")
42. else: #if df.csv is found, read in file
43. df=pd.read_csv(folder+"\\df.csv",index_col=[0],parse_dates=True)
44.
45. return [df]

70

70

13 APPENDIX G – LINEAR INTERPOLATION

This function was used to ensure a data point existed exactly on each switching time by using linear

interpolation.

1. def lin_int_cycle2(df,BV,folder):
2.
3. #old args cycle_original,BV,folder
4. import pandas as pd
5. import os
6. import dateutil.parser
7. import numpy as np
8.
9. file_list=os.listdir(folder)
10.
11.
12. if 'DFF.csv' in file_list:
13. DFF=pd.read_csv(folder+"\\DFF.csv",index_col=[0],parse_dates=True)
14. return DFF
15.
16. cols=df.columns
17.
18. unique_cntr=0
19.
20. DFF=pd.DataFrame()
21. for i in range(0,len(BV)-2):
22.
23. df_i=df[df.index>=dateutil.parser.parse(str(BV.index[i]))] #select all data wi

th index greater than the ith valve swtiching start time
24. df_i=df_i[df_i.index<=dateutil.parser.parse(str(BV.index[i+1]))]
25.
26. df_iplus=df[df.index>=dateutil.parser.parse(str(BV.index[i+1]))] #select all d

ata with index greater than the ith+1 valve swtiching start time
27. df_iplus=df_iplus[df_iplus.index<=dateutil.parser.parse(str(BV.index[i+2]))]
28.
29. x_bv0=BV.index[i]
30. x_bv1=BV.index[i+1]
31. d0={}
32. d1={}
33. if i==0:
34. for j in range(0,len(cols)):
35. y0=df_i[cols[j]].values[0] #select the first value
36. d0.update({cols[j]:y0})
37. if cols[j]=='state':
38.
39. y_bv1=df_i[cols[j]].values[-1]
40. else:
41.
42. if len(df_iplus)!= 0:
43. y3=df_iplus[cols[j]].values[0]
44. y2=df_i[cols[j]].values[-1]
45. x2=df_i.index[-1]
46. x3=df_iplus.index[0]
47.
48. y_bv1=(y2*(x3-x_bv1)+y3*(x_bv1-x2))/(x3-x2) #interpolate
49. d1.update({cols[j]:y_bv1})
50.
51.
52. else:

71

71

53. df_iminus=df[df.index>=dateutil.parser.parse(str(BV.index[i-
1]))] #select all data with index greater than valve swtiching time

54. df_iminus=df_iminus[df_iminus.index<=dateutil.parser.parse(str(BV.index[i])
)]

55.
56. for j in range(0,len(cols)):
57. if cols[j]=='state':
58. y_bv0=df_i[cols[j]].values[-1]
59. y_bv1=df_i[cols[j]].values[-1]
60. d0.update({cols[j]:y_bv0})
61. d1.update({cols[j]:y_bv1})
62.
63. else:
64. y1=df_i[cols[j]].values[0]
65. y0=df_iminus[cols[j]].values[-1]
66. x0=df_iminus.index[-1]
67. x1=df_i.index[0]
68.
69.
70. y_bv0=(y0*(x1-x_bv0)+y1*(x_bv0-x0))/(x1-x0)
71. d0.update({cols[j]:y_bv0})
72.
73. if len(df_iplus)!= 0:
74. y3=df_iplus[cols[j]].values[0]
75. y2=df_i[cols[j]].values[-1]
76. x2=df_i.index[-1]
77. x3=df_iplus.index[0]
78. y_bv1=(y2*(x3-x_bv1)+y3*(x_bv1-x2))/(x3-x2)
79. d1.update({cols[j]:y_bv1})
80.
81.
82.
83. df_j0=pd.DataFrame(d0,index=[x_bv0]) #at x_bv0 index add d0 values
84. df_j1=pd.DataFrame(d1,index=[x_bv1])
85. df_j=df_j0.append(df_i) #append original cycle values to df_j0 and call it df_j

86. df_j=df_j.append(df_j1)
87.
88. state_index_cntr=list(np.arange(0,len(df_j)))
89. df_j['state_index_num']=state_index_cntr
90.
91. state_i=[]
92. for ii in range(0,len(df_j)):
93. state_i.append(BV.Position[i])
94.
95. df_j['state']=state_i
96. unique_state_num=list(np.ones(len(df_j))*unique_cntr)
97. df_j['unique_state_num']=unique_state_num
98. unique_cntr=unique_cntr+1
99. DFF=DFF.append(df_j)
100.
101. DFF.to_csv(folder+"\\DFF.csv")
102.
103. return DFF

