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I 

Abstract 

Vapor compression chillers are the central component of most large commercial 

air conditioning systems.  Process supervision including fault detection and diagnosis 

(FDD) has  been proposed as a means to identify unacceptable performance of chillers.  

FDD methodologies are often based on the comparison of the actual performance to some 

expected performance.  An installation provided the case study data presented in this 

thesis which revealed a periodic variation in the chilled water flow rate and several other 

chiller monitored quantities. Time series analysis techniques were applied and shown to 

be capable of quantifying the time variation, resulting in increased fault detection and 

diagnosis capabilities.
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1. Introduction 

1.1. Motivation 

Vapor compression chillers serve as the workhorse for the air conditioning 

systems of most commercial applications. Air conditioning systems are one of the major 

components in a complex configuration of structures, equipment, control devices, and 

people all working together to maintain a suitable indoor environment for the occupants 

and their activities.  

For all applications, the space conditioning systems represent a huge financial 

investment to the building industry simply in the first costs of system design, equipment 

purchase, and installation.  For commercial applications, there are possible additional 

costs if the system fails to maintain the desired conditions and leads to reductions in 

productivity. 

Vapor compression equipment requires energy to operate.  For commercial 

applications, this energy is generally purchased which raises the financial stakes.  While 

the monetary costs of energy are significant and increasing, energy use also has  

environmental costs. The majority of electrical energy in the world is produced from 

fossil fuels that must be harvested from the Earth and which release numerous by-

products during combustion. These by-products have the capability to significantly alter 

atmospheric chemistry, but their full effects on the environment and future quality of life 

is not known. Due to these energy costs, even a slight improvement in the efficiency of 
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vapor compression equipment is a worthwhile achievement and similarly, any significant 

performance degradation of these systems is cause for concern. 

Additionally, some of the refrigerants, or working fluids, currently used in vapor 

compression equipment have the potential for a more direct effect on the environment 

because upon release they ascend to the upper atmosphere and break down ozone.  Ozone 

at lower levels is dangerous but at higher altitudes it is key for controlling the 

temperature of the earth by preventing the transmission of ultraviolet radiation. 

The number of vapor compression systems in existence, the number of hours 

these systems typically operate, and all of their related costs draw a great deal of attention 

to their design, operation and maintenance.  One specific ongoing response to these costs 

is the development of supervision techniques to detect when the behavior of the  

equipment deviates from some acceptable range of operating conditions. 

1.2. Purpose 

While the burden to design and produce a robust, efficient chiller rests on the 

manufacturer, the preceding section establishes the need for the means to identify when a 

chiller develops an operating fault. Such a fault identification system should be able to 

not simply detect a fault but also diagnose it or determine its nature.  This system would 

preferably be on-line, either within the chiller control system or as an added component. 

The purpose of this work is to enhance fault detection and diagnosis (FDD) 

methodologies that have resulted from prior research efforts by considering the time 

variations of the data. 
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1.3. Scope and Organization 

To examine the issue of detecting and diagnosing faults in vapor compression 

chillers, this thesis begins with an overview of the basic chiller components and the vapor 

compression refrigeration cycle.  Next, existing FDD methodologies are examined along 

with how they might be advanced.  The fundamentals of time series analysis are 

introduced as well as their potential for improving FDD. 

Field data from a case study exhibits a periodic nature and demonstrates the need 

to address time variant behavior in the chiller. While the field data reveals odd behavior, 

optimization and fault remediation of this particular equipment is not an objective of this 

thesis.  The benefits of including time series analysis in FDD methodologies are revealed.  

Finally, conclusions of this work are stated and recommendations for future work are laid 

forth.  
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2. Vapor Compression Chillers 

2.1. Overview 

The primary purpose of an air conditioning system is to transfer energy, in the 

form of heat, out of a conditioned space.  To do so, an amount of air that is cooler than 

the current space temperature is supplied to the space while an equal amount of warm air 

is removed from the space.  In many large air-conditioning systems, the supply air passes 

through an air handling unit where it is cooled using a coil heat exchanger containing 

cold or chilled water.  This chilled water loops between the coil and the chiller.   The 

chiller then rejects energy to a condenser water loop, which is connected to the cooling 

towers.  The cooling towers reject energy to the ambient.  To transfer the energy from the 

chilled water loop to the condenser water loop, a vapor compression chiller consisting of 

four main components and a refrigerant is employed.  The refrigerant moves through the 

components consecutively (evaporator, compressor, condenser, and expansion device) in 

a closed loop. 

Figure 2-1 shows a simplified schematic of the chiller, the chilled and condenser 

water loops, and the conditioned and ambient air streams. The dotted line box denotes the 

physical boundary of the chiller.  The numbers (1-4) refer to the four refrigerant states, 

one between each of the components.  For both of the water flow loops, the supply and 

return sides are identified by the temperature measurement locations.  The chilled water 

supply is the water leaving the evaporator and being sent to the air handling units.  The 



  5   

  

condenser water supply is the water leaving the cooling towers and being sent to the 

condenser. 
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Figure 2-1: Simplified Chiller Schematic 
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A common method to represent the thermodynamics of the vapor compression 

cycle occurring in a chiller is a pressure-enthalpy (P-H) diagram, shown in Figure 2-2 

including the labels of the numbered states in Figure 2-1.  
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Figure 2-2: Pressure - Enthalpy Plot of R22 

2.2. Physical Definitions and Relationships 

The cooling provided is equal to the amount of energy transfer in the evaporator 

(QEVAP).  For the entire chiller, a coefficient of performance (COP) is defined as the 

cooling provided divided by the electrical power draw (P).   

1 

2 3 

4 
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P

Q
COP EVAP=  (2.1) 

The remainder of this chapter describes each of the four chiller components and 

the physical relationships that exist.  The descriptions are for the chilled water systems 

found in large facilities such as studied in this thesis. 

2.2.1. Evaporator 

The evaporator is a shell and tube heat exchanger with the chilled water passing 

through the tubes.  The tubes are submerged in a pool of low-pressure refrigerant.  As the 

water returns from the coil in the air handler, it is warm and causes the refrigerant to boil 

or evaporate.  The refrigerant enters the evaporator at state 4 and leaves at state 1.  The 

direction of positive heat transfer is from water to refrigerant.  The amount of heat 

transfer can be determined from an energy balance of the waterside mass flow rate, 

specific heat, and temperature change, and refrigerant mass flow rate and enthalpy 

change.  The energy balance is 

 )()( 41, hhmTCHWSTCHWRCmQ trefrigeranwaterpchwEVAP −=−=  (2.2) 

Heat exchanger performance can be quantified by defining a few parameters.  The 

chilled water temperature change(? TCHW) is the difference between the chilled water 

return and supply temperatures, denoted as TCHWR and TCHWS respectively.  The 

approach of a heat exchanger is defined as the smallest temperature difference between 

the two fluids.  In the case of a chiller, the evaporator approach (APPREVAP) is the chilled 

water supply temperature minus the temperature of the refrigerant in the evaporator 
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(TEVAP).  The water temperature differences and the approaches for both the evaporator 

and condenser are shown on Figure 2-3.  
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Figure 2-3: Heat Exchanger Temperature Diagram 

An effectiveness of the evaporator (εEVAP) is defined as the actual energy 

transferred divided by the maximum possible energy transfer. The maximum possible 

energy transfer would occur if the water entering the evaporator was cooled to the 

refrigerant temperature. 

 
)(
)(

TEVAPTCHWR
TCHWSTCHWR

EVAP −
−=ε  (2.3) 

Another heat exchanger performance quantity, the Number of Transfer Units 

(Ntu), is defined as the conductance-area product (UA) divided by the water capacitance, 

which is the product of the mass flow rate (m) and specific heat (Cp). 
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waterpchw

EVAP
EVAP Cm

UANtu
,

=  (2.4) 

The effectiveness and the Ntu are related depending on the type of heat 

exchanger.  Equation 2.5 gives the equation for a shell and tube heat exchanger where 

one fluid undergoes a phase change and is considered to have infinite capacitance. 

 EVAPNtu
EVAP e −−= 1ε  (2.5) 

2.2.2. Compressor 

The principle component of the chiller is the compressor, which is generally a 

centrifugal, screw, scroll, or reciprocating mechanism driven by an electric motor. The 

compressor lifts the refrigerant vapor leaving the evaporator, state 1, to a higher pressure 

entering the condenser, state 2.  An energy balance relates the required work input (W) to 

the compressor to the product of the refrigerant mass flow rate through the compressor 

and the refrigerant enthalpy (h) change. 

 )( 12 hhmW trefrigeran −=  (2.6) 

This real process can be compared to an ideal process by an isentropic efficiency 

(? ISENTROPIC).  In equation 2.7, hisen,2 denotes the enthalpy of a fictional state that is at the 

entropy of the refrigerant entering the compressor (s1), and the saturation pressure of the 

condenser (P2).   

 
)(

)(

12

12,

hh
hhisen

ISENTROPIC −
−

=η  (2.7) 
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The motor turning the compressor is also a real device and cannot convert all of 

the electrical power into mechanical power. The efficiency of the motor (?MOTOR) is 

defined as the work input to the fluid divided by the electrical power (P). 

 
P
W

MOTOR =η  (2.8) 

2.2.3. Condenser 

The energy balance for the condenser is quite similar to that for the evaporator.  

The difference is that the direction of heat transfer in the condenser is from the refrigerant 

to the water.  The energy balance is 

 )()( 32, hhmTCWSTCWRCmQ trefrigeranwaterpcwCOND −=−=  (2.9) 

The condenser water temperature change (? TCW) is the difference between the 

condenser water return and supply temperature, denoted as TCWR and TCWS 

respectively.  The condenser approach (APPRCOND) is the difference between the 

refrigerant temperature and the condenser water return temperature.  The water 

temperature difference and the approach of the condenser were represented graphically 

along with the evaporator values in Figure 2-3.  The water enters cooler but heats up as 

the high-pressure refrigerant vapor coming from the compressor condenses.  Like the 

evaporator, the effectiveness and Ntu of the condenser can be defined and related to each 

other. 

 
)(

)(
TCWSTCOND

TCWSTCWR
COND −

−=ε  (2.10) 

 
waterpcw

COND
COND Cm

UANtu
,

=  (2.11) 
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 CONDNtu
COND e −−= 1ε  (2.12) 

2.2.4. Expansion Device 

The expansion device is often a valve that drops the refrigerant pressure from the 

condenser to the evaporator, whereas the compressor increased the pressure.  High-

pressure saturated liquid refrigerant leaving the condenser passes through the expansion 

device and becomes a low-pressure mixture of liquid and vapor, which then enters the 

evaporator.  An energy balance for the expansion device shows that the enthalpy is 

constant for the process. 

 43 hh =  (2.13) 
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3. Fault Detection and Diagnosis Methodologies 

3.1. Background 

Isermann (1984) summarized some of the early concepts of the supervision of 

technical processes including defining a fault as “ a non-permitted deviation of a 

characteristic property which leads to the inability to fulfill the intended purpose.”  

Isermann also mapped a progression for supervising processes and equipment consisting 

of: 

1. Monitoring 

2. Fault Detection 

3. Fault Diagnosis 

4. Fault Evaluation 

5. Decision 

6. Action 

Several other more recent works have considered all or some of these process 

supervision components and applied them to different HVAC systems or pieces of 

equipment.  The remainder of this section outlines some FDD research and the 

components various researchers have considered. Rossi and Braun (1997) developed a 

detection and diagnosis methodology for vapor compression air-conditioners with a direct 

expansion coil.  Breuker and Braun (1998b) applied that method to a rooftop air-

conditioner.  Breuker and Braun (1998a) considered the evaluation step by looking at the 

common faults in rooftop air conditioners and their impacts.  Fasolo and Seborg (1995) 
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examined monitoring and fault detection for an HVAC controls system.  Shiozaki and 

Miyasaka (1999) and Yoshidea and Kumar (1999) developed diagnostic tools for VAV 

systems.  Salsbury (1999) proposed a controller with detection capabilities for VAV 

systems.  Pan, Zheng, and Nakahara (1999) studied fault detection and diagnosis on water 

thermal storage HVAC systems.  Li et al (1997) proposed a method to combine the 

detection and diagnosis stages for hot water radiator heating system in variable 

occupancy buildings.   

Stylianou and Nikanpour (1996) presented a methodology to monitor the 

performance of a reciprocating chiller including fault detection and diagnosis during the 

time the chiller is off, in start-up, or in steady state operation.  McIntosh (1999) 

developed a fault detection and diagnosis process for chillers and other HVAC 

subsystems using actual data from four identical centrifugal chillers in a single plant.  

Chapter 5 will consider specific aspects of McIntosh’s proposed FDD methodologies and 

the comparative study utilizes data from the same four chillers McIntosh examined. 

3.2. Typical Progression 

In this section, each step in the progression proposed by Isermann is considered. 

This thesis considers Isermann’s process supervision for a centrifugal chiller.  

Consequently, the key steps outlined in this section will include examples of what has 

been proposed or done relating to HVAC applications, specifically to chillers where 

possible. 
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3.2.1. Equipment/Processor Monitoring. 

The supervision process can be applied to equipment like a chiller where faults 

occur and monitoring is desired.  For any FDD methodology utilized in the supervision 

process, two types of information are relevant.  First, any background knowledge about 

the equipment or its internal processes is beneficial.  This may include general 

information like the underlying physics, the type of forcing inputs affecting the operating 

point, or installation specific information such as equipment geometry or details about 

controls or coupled components.  Anything related to the deterministic nature of the 

operation of the equipment could be utilized. 

Second but more importantly, all FDD methods require some amount of data the 

quantifies performance.  These data are essential in determining the capabilities of the 

supervision process or conversely the desired FDD capabilities could dictate the data 

collection.    

3.2.2. Preprocessor/Data Reduction 

The raw data are not necessarily the best information to be passed on to the 

detection and diagnostic components.  Filtering and transformations are two techniques 

utilized within a preprocessor.   The output of a preprocessor can vary dramatically 

depending on the equipment involved and the detection and diagnosis schemes to be 

utilized.  Filters and transformations are described in the next two subsections. 

3.2.2.1. Filters 

Filters are applied to data for several reasons but generally are employed to keep 

the meaningful information contained in the data and to remove or minimize the 
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unimportant aspects of the data.  Another primary goal of employing a filter is to classify 

the data.   The best example of data classification may be to detect and remove non-

steady state data.  The majority of fault detection studies to date have been based on 

steady state operation. 

Given the dynamic nature of weather and building space utilization, HVAC 

systems are often cycled on and off between operating conditions.  Data collected after 

the system has begun transitioning but before completing the transition to the new 

operating condition is considered non-steady-state.  Rossi and Braun (1997) applied FDD 

techniques to all of the data for a specific period of time but “announced” the results only 

if the filter detected steady-state operating conditions.  Stylianou and Nikanpour proposed 

a simple generalized steady-state detector based on temperature rates of change.  The 

output of that detector dictated which of their three FDD modules should be used.   

McIntosh filtered data to consider only steady-state operation and to remove the 

higher frequencies so as to preserve and accentuate the lower frequencies, which were 

deemed more important than the higher frequencies.  After considering several filtering 

and smoothing approaches, McIntosh’s final technique consisted of five-minute sampling 

combined with a 60-minute or 13 point moving average.  A 13 point moving average 

means that the value at time t, xt, is replaced by the average of the values xt-6 through xt+6.  

In other words, the 13 points consists of the current point, the 6 previous points, and the 6 

future points.  

3.2.2.2. Transformations 

In this preprocessor technique, the collected data may be manipulated into 

quantities that are more relevant and sensitive to faults. The transformed outputs of the 
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preprocessor are not necessarily physically significant.  McIntosh wrote a data reduction 

module that utilized chiller thermodynamic relationships similar to those outlined in the 

previous chapter to convert ten measured quantities into eleven quantities that were more 

intuitive in characterizing the performance of the chiller and its individual components.  

For example, equation 2.2 shows that chiller load (i.e. energy transfer across the 

evaporator) can be calculated from the chilled water volumetric flow rate and entering 

and exiting temperatures using the density and thermal capacitance of water.  Equation 

2.1 defines the coefficient of performance (COP) as the cooling load divided by the 

power draw.  COP is a common measure that combines the raw data and that has physical 

meaning, thus making its interpretation more intuitive.  The outputs McIntosh’s 

preprocessor were eleven characteristic quantities: 

1. QEVAP 

2. UAEVAP 

3. APPREVAP 

4. ? TCHW 

5. QCOND 

6. UACOND 

7. APPRCOND 

8. ? TCW 

9. ? ISENTROPIC 

10. ?MOTOR 

11. COP 
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3.2.3. Fault Detection and Fault Diagnosis 

Of the process supervision steps proposed by Isermann, the detection and 

diagnosis stages have received the most attention and have been the focus for a large 

amount of research in the last decade on HVAC systems and components.  Isermann and 

others have distinguished detection and diagnosis from each other.  In separating 

detection and diagnosis, the objective of the detection module is to produce a binary 

output to denote whether or not a fault exists in the monitoring target.  The objective of 

the diagnostic module is to determine the location and nature of the fault.  Rossi and 

Braun (1997) propose a fault isolation strategy where fault diagnosis is achieved by 

performing detection for specific faults in the individual components. 

3.2.3.1. Detection and Diagnostic Techniques 

Regardless of whether or not detection and diagnosis occur sequentially or 

simultaneously, the vast majority of FDD systems are based in comparing actual values 

of performance characterizing quantities to corresponding predicted or expected values 

for the same quantities.  The distinctions exist as to what quantities are compared, how 

the expected quantities are obtained, and what type of comparison is performed. The 

characteristic quantities for the actual operating condition are usually the outputs of the 

preprocessor.  The expected quantities can be representative of correctly operating 

equipment or faulty operating equipment. The difference between the actual quantities 

and the expected quantities are referred to in the literature as innovations, residuals, or 

deviations.  Both the expected quantities and the comparison criteria can be based either 

on collected data or models or a combination of the two. 
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The expected quantities could be from the equipment manufacturer, from 

previous equipment periods that were assumed fault-free, or from other similar 

equipment operating acceptably. This data would presumably have to be sent through the 

same preprocessor as the actual data.  Data could also be used to construct the 

comparison criteria.  Faults could be induced into operating equipment and recorded data 

would document the effects of the faults. 

Models are another way to obtain the expected values of the characteristic 

quantities and the comparison criteria.  Models can be physical or empirical and 

generalized or specific.  Physical models for HVAC systems attempt to represent the 

equipment’s underlying principles of mass and energy balances including heat transfer 

and could do so for both fault free and faulty conditions.  Non-physical models would 

apply empirical techniques to data to quantify the chiller performance using indices that 

are not physically representative.  For either data or model-based techniques, the binning 

of the comparison values is important. Binning allows the grouping of similar operating 

conditions together for determining the expected values. 

McIntosh used data from an entire cooling season for four centrifugal chillers.  He 

examined the data of the chillers from various portions of the season.  One period of data 

from a chiller was accepted as being fault free.  Data early in the cooling season was 

chosen based on the assumption that since the chillers were serviced prior to start up for 

the season, the performance of the chillers would only degrade as the season progressed.  

The acceptable data were put through a preprocessor, which filtered the data and applied 

transformations similar to those in the code in Appendix A.  The inputs and outputs of the 

preprocessor became the baseline data set which were put into a lookup table.  The inputs 
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represented the forcing inputs on the chiller and the outputs represented the 

corresponding expected performance characterizing values.  McIntosh determined that 

the five input variables that were independent of chiller performance were: 

1. Chilled Water Flow Rate 

2. Chilled Water Supply Temperature 

3. Chilled Water Return Temperature 

4. Condenser Water Flow Rate 

5. Condenser Water Supply Temperature. 

McIntosh concluded that the chilled water supply temperature was independent of the 

chiller performance because it was a constant set point that the chiller would operate to 

meet.  McIntosh further reasoned that the evaporator temperature could be used in place 

of both of the chilled water temperatures because the chiller must maintain the evaporator 

temperature in order to provide the necessary heat transfer. This reduced the first the first 

three variables (chilled water flow rate, supply temperature, and return temperature) to 

one (evaporator temperature).  Further, the condenser water flow rate was also 

maintained constant.  Thus only two variables were need to categorize the baseline data 

set.  The lookup table was divided into 16 bins of two levels of evaporator temperature 

and 8 levels of condenser water supply temperature.  The data from the chiller that fell 

into each bin were averaged to a single point.  This provided the fault free data set for use 

in FDD.   

A general regression neural network (GRNN) was used to interpolate within the 

lookup table to determine the expected performance at each operating condition.  Actual 

process supervision was simulated by stepping through collected data not used in the 
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construction of the lookup table.  For each operating point, all of the measured quantities 

were used to calculate the actual values of the characteristic quantities.  The monitored 

quantities that were the significant forcing inputs (evaporator temperature and condenser 

water supply temperature) were input to the GRNN to estimate the expected values of the 

characteristic quantities.  The differences between the expected and actual values of the 

characteristic quantities were calculated.  Statistical techniques were used to show which 

deviations were significant.  The patterns of the deviations were matched to specific 

faults, based on the analysis of a detailed physical model of the monitored chiller. 

Rossi and Braun (1997) utilized a steady state vapor compression model to predict 

thermodynamic states, which were compared to the measured states.  A rule based 

classifier assembled from actual faulty data and from model simulated faults, was used to 

determine the most likely of five faults to have occurred based on the deviations between 

the states. 

3.2.4. Fault Evaluation and Decision 

A fault that is detected and diagnosed can also be assessed to determine its 

effects.  Depending on those effects, a decision can be made regarding how to proceed.  

Breuker and Braun (1998a) considered 12 fault classifications for rooftop air-conditioners 

by rate of occurrence and effects on performance.  Fault evaluation for other systems 

could be done for any HVAC system and programmed in a manner to show the current 

effects of the diagnosed fault to the decision-making entity (human individual or 

programmed component). 
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  Depending on the current or future consequences, there are several possible 

reactions that range from warnings to automatic shut down sequences.  For certain faults, 

the equipment will eventually need to be serviced to remedy the fault.  Rossi and Braun 

(1996) defined four criteria for when service should be performed.  Service is justified 

when it provides for net economic savings (1) on energy and future servicing.  For 

HVAC systems service should be performed whenever occupant comfort (2) can not be 

maintained or personal safety (3) (e.g. of the operator) is threatened.  Finally, when the 

fault is causing harm to the environment (4) the equipment must be serviced.  

3.3. Advancing Process Supervision 

FDD concepts for HVAC systems and specifically chillers are largely in a 

developmental stage, as evident by the nature of the previous research.  Therefore, the 

advancements being made in FDD are to increase and test the capabilities of the 

methodologies, as opposed to a more developed field where progress is defined primarily 

by standardizing and streamlining the methodologies.  To increase the capabilities of any 

FDD system means being able to detect and diagnosis more types of faults, detect and 

diagnosis faults with higher precision and accuracy, and detect and diagnosis faults 

sooner. 

For an FDD system to identify more faults requires a larger knowledge base of 

faults, which comes primarily from models and experimentation.  For equipment as 

complicated and dynamic as chillers, physical and thermodynamic modeling is difficult 

and quickly becomes equipment and even installation specific rather than generally 

applicable.  Experimentation to induce faults in an operating chiller in a controlled and 
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monitored environment also presents challenges.  Chilled water plants are too expensive 

to build simply for experimentation, and the importance of existing installation to the 

buildings they serve makes operators understandably reluctant to yield control of their 

equipment. 

Improving the time response of FDD systems is necessary for eventual on-line 

implementations. The response time of FDD techniques is affected by the data 

acquisition because any system can only detect or diagnose faults that happened at or 

prior to the last measurements.  Then it is an issue of computing resources, in that 

whatever manipulation and analysis to be completed with the data should be done as soon 

after the data is available as possible. 

 To increase the precision or accuracy of FDD systems is essentially a matter of 

sensitivity and statistical significance.  A tempting step is to simply utilize premium and 

redundant instrumentation, but a cornerstone of the FDD movement has been to not 

require such expense.  Applying FDD techniques to existing systems will be considerably 

easier if the current instrumentation of the equipment can be used rather than requiring 

retrofit.  Setting aside increasing the quality of the collected data, improvements in the 

precision or accuracy of FDD systems will require better analysis techniques.  There are 

several additional types of analysis that could be performed, so it remains to be 

determined which are appropriate by considering their benefits and also their costs.  The 

next chapter introduces time series analysis as one possible technique that could 

supplement existing FDD techniques and provide expanded capabilities.
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4. Time Series Analysis 

4.1. Overview 

Most engineers are quite familiar with correlation and regression amongst two or 

more distinct variables by collecting data ((a1, b1), (a2, b2), etc.), plotting them against 

each other and applying a curve fit to estimate how they are related. The idea of using 

statistical techniques to relate quantities is quite old and is utilized when the exact nature 

between the quantities is not known, which is true for most interesting problems. If a 

process or relationship can be completely described it is called deterministic, otherwise it 

is said to be probabilistic.  To contrast the two, the precise time that sunrise or sunset 

occurs at a geographic location can be calculated using astronomical geometry and is 

therefore deterministic, whereas the actual sunlight an area receives during the course of 

a day can be only be estimated within certain limits because of unpredictable cloud cover 

and is therefore probabilistic.  

A time series is a set of observation of a single quantity collected sequentially in 

time (xt, xt+1, xt+2, etc.) and the basis of time series analysis is that the value of a variable 

at the present time, xt, is related to the value of the same variable at a previous time, xt-t.  

If a process or relationship occurs in time and has some random, probabilistic component 

it is said to be stochastic.  A commonly studied example of a stochastic process is a stock 

price. 

The definitive resource for time series analysis is Box, Jenkins, and Reinsel 

(1994).  Chatfield (1989) provides a more abbreviated treatment of the material including 
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four basic objectives: description, explanation, prediction (or forecasting), and control.  

The remaining portion of this chapter will cover the basics of time series. Box, Jenkins, 

and Reinsel developed the essential time series analysis tools presented in this chapter.  

The equations in this chapter are included as functions in several common statistical 

software packages and can presumably be defined by the user in other packages. 

4.2. Differencing 

A prerequisite for time series tools is that the data series be stationary, which 

means that the mean and variance are not changing significantly with time.  For a non-

stationary series, differencing is utilized to transform the data into a new stationary series.  

Equation 4.1 defines a first order difference. 

     ttt xxy −= + 1  (4.1) 

If a first order difference is not sufficient to define a stationary series, an 

additional differencing can be performed resulting in the second order equation 4.2.  

Differencing should be performed until a stationary series is achieved. 

   tttttt xxxyyz +−=−= +++ 121 2  (4.2) 

4.3. Correlation Functions 

A review of the correlation of two quantities will aid in understanding time series 

correlation.  To determine if observations of two separate quantities are correlated, 

consider the example of M boxes each containing some number of apples (a) and some 

number of bananas (b).  The M representative data pairs are (a1, b1), (a2, b2)… (aM, bM).  
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Equation 4.3 defines a cross-correlation coefficient (rcc) using the observation terms (ai 

and bi) and the mean values of each series ( a and b ).  

   
( )( )

( ) ( ) 



 −−

−−
=

∑∑

∑

==

=
M

i
i

M

i
i

M

i
ii

cc

bbaa

bbaa
r

1

2

1

2

1  (4.3) 

Other works may refer to this simply as a correlation coefficient but the “cross” is 

necessary here to distinguish it from the time series correlation coefficient to be defined 

later in this section. The cross correlation coefficient can be either positive or negative. 

The larger the magnitude of the cross correlation coefficient the more likely the two 

quantities are dependent on each other.  For the fruit box example, a large rcc means that 

if the number of apples, a, in a given box is known a good estimate of the number of 

bananas, b, in the same box can be made, possibly using some curve fit of the data.  

Alternatively, if the value of b is known, the value of a could be estimated.  A small rcc 

means that knowing one quantity does not help in estimating the other.  The sign of the 

cross correlation coefficient is also significant as it corresponds to the type of relationship 

between the quantities.  In the fruit box example, a positive rcc means that observing a 

large number of apples, a, for a given box will suggest a large number of bananas in the 

box.  A negative rcc would mean that for a large number of apples in a box, a small 

number of bananas in the box would be expected. 

Now considering time series correlations, for a series of N observations in time of 

a single quantity (xt, xt+1, xt+2, etc.) a similar approach can be used by constructing N-1 

data pairs, (x1, x2), (x2, x3)… (xN-1, xN).  This data pairing technique is generally coupled 
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with the assumption that for a large N the average of all the terms in the series (x1 to xN) 

is a good approximation for both the average of the first terms in the pairings (x1 to xN-1) 

and the average of the second terms in the pairings (x2 to xN). 

Equation 4.4 incorporates these ideas to define the autocorrelation coefficient (rac) 

for a series of N observations. 
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In time correlation, the concept of lag is important.  In the preceding definition of 

the autocorrelation coefficient, a series of observations were compared to the series of 

observations occurring just prior, a case referred to as a lag of a 1.  The autocorrelation 

coefficient can be calculated for any lag value (k) less than the number of observations. 

Equation 4.4 can be rewritten to define the autocorrelation function (rk) as shown in 

equation 4.5.   

   
( )( )

( )∑

∑

=

−

=
+

−−

−−
= N

t
t

kN

t
ktt

k

xx
N

kN

xxxx
r

1

2

1

)(
  (4.5) 

For large numbers of observations (N) and small lags (k), the fraction (N-k)/N 

approaches unity and can be approximated as such. As a means of determining the 

appropriateness of continuing with time series analysis, the autocorrelation function for 

several lag values are calculated and plotted against the lag. This type of plot is called a 

correlogram and consistent with the previous section it is only significant for a stationary 

time series.   
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Every calculation of rk uses all of the observations, but statistically calculations 

using the smaller lag values are more meaningful because they utilize the data better.  For 

a lag of 1, N-1 pairs ((x1, x2), (x2, x3)…  (xN-k-1, xN-1),(xN-k, xN)) were constructed but two 

observations, x1 and xN, are each only included in one pair while the other N-2 

observations are each included in two pairs. Generalizing for all lags, only N-k pairs can 

ever be assembled and k+1 observations are each included in only one pair while the 

remaining N-(k+1) observations are each included in two pairs.  This variable 

significance of rk  makes the interpreting the correlogram difficult but Chatfield 

ascertains that “if a time series is random, 19 out of 20 of the values of rk can be expected 

to lie between ±2/vN.”  Chatfield’s statement can be reversed to state that if more than 1 

of 20 rk values is outside of ±2/vN, the series is not random in time.  The number and 

location of the significant rk values can provide some insight to the experienced time 

series statistician as to the nature of the model that should be fit to the data. 

4.4. Time Series Modeling 

Standard correlation and regression techniques can lead to a model of a quantity 

based on other quantities.  For the fruit box example, perhaps the number of bananas can 

be approximated as five times the number of apples.  Mathematically this can be 

expressed as bi = 5ai + ei with ei representing some random error.  Similarly, a time series 

analysis can lead to model for an observation in time based on prior observations of the 

same quantity.  Model construction can begin on a stationary data series, xt, when the 

correlogram suggests it. The determination of model parameters is outside the scope of 
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this work, but Box et al, Chatfield, and several statistical software packages contain 

algorithms to estimate the values for the model parameters. 

To begin modeling, a difference term between time points can be defined as 

shown in equation 4.6.  This difference term is assumed to have a mean of zero and a 

variance that does not vary with time. 

 1−−= ttt xxz    and  211 −−− −= ttt xxz  (4.6) 

A time series model using q difference terms each multiplied by a constant coefficient is 

referred to as moving average, or MA(q), process and described by equation 4.7. 

 qtqttt zzzx −− +++= βββ ...110  (4.7) 

If a process can be described using some number (p) of previous observations, 

than a pth order auto regressive, or AR(p), model is appropriate.  The general form of the 

AR (p) model is shown in equation 4.8. 

 tptpttt zxxxx ++++= −−− ααα ...2211  (4.8)  

Using successive substitutions, equation 4.8 becomes 4.9, which is also the representation 

for an infinite order moving average process.  

 ...2
2

1 +++= −− tttt zzzx αα  (4.9) 

A process may not be exclusively autoregressive or moving average, and the two 

relationships can be combined into a mixed model, ARMA (p,q), as shown in equation 

4.10. 

 qtqtttptpttt zzzzxxxx −−−−−− ++++++++= βββααα ...... 22112211  (4.10) 



  29   

  

For the case of applying an ARMA model to a non-stationary time series that must be 

differenced, the notation can be written compactly to define an autoregressive integrated 

moving average process, ARIMA (p,d,q).
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5. Case Study 

This chapter describes a chiller installation and details about the data that were 

collected.  Simple statistical quantities were calculated for a portion of the collected data.  

Then existing FDD methodologies and finally time series techniques were applied to the 

same portion of the collected data.  The results were compared and evaluated to 

determine the appropriateness and capabilities of time series analysis.  Reiterating from 

the first chapter, the goal of this thesis is the improvement of fault detection and 

diagnosis methodologies.  The data are presented as means of achieving that goal and are 

not presented as a means of optimizing the performance of this equipment installation. 

5.1. Data Source and Composition 

The data used in this case study was collected at a privately owned and operated 

industrial facility during the 1998 cooling season.  The chilled water plant at the site has 

four centrifugal chillers (CC 1-4), four absorption chillers (AC 5-8), two water to water 

heat exchangers (HX 1-2), a ten cell cooling tower, seven primary chilled water pumps, 

and four condenser water pumps.  A simplified schematic is provided in Figure 5-1. 

The four absorption chillers are steam-fired units each rated at 1500 tons of 

cooling.  The heat exchangers are used in an economizer cycle between the chilled water 

returned from the building and the condenser water returned from the cooling towers.  If 

the chilled water leaving the heat exchanger is cool enough it is directed to the chilled 

water supply line, otherwise it is directed to a centrifugal chiller.  When the water leaves 
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Figure 5-1: Plant Schematic 



  32   

  

the heat exchanger and progresses to a chiller, then the heat exchanger is pre-cooling the 

water to reduce the load the chiller must meet.  Both heat exchangers are connected to 

specific chillers, heat exchanger 1 to centrifugal chiller 1, and heat exchanger 2 to 

centrifugal chiller 3.  Operating data were not collected for the absorption chillers, the 

heat exchangers or the pumps. 

The four centrifugal chillers (referred to simply as 1-4 for the remainder of this 

thesis) are the same model (2000 ton R-22 units) and were installed at the same time.  For 

each of the centrifugal chillers, the same ten variables were monitored. The following 

table denotes the variables (notation consistent with chapter 2), an abbreviated code, and 

units.   

Table 5-1: Chiller Monitored Parameters 
Parameter Code Units 

Chilled Water Volumetric Flow Rate GPMCHW gpm 

Condenser Water Volumetric Flow Rate GPMCW gpm 

Chilled Water Supply Temperature TCHWS °F 

Chilled Water Return Temperature TCHWR °F 

Condenser Water Supply Temperature TCWS °F 

Condenser Water Return Temperature TCWR °F 

Evaporator Saturation Temperature TEVAP °F 

Condenser Saturation Temperature TCOND °F 

Compressor Discharge Temperature T2 °F 

Electrical Power Draw P kW 

 

Some portions of the data were collected on five minute intervals in a non-

simultaneous staggered manner as shown in Table 5-2 using a portion of the data from 

chiller four on June 1st.   
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Table 5-2: Staggered Data Set 

Time GPMCHW TCHWR TCHWS T2 Power TEVAP 

12:00:22 AM 4944.5 49.07   709.1  

12:01:22 AM    129.2   

12:02:22 AM      42.71 

12:04:22 AM   47.05    

12:05:22 AM 4921.2 49.07   710.9  

12:06:22 AM    128.7   

12:07:22 AM      42.71 

12:09:22 AM   46.73    

12:10:22 AM 4874.4 49.07   710.5  

 

Other portions of the data were collected in a more conventional method of 

logging each channel every minute as shown in Table 5-3 using a portion of data from 

chiller three on June 28th. 

Table 5-3: Normal Data Set 

Time GPMCHW TCHWR TCHWS T2 Power TEVAP 

10:38:21 AM 4946.7 49.60 45.14 130.90 729.7 40.99 

10:39:21 AM 3884.1 49.97 45.14 131.40 755.5 42.40 

10:40:21 AM 3106.4 49.60 45.77 131.40 763.4 43.10 

10:41:21 AM 3372.0 49.97 47.05 132.00 770.8 43.81 

10:42:21 AM 4496.2 49.60 48.00 132.00 713.5 44.51 

10:43:21 AM 5628.8 49.26 48.00 132.00 717.0 44.51 

5.2. Data Segment 

For comparison of existing methodologies and time series techniques, a suitable set of 

data was chosen.  Variations in the chilled water flow rate through chiller one during June 
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28th to 30th were intriguing and consequently that set of operating data was chosen for 

analysis.  The chilled water flow rate over this period is plotted in Figure 5-2.  
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Figure 5-2: Chilled Water Flow Rate for Chiller 1 in June 

The flow rate has four evident transitions that motivated dividing the data set into 

five segments, labeled A-E.  Segment A starts when the chiller was brought on-line 

shortly before 12:00 on the 28th.  The chilled water flow rate varied between 3000 and 

6000 gpm for 5 hours after start up.  The mean and variance of the flow rate changes at 

about 15:00 and the second section, segment B, has a higher mean and a smaller variance 

and extents until about 7:00 on the 29th when the flow rate dips significantly. Segment C 

continued until 17:30 on the 29th when the chilled water flow rate appears to settle to a 

more constant value.  The duration of the nearly constant flow, segment D, lasted until 

10:00 on the 30th, when the flow dropped.  Segment E, the fifth and final section, consists 
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of the dropping chilled water flow rate as chiller one approached shutoff at 12:00 on the 

30th.  

The transition between segments B and C was attributed to the start up of chiller 

two and was the only change of behavior that could be explained.  Chiller 2 remained on 

through segments C through E.  The causes of the other transitions in the chilled water 

flow rate through chiller 1 were unknown.  Chillers three and four were both off during 

the entire time considered and no data were collected for the absorption chillers, heat 

exchangers, or pumps. 

All ten monitored quantities listed in Table 5-1 were collected in one minute 

intervals for chiller one between the 28th and 30th of June, but only the four evaporator 

side quantities will be examined in depth here.  Specifically, these four quantities and 

their short hand codes are: the previously plotted chilled water flow rate (CHWGPM), the 

chilled water supply (TCHWS) and return (TCHWR) temperatures, and the refrigerant 

temperature in the evaporator (TEVAP).  The three temperatures are plotted in Figure 5-

3. 



  36   

  

20

25

30

35

40

45

50

55

60

6/28/98 0:00 6/28/98 12:00 6/29/98 0:00 6/29/98 12:00 6/30/98 0:00 6/30/98 12:00 7/1/98 0:00

Time

E
va

po
ra

to
r 

S
id

e 
Te

m
pe

ra
tu

re
s 

(F
)

C1-TCHWR
C1-TCHWS
C1-TEVAP
Segment ID

A
B

C
D E

 
Figure 5-3: Evaporator Side Temperatures for Chiller 1 in June 
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Figure 5-4: Power Draw for Chiller 1 in June 
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While the electrical power draw is not one of the four quantities being examined 

in depth, Figure 5-4 provides insight into the overall operating condition of chiller 1 

during the specified period.  The power draw is directly related to the cooling load met by 

the chiller.  The daily afternoon peaks correspond to presumed peak cooling loads.  There 

is also the expected drop in power when chiller 2 was started and began to meet a portion 

of the load, reducing the amount of the load that chiller 1 had to meet. 

Table 5-4 contains the values of the mean (µ) and standard deviation (s ) for the 

four monitored quantities during the five segments. 

Table 5-4: Statistics of Unfiltered Data for Chiller 1 in June by Segment 

 GPMCHW 
(GPM) 

TCHWR          
(F) 

TCHWS 
(F) 

TEVAP 
 (F) 

ID - Pts. µ s  µ s  µ s  µ s  

A – 263 4510.1 966.2 50.48 0.59 45.72 1.50 40.78 1.96 

B – 972 4898.4 434.0 50.03 0.74 45.50 1.04 40.05 2.75 

C – 606 4658.6 413.8 50.80 0.61 45.09 0.97 38.70 2.45 

D – 1012 4613.8 43.5 50.98 0.70 44.98 0.64 38.62 1.90 

E – 108 3967.6 450.9 52.84 0.61 45.07 1.21 38.17 2.98 
 

The standard deviation of the chilled water flow rate segment A is over 950 gpm 

and while for segments of B, C and E, the standard deviation values all exceed 400 gpm.  

Segment D was essentially constant value flow rate and accordingly it has the smallest 

standard deviation. 
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5.3. Analysis Utilizing Existing Methodologies 

This section will apply some of the currently prevalent ideas for analysis to the 

data introduced in the preceding section.  McIntosh examined an earlier portion of data 

from chiller 2, where the data were staggered five-minute samples similar to the data 

shown in Table 5-2.  McIntosh decided upon a filtering technique consisting of a 60-

minute moving average, which utilized 13 data points.  For a 61 point moving average 

calculation, to calculate the smoothed value at a given time requires the actual value at 

that time, the 30 points prior and the 30 points after the time.  For the data from chiller 1 

during June 28th to the 30th 1-minute samples were collected.  Consequently, for this 

thesis a 61 point moving average filter was applied thereby preserving McIntosh’s 60 

minute time length averaging window.  Figure 5-5 contains the plot of the filtered chilled 

water flow rate through chiller 1. 
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Figure 5-5: Filtered Chilled Water Flow Rate for Chiller 1 in June 

The chilled water flow rate variations evident in Figure 5-2 are not evident in the 

filter results plotted in Figure 5-5.  The transition between the segments become more 

pronounced and an additional, fifth, transition appears in the middle of the C segment 

where the flow rate rises about 300 gpm. 
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Figure 5-6: Filtered Evaporator Side Temperatures for Chiller 1 in June 

The difference between temperature plots, Figures 5-6 and 5-3, is more subtle 

than the chilled water flow rate plots, but the filter has removed the short term variations 

of the temperature but preserved the larger scale transitions.  

From the results of the moving average filtered data, the mean and standard 

deviations of each of the four quantities were calculated.  Consequently filtered values 

are not available for the first and last 30 points in each series.  Notice that for each 

segment or string of segments in Table 5-5, the number of points is 60 less than the 

corresponding value in Table 5-4 because for 30 values at both ends of each segment a 

filtered value cannot be calculated. 
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Table 5-5: Statistics of 60 Min MA Filtered Data for Chiller 1 in June by Segment 

 GPMCHW 
(GPM) 

TCHWR          
(F) 

TCHWS 
 (F) 

TEVAP 
 (F) 

ID - Pts. µ s  µ s  µ s  µ s  

A – 203 4500.0 14.3 50.47 0.46 45.67 0.17 40.68 0.76 

B – 912 4899.0 11.2 49.98 0.68 45.55 0.85 40.22 2.58 

C – 546 4676.0 144.5 50.77 0.47 45.05 0.73 38.62 2.28 

D – 952 4615.4 12.4 50.87 0.50 44.98 0.58 38.73 1.82 

E – 48 3945.0 195.8 52.81 0.29 44.49 0.24 37.05 0.97 
 

For the chilled water flow rate, the mean values of the filtered data for segments 

A, B, and D are quite similar to the corresponding mean values of the unfiltered data.  

The plots of the unfiltered and filtered data for segments C and E both showed changes in 

the mean over the whole segment.  Consequently, the points trimmed off the front and 

back of each segment caused the discrepancy between the mean values of the filtered and 

unfiltered data for segments C and E.  The small values of the standard deviations of all 

four quantities in Table 5-5 confirms the conclusion from Figure 5-5, that the moving 

average filters removed the short time scale variations.  

5.4. Analysis Including Time Series Methodologies 

The motivation for the time series analysis performed in this thesis resulted from 

examining the data at an expanded time scale.  There is an obvious regular time 

dependency of the data. Figure 5-7 shows this in the unfiltered data during the transition 

between segments A and B.  
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Figure 5-7: Transition Between Segments A and B on June 28th 

The lines connecting the data points make the time variations evident.   During 

the last hour of segment A, the chilled water flow rate varied approximately sinusoidally 

with a mean of 4500 gpm, a mean to peak amplitude of 1300 gpm, and a period of about 

8 minutes.  At the start of segment B, the period was similar but the mean rose and the 

amplitude of the fluctuation decreased.  The chilled water flow rate during the transitions 

between segments B and C, segments C and D, and segments D and E are plotted in 

Figures 5-8, 5-9, and 5-10 respectively. 
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Figure 5-8: Transition Between Segments B and C on June 29th 
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Figure 5-9: Transition Between Segments C and D on June 29th 
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Figure 5-10: Transition Between Segments D and E on June 30th 

The autocorrelation function (rk) defined in Equation 4.5 was introduced as a 

means of determining the appropriateness of proceeding with time series analysis.  

Values of rk for the chilled water flow rate during June 28th-30th were calculated for lags 

up to 100 and are shown in correlogram form in Figure 5-11.    
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Figure 5-11: Autocorrelation Function of Chilled Water Flow Rate  

The dashed horizontal lines correspond to Chatfield’s estimation of confidence 

intervals for determining significance.  It is noteworthy that while the values of rk  

decrease for larger lags, the lag at every lag step up to 100 remains significant using 

Chatfield’s criteria, meaning that even the value of the chilled water flow rate 100 

minutes ago can provide a reasonably good estimate of the current value.  The periodic 

nature of the chilled water flow rate appears in the correlogram.     

The chilled water flow rate is one of the forcing inputs on a chiller.  The time 

variant nature is also evident in other measured quantities of the chiller, especially on the 

evaporator side.  Figure 5-12 shows the correlograms for the three evaporator side 

temperatures: evaporator refrigerant temperature and chilled water supply and return 

temperatures. 
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Figure 5-12: Autocorrelation Function of the 3 Evaporator Side Temperatures 

The chilled water supply temperature and evaporator temperature are both 

strongly autocorrelated and periodic in nature, reflecting the effects of the time variant 

chilled water flow rate.  The chilled water return temperature, which is returning from the 

building loop shows a strong autocorrelation but is not periodic in nature.  The chilled 

water return temperature is not directly affected by performance of the chiller or the 

chilled water mass flow rate, rather it is one of the forcing inputs directly affecting the 

operation of the of the chiller.  

The correlograms in Figures 5-11 and 5-12 motivated fitting an ARIMA model to 

the chilled water flow rate. The end purpose was to incorporate time series analysis 

techniques into on-line chiller fault detection and diagnosis.  The question arose as to 

how to specifically apply an ARIMA model to the data.  A “sliding ARIMA approach” 
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was developed as a macro in a commercial software package and is included as Appendix 

B. 

The sliding window ARIMA approach fits an ARIMA model of specified form to 

a string of data points of a particular length and then steps through fitting a new model 

for overlapping windows of data.  This technique requires the values of p, d, and q of the 

ARIMA model to be determined by the user.  The values of p, d, and q, are held constant 

throughout the macro but the values of the autoregressive (a) and moving average (ß) 

coefficients are calculated for each window of data.  For this work, a window length of 

60 points was chosen consistent with Chatfield’s suggestion of a minimum of 50 points 

and also to correspond to McIntosh’s moving average filter length. 

A walk through of one loop of the macro code helps clarify the procedure.  If an 

ARIMA(1,1,1) was chosen for application to a string of points, the macro begins by 

reading in points 1 – 60 in the series, the first window.  The mean of the window is 

calculated and subtracted from each data point. The ARIMA command in the software 

package takes the difference between two data points and estimates the two coefficients 

(one autoregressive and one moving average).  These coefficients allow forecasting of the 

next value (point 61) and the 95% upper and lower confidence intervals of the forecast.  

The values of the confidence intervals are calculated based on the distribution of the 

random residual component.  The values of the coefficients, the forecast, and the forecast 

limits are all output (starting with point 61 not point 1).  The code then loops to read in a 

new window consisting of points 2-61 and the process repeats through the entire string of 

data. 
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The sliding ARIMA approach only considers one ARIMA model for one quantity 

series.  The macro must be rerun for each combination of model and quantity to be fitted.  

Several ARIMA models were applied with the sliding window approach to the chilled 

water flow rate through chiller 1.  An ARIMA (3,0,0) model was found to adequately fit 

the chilled water flow rate based on visual inspection and the sum of the squares of the 

residuals.  The generalized form of an ARIMA (3,0,0) model is shown in Equation 5.1. 

 ttttt zxxxx +++= −−− 332211 ααα  (5.1) 

The actual data point, its forecasted value, and the confidence intervals from the 

ARIMA (3,0,0) results are plotted in Figures 5-13, 5-14, 5-15, and 5-16 for the same 

periods of data plotted in Figures 5-7, 5-8, 5-9, and 5-10.  The  coefficients calculated by 

the sliding window macro for the ARIMA(3,0,0) model of the chilled water flow rate are 

plotted in Appendix C.  The macro code also sets a binary alarm value to unity if the 

actual value of the next point is outside of the forecast confidence intervals.  This alarm is 

plotted on the right axis of all four plots. 
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Figure 5-13: ARIMA (3,0,0) Transition Between Segments A and B on June 28th 
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Figure 5-14: ARIMA (3,0,0) Transition Between Segments B and C on June 29th 
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Figure 5-15: ARIMA (3,0,0) Transition Between Segments C and D on June 29th 
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Figure 5-16: ARIMA (3,0,0) Transition Between Segments D and E on June 30th 
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For each of the four plots of the ARIMA(3,0,0) results, the number of alarm 

occurrences was high during the transition from one segment to another, indicating that 

the sliding window ARIMA identified the transitions as changes in the behavior of the 

chilled water flow rate.  Considering the plots together shows the sliding ARIMA model 

was able to adapt to the new pattern of behavior after the transition. Figure 5-15 in 

particular shows the model predictions are periodic like the data during segment C, but as 

the window passed over the transition region the predicted values showed less and less 

periodic variability better matching the data of segment D. 

The ARIMA (3,0,0) model form was selected from several models fitted to the 

chilled water flow rate and since the chilled water flow rate is strongly influencing two of 

the three temperatures (chilled water supply and evaporator refrigerant), intuition 

suggests that the ARIMA (3,0,0) model is a good first guess.  Consequently, an 

ARIMA(3,0,0) model was fitted to all three temperatures.  It is not necessarily the most 

suitable model for any of the three evaporator side temperatures and no other models 

were fitted to the temperature quantities. 

 As with the original data and filtered data, the statistics for the ARIMA (3,0,0) 

model results were calculated and are presented in Table 5-5.  The standard deviations  

were calculated using the residuals between the actual values and the ARIMA model 

values. 
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Table 5-6: Statistics of ARIMA (3,0,0) Results for Chiller 1 in June by Segments 

 GPMCHW 
(GPM) 

TCHWR          
(F) 

TCHWS 
 (F) 

TEVAP 
 (F) 

ID - Pts. µ s  µ s  µ s  µ s  

A – 203 4495.8 128.8 50.63 2.19 45.65 1.43 40.52 1.29 

B - 912 4899.0 106.5 49.97 3.30 45.57 1.86 40.26 0.55 

C – 546 4679.2 108.7 50.83 2.58 45.01 1.51 38.37 0.51 

D – 952 4616.8 39.9 50.89 2.33 45.01 1.34 38.74 0.20 

E – 48 3619.9 145.8 52.29 3.90 45.17 2.39 39.89 0.61 
 

The standard deviations of the chilled water flow rate for segments A, B, and C were all 

between 100 and 150 gpm, while the values in segments D and E, were about 40 and 150 

respectively.  The standard deviations of the chilled water return temperature for all 

segments exceeded 2 degrees F. 

5.5. Discussion of Results 

The standard deviation and mean values in Tables 5-4, 5-5, 5-6 representing the 

original collected data, the 61 point moving average filtered data, and the ARIMA 

modeled data respectively, collectively quantify the comparison of the analysis 

techniques.  For ease of comparison, the standard deviation and mean values for the 

collected, filtered, and ARIMA fitted data are presented by variable in Tables 5-7 

(GPMCHW), 5-8 (TCHWR), 5-9 (TCHWS), and 5-10 (TEVAP). 
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Table 5-7: GPMCHW Statistics for Chiller 1 in June by Technique and Segments 

 Mean (GPM) Standard Deviation (GPM) 

ID Collected Filtered ARIMA Collected Filtered ARIMA 

A 4510.1 4500.0 4495.8 966.2 14.3 128.8 

B 4898.4 4899.0 4899.0 434.0 11.2 106.5 

C 4658.6 4676.0 4679.2 413.8 144.5 108.7 

D 4613.8 4615.4 4616.8 43.5 12.4 39.9 

E  3967.6 3945.0 3619.9 450.9 195.8 145.8 
 

For each of the first four segments of the chilled water flow rate, the mean values 

that were calculated by the three different techniques are similar, as expected and as 

desired.  In the E segment, the mean of the ARIMA fitted values is significantly lower 

than the other two.  As discussed in chapter 4, the time series techniques are only valid 

for stationary data series.  Because the chilled water flow rate drops throughout segment 

E, it cannot be considered stationary. In plotting the filtered value chilled water flow in 

Figure 5-5, segment C was observed to also have an overall trend and therefore also not 

stationary.  There is no differencing in the ARIMA(3,0,0) model to account for the 

original data not being stationary, consequently while this ARIMA model form 

adequately fits the data for segments A, B, and D, it is not suitable for segments C or E.  

Examining the standard deviation values of the chilled water flow rate in 

segments A, B, and D, the collected data had the largest standard deviation values and the 

filtered data had the smallest.  The 61 minute moving average filter has removed all of 

the short time scale variations, namely the 8 minute periodic oscillation and as a result, 

the values of standard deviation of the filtered data are quite small. There is an actual 

physical randomness to the chilled water flow rate, but because the moving average filter 
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fails to capture the obvious time variant behavior of the data, the calculated standard 

deviation are not reasonable estimates of the actual randomness. 

In Figures 5-13 through 5-16, an ARIMA (3,0,0) model was shown to quantify 

the time variant nature of the data and the resulting standard deviation values are then 

presumably better estimates than those from the collected or filtered data.  This is 

confirmed by the standard deviation values from the ARIMA model being smaller than 

those values from the collected data.  The ARIMA model (3,0,0) provides the best 

estimate of the randomness in the chilled water flow rate of these three techniques. 

Table 5-8: TCHWR Statistics for Chiller 1 in June by Technique and Segments 

 Mean (F) Standard Deviation (F) 

ID Collected Filtered ARIMA Collected Filtered ARIMA 

A 50.48 50.47 50.63 0.59 0.46 2.19 

B 50.03 49.98 49.97 0.74 0.68 3.30 

C 50.80 50.77 50.83 0.61 0.47 2.58 

D 50.98 50.87 50.89 0.70 0.50 2.33 

E  52.84 52.81 52.29 0.61 0.29 3.90 
 

In addition to the chilled water flow rate, the chilled water return temperature is a 

forcing input to the chiller rather than a performance dependent quantity because it is the 

water coming back from the building entering the chiller.  The correlogram of the chilled 

water return temperature in Figure 5-11 did not exhibit a periodic nature like the chilled 

water flow rate or other two evaporator side temperatures did.  Since the ARIMA (3,0,0) 

was selected on the basis of fitting the chilled water flow rate, there is no reason to 

believe it will adequately fit the chilled water return temperature.  While the mean values 

of  the segments based on the results of the ARIMA (3,0,0) model are similar to those of 
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the collected data and the moving average filtered data, the standard deviations from the 

ARIMA model fit are actually larger than those of the collected data.  The ARIMA 

(3,0,0) model is not appropriate for the chilled water return temperature data.  The 

correlogram suggests that a different time series might yield better results but no other 

models were fitted as part of this thesis.   

Table 5-9: TCHWS Statistics for Chiller 1 in June by Technique and Segments 

 Mean (F) Standard Deviation (F) 

ID Collected Filtered ARIMA Collected Filtered ARIMA 

A 45.72 45.67 45.65 1.50 0.17 1.43 

B 45.50 45.55 45.57 1.04 0.85 1.86 

C 45.09 45.05 45.01 0.97 0.73 1.51 

D 44.98 44.98 45.01 0.64 0.58 1.34 

E  45.07 44.49 45.17 1.21 0.24 2.39 
 

The chilled water supply temperature is a function of the chiller performance and 

therefore a function of at least some of the chiller forcing inputs including the chilled 

water flow rate.  The correlogram of the chilled water supply temperature in Figure 5-11 

showed a periodic nature similar to that of the chilled water flow rate suggesting that the 

ARIMA (3,0,0) model might be a suitable time series model.  However, after a 

comparison of the standard deviation values in the Table 5-9, it can be concluded that the 

ARIMA model is inadequate. 
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Table 5-10: TEVAP Statistics for Chiller 1 in June by Technique and Segments 

 Mean (F) Standard Deviation (F) 

ID Collected Filtered ARIMA Collected Filtered ARIMA 

A 40.78 40.68 40.52 1.96 0.76 1.29 

B 40.05 40.22 40.26 2.75 2.58 0.55 

C 38.70 38.62 38.37 2.45 2.28 0.51 

D 38.62 38.73 38.74 1.90 1.82 0.20 

E  38.17 37.05 39.89 2.98 0.97 0.61 
 

Similar to the chilled water supply temperature, the temperature of the refrigerant 

in the evaporator is a function of the chilled water flow rate and had a period correlogram 

in Figure 5-11. The standard deviations calculated from fitting the evaporator refrigerant 

temperature with an ARIMA (3,0,0) model presented in Table 5-10 show that the time 

series model was also able to quantify the time variance and better estimate the random 

component. The values of the standard deviations from the moving average filtered data 

are actually larger than those of the ARIMA (3,0,0) model for four of the five segments. 

For two of the four evaporator side quantities examined, namely the chilled water 

flow rate and the refrigerant temperature in the evaporator, the ARIMA (3,0,0) time 

series model was able to better quantify the time variance of the data and thereby 

accurately estimate the standard deviation.  It should be noted that while this model 

performed well for this data, the calculated standard deviation values are still only 

estimates. However, the time series standard deviation estimates are better than the 61 

point moving filter results which were small and appealing but actually false as the 

moving average filter hid the time variation.   
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6. Conclusions and Recommendations 

6.1. Conclusions 

The chilled water flow rate had a strong  periodic time dependency.  Since the 

chilled water flow rate is one of the primary driving inputs to a chiller, other dependent 

chiller quantities are affected as noted by the chilled water supply temperature and the 

refrigerant temperature in the evaporator.  Both the initial analysis of simply computing 

statistical quantities and a second approach of hourly averaging both overlooked the 

periodic variation.  Only close examination of the chilled water flow rate at an expanded 

time scale revealed the periodic nature. 

Time series analysis enabled the variance to be accurately quantified which 

reduced the estimates of the residual random component of the measured quantities.  The 

representative error bars on calculated characteristic quantities such as the evaporator 

conductance area product (UAEVAP) are based on the standard deviation estimates of the 

measured quantities that are used in the calculation.  Consequently, reducing the standard 

deviation estimates shrinks the error bars, which yields higher accuracy and increased the 

sensitivity to detect changes in the values of the characteristic quantities.  The data 

collected for the evaporator side quantities at 14:34 on June 28th (Segment A) serves as 

an example. The four measured quantities each are presented with their standard 

deviation from both the collected data and the ARIMA(3,0,0) model used as estimates of 

the measurement uncertainty.  The chilled water flow rate standard deviation values are 

from Table 5-7, but since the time series models were not optimized for the temperature 
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quantities, a uniform standard deviation of a half of a degree Fahrenheit was assumed for 

both cases and all three temperature quantities.  Using the evaporator relationships in 

section 2.2.1 of this thesis, the value of UAEVAP and the corresponding uncertainty can 

be calculated. 

Table 6-1: Uncertainty Analysis of UAEVAP for a Data Point in Segment A 

 GPMCHW 
(GPM) 

TCHWR          
(F) 

TCHWS 
(F) 

TEVAP 
(F) 

UAEVAP 
(MMBtu/hr-F) 

Collected Data 4590±966 51.01±0.5 42.91±0.5 37.45±0.5 2.10±0.51 

ARIMA (3,0,0) 4590±128 51.01±0.5 42.91±0.5 37.45±0.5 2.10±0.27 

 

The uncertainty of the evaporator conductance area product has been almost 

reduced in half by utilizing the ARIMA (3,0,0) estimates of the standard deviation of the 

chilled water flow rate.  If detecting a change in the conductance area product was the 

goal, the time series results allow a 13% change to be identified as significant where only 

change greater than 24% could be consider significantly different using only the collected 

data.  Fitting adequate time series models to each of the evaporator temperatures would 

provide still better accuracy in the evaluation of the conductance area product, which is 

only one of eleven typical characteristic quantities used for fault detection and diagnosis 

of chiller performance.  The uncertainty of all of the characteristic quantities could be 

reduced by applying time series model to all of the measured quantities that were time 

correlated. 

The collected data also included changes in the nature of the time behavior.  This 

sliding window ARIMA provided two important benefits relating to those transitions.  
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Plotting the chilled water flow rate versus time at the correct scaling made the changes 

obvious to the human eye, but time series analysis was able to computationally detect 

those changes as evident by the binary alarm.  The alarm could potentially detect more 

subtle changes that are not evident to the human eyes, such as the transition in the middle 

of segment C.  These transitions may have known or unknown causes that could possibly 

include faults. 

One alternative to the sliding window approach could be a growing window 

approach where all of the data after a specified point are utilized to attempt to fit a model.  

The window “grows” because for each subsequent point the number of points used to fit 

the model increases by one.  A growing window ARIMA approach might be able to 

detect the first behaviorally transition but not subsequent transitions.  The sensitivity of 

the detection would also be compromised after the each transition, because a single 

model being built around data from one or more past regions and the current region is 

being asked to quantify the behavior of the current region.  An additional important 

benefit of the sliding window approach was the ability to adapt to the change in behavior.  

When the time behavior changed, whether a result of an intentional control action or 

some unknown but acceptable occurrence, the sliding window ARIMA adapted to the 

new behavioral nature.  A time lag is required until the sliding window no longer includes 

data prior to the transition but after that time period the ARIMA model is again capable 

of detecting changes in the time behavior.  
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6.2. Recommendations 

The techniques presented in this thesis have the ability to improve chiller fault 

detection and diagnosis, but there are numerous optimization questions that remain 

regarding the full inclusion of time series analysis.  The size of the window used in the 

sliding window approach should be studied further.  The 60 minute window was used in 

this thesis for comparison to McIntosh’s 60 minute moving average, but a more 

appropriate length may exist. 

Statistical techniques including time series generally work better for more data 

making a larger window advantageous.  However, given the four transitions that occurred 

in chiller 1 during the examined three days in June, additional transitions are probably 

quite prevalent.  A future algorithm could combine the sliding and growing window 

approaches to improve statistical significance yet remain adaptable to new behavior 

patterns then the sliding window. 

The sliding window ARIMA approach using one ARIMA model type was applied 

only on the evaporator side of the chiller and the suitable ARIMA (3,0,0) model was 

found for the chilled water flow rates.  The most suitable model should be found for the 

three evaporator temperatures and the other monitored quantities of the chiller or even 

other coupled HVAC components such as the cooling towers or air handling units.  The 

possibility of changing model types dynamically could be considered.  Such a technique 

might be built upon calculation of the autocorrelation function and some amount of 

differencing and inputting  those results to an algorithm that would identify the suitable 

model and then calculate the necessary coefficients. 
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Appendix A – EES Data Reduction Code 

Refrigerant$ =  'R22' "Refrigerant used"  
DELTAT_superheat=0.01 
DELTAT_subcool=0.01 
T2_meas=T[2] 
  
"!State 1 is entering the compressor" 
T[1]  = T_EVAP + DELTAT_superheat "[F]" 
P[1]  = PRESSURE(Refrigerant$,T=T_EVAP,x=1)"[psia]" 
h[1]  = ENTHALPY(Refrigerant$,T=T[1],P=P[1])"[Btu/lbm]"  
s[1]   = ENTROPY(Refrigerant$,T=T[1],P=P[1])"[Btu/lbm-R]" 
P[1]  =  P_evap 
v[1]  = VOLUME(Refrigerant$,T=T[1],P=P[1])"[ft^3/lbm]" 
 
"!State 2 is  leaving the compressor and entering the condenser" 
P[2]   = P[3]"[psia]" 
s_isen[2] = s[1]"[Btu/lbm-R] "       
h_isen[2] = ENTHALPY(Refrigerant$,P=P[2], s=s_isen[2])"[Btu/lbm]" 
s[2]   = ENTROPY(Refrigerant$,T=T[2],P=P[2])"[Btu/lbm-R]" 
h[2]   = ENTHALPY(Refrigerant$,P=P[2], T=T[2])"[Btu/lbm]" 
P_cond  = P[2] 
v[2]   = VOLUME(Refrigerant$,P=P[2], T=T[2])"[ft^3/lbm]" 
 
"!State 3 is leaving the condenser " 
T[3]   = T_COND"[F]" 
P[3]   = PRESSURE(Refrigerant$,T=T_COND,x=0)"[psia]" 
h[3]   = ENTHALPY(Refrigerant$,T=T_COND,x=0)"[Btu/lbm]" 
s[3]   = ENTROPY(Refrigerant$,T=T_COND,x=0)"[Btu/lbm-R]" 
v[3]   = VOLUME(Refrigerant$,T=T_COND,x=0)"[ft^3/lbm]" 
 
"!State 4 is entering the expansion valve" 
T[4]   = T_COND - DELTAT_subcool"[F]" 
P[4]   = PRESSURE(Refrigerant$,T=T_COND,x=0)"[psia]" 
h[4]   = ENTHALPY(Refrigerant$,T=T[4],P=P[4])"[Btu/lbm]" 
s[4]   = ENTROPY(Refrigerant$,T=T[4],P=P[4])"[Btu/lbm-R]" 
v[4]   = VOLUME(Refrigerant$,T=T[4],P=P[4])"[ft^3/lbm]" 
 
"!State 5 is leaving the expansion valve and entering the evaporator" 
T[5]   = T_EVAP "[F]" 
P[5]   = PRESSURE(Refrigerant$,T=T[5],h=h[5])"[psia]" 
h[5]   = h[4]"[Btu/lbm]" 
s[5]   = ENTROPY(Refrigerant$,T=T[5],h=h[5])"[Btu/lbm-R]" 
v[5]   = VOLUME(Refrigerant$,T=T[5],h=h[5])"[ft^3/lbm]" 
 
"!State 6 is leaving the evaporator" 
T[6]  = T_EVAP"[F]" 
P[6]  = PRESSURE(Refrigerant$,T=T[6],x=1)"[psia]" 
h[6]  = ENTHALPY(Refrigerant$,T=T[6],x=1)"[Btu/lbm]"  
s[6]   = ENTROPY(Refrigerant$,T=T[6],x=1)"[Btu/lbm-R]" 
v[6]  = VOLUME(Refrigerant$,T=T[6],x=1)"[ft^3/lbm]" 
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"!Evaporator Side Calculations" 
T_bar_CHW  = (T_CHWS + T_CHWR)/2"[F]" 
P_CHW   = 1*convert(atm,psia)"[psia], pressure of chilled water" 
rho_chw =DENSITY(Water,T=T_bar_chw,P=P_chw)*convert(lbm/ft^3, lbm/gal)"[lbm/gal]" 
m_dot_chw=v_dot_chw*rho_chw*convert(lbm/min, lbm/hr)"[lbm/hr]" 
Cp_CHW=SPECHEAT(Water,T=T_bar_CHW,P=P_CHW)"[Btu/lbm-F]" 
DELTAT_CHW=T_CHWR - T_CHWS"[F]" 
Q_dot_EVAP =m_dot_CHW*Cp_CHW*DELTAT_CHW*convert(Btu/hr,Tons)"[Tons]” 
“calculates Q_dot_EVAP" 
Q_dot_EVAP =m_dot_refrig*(h[6] - h[5])*convert(Btu/hr,Tons)"[Tons]” 
“ calculates m_dot_refrig" 
epsilon_EVAP= (T_CHWR - T_CHWS)/(T_CHWR - T_EVAP)   
epsilon_EVAP= 1  - exp(-Ntu_EVAP) 
Ntu_EVAP= UA_EVAP/(m_dot_chw*Cp_CHW)       
APPR_EVAP = T_CHWS - T_EVAP"[F], evaporator approach" 
 
"!Condenser Side Calculations" 
"This portion of code will calculate T_CWR_calc for comparison to the measured value" 
T_bar_CW  = (T_CWS + T_CWR_calc)/2 "[F]" 
P_CW   = 1*convert(atm,psia)"[psia], pressure of condenser water" 
rho_cw   = DENSITY(Water,T=T_bar_cw,P=P_cw)*convert(lbm/ft^3, 
lbm/gal)"[lbm/gal]" 
m_dot_cw  = v_dot_cw*rho_cw*convert(lbm/min, lbm/hr) "[lbm/hr]" 
Cp_CW    = SPECHEAT(Water,T=T_bar_CW,P=P_CW)"[Btu/lbm-F]" 
DELTAT_CW = T_CWR_calc - T_CWS"[F]" 
Q_dot_COND = m_dot_refrig*(h[2] - h[3])*convert(Btu/hr,Tons)"[Tons], calculates 
Q_dot_COND" 
Q_dot_COND = m_dot_CW*Cp_CW*DELTAT_CW*convert(Btu/hr,Tons)"[Tons], calculates 
T_CWR" 
epsilon_COND = (T_CWR_calc - T_CWS)/(T_COND - T_CWS)   
  
epsilon_COND = 1  - exp(-Ntu_COND) 
Ntu_COND  = UA_COND/(m_dot_cw*Cp_CW)       
APPR_COND = T_COND - T_CWR_calc"[F], condenser approach" 
  
"!Efficiencies and Performance Quantities" 
T_bar_refrig=(T[1] + T[3])/2"[F], average temperature of refrigerant" 
P_bar_refrig=(P[1] + P[3])/2"[psia], average pressure of refrigerant" 
rho_refrig=DENSITY(Refrigerant$,T=T_bar_refrig,P=P_bar_refrig)"[lbm/ft^3]” 
“density of refrigerant" 
v_dot_refrig=(m_dot_refrig/rho_refrig)*convert(ft^3/hr, gal/min)"[gal/min]” 
“volumetric flow rate of refrigerant" 
W_dot_actual=m_dot_refrig*(h[2] -h[1])*convert(Btu/hr,kW)"[kW], work input from compressor" 
W_dot_tons=W_dot_actual*convert(kW, Tons)"[Tons], work input from compressor"  
W_dot_isen=m_dot_refrig*(h_isen[2]-h[1])*convert(Btu/hr,kW)"[kW]” 
“Isentropic work input from compressor" 
DELTAQ_dot =(Q_dot_COND-Q_dot_evap)*convert(Tons,kw)"[kW], difference between evap 
and cond heat transfer rates" 
eta_isen=W_dot_isen/W_dot_actual"Isentropic Efficiency of Compressor" 
COP =(Q_dot_EVAP*convert(Tons,kW))/Power"Coefficient of Performance of Cycle" 
COP_comp= (Q_dot_EVAP*convert(Tons,kW))/W_dot_actual"COP of Compressor" 
COP_ideal=(Q_dot_EVAP*convert(Tons,kW))/W_dot_isen"Ideal COP of Compressor" 
eta_motor  = W_dot_actual/Power"Motor Efficiency" 
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Appendix B – Sliding ARIMA Macro Code 

MACRO 
SLIDEARIMA DATA JUMPTO WIDTH P D Q LOLIMIT PREDICT HILIMIT ALARM co1 co2 co3 co4 
co5 co6 
# This macro applies an arima model to a data set in a sliding window fashion. 
# It takes 6 inputs and provides 4 columns of ouput. 
# 
# The inputs: 
# Data - the column or matrix of data on which to apply the macro  
# Jumpto - an integer representing the first data point in the column to be used 
# Width - an integer value of the number of points in the window 
# P - an integer for the number of auto-regressive terms in the model 
# D - an integer for the model differencing 
# Q - an integer for the number of moving average terms in the model 
#     Note that the model form stays the same but the coefficients will be 
#     recalculated each iteration 
# 
# The outputs: 
# LoLimit - the lower 95% confidence interval of the forecast 
# HiLimit - the upper 95% confidence interval of the forecast 
# Predict - the forecast value 
# Alarm   - an on/off value to denote if data point is inside (0) or outside (1) 
#           of 95% confidence intervals 
#   
# Defining constant variables 
MCONSTANT JUMPTO WIDTH P D Q PNQ NUMBER I1 I2 I3 NITER1 NITER2 BEG NEXT 
# Defining column variables 
MCOLUMN  DATA SEGMENT ZSEGMENT ZPREDICT PREDICT ZLOLIMIT LOLIMIT ZHILIMIT 
HILIMIT ALARM SEGMEAN RESI FITS COEF co1 co2 co3 co4 co5 co6 
# Label the output columns 
Name LOLIMIT = 'LoLimit' PREDICT = 'Predict' HILIMIT = 'HiLimit' ALARM = 'Alarm' 
Name co1 = 'Coeff 1' co2 = 'Coeff 2' co3 = 'Coeff 3' co4 = 'Coeff 4' co5 = 'Coeff 5' co6 = 'Coeff 6' 
# Sum to determine the number of coefficients in the model, maximum of 6 for full output 
LET PNQ = P+Q 
# Count the number of points in the data set 
LET NUMBER = COUNT(DATA) 
# Calculate the number of times to iterate based on the number of points, 
# the width of the window and the first point used 
LET NITER1 = NUMBER-WIDTH-JUMPTO+1 
# Begin the overall loop 
DO I1=1:NITER1 
 DO I2=1:WIDTH 
  # Read a windows worth of data points into a column 
  LET SEGMENT(I2) = DATA(JUMPTO-2+I1+I2) 
 ENDDO 
 # Read the point just after the window 
 LET NEXT = DATA(JUMPTO-1+WIDTH+I1) 
 # Calculate the mean of the window data points  
 Statistics SEGMENT; 
 Mean SEGMEAN. 
 # Subtract the mean from the data  
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 DO I2=1:WIDTH 
  LET ZSEGMENT(I2) = SEGMENT(I2) - SEGMEAN 
 ENDDO 
 # Apply the ARIMA model of order (P,D,Q) 
 ARIMA P D Q ZSEGMENT RESI FITS COEF; 
   # Since we took out the mean, no need for a constant term 
   NoConstant; 
   # Use the Arima model to forecast the next 1 point 
   # and the 95% confidence limits for it  
   Forecast WIDTH 1 ZPREDICT ZLOLIMIT ZHILIMIT; 
  # No plots shown 
  #GSeries; 
   #GACF; 
   #GPACF; 
    #GHistogram; 
   #GNormalplot; 
   #GFits; 
   #GOrder;  
   # Do not display any characteristics of the arima model  
   Brief 0. 
 # Add the mean to the predicted and limit values 
 # and write them into the columns to be output 
 # Place up to 6 coefficients into column for storage and output 
 IF PNQ>0 
  LET co1(JUMPTO-1+WIDTH+I1)=COEF(1) 
 ENDIF 
 IF PNQ>1 
  LET co2(JUMPTO-1+WIDTH+I1)=COEF(2) 
 ENDIF 
 IF PNQ>2 
  LET co3(JUMPTO-1+WIDTH+I1)=COEF(3) 
 ENDIF 
 IF PNQ>3 
  LET co4(JUMPTO-1+WIDTH+I1)=COEF(4) 
 ENDIF 
 IF PNQ>4 
  LET co5(JUMPTO-1+WIDTH+I1)=COEF(5) 
 ENDIF 
 IF PNQ>5 
  LET co6(JUMPTO-1+WIDTH+I1)=COEF(6) 
 ENDIF 
 LET PREDICT(JUMPTO-1+WIDTH+I1) = ZPREDICT+SEGMEAN 
 LET LOLIMIT(JUMPTO-1+WIDTH+I1) = ZLOLIMIT+SEGMEAN 
 LET HILIMIT(JUMPTO-1+WIDTH+I1) = ZHILIMIT+SEGMEAN 
 # Compare the actual data value to the limit values 
 # and set alarm accordingly 
 IF NEXT>LOLIMIT(JUMPTO-1+WIDTH+I1) AND NEXT<HILIMIT(JUMPTO-1+WIDTH+I1) 
  LET ALARM(JUMPTO-1+WIDTH+I1)=0 
 ELSE  
  LET ALARM(JUMPTO-1+WIDTH+I1)=1 
 ENDIF 
ENDDO 
ENDMACRO 
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Appendix C – ARIMA (3,0,0) GPMCHW Coefficients 
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