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ABSTRACT

Year long simulations of the hourly (or shorter time period) heating and cooling
loads for buildings are important for sizing heating, ventilating, and air concﬁtioning
equipment, determining the effect of a design change or retrofit on energy usage, and
developing optimal control strategies. Transfer functions, which are more efficient than
Euler or Crank-Nicolson solutions of finite-difference or finite-element models and
response factor methods, were developed to reduce the amount of computational effort.
Transfer functions relate the output of a linear, time-invariant system to a time series of
current and past inputs, and past outputs. Inputs are modeled by a continuous, piece-
wise linear curve.

Finite-difference or finite-element methods reduce transient multi-dimensional :‘%eat
transfer problems into a set of first order differential equations when thermal physical
properties are time-invariant and the heat transfer processes are linear. This thesis
presents a method for determining transfer functions from the exact solution of a set of
first order differential equations.

This thesis describes a method in which the transfer functions describing heat flows
in building elements are combined into a single transfer function for an enclosure,
referred to as a comprehensive room transfer function (CRTF). The method accurately
models long-wave radiation and convection in an enclosure through an approximate
network, referred to as the "star” network. Resistances in the star network are

determined from a network which uses view factors to model long-wave radiation



exchange.
This thesis presents model reduction methods for reducing the number of
coefficients in transfer functions. These methods can be used to significantly reduce the

computational effort of CRTF simulations.
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CHAPTER 1

Introduction

1.1 OBJECTIVE

Accurate calculation of the heating and cooling loads of buildings involves the
long-time solution of transient conduction, convection, and radiation heat transfer
processes. Calculation of these loads requires significant computational effort. The goal
of this thesis is to develop fast and accurate methods for computing heating and cooling
loads in buildings.

Section 1.2 discusses uses of building simulation programs, i.e., programs which
are used to compute heating and cooling loads in buildings. The advantages and
disadvantages of frequency domain and time domain methods for modeling heat transfer
in buildings are discussed in section 1.3. A review of time domain transfer function
methods is contained in section 1.4. Section 1.5 describes the organization of this thesis.

In section 1.6, the different definitions of transfer function are presented.

1.2 BUILDING SIMULATION PROGRAMS

Building simulation programs such as BLAST [BLAST (1979)], TARP [Walton
(1983)], TRNSYS [Klein (1983)], and [DOE-2 (1980)] are used to calculate dynamic
heating and cooling loads for rooms, zones, or buildings. A description of thermal
physical properties and dimensions of building components such as walls, floors,

ceilings, and windows are required inputs for these programs. In some programs, the



location of various interior room surfaces must be supplied for calculation of radiation
exchange factors. In addition to a detailed building description, weather data for the
building location must also be available. Hall et al. (1978) have generated hourly
weather data for a typical meteorological year at 26 locations in the United States. Also, a
schedule of energy gains from equipment, lights, and people must be known.

Building simulation programs are used to determine the most economical design or
retrofit based upon heating, cooling, equipment, and material costs. An architect has a
number of variables to consider when designing a new building or retrofiting an old
building. Some of the variables are the following: amount of insulation, use of
additional thermal mass to reduce temperature swings, area and type of glass, and use of
passive solar components.

Building simulation programs are used to size heating, ventilating, and air
conditioning (HVAC) equipment by estimating peak heating or cooling loads for
buildings. Oversizing HVAC equipment results in excessive capital cost for equipment
and extra energy costs due to inefficient part-load operation of equipment. Undersizing
HVAC equipment results in uncomfortable building occupants. Fanger (1972) discusses
the variables which influence thermal comfort for human beings.

Building simulation programs are used to develop optimal control strategies which
minimize HVAC operating costs while maintaining a comfortable environment for the
occupants. Forrester and Wepfer (1984) discuss a number of different methods for
reducing operating costs of HVYAC equipment.

Passive solar components such as a collector-storage wall, direct gain window, or a
sun space are used to reduce building heating requirements. There are design methods
such as the solar load ratio method [Balcomb et al.(1983)] and the Un-utilizability design

method [Monsen et al. (1981,1982)] available for estimating the long-term thermal



performance of buildings which have passive solar components. Results from building
simulation programs are used to provide data for the curve fitting of parameters in these

design methods.

1.3 FREQUENCY DOMAIN VS TIME DOMAIN

Frequency domain and time domain methods are both used for modeling heat
transfer processes in buildings. Frequency domain methods [Goldstein and
Lokmanhekim (1979), Hittle (1981), Subbarao (1982), Subbarao and Anderson
(1982,1983), Athientis (1985), Athientis and Sullivan (1983,1985)] are based upon the
response to sinusoidal inputs. Time domain methods are based upon the response to time
dependent inputs. The next section of this chapter describes time domain methods for
modeling heat transfer_ processes in buildings. Both frequency and time domain methods
were studied in order to answer the following quéstion: Should improvements be made
in frequency domain methods, time domain methods, or a combination of frequency and
time domain methods?

Currently, there is no frequency domain approach available which can be used to
accurately calculate the energy requirements of a building with thermostatic controls. In
the future, a frequency domain method may be developed which will be able to accurately
model a thermostat, but there is still another problem with the frequency domain
approach. Fourier synthetic weather data approximates real weather data. Anderson and
Subbarao (1981), and Smart and Ballinger (1984), used time domain simulation
techniques to compare the auxiliary energy use of buildings that were driven with hourly
weather data and Fourier synthesized weather data which was obtained from the hourly
weather data. Anderson and Subbarao state that "... a few Fourier coefficients can be

useful for 'quick and dirty' analysis of buildings which are not highly solar driven.”



Smart and Ballinger state that the use of Fourier synthesized weather data leads to
systematic underestimating of both heating and air conditioning loads due to the
underestimating of the severity of climates.

ASHRAE (1985) has described time domain methods, which use transfer
functions, for calculating the energy requirements of a building with thermostatic
controls. A disadvantage of time domain methods is the large amount of computational
effort required to perform yearly simulations.

Time domain methods are contained in this thesis because accurate calculation of
heating and cooling loads are important for sizing heating, ventilating, and air
conditioning equipment; determining the effect of a design change or retrofit on energy
usage; developing optimal control strategies; and developing design methods. The
methods presented in this thesis can be used to significantly reduce the computational

effort of time domain simulations.

1.4 TRANSFER FUNCTION AND RESPONSE FACTOR METHODS

Transfer function and response factor methods are used in building simulation
programs to compute long-time solutions of transient heat transfer problems in which the
system properties are time-invariant. Response factors relate the output of a linear system
to a time series of current and past inputs. Transfer functions additionally relate the
current output to past outputs, significantly reducing computational effort. In both cases,
the inputs or driving functions are modeled by a continuous, piecewise linear curve or
equivalently, a series of triangular pulses. See figure 1.1 for a representation of an input
by a continuous piece-wise linear curve.

Transfer function and response factor methods are more efficient for solving long-

time heat transfer problems than Euler or Crank-Nicolson solutions of finite-difference or



finite-element formulations because of two reasons. First, the time step used in a Euler
or Crank-Nicolson simulation may be less than the time step in a transfer function
simulation. In a transfer function simulation, the time step is selected based upon how
well a continuous, piece-wise linear curve represents the inputs. In a Euler or Crank-
Nicolson solution, a small time step may be required to avoid numerical oscillation.
Second, in a Euler of Crank-Nicolson solution all nodal temperatures are computed at
every time step even though they all may not be outputs of interest. In a transfer function

simulation, only outputs of interest are computed.
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Figure 1.1 Representation of an input by a continuous, piece-wise linear curve.

Stephenson and Mitalas (1967) developed the response factor approach to calculate
the transient one-dimensional heat transfer through multi-layered walls, floors, and roofs.
The form of the response factor equation to calculate the heat transfer through multi-

layered slabs is



q", = g‘o [(Yj Tt_j&o) + (zj Tt_j&i)] (1.4.1)
where

q" (= heat flux across interior surface

Yj = response factor coefficient for j time steps prior to time t
Tt-j 5.0 outside temperature j time steps prior to time t

Zj = response factor coefficient for n time steps prior to time t

Tt—j 5i= inside temperature j time steps prior to time t

Theoretically the number of response factor coefficients approaches infinity, but for
computational purposes a finite number of coefficients are used. Kusuda (1969)
extended the response factor approach to cylindrical and spherical coordinate systems.
Response factors with cylindrical or spherical coordinate systems are important when
analyzing the heat transfer from underground pipes, tunnels, and storage tanks.
Stephenson and Mitalas (1971) presented a method for determining transfer
functions for one-dimensional heat transfer through multi-layered slabs by solving the
conduction equation with Laplace and z-transform theory. Transfer functions for

computing heat flow through walls are of the form

= Zo [( 3 Teis0) * (0 Tt-jS,i)jl - J; (5958 (1.4.2)

where

aj = transfer function coefficient for j time steps prior to time t

bj = transfer function coefficient for j time steps prior to time t



c. = transfer function coefficient for j time steps prior to time t

q 5 = heat flux j time steps prior to time t

Mitalas and Arsenault (1971) wrote a program for computing transfer function
coefficients based upon the method of Stephenson and Mitalas. Transfer function
coefficients computed from Mitalas and Arsenault's program for 40 roof, 103 wall, and
47 interior partition constructions are listed in the ASHRAE Handbook of Fundamentals
(1977,1981,1985).

Peavy (1978) presented an alternative approach for calculating transfer functions.
He used the fact that successive response factor coefficients are approximately related by
a common ratio to convert response factor coefficients into transfer function coefficients.
Hittle (1981) has presented a very detailed derivation of transfer functions for multi-
layered slabs which used the method of Peavy.

In the calculation of response factor or transfer function coefficients, a numerical
search for the roots of a nonlinear equation must be performed. Hittle and Bishop (1983)
developed an improved numerical technique for calculating the roots of the nonlinear
equation. The improved procedure eliminates the need to take very small steps when
numerically searching for the roots. This procedure should decrease the computation
time while improving the reliability of finding roots which are very close. Walton (1983)
used this procedure in TARP.

To develop transfer functions for multi-dimensional heat transfer, it is necessary to
spatially discretize the problem by use of finite-difference or finite-element techniques.
Spatial discretization results in a set of first order differential equations. Pawelski (1976)

used linear regression on results from a finite-difference simulation to determine transfer



function coefficients. Ceylan and Myers (1980) have presented a method for determining
the exact set of transfer functions from a set of first order differential equations.
ASHRAE (1985) has discussed the energy balance method (ASHRAE referred to
this as the heat balance method) for calculating sensible heating or cooling loads for
buildings. An energy balance equation is written for every surface in a room and the
room air. For a room with N surfaces, these energy balance equations can be formulated

in the matrix equation

ZT

[
>

(1.4.3)

where Z is a (N+1) by (N+1) matrix which contains transfer function coefficients,
convection coefficients, and linearized long-wave radiation resistances; T is a vector of
N+1 temperatures with all rows equal to an interior surface temperature, except the last
row which is the room air temperature; and X is a vector of current inputs, past inputs,
past interior surface temperatures, and transfer function coefficients. After solving the
matrix equation for the T vector, the load due to convective heat transfer between
surfaces and the room air can be calculated. The computational effort is reduced when
the Z matrix is time invariant, i.e., convection coefficients and linearized long-wave
radiation resistances are constant. Mitalas (1965) has shown the cooling loads for a room
are quite insensitive to changes in the interior convection coefficient. Walton (1980) has
shown that long-wave radiation exchange between surfaces in a room can be linearized
without introducing significant errors. Assuming long-wave radiation resistances are
constant does not introduce significant errors because the average temperature of surfaces
in a room is fairly constant. Estimating exterior convection coefficients which vary with
time is difficult due to the large number of factors (e.g., building size, building shape,

building surrounding, wind direction, local wind velocity) which affect convective heat



transfer from exterior surfaces.

Madsen (1982) developed a comprehensive room transfer function (CRTF) by
using linear regression on results from an energy balance simulation. A CRTF is a single
transfer function equation for computing loads or floating indoor air temperatures in a
room or zone. CRTF simulations require less computational effort than energy balance

simulations because only outputs of interest are computed.

1.5 ORGANIZATION

Finite-difference or finite-element methods reduce transient multi-dimensional heat
transfer problems into a set of first order differential equations when thermal physical
properties are time-invariant and the heat transfer processes are linear. Chapter 2 presents
a method for determining transfer functions from the exact solution of a set of first order
differential equations when the inputs are modeled by a continuous, piecewise linear
curve.

Chapter 3 describes a method in which the transfer functions describing heat flows
in building elements are combined into a single transfer function for an enclosure,
referred to as a comprehensive room transfer function (CRTF). The method accurately
models long-wave radiation exchange and convection in an enclosure through an
approximate network, referred to as the "star" network. Resistances in the star network
are determined from a network which uses view factors to model long-wave radiation
exchange.

Chapter 4 contains model reduction methods for reducing the number of significant
coefficients in transfer functions. These methods can be used to significantly reduce the
computational effort of simulations.

A discussion of the conclusions and recommendations for future work is contained
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in chapter 5.

1.6 TERMINOLOGY

The definition of transfer function used in the field of heat transfer in buildings is
different from that used in the field of automatic controls. In automatic controls a transfer
function is the Laplace or z-transform of the output divided by the Laplace or z-transform
of the input. In heat transfer, a transfer function is a recursive difference equation which
relates the outputs of a linear, time-invariant system to a time series of current and past
inputs, and a time series of past outputs. In this thesis, the latter definition will be used.
Also, this thesis uses Laplace transfer function as the definition for the Laplace transform
of the output divided by the Laplace transform of the input and z-transfer function as the

definition for the z-transform of the output divided by the z-transform of the input.



CHAPTER 2

Transfer Functions for Multi-Dimensional Heat Transfer

>

Ceylan and Myers (1980) present a method for calculating transfer functions for
multi-dimensional heat transfer from a set of first order differential equations. Their
method involves first calculating response factor coefficients and then converting the
response factor coefficients into transfer function coefficients. Also, their method
requires the calculation of the eigenvalues and eigenvectors of a matrix.

This chapter presents a method for calculating transfer functions for multi-
dimensional heat transfer which results in fewer coefficients than the method of Ceylan
and Myers. In addition, the intermediate step of calculating response factor coefficients is
eliminated and it is not necessary to calculate the eigenvalues and eigenvectors of a
matrix.

Section 2.1 presents the development of equations for computing transfer functions
from a system of first order differential equations. In section 2.2, a transfer function is
developed for a two node example. Section 2.3 presents a procedure for efficiently
computing transfer functions. In section 2.4, transfer functions from finite-difference
models are compared with the exact transfer function for a 12" homogeneous concrete
wall. Finally, section 2.5 demonstrates the importance of modeling multi-dimensional

heat transfer in a roof deck.

11
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2.1 FORMULATION

A state space formulation has traditionally been used to analyze linear systems
which may have many inputs and outputs. A heat transfer problem may be formulated in
a state space representation by using finite-difference or finite-element methods [Myers
(1971)] to spatially discretize the problem. A state space representation for a continuous,

linear, time-invariant system with n states, p inputs, and m outputs is

X _ Ax +Bu 2.1.1)
dz

y=Cx +Du (2.1.2)
where

X = vector of n state variables

T =time

A = (n x n) constant coefficient matrix
B = (n x p) constant coefficient matrix
u = vector of p inputs

y = vector of m outputs

C = (m x n) constant coefficient matrix

D = (m x p) constant coefficient matrix

Equation (2.1.1) is called the state equation and equation (2.1.2) is called the output
equation in a state space formulation.

In a number of textbooks [Brogan (1985), Bronson (1973), and Chen (1984)] the
solution to a system of first order differential equations with constant coefficients is given

by
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t+9

Ad A S -

X,5=€¢ X+ J‘ e t+o-1) B u(t) dt (2.1.3)
t

where

X5 vector of n state variables at time t+0
t = discrete point in time
8 = time step

Ad i )
e =exponential matrix

X, = vector of n state variables at time t

u(t) = vector of p inputs between times t and t+9

The exponential matrix, eAa, is defined by the power series

2 2 33 id
Ad
e =I+A5-1~AS +A25 +...+A8’

3 3 i + ... (2.1.4)

Appendix A describes a numerically efficient method for computing the exponential
matrix.

The first term on the right hand side of equation (2.1.3) is called the complementary
function, force-free response or zero-input response. The second term on the right hand
side of equation (2.1.3) is called the particular integral, forced response or zero-state
response. The zero-input response of a system involves the response of the state

variables to the conditions at time t and the zero-state response is the convolution integral
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which integrates the response of the state variables to the inputs between times t and t+3.
Inputs between times t and t+6 are modeled by a continuous, piecewise linear function

and are calculated by

u(t) =ut+%_t)-(ut+5- ut) (2.1.5)

where

u, = vector of p inputs at time t

u,, s = vector of p inputs at time t+0

At this point, the solution of the state equation for heat transfer applications differs from
the solution of the state equations in digital control systems, because inputs for digital
control systems are not continuous, piecewise linear functions. Astrbm and Wittenmark
(1984) discuss input construction for digital control systems. Substituting equation

(2.1.5) into equation (2.1.3) results in

t+0

Ad Al+d-7 -
X ,5=© xt+J e ( )B [ ut+(—tg—tl(ut+8-ut)j| dt (2.1.6)
t

By making the change of variables ot = T - t , Equation (2.1.6) can be rewritten as

) )
Ad A (- A -
X,5=¢ X+ Je ( Oodoc Bu + J‘oce ( oL)doc ‘:%(ut+5-ut)]
0 0

(2.1.7)
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Appendix B describes the steps for integrating the two integrals in equation (2.1.7). The

solution to the first integral is

5
J‘A(S-a) -1(A8 )

e da=A e -1
0

and the solution to the second integral is

)
AG-o 1 -1 AS -1
oe da=A A \e -I/-A 9§
0

(2.1.8)

(2.1.9)

Substituting the solution of the two integrals, equations (2.1.8) and (2.1.9), into equation

(2.1.7) yields

xt+5=<bxt+(1"1 'rz) u+lu,s

where
Ad
d=e
-1 Ad
Fl = (e - I) B

(2.1.10)

(2.1.11)

(2.1.12)

(2.1.13)
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Equation (2.1.10) relates the states at time t + J to the states at time t and the inputs at the
times t and t + 0.
The forward shift operator, F, [Box and Jenkins (1976)] defined by

Fv =v (2.1.14)

t~ t+0
where

v, = value of a state or signal at time t

v,y = value of state or signal at time t+d

will be now be used to relate the states to previous inputs. Using the forward shift

operator, equation (2.1.10) can be written as

(FI - ®) xt=(FI‘2+I’1-F2) u, (2.1.15)
Multiplying equation (2.1.15) by the inverse of the (FI - ®) matrix gives

—F1-®)  [Fr
x, = (FI- @) (F 21»1‘1-1‘2) u, (2.1.16)

Substituting equation (2.1.16) into equation (2.1.2) yields

yt=[C(FI-(I))-l (FI‘2+I“1-I‘2)+D]ut (2.1.17)
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Equation (2.1.17) relates the outputs from the system to the inputs.

The inverse of the (FI - @) matrix can be written as

n-1 n-
R.F  +R,F ~+..+R_,F+R
-1 - , -
FL-0) =2 ! n-2 n-1 (2.1.18)

Fte F F
+eq +..+e (F+e

n

The R matrices and the e scaler constants can be determined by computing the adjoint of
the (FI - ®) matrix and dividing by the determinant of the (FI - @) matrix or by using
Leverrier's algorithm [Wiberg (1971)] described in appendix C. Substituting equation
(2.1.18) into (2.1.17) results in

n-1 n-2
[ C (ROF SRF 4 +Rn_2F+Rn_1) (FI‘2+I‘1 -rz)

u (2.1.19)

t

n n-1
+D\F +e1F +...+en

Multiplying the matrices on the right side of equation (2.1.19) and combining

common terms of the forward shift operator gives
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n n-1 n
F +e1F +oote |y = (CROI‘2+D)F

n-2
+[C(erl-R1I‘2+R2F2)+e2D]F

+ ...

r,-R
n-

n-2 2°2

+ C(R X r +Rn_1r‘2)+en_1D]F

+ C(Rn_lrl-Rn_ll"2)+enD]> u, (2.1.20)

Using the definition of the forward shift operator, equation (2.1.20) can be rewritten as

Yt+nd +elyt+(n-l)8 R (C RO F2+D) Yind

¥ {c R, (rl . 1"2) +R T, |+e, D} Yy

¥ {c R, (F1 : r2) +R,T, | +e, D} U (0200

" {C[Rn_z (rl . rz) +R_ rz] ve D} u,s

+[c R_, (rl -rz) te_ D} u, 2.1.21)

Shifting the inputs and outputs in equation (2.1.21) n time steps back gives



n n
Y= _]Z—O (Sj “t-jB) ; (e yt-JB)
where

SO—CROI'2+D

5;=C [Rj_l(l"l -F2)+RjI‘2]+ejD for1<j<n-1

S, =CR__ (rl -rz) +e D
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(2.1.23)

(2.1.24)

(2.1.25)

(2.1.26)

Equation (2.1.23) is a transfer function equation which relates current outputs to time series

of current and past inputs and time series of past outputs. Ceylan and Myers' derivation

results in one additional S coefficient. The transfer function coefficients in equation
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equation (2.1.23) may become numerically insignificant as j increases. Thus, the effort
of calculating transfer function coefficients can be reduced if only numerically significant
coefficients are calculated. The number of significant coefficients can be reduced by
using the model reduction methods described in chapter 4.

A large amount of computer memory would be required to store the n nxn R
matrices if equations (2.1.24) through (2.1.26) were used to calculate transfer functions.
Fortunately, the storage requirement for the R matrices can be reduced to two nxn
matrices if Leverrier's algorithm is combined with equations (2.1.24) through (2.1.26).
Section 2.3 contains the steps for computing numerically significant transfer function

coefficients with a minimum amount of storage for the R matrices.

2.2 TWO NODE EXAMPLE

This section demonstrates the calculation of a transfer function equation for a
homogeneous plane wall with constant thermal properties. Heat transfer through the wall
is assumed to be one-dimensional. Inputs are inside and outside air temperatures and the
heat flux at the interior surface of the wall is the output of interest. The first step in
calculating a transfer function equation is to use finite-difference methods [Myers (1971)]
to spatially discretize the problem. A two node finite-difference model can be seen in
figure 2.1.

Energy balances performed at the two nodes result in the set of first order

differential equations
dT T,-T
1 2 1
C—-——-=hA(T -T, )+ 2.2.1
. o "T1)+— % (2.2.1)



-T
R

dT, T
C—d-T-—=hA(Ti -Tz) +

where

1 72

C = thermal capacitance

h = convection coefficient
A =area

R = thermal resistance

TO = outside temperature
Ti = inside temperature

T1 = temperature of node 1

T2 = temperature of node 2

21

(2.2.2)

Figure 2.1 Two node finite-difference model of plane wall.

The thermal resistance between the nodes can be calculated from the following equation:
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L
kA
where
L = length of wall

k = thermal conductivity of wall

R= (2.2.3)

The thermal capacitance of each node can be calculated by

pcLA

C= >

(2.2.4)

where
p = density

¢ = specific heat

The heat flux across the interior surface of the wall can be calculated by
q"=h (Tz - Ti) (2.2.5)

Equations (2.2.1) through (2.2.5) can be formulated in the following state space

representation by letting the temperatures of the nodes be the two states:

at,|
1 hA 1 hA
dt RC C RC T T T,
= +
dT, R L hANT oy DANT
—= RC RC ©C C
dt |
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Tl To
CARCRLIE FYCRU

For a 12" concrete wall with a density of 140 lbp,/ft3, specific heat of 0.20 Btu/lby,-°F,
thermal conductivity of 1.0 Btu/hr-ft-°F and convection coefficients of 1.46 Btu/hr-ft2-

°F, the matrices in the state space formulation become

B =

-0.1757 0.0714 1
= hr
0.0 0.1043

0.1043 0.0 1
hr
0.0714 -0.1757

C =[0.0 1.46] Bruhrfi>F D =[00 -1.46] Buyhr-t-oF

The exponential matrix @ can be calculated by the algorithm described in appendix A or
by the techniques demonstrated by Brogan (1985) or Chen (1984). The Brogan and
Chen methods are easier to use when making hand calculations of an exponential matrix.
(When the number of nodes in the finite-difference or finite-element model is small, an
interactive matrix package such as Matlab (1982) can be used to compute the exponential
matrix and the transfer function coefficients.) For this example, the exponential matrix

with a 1 hour time step is

b =

As |0-8410  0.0600
[+ =
0.0600 0.8410

Carrying out the matrix manipulations described by equations (2.1.12) and (2.1.13)



results in

0.0957 0.0033}

-1
IL=A (®-DB=
1 0.0033  0.0957

4| T 0.0492  0.0011
T,=A | —-B|=
5 0.0011  0.0492

24

The inverse of the (FI - @) matrix is computed by dividing the adjoint of the (FI - @)

matrix by the determinant of the (FI - @) matrix.

F - 0.8410 -0.0600 }

(FI- @) =
-0.0600  F-0.8410

F-0.8410  0.0600
0.0600 F-0.8410

2
(F - 0.8410) (F - 0.8410) - 0.0600

1 O -0.8410 0.0600
F+
0 1 0.0600 -0.8410

2
F -1.682F + 0.0704

The constant coefficient matrices and scalar constants in equation (2.1.18) are

Cl = '1.682

e, =0.0704
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R,=1

0
-0.8410  0.0600
17| 0.0600 -0.8410

Equations (2.1.24) through (2.1.26) can be used to compute the S matrices.

2
=CR, T, +D=[0.0017 -1.3881] Buyhr-ft -°F

Sy )

2
s,=C [RO (1‘1 - 1“2) +R, rz] +e, D =[00061 2.4632] Bryhr-fr -°F

2
_ ] _[0.0014 -1.0843 2o
S2—CR1(I‘1 r2)+e21)_[0 ] Btu/hr-ft -°F

The transfer function equation for this two node example is

9" =Sgu +S;u g+Syu 55-€1 9% 5-¢,0" 55
= 0.0017 Tt,o + 0.0061 Tt—5,0 + 0.0014 Tt'28,0

- 13881 T,; +2.4632 T 5 - 10843 T 5.

+ 1.682 q"t-S - 0.0704 q"t-25

2.3 EFFICIENT CALCULATION OF TRANSFER FUNCTIONS
A large amount of computer memory would be required to store the n nxn R
matrices if equations (2.1.24), (2.1.25), and (2.1.26) were used to compute transfer

function coefficients. Fortunately, the storage requirement can be reduced to two nxn
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matrices if Leverrier's algorithm is combined with the analytical solution. Also, it may
not be necessary to calculate all transfer function coefficients because the coefficients may
become numerically insignificant as j increases. At some point, the absolute values of the
ej coefficients decrease as j increases. This fact can be used as a criteria to stop
calculating transfer function coefficients. The following steps can be used to compute
numerically significant coefficients with a minimum amount of computer storage for the

R matrices (only two nxn R matrices need to be stored):

Ad
1) Compute the exponential matrix ® = ¢

2) Use equations (2.1.12) and (2.1.13) to compute Fl and I‘Z
3) Use equation (2.1.24) to compute SO

HR_ =1
ne

W

5) Forj=1 to n with a step size of 1

Rold = Rnew
Trace (CD Rol d)
ej - j

R ey =P Ryq+el

5;=C [Rold(rl -F2)+Rnewl"2} +¢;D

Stop if the absolute value of ej is less than a tolerance limit

Trace ((D R )
new

6) e, =" -
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7S =CR___ (rl : r2) +e D
Chapter 4 shows that the number of numerically significant coefficients in a transfer

function can be reduced by using model reduction methods.

2.4 RESULTS

The equations and algorithms presented in section 2.2 and appendix A were used to
write a 150 line FORTRAN program for calculating transfer functions from a state space
formulation. (The program used a library routine in LINPACK (1979) for calculating the
inverse of a matrix.) The program was used to compute sets of transfer function
coefficients for 2 through 50 node finite-difference models of a 12" homogeneous
concrete wall with a density of 140 Ib,,/ft3, specific heat of 0.20 Btu/lby,-°F, thermal
conductivity of 1.0 Btu/hr-ft-°F, and convection coefficients at both sides of the wall of
1.46 Btu/hr-ft2-°F. Inside and outside air temperatures were inputs to the transfer
function equation and the heat flux at the interior surface of the wall was the output.
(Section 2.2 contained the steps required to calculate transfer function coefficients for a
two node finite-difference model.) Mitalas and Arsenalt's program (1971), which is
based upon the solution of a system of partial differential equations, was also used to
compute transfer function coefficients. Transfer function coefficients for a 2, 5, and 20
node finite-difference models and the Mitalas and Arsenalt program are listed in table 2.1.
As the number of nodes in the finite-difference model increases, the transfer function
coefficients from the state space formulation approach those of Mitalas and Arsenalt
which are based upon the solution of the partial differential equation (i.e., the continuous

model).
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Table 2.1 Transfer function coefficients for a 12" concrete wall and 2, 5, and 20 node

finite-difference models of the concrete wall.

Partial
Transfer Function Differential

Coefficient Equation 2 node 5 node 20 node
Sg Out. Temp. Btu/hr-ft2-°F  0.0000 0.0017 0.0001 0.0000
S1 Out. Temp. Btu/hr-ft2-°F  0.0010 0.0061 0.0019 0.0010
S» Out. Temp. Btu/hr-ft2-°F  0.0053 0.0014 0.0044 0.0053
S3 Out. Temp. Btu/hr-ft2-°F  0.0040 0.0017 0.0039
S4 Out. Temp. Btu/hr-ft2-°F  0.0005 0.0001 0.0005
So Ins. Temp. Btwhr-ft2-°F  -1.2045 -1.3881 -1.2597 -1.2073
S1 Ins. Temp. Btw/hr-fi2-°F  2.2677 2.4632 2.6960 2.2820
S5 Ins. Temp. Btu/hr-ft2-°F  -1.2929 -1.0843 -1.9575 -1.3117
S3 Ins. Temp. Btwhr-ft2-°F  0.2278 0.5808  0.2361
S4 Ins. Temp. Btw/hr-ft2-°F  -0.0088 -0.0707 -0.0097
S5 Ins. Temp. Buwhr-ft2-°F  0,0001 0.0029 0.0001
€] -1.7442 -1.6820 -1.9782 -1.7502
€2 0.9050 0.7034 13116 0.9147
e3 -0.1395 -0.3509 -0.1437
e4 0.0041 0.0383 0.0045
es 0.0000 -0.0014 0.0000

To compare the transfer functions, heat fluxes were computed when the air

temperature on one side of the wall varied with the periodic temperature profile

T = 5°F + 5°F sin[(T ®)/24 hours]

and the air temperature on the other side of the wall was 0°F. Figure 2.2 (outside air
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temperature varying) and figure 2.3 (inside air temperature varying) show the heat flux at
the interior surface of the wall for transfer functions based upon two and five node finite-
difference models and the continuous model. Table 2.2 contains the sum of squares of
the residuals (SSQ) between the calculated heat flux for the finite-difference models and
the continuous model for a 24 hour period. As the number of nodes in the finite-
difference model increases the SSQ decreases.

Table 2.3 contains the central processing unit (CPU) time of a MicroVax computer
to compute all transfer function coefficients, numerically significant coefficients, and the
exponential matrix for different numbers of nodes. (The tolerance limit in section 2.5 for
the calculation of numerically significant coefficient was 0.000001.) Table 2.3
demonstrates the importance of computing only numerically significant coefficients.
Also, a majority of the effort in calculating numerical significant coefficients involves the

calculation of the exponential matrix.

Table 2.2 Sum of squares of the residuals between continuous model and finite-

difference model for a 24 hour period.

Sum of Square of Residuals BtuZ/hr2-ft4

Number of Nodes Outside Temp. Varying Inside Temp. Varying
2 0.10 20.0
5 0.0017 0.16
10 0.000070 0.0060
15 0.000012 0.0010

20 0.0000035 0.00030
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Figure 2.2 Heat flux at interior surface of concrete wall with outside air temperature

varying for two and five node finite-difference models and the continuous model.
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Figure 2.3 Heat flux at interior surface of concrete wall with inside air temperature

varying for two and five node finite-difference models and the continuous model.



31

Table 2.3 CPU time to compute the exponential matrix, all transfer function

coefficients, and all numerically significant transfer function coefficients.

Central Processing Unit Time in Seconds

Numerically

Number Exponential All Significant
of Nodes Matrix Coefficients Coefficients

10 0.25 0.54 0.32

20 1.8 4.7 2.1

30 6.1 19.1 6.8

40 15.0 54.5 16.3

50 30.6 123.2 32.9

2.5 APPLICATION

Building simulation programs such as DOE-2 (1980), TRNSYS (1983), and TARP
(1983) assume one-dimensional heat transfer through walls, roofs, and floors. Many
walls of common construction cannot be accurately modeled with one-dimensional heat
transfer. The equations and algorithms described in this paper can be used to calculate
transfer functions for walls which require two-dimensional models, e.g., walls which
contain metal tee-bars or tie rods. The ASHRAE handbook of fundamentals (1977,
1981, and 1985) lists tables of transfer functions for one-dimensional heat transfer
through multilayered slabs. These tables could be updated to include walls which have
multi-dimensional heat transfer. An example demonstrating the importance of properly
modeling a roof with a steel bulb tees follows.

Transfer function coefficients were generated for one-dimensional and two-

dimensional models of a roof deck section taken from an example in ASHRAE (1985).
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Figures 2.4 and 2.5 show details of the geometry, inputs, and outputs for a section of the
roof. Transfer function coefficients for the one-dimensional model were determined for a
multi-layered roof with the same area weighted thermal physical properties as the roof
deck. Figure 2.6 shows the nodal spacing for the two-dimensional finite-difference
model. Table 2.4 contains the thermal physical properties of the materials in the roof.
The outside convection coefficient is 6.0 Btu/hr-ft2-°F and the inside convection
coefficient is 1.63 Btu/hr-ft2-°F. Table 2.5 contains the transfer function coefficients for
the one-dimensional model and the two-dimensional model of the roof deck.

Figure 2.7 shows the response to a 1°F step change in outdoor temperature with an
indoor temperature equal to O°F for one and two-dimensional models. The steady-state
and transient response for the two models is significantly different. This demonstrates

the importance of properly modeling the steel bulb tees in the roof deck.

Table 2.4 Thermal properties of the materials in roof deck.

Thermal Conductivity Density Specific Heat
Material Btu/hr-ft-"F Ibmy/ft3 Btu/lbm-°F
Roofing 0.094 70 0.35
Gypsum Concrete 0.14 51 0.21
Steel 26.0 490 0.12

Glass Fiber 0.021 5 0.23
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Figure 2.4 Roof deck.
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Figure 2.5 Enlarged section of roof deck.
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Table 2.5 Transfer function coefficients for one-dimensional and two-dimensional

models of roof deck.
One-dimensional Two-dimensional
Outside Inside Qutside Inside
Temp. Temp. Temp. Temp.
SJ- Sj Sj Sj

j  Btwhr-ft2-°F Btu/hr-ft2-°F & Btu/hr-ft2-°F  Btw/hr-ft2-°F &
0 0.00895 -1.10605 0.05312 -0.80438
1 0.20642 0.80496 -0.40554 0.15092 0.62278 -0.46860
2 0.02019 -0.15043 0.00432 0.02194 -0.04532 0.01943
3 0.00002 0.00002 0.00000 0.00002 0.00037 -0.00001
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Figure 2.7 Response to 1 °F step change in outdoor temperature for the roof deck.

2.6 SUMMARY

A method for determining transfer functions from the exact solution of a system of
first-order differential equations has been presented in this chapter. This method can be
used to determine transfer functions for multi-dimensional heat transfer. The number of
significant coefficients in transfer functions can be reduced by using the model reduction
methods presented in chapter 4.

This chapter has shown that multi-dimensional effects are important when modeling
the heat transfer processes in a roof deck which contains steel bulb tees. There are a
number of areas of application, besides roofs, where transfer functions for multi-
dimensional heat transfer could be used. For example, transfer functions could be

developed to model multi-dimensional heat transfer processes in an attic or a basement.



CHAPTER 3

Comprehensive Room Transfer Functions

This chapter describes a method in which the transfer functions describing heat
flows in building elements can be combined into a Comprehensive Room Transfer
Function (CRTF) for an enclosure. Section 3.1 presents the derivation of the equations
for combining transfer functions with parallel heat transfer paths. Section 3.2 is devoted
to a method for accurately modeling the convection and radiation heat transfer processes
in an enclosure by a star network. A star network allows individual transfer functions for
building elements to be easily combined for rooms. Section 3.3 presents equations for
combining transfer functions for a room model based on a star network. Section 3.4
compares the computational effort of energy balance simulations with CRTF simulations

for two rooms.

3.1 TRANSFER FUNCTION COMBINATION FOR PARALLEL PATHS
Many walls of common construction have parallel heat flow paths. Wilkes (1983)
compared heat transfer through a stud-frame wall and an uninsulated concrete wall for a
two-dimensional model and a parallel path one-dimensional model. There was less than a
three percent difference between the two models. Equations for combining transfer
functions for walls with parallel heat transfer paths, as shown in figure 3.1, are derived

in this section.

36
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Wall a

t,0 —~~ t,i
Wall b

~" \_

Figure 3.1 Walls with parallel heat transfer paths.

The transfer function equation for the heat flux at the interior surface of wall a is

Vta= Zo' (%52 Tejo.0 * Pja Tejsi) - ; (%29"58.0) (3.1.1)

where

aj a= outdoor temperature transfer function coefficient for wall a

bj Q= indoor temperature transfer function coefficient for wall a

cj Q= transfer function coefficient for past heat fluxes for wall a

The upper limits on the summations in equation (3.1.1) are dependent upon the method
used to obtain the transfer function coefficients, the wall material properties, and the time
step.

Equation (3.1.1) can be expressed in terms of the backshift operator, B, as
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j ] ]
(;Cj,a B q"t a = (Z.;aj,a B ) T + %bj,a B T, . (3.1.2)

where €0,a = 1.0. The backshift operator [Box and Jenkins (1976)] is defined as

B V.=V s (3.1.3)

where

v, = value of a state or signal at time t

v,_g = value of a state or signal at time t-8

Dividing by the summation on the left side of equation (3.1.2) results in

ta i (3.1.4)
3=0
A similar equation for wall b is
J J
Z a ,b B Tt,o + Z b_],b B Tt,l
=0 =0
q". .= : (3.1.5)




The heat flux for walls a and b combined, Q"t,y 18

Aa Ab

Tex "a +A, Tta TATA]

where

Aa = area of wall a
Ab =areaof wall b
f o = area fraction of wall a

fb = area fraction of wall b

Substituting equations (3.1.4) and (3.1.5) into equation (3.1.6) gives

q't,a Aa+A q tb ~ faq t,a

. j= =0
q',.,=f

tx “a j

Z Cj,a B
! =0 J
j j
aJ’b B Tt,o + Z b b B Tt,i
=0 J=
+ fb

+fptp

39

(3.1.6)

(3.1.7)

Multiplying by the denominators of the terms on the right hand side of equation (3.1.7)

results in
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T . (3.1.8)

Carrying out the algebra and combining common powers of the backshift operator yields

N j ]
(Z ¢, B ) Q. —(ZO: 2, B ) T, +(J§5 b, B ) T,; (3.1.9)

i=0 -
where
T g‘o(f a%.a %+ Fb 3 p Cj-k,a) (3.1.10)
J
b= 2 (Fa a4 * fb Piob Sokca) (3.1.11)
k=0
i i 1.12
CJ’X kgo( Ck7a c_]'kab) (3 )

Using the definition of the backshift operator, equation (3.1.9) can be rewritten in a form

that looks exactly like equation (3.1.1).



41

q”t,X - _]g(‘)‘ (aj,x Tt-jES,o M bj,x Tt-jS,i) ) (CJ',X Q"t.jg,x) (3.1.13)

=1

Equations (3.1.10), (3.1.11), and (3.1.12) define the transfer function coefficients in
equation (3.1.13). The number of previous time steps in the combined transfer function
equation is equal to the summation of the number of previous time steps for the individual
transfer functions, i.e., the number of previous time steps in the transfer function for wall
a plus the number of previous time steps in the transfer function for wall b. The number
of previous time steps in the combined transfer function can be reduced by using the
model reduction methods in chapter 4 to obtain an approximate transfer function which
accurately models the heat flow from both walls.

If transfer functions are combined for two identical walls, the combined transfer
function will have twice as many past steps as the transfer function for the walls.
Appendix D shows that the number of past time steps in the combined transfer function

can be reduced back to the number of past time steps for the individual transfer function.

3.2 STAR NETWORK

Direct combination of individual wall transfer functions into a CRTF when view
factors are used to model long-wave radiation in the room requires the manipulation of
polynomial matrices [Chen (1984)], an area of research in systems analysis.
Approximating the actual radiation and convection heat transfer processes in a room by a
star network allows for easy combination (i.e., no manipulation of polynomial matrices)
of transfer functions. Figure 3.2 shows a star network for an enclosure with three
surfaces. This section presents a computationally easy method for determining the

resistances in a star network from a network which uses wall-to-wall view factors to
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model long-wave radiation exchange, i.e., a view factor network.

Figure 3.3 shows a view factor network for an enclosure with three surfaces. The
resistance to long-wave radiation exchange between surfaces in the view factor network
is

1

R (3.2.1)

i-jrad = 3

where

€= emmitance of surface i

Gi-j = absorption factor between surfaces i and j

o = Stefan-Bolzmann constant

T = average temperature of surfaces in room

The absorption factor [Gebhart (1971)], G;_;, is the fraction of energy emitted by surface

-5
1 which is absorbed by surface j.

Section 3.2.1 presents a method for determining the resistances in the star network
from the resistances in the view factor network. Section 3.2.2 shows that this method
results in an exact transformation for rooms with two surfaces and for rooms which have
the same resistance to long-wave radiation heat transfer and the same resistance to

convective heat transfer for all surfaces. In Section 3.2.3, the star network is compared

with the view factor network for rooms in which an exact transformation does not exist.



43

:
<
I

1,

Figure 3.2 Star network for a room with three surfaces.
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3.2.1 Formulation

Two main steps are involved in determining the resistances in the star network from
the resistances in the view factor network. First, the resistance between each pair of
nodes in the view factor network is determined when all other nodes are floating. A
floating node is defined as one in which heat transfer occurs only by convection to the air
or by long-wave radiation exchange with other surfaces in the enclosure. As a result,
conduction through building elements, solar radiation gains, and radiation gains from
people, equipment, and lights do not affect floating surface nodes, and infiltration or
convection gains from people, equipment, and lights do not affect the floating room air
node. (If surface node i is floating, then q is 0. If the room air node is floating, then
9Q0ad is 0.) Second, an approximation is used to determine the resistances in the star
network from the resistances between nodes in the view factor network.

To compute the resistances between nodes in the view factor network, an energy
balance must be performed on each surface in the enclosure and on the air in the

enclosure. An energy balance for surface i in an enclosure with N surfaces is

(o) (o) (v ()

+ + o+ + +q;=0 (3.2.2)

Riirad Roirad RN-irad  Riconv
where
Ri-j,ra i= resistance to long-wave radiation between surfaces i and j
Ri conv = resistance to convective heat transfer between surface i and room air

q; = energy input to surface i other than by convection with the room air or long-wave

radiation exchange with other surfaces in the room

An energy balance for the air in the room is



M1 (%)

R

+ + ...

R
1,conv 2,conv

where

Yoad = heating or cooling load
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(3.2.3)

The N energy balances for every surface in the room and the energy balance on the room

air can be combined into the matrix equations

XY=2Z

where

(Fori=1toNandj=1toN)

X e o ==
@1 =1 Ri-j,rad Ri,conv
i
X =X = 1
() (BY Ry jrad
X N+1) =0
1
*N+1) TR
i,conv

X(N+1,N+1) =1
Yoy =Ti-Tp
Y(N+1) T Y10ad
HOI

ZN+1) =0

(3.2.4)
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To compute the resistance, Ri-j, between surfaces i and j when all other nodes are

floating, arbitrarily let q be unity so that

)
q; = -qj = 1.0 [W or Btu/hr] = R (3.2.5)
i

then
Ry = (%) (5T

=6 7YG)

=X(i,j)inv T *G,,inv ~ X6 i),inv ~XG,j).inv (3.2.6)
where

X(,5),iny = element in row i and column j of the inverse of the X matrix

To compute the resistance, Ri~r’ between surface i and the room air let

T.-T
qiquoadz—llzi_%= 1.0 [W or Btu/hr] (3.2.7)
then
Rir=Ti-T;
=" X(i,0),inv (328

A number of approximations could be used to obtain the unknown resistances in the
star network from the resistances between nodes in the view factor network. For
example, nonlinear regression could be used to minimize the error in heat flow between
nodes, or linear regression could be used to minimize the resistance to heat transfer

between nodes. An approximation that accurately models the heat processes in a room
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and requires less computational effort than linear or nonlinear regression is as follows.
The net heat flow to the air (i.e., load) for steady-state temperature differences
between enclosure surfaces and the air will be the same for the star network and the view

factor network if the following N equations are satisfied

R1 +R = Rl-r
R2 +R = R2-r
RN +R = RN-r : (3.2.9)

One more equation is needed to provide N+1 equations with N+1 unknowns. The last
equation is selected so that the heat transfer between surfaces for the star network
approximates the heat transfer between surfaces in the view factor network. The
difference in resistance to heat transfer between surface nodes i and j when other nodes

are floating for the view factor network and the star network is

R;+R;-R; ;=R; +R;

ir-Rij- 2R (3.2.10)

J

Squaring a dimensionless form of this error in resistance between all surface nodes gives

the function
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. 2
i- R +R -RJ-ZR)
1

(3.2.11)

N
V-2,

1: J: l-J
Surfaces with a lower resistance (Ri-j) between them have a larger heat transfer for the

same temperature difference. The following error function will place more weight on

resistances between surfaces with a smaller Rjj:

N i-1
z ( i-r T i 121
Yy = . . 3 (3.2.12)

Other weighting functions could be used to obtain y,, but as will be shown, this
Weighting function results in accurate modeling of the heat transfer processes for rooms
with a wide variety of thermal physical properties, resistances to long-wave radiation
exchange, and resistances to convective heat transfer. The derivative of Y7 with respect

to the resistance R between the star node and the air is

i-1 4R R R -ZR)

d(\lfz) z Z ij

1=2 j=1

(3.2.13)

Setting the derivative Y7 with respect to R equal to zero gives
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=2 i=1 Rij
= E 2.14
R N j1 ) 3 )
2, 2

j=2 i=1 Rij

The second derivative of W7 with respect to R will be positive for all positive values of R.
Therefore, Y, will be a minimum when R is positive. The other N unknown resistances
in the star network can be obtained from equation (3.2.9) after equation (3.2.14) is used
to compute the resistance between the star node and the room air node.

The following step-by-step procedure can be used to compute the resistances in the

star network from the resistances in the view factor network:

1)  Use equations (3.2.4), (3.2.6), and (3.2.8) to determine the resistances

between nodes in the view factor network when other nodes are floating.

2)  Use equation (3.2.14) to determine the resistance between the star node and

the air node.

3)  Use equation (3.2.9) to determine the resistances between the surface nodes

and the star node.

3.2.2 Exact Transformations
This section shows that the method described in section 3.2.1 results in an exact

transformation for a room with two surfaces and for rooms which have the same
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resistances to long-wave radiation exchange and resistances to convective heat transfer
for all surfaces. Figure 3.4 is a schematic of the heat flows for a two surface room which
uses view factors to model long-wave radiation exchange. The resistances between

nodes for the two surface room when one node is floating are

R R1-2,rad (Rl,conv + R2,conv) (3.2.15)
1-2 — o d o
R1-2,rad + R1,conv + R2,conv
R Rl,conv (R1-2,rad + R2,conv) (3.2.16)
L R1-2,rad + Rl,conv + R2,conv
R2 R2,conv (R1-2,rad + Rl,conv) (3.2.17)
N R1-2,rad + R1,<:onv + R2,conv

R
1-2,rad

q ~
1 —Q 4y I o N Y+ 9,
2,conv
1,conv
qload

Figure 3.4 Heat flows for a two surface room which uses view factors to model long-

wave radiation exchange.

Using equation (3.2.14) for a room with two surfaces, i.e., N = 2, gives the following

equation for the resistance R between the star node and the air node:



51

R

R tRy Ry
- 2

R R
_ 1,conv " 2,conv (3.2.18)

R1-2,rad + Rl,conv + R2,cc>nv

Equation (3.2.9) can be used to compute the resistances between the surfaces and the star

node, i.e., Rl and R2.

R R
R =R -R=x I’C;“V 1’2’“;1 (3.2.19)
1-2,rad + 1,conv + 2,conv
R R
2,conv 1-2,rad
RZ = R2-r -R= = R (3.2.20)

1-2,rad 1,conv + R2,conv

The resistances R{, Ry, and R3 obtained by this method are identical to those that would
be found if a Y-A transformation [Hayt and Kemmerly (1978)] would be performed.
Thus, the star network provides an exact representation of the heat transfer processes for
a two surface room.

Now it will be shown that the star network provides an exact representation of the
heat flows for rooms which have the same resistances to long-wave radiation exchange
and resistances to convective heat transfer for all surfaces. All floating resistances, R;_p,
between each surface and the room air are equal for a room with the same resistance to
convective heat transfer for all surfaces and the same resistance to long-wave radiation

exchange between all surfaces. Thus, the N equations in equation (3.2.9) are

R, +R=R,__ (3.2.21)
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for a room with the same resistance for convective heat transfer for all surfaces and
resistance to long-wave radiation exchange between all surfaces. Using equation

(3.2.14), the resistance between the star node and the room air is

R=R. -—3 (3.2.22)

The difference between resistance to heat transfer for the actual network and the star

network when other nodes are floating is

Substituting equations (3.2.21) and (3.2.22) into equation (3.2.23) gives

R;+R;-R ;= 2(Ri_r - R) -2R, +2R=0 (3.2.24)

Thus, the star network provides an exact result for the heat flow calculations for a room
with the same resistance to convective heat transfer for all surfaces and the same

resistance to radiation heat transfer between the walls.

3.2.3 Example for an Enclosure with Three Surfaces
This section contains the development of a star network for an enclosure in which
the heat flows are approximate, i.e., heat flows in the star network are different than the
heat flows in a view factor network. To keep the example simple, an enclosure with

three surfaces is used.



Assume, the resistances in the view factor network are

R} ) raq = 3-44 (ar-°F)/Btu

R = 0.0344 (hr-°F)/Btu

Ri3rad=R231ad

Rl,conv = R2,conv = 0.0625 (hr-°F)/Btu

R3,conv =0.0625 (hr-°F)/Btu

The elements in the X matrix can be computed from equation (3.2.4)

1 1 1

X =- - - = -45.36 Btu/(hr-°F)
(1.D R1—2,rad R1-3,rad Rl,conv
SSUNE S L 4536 Br/(hr-°F)
22 Risrad R23rad  Roconv
Xy = L 1 1814 BuwhroF
G:3) R1-3,rad R2-3,rad R?»,conv
1
X =X = — = (0.2907 Btu/(hr-°F)
(1,2) ~ 72,1 R1-2,rad
1
X =X =——— = 29.07 Btu/(hr-°F)
1
(1,3) ~ °(3,1) R1-3,rad
1 [e)
x(2’3) = x(3’2) =g = 29.07 Btu/(hr-°F)
2-3,rad

X(1,4) =X(2,4) =%3,4)=0

1 (e
X(41)= g = 16 Bu/(hrF)

1,conv

53
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1
X = ———— = 16 Btu/(hr-°F)
42) R2,c:onv
1
X = ———— = 160 Btu/(hr-°F)
*3) R3,Conv
X(4,4)= 1

Thus, the X matrix is

[-45.36  0.29 29.07 O]

029 -4536 29.07 O

29.07 29.07 -218.14 O
16 16 160 -1

L -

Next, the inverse of the X matrix is computed.

[-0.0244 -0.0024 -0.0036 0
-0.0024 -0.0244 -0.0036 O
-0.0036 -0.0036 -0.0055 O

-1 -1 -1 -1

The resistances between surfaces when other nodes are floating can be computed from

equation (3.2.6).

R12=X1 2y inv * X2, 1)inv ~ X(1,1),inv ~ X(2,2),inv = 0-0348 (br-°F)/Btu

R13=X(1,3)inv T *3,1),inv ~ X(1,1),inv ~ X(3.3),iny = 0-0227 (br-°F)/Btu
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R = 0.0227 (hr-°F)/Btu

2-3 = %2,3)inv T ¥(3,2),inv ~ X(2,2),inv ~ %(3,3),inv

The resistances between the surfaces and the air node when other surface nodes are

floating can be computed from equation (3.2.8).

R = 0.0244 (hr-°F)/Btu

1-r =~ %(1,1),inv
R2-r = _x(2,2),inv = 0.0244 (hr-°F)/Btu

Ry =-X(3 3) iny = 00055 (hr-F)/Bru

The resistance between the star node and the air node is computed from equation

(3.2.14).

Rl-r + R2-r B R1-2 . Rl-r + R3-r B R1-3 . R2-r + R3-r B R2-3
3 3

3
R, R, ] P
R = 1-2 1-3 23 00035
2 ! + ! + ! B
3 3 3
12 Rz Ry

The resistances between the surfaces and the star node can be computed from equation

(3.2.9).

R1 =R, - R =0.0209 (hr-°F)/Btu

R2 = R2-1' - R =0.0209 (hr-°F)/Btu

R3 =R; .- R=0.0020 (hr-°F)/Btu
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The difference in resistance between surface nodes when other nodes are floating for the

view factor and the star network can be computed from equation (3.2.10).

R, +R, - R _,=-0.0021 (hr-°F)/Btu
R, +Rj - R;_3=0.0001 (hr-°F)/Btu

R, +Ry - Ry 5 =0.0001 (hr-°F)/Btu

Thus, the star network is an approximation to the view factor network for this example.
The next section demonstrates that the error which results from using the star network is

not significant.

3.2.4 Accuracy of Star Network

To test the star network for rooms in which an exact transformation does not exist,
loads with the star and view factor networks were compared for rooms which contained
building elements with a wide range of thermal physical properties, resistances to long-
wave radiation exchange, and resistances to convective heat transfer. A three surface
room and an eight surface room were used in the comparison. The three surface room

contained the following building elements:

1) 32 ft2 of exterior glazing
2) 32 ft2 of an exterior frame wall with 3 inches of insulation

3) 320 ft2 of 12" heavy concrete interior partition

The resistances derived in the previous section for the star network were used to model

the three surface room. The eight surface room contained the following building
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elements:

1) 64 ft2 of exterior glazing

2) 9.6 ft2 of the stud path of an exterior frame wall

3) 544 £t2 of the insulation path of an exterior frame wall

4) 128 ft2 of an 8 inch low weight concrete floor deck

5) 64 ftZ of a frame partition with 1 inch wood

6) 128 ft2 of interior partition consisting of an 8 inch clay tile
with 0.75 inch plaster

7 64 ft2 of interior partition consisting of 4 inch clay tile
with 0.75 inch plaster

8) 128 ft2 of a 4 inch wood deck with false ceiling

Loads resulting from step changes in outdoor temperature, indoor temperature,
solar radiation gains, and radiation gains from people, equipment, and lights were
computed for the star and view factor networks for both rooms. A one hour time step
was used. The time step with the largest percent difference in loads between the
networks is shown figure 4. Table 1 contains the percent difference in steady-state loads
between the star and view factor networks for the following inputs: temperature
difference between the ambient and indoor air, solar radiation gains, and radiation gains
from people, equipment, and lights. Figure 4 and table 1 demonstrate that the star

network accurately models the heat transfer processes for both rooms and all inputs.
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Figure 3.5 Response to 1 °F step change in outdoor temperature for the eight surface

room.

Table 3.1 Percent difference in steady-state loads between the star and view factor

networks.

Input 3 Surface Room 8 Surface Room
Temperature Difference 0.45% 0.69%
Solar 0.12% 0.36%
Radiation 0.006% 0.17%

3.3 TRANSFER FUNCTION COMBINATION FOR A STAR NETWORK
This section presents a method for combining individual building component
transfer functions into a single transfer function for an enclosure modeled by a star

network. Section 3.3.1 contains the development of equations and section 3.3.2
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considers an example.

3.3.1 Formulation

Three main steps are required to determine a CRTF for a room which uses a star
network to model the radiation and convection heat transfer processes. First, transfer
functions are developed for each building component (e.g., wall, floor, or ceiling) which
relate heat flow to the star node with the inputs. Second, transfer functions for each
building component are combined in order to relate the total heat flow to the star node
with the inputs. Third, the star temperature is removed from the combined transfer
function equation by relating the building load to the temperature difference between the
star node and the room air temperature.

A transfer function equation for an exterior wall will be developed which will relate
the heat flow to the star node with solar radiation gains (from one direction), outdoor
temperature, star temperature, and radiation gains from people, equipment and lights as
indicated in figure 3.6. The methods previously discussed can be used to calculate the

coefficients for a transfer function equation of the form

e kint = ZO (aj,k Ag Tt-j5,k,sa - bj,k Ag Tt-jS,k,int) ) Zl %k 9t-j8 k,int (3.3.1)
J J:
where

T ti8.k,52 = sol-air temperature for wall k

Tt—j 8 k,int = femperature of interior surface of wall k

The sol-air temperature [Mitchell (1983)] for wall k is



Tt-jS,k,sa = Tt-jS,amb + It-j5 Oy Rk,out Ak

where

Tt-j8,amb
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(3.3.2)

= ambient temperature at j time steps prior to time t

It-j 5= incident solar radiation at j time steps prior to time t

o = solar absorptance of the exterior surface of wall k

R

and the outdoor air

k,out
OUTSIDE AIR
Tt,k,sa k,out

’\/_\, ‘

= resistance to convective heat transfer between exterior surface of wall k

Figure 3.6 Energy flows for an exterior wall.

EXTERIOR ROOM
WALL k
Absorbed Solar
Radiation
(through windows)
IAW (tov) K
T t.k,int R k T t,star
> @ /\/—O
qt,k,int —Pq
Heat tk
Transfer
Across o
Interior k 9trad
Surface Radiation Absorbed
/\/\i from Internal Sources

(but not from other walls)

An energy balance on the interior surface results in the following equation for heat flow

to the star node from wall k:
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938 k,int = t-j5,k ~ Pk U-j8,rad ~ 1158 Aw TPy (3.3.3)

where
O = fraction of radiation gains from people, equipment and lights which is
absorbed at the interior surface of building element k
qt—j Srad = radiation gains from people, equipment, and lights at j time steps prior to

time t

The interior surface temperature is related to the star temperature and heat flow to the star

node by

T 5 x,int = Ric Yo k * Te-js,star (3.3.4)

Substituting equations (3.3.2), (3.3.3), and (3.3.4) into equation (3.3.1) results in

A = Zo (dj,k T i5,amb * €k Tt-i,star * Fjk I8 * &k qt-js,rad) - Z{ b k 9e-j5 K
= = |

(3.3.5)
where

a., A

Jk Tk
d., = (3.3.6)
1.k l'bO,kAkRk

b., A

J.k 'k
e., = (3.3.7)
k R
J 1 bO,kAkRk

A_ (ta), + o, R A2

C. a.

£ = 1.k w k" "3,k "k “k,out 'k (3.3.8)
3.k A, R

1-bj 1 A Ry
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c.. ¢
3.k "k
g, = (3.3.9)
kT Ty R Ay
Sk i Ric Ak
T e (3.3.10)
’ 0k “k Pk

Equation (3.3.5) relates the heat flow to the star node for exterior wall k with the inputs.
Next, transfer functions for heat flow to the star node from an interior partition and a
window will be presented.

As shown in figure 3.7, the surface temperatures on both sides of a interior
partition are assumed to be identical. Thus, the transfer function for the heat flow from

an interior partition is of the form

Uk, int = % 55k Ak Tejd kiint - 21‘ %k 9t-j8 k,int (3.3.11)
J= J=

Equations (3.3.3) and (3.3.4) for the exterior wall are identical to the equations for the
interior partition. Substituting equations (3.3.3) and (3.3.4) into equation (3.3.11)

results in

ek ™ Zo' (S5 Tejo.star * i 6 * &k Yjorad) < Mk Ik (33.12)
1= =
where
b, A
& Ak
k™ TTR, (3.3.13)

l'bO,kAkRk
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£ _ Sk % 3.3.14
ik 1-b., A, R (3.3.14)
0.k 2k Rk
C.p. 0
ik Pk
g . = (3.3.15)
Bk T T-by R AL
_ Sk~ Dk Ric Ak 3316
o= 3,
i, =By R Ay

Equation (3.3.12) relates the heat flow to the star node with the inputs for an interior

partition. Equations (3.3.12) through (3.3.16) could also be used for room furnishings.

/\/_\. ,

" INTERIOR PARTITION ROOM
or
FURNISHING Absorbed Solar
BUILDING ELEMENT k | Radiation
(through windows)
I AW (roc)k
T,,. Tt,k,int / Rk Tt,star
¢ t.k,int > /\/—O
9 kint —>q
Heat L
Transfer
Across )
Interior k 9trad
Surface Radiation Absorbed
from Internal Sources
/\/\J (but not from other walls)

Figure 3.7 Energy flows for an interior partition.

Figure 3.8 shows energy flows for a window with a single pane of glass. The
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thermal capacitance of glass is small when compared to the thermal capacitance of other

building elements, e.g., walls, roofs, or floors. Thus, assuming no thermal capacitance

for glass will not significantly affect the load calculations for a room.

OUTSIDE AIR

Absorbed

Solar

Radiation
I tAW aw

ROOM

o \/\ e
R w,out \

™\

Figure 3.8 Energy flows for a window.

¢ w q t,rad

Radiation Absorbed
from Internal Sources
(but not from other walls)

The heat flow to the star node for the window is

Tt,amb . Tt

dbw R _+R
W w,out

+ (It Aw Gy + qt,rad ¢w)

Rw,out
Rw + Rw,out

(3.3.17)

Equation (3.3.17) can be rewritten into a transfer function form as

qt,w = dO,W Tt,amb + eO,w Tt,star +1,

where

o,w It *+&p qt,rad

(3.3.18)
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1
R IR 3.19
dow "R 3R (3.3.19)
w w,out
1
fow-" R xR (3.3.20)
O,W RW * RW,Ollt
fo= Aw Y Rw,out 3321
O,w™ R_+R 3.
w w,out
¢W RW out
fow R_+R_ (3.3.22)
w w,out

The transfer functions for heat flow from each building element to the star node can
be combined in a nested fashion (i.e., combine the transfer functions for building
elements 1 and 2, then combine the transfer function for building element 3 with the
combined transfer function for building elements 1 and 2, and continue). The backshift |
operator can be used to combine any two transfer functions to give the combined heat

flow, e,y

ey = sz (%2 Tej6,amb * %5 Tecjostar * G 1158 * 8. G-j6.ad

) Zhj,x 9-35.x (3.3.23)
j=1
where
938, = 58,1 T %435,2 (3.3.24)

(dj-k,l by o+ d o hj-k,l)

dix = i

k=0

(3.3.25)
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i~ i ©ik,1 M2 * o2 Pk, (3.3.26)
k=0
fx i (_] i1 M2 oo By 1) (3.3.27)
&ix 2( 1 2 * 82 M) (3.3.28)
Bj = i by 1B (3.3.29)
: k1 Mk 2
R ]

Combining heat flows from every surface to the star node gives

Gy = (( (((qt,l * qt,2) * qt,3) * qt,4) T F qt,N-l) * qt,N)

=9 10ad (3.3.30)

The load is related to the temperature difference between the star node and the air node

simply by

Tt,star B Tt,r

Qload > R (3.3.31)

Substituting equations (3.3.31) and (3.3.30) into equation (3.3.23) gives
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At load = ZO (dj Tt-j8,amb+ & Tejo," fJ It‘j5+ 8; qt-j&rad) ) z;hj 9t-38,load (3.3.32)
i= =

where

d.
d. = 1_3’%___ (3.3.33)
J - eo’x
e.
ix
o= X (3.3.34)
J 1-R eo’x
f.
isx
f=JX (3.3.35)
J 1-R eO,X
g.
g. =.1_Jg__ (3.3.36)
J = CO’X
h., -Re.
b= 2E 2K (3.3.37)
J - eO,x

Equation (3.3.32) is a CRTF which relates the load for an enclosure to past and current
inputs and past loads.
The following step-by-step procedure can be used to determine a comprehensive

room transfer function from the transfer functions for individual building elements:

1) Determine a transfer function which relates the heat flow to the star node with
the inputs for every building element. Use equations (3.3.6) through (3.3.10)
for an exterior wall, roof, or floor. Use equations (3.3.13) through (3.3.16)
for an interior partition. Use equations (3.3.19) through (3.3.22) for a

window with a single pane of glass.
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2) Use equations (3.3.25) through (3.3.29) to combine the building element

transfer functions for a star network.

3) Use equations (3.3.33) through (3.3.37) to remove the star temperature from
the combined transfer function, i.e., the transfer function which was obtained

in the previous step.

3.3.2 Example for a Room with Three Surfaces

This section discusses the development of a CRTF for the three surface room
described in sections 3.2.3 and 3.2.4. Properties of the building elements can be seen in
table 3.2. Mitalas and Arsenault's program (1971) was used to generate the transfer
function coefficients for the individual building elements, although the method described
in chapter 2 could have been used. Table 3.3 contains the transfer function coefficients
for the individual building elements. It required 5.52 seconds of central processing unit
(CPU) time on a Digital Equipment Company MicroVax computer to compute the transfer
functions for the individual building elements.

The step-by-step procedure described in the previous section was used to compute
the CRTF listed in table 3.4. It required 0.37 seconds of CPU time on a MicroVax
computer to compute the CRTF coefficients from the transfer functions for the individual
building elements and a building description. Thus, the amount of computational effort
required to compute the CRTF coefficients is small when compared to the effort required
to compute transfer function for individual building elements.

Tables 3.3 and 3.4 show that the number of past time steps in the CRTF is greater
than the number of past time steps for the individual building element transfer functions.

Not all of the coefficients in the CRTF are needed and the model reduction methods
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described in the next chapter can be used to determine a smaller set of CRTF coefficients

which provides nearly the same results as the full set of coefficients.

Table 3.2 Properties of the room.

Window Exterior Wall Interior Partition
o 0.1 0.5 -
(tor) 0.0 0.0 0.8
0] : 0.0833 0.0833 0.8333
Rout 0.0381 hr-°F/Btu 0.0104 hr-°F/Btu -

Table 3.3 Transfer functions coefficients for the individual building elements.

Exterior Wall Interior Partition
1 . - ) -~ . . _0 3
] 3 Btw/hr-°F bJ Btu/hr-°F i bJ Btu/hr-°F G
0 0.01873 -1.35837 1.00000 -4.14658 1.00000
1 0.04125 1.63904 -0.27106 7.64987 -1.37632
2 0.00287 -0.34363 0.00010 -4.35962 0.52523
3 0.00011 0.90665 -0.05488
4 -0.05111 0.00106
5 0.00078
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Table 3.4 CRTF coefficients for the three surface room.

j d; Bu/hr-F e Buvhr-°F f ft2 gj Bu/hr-°F b

0 7.22392  -166.37440 3.77590 0.13485 1.00000
1 -17.20155 428.61942 -8.13945 -0.28796 -2.51688
2 15.67038  -420.61942 6.60672 0.22942 2.41420
3 -7.11566 202.29428 -2.58204 -0.08705 -1.13912
4 1.69724 -50.26068 0.50493 0.01627 0.27766
5 -0.19811 6.02287 -0.04554 -0.00137 -0.03270
6 0.00882 -0.27649 0.00146 0.00004 0.00147
7 -0.00012 0.00397 -0.00001 0.00000 -0.00002

3.4 COMPUTATIONAL EFFORT

Table 3.5 contains the number of multiplications required per time step for energy
balance simulations of view factor networks with time independent A matrices and CRTF
simulations for the three and eight surface rooms previously described. Table 2 shows
that for the three surface room there is no computational savings in performing a CRTF
simulation, and for the eight surface room there is not a large computational savings. For
a CRTF simulation, the number of multiplications required per time step is equal to the
number of coefficients in the CRTF. The number of multiplications required per time
step for an energy balance simulation was determined from an equation described in

appendix E.



71

Table 3.5 Number of multiplications required per time step for an energy balance

simulation and a CRTF simulation.

Multiplications per Time Step

Energy Balance CRTF
3 surface room 35 38
8 surface room 152 109

3.5 SUMMARY

This chapter described a method in which transfer functions for individual building
elements are combined into a comprehensive room transfer function (CRTF), i.e., a
single transfer function which relates the heating or cooling loads for a room to the
inputs. Long-wave radiation exchange and convection in the room are accurately
modeled with the star network. A procedure for determining the resistances in the star
network from a network which uses view factors to model long-wave radiation exchange
was presented.

The computational effort of a CRTF simulation was compared with the
computational effort of an energy balance simulation for two rooms. For the rooms
tested, the computational effort of a CRTF simulation was not significantly different than
the computational effort of an energy balance simulation. Computational effort of CRTF
simulations can be significantly reduced by using model reduction methods to find a

smaller set of coefficients. The next chapter is devoted to model reduction methods.



CHAPTER 4
Model Reduction

The previous two chapters have described methods for obtaining transfer functions
for building elements and for rooms. This chapter describes model reduction »methods
for reducing the number of coefficients in transfer functions. These methods are essential
for decreasing the computational effort of simulations.

A number of different methods for reducing the order of transfer functions have
been developed by researchers in the fields of automatic controls and system analysis.
The motivation behind the development of these methods is to reduce computer time for
system simulation and to make control system design and analysis easier.

Shamash (1980) said that the Padé approximation is a popular method for reducing
single-input Laplace transfer functions because it requires little computational effort,
cancels common factors if they exist, and matches the steady-state response of the
original and reduced Laplace transfer functions for polynomial inputs. There are two
disadvantages of the Padé approximation. First, if the original transfer function is stable,
the reduced transfer function is not guaranteed to be stable. Second, reduced multiple-
input transfer functions cannot be obtained with the Padé approximation. A number of
model reduction methods [Jamshidi (1983)] have been developed which do not have the
stability preservation problem and can be used to reduce multiple-input transfer functions.
After comparing four different methods which do not have the stability preservation

problem with the Padé approximation, Shamash (1982) said:

72
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"...if there is a common pole and zero close to the origin, then all these four
methods will lead to erroneous results. Further, all these methods are based
upon approximating the dominant (closest to the origin) poles and zeros of the
system. Thus, if a system has dominant poles that are furthest away from the
origin, then again these methods will produce erroneous approximations.
Finally, when applied to multi-variable systems these methods may lead to
models that are higher in order than the original system.
These problems do not occur in Padé approximations.”

Shih and Wu (1973) have used the bilinear transformation [Kuo (1980)] and
continued fraction expansion, which is a reduction method for Laplace transfer functions,
to reduce single-input (discrete) transfer functions. Jamshidi (1983) said that the
continued fraction method has several limitations. One of the limitations is that it cannot
be used to reduce multiple-input transfer functions when the number of inputs is equal to
 the number of outputs. Thus, continued fraction expansion cannot be used to obtain a
reduced multiple-input CRTF.

Section 4.1 reviews the equations for reducing single-input Laplace transfer
functions by means of the Padé approximation. Section 4.2 extends the Padé
approximation to single-input transfer functions by using the bilinear transformation.
Then, section 4.3 presents a new model reduction method which does not have the
stability preservation problem and can be used to reduce both single-input and multiple-
input transfer functions with any number of inputs or outputs. This new model reduction
method uses equations presented in sections 4.1 and 4.2 to determine transfer function
coefficients for the inputs. Section 4.4 describes a procedure for determining the
minimum number of past time steps required to accurately model heat transfer processes
with reduced transfer functions. In section 4.5, the computational effort of energy
balance simulations is compared with the computational effort of reduced CRTF

simulations for two rooms.
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4.1 PADE APPROXIMATION

Jamshidi (1983) presented equations for reducing Laplace (i.e., continuous)
transfer functions when the order of the numerator is equal to or less than the order of the
denominator. In the next section, equations for reducing Laplace transfer functions when
the order of the numerator is equal to the order of the denominator are needed.
Therefore, this section contains equations for reducing single-input Laplace transfer
functions with the Padé approximation when the order of the numerator is equal to the
order of the denominator.

The reduced Laplace transfer function

d,+d,s+d 2+ +3 s
G.(s) = 2 o (4.1.1)
r _ - 2 _ m
1+els+e25 +...+ems
is the Padé approximation of
a,+a,s+a 2+ +a n
a,+a,S+a,s ..+a_s
0“1
G(s) = 2 5 n - (4.1.2)
1+bls+b2s +...+bns

(where m is less than n) if the power series expansion for G.(s) is equal to the power
series expansion of G(s) for terms of order sO to s2m. Next, the equations for

calculating the power series of
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- - - 2 - 3
G(s)=co+cls+czs +Cgs +.. (4.1.3)

will be formulated. The following equation results from equating equation (4.1.3) with

equation (4.1.2):

- _ - 2 - n_ — - 2 —~ n\/- _ - 2
a0+als+azs +...+ans = 1+b1s+b23 +...+bns CO+CIS+CZS + ...

(4.1.4)

Multiplying the terms on the right hand side of equation (4.1.4) together and combining

common powers of the Laplace transform variable s results in

_ - - 2 - n _ - - - _ - 2
a0+a1s+azs +...+ans =co+(c0b1+cl)s+(cob2+c1b1+02)s + ...

(4.1.5)

The Ei coefficients for the power series expansion of G(s) are determined by equating the

coefficients of equal powers of s in equation (4.1.5).

c.=a.- ) c.D.. (4.1.6)
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To calculate the Padé approximation for G(s), the power series for G(s) is set equal to the
Laplace transfer function Gy(s). The following equation results from combining equal

powers of s when the numerator of G(s) is set equal to the denominator of G(s) times

G(s):

_ — - 2 — m _ - 2 - m\{_- _ _
do+d1s+d25 +...+dms = 1+els+e25 +...+cms cO+c S+CyS + ...

=F:0+(c_:1 +61 EO) s+(c—:2+'é1 El +EZEO) s
+ ...

- - - - - - = m
+(cm+e1 €1 +t€Cmn ¥t en CO) s

- I I - m+1
+(Cm+1 +eqc teyc gt + emcl) S

+ (Em+2 +eyC o +eyC t.te Oy
+ ..
- - - - - - 2m
+ (c2m +e1Cy 1T Cy et mcm) s
+ .. (4.1.7)
A set of m linear equations with m unknown denominator coefficients (éi) of the Padé

approximation can be formulated by equating powers of s from (m+1) to (2m) in

equation (4.1.7).
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°m  “m-1 ©2 ¢ 1 Cm+1

m+1 °m €3 ) ) m+2
= . (4.1.8)

“2m2 “2m3 -+ ®“m  ®m-1| | °m-1 ©om-1

“9m-1 “2m2 - “m+1 °m °m ©om

The denominator of the Padé approximation is determined by solving equation (4.1.8) for
the e, €5, ... , ey, coefficients. After determining the denominator of the Padé
approximation, numerator coefficients of the Padé approximation are determined by

equating powers of s from 0 to m in equation (4.1.7).

m
d_=t_+> &c_ . (4.1.9)
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In summary, the following step-by-step procedure can be used to obtain a reduced

Laplace transfer function by the Padé approximation:

1) Use equation (4.1.6) to determine the power series expansion of a Laplace

transfer function for terms of order s0 to s2™,

2) Use equation (4.1.8) to determine the denominator of the reduced Laplace

transfer function.

3) Use equation (4.1.9) to determine the numerator of the reduced Laplace transfer

function.

4.2 PADE APPROXIMATION AND BILINEAR TRANSFORMATION
This section extends the Padé approximation to model reduction for single-input
(discrete) transfer functions. Section 4.2.1 contains equations for reducing single-input
transfer functions with the Padé approximation and the bilinear transformation. An
algorithm which is useful for efficiently computing reduced transfer functions is
described in section 4.2.2. In section 4.2.3, an example of model reduction for single-
input transfer functions is presented. Section 4.2.4 contains a discussion of the
conversion of multiple-input transfer functions, e.g., the CRTF developed in Chapter 3,
into single-input transfer functions. Section 4.2.5 contains examples of model reduction

for a building element and a CRTF.

4.2.1 Formulation

This section contains equations for reducing single-input transfer functions with the



bilinear transformation and Padé approximation.
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The following single-input transfer function relates the inputs of a system to the

outputs:

n

n
o= 2
=0 =1

where

(%%58)

Yis = output j time steps prior to time t

n = number of past time steps in transfer function

aj = transfer function coefficient for input
ut-j 5= input at j time steps prior to time t

bj = transfer function coefficient for output

Taking the z-transformation [Jury (1964)] of equation (4.2.1) results in

n . n .
g 7
Z(bjz ) Y(2) = (ajl ) U()
=0 =0
where
by =1

Y (z) = z-transform of the output

U(z) = z-transform of the input

From equation (4.2.2), the z-transfer function is

(4.2.1)

(4.2.2)
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G(z) = = = (4.2.3)

Equation (4.2.3) is a z-transfer function which relates the z-transform of the input to the
z-transform of the output and it is unstable if there are poles outside the unit circle.
(Poles are roots of the denominator of a transfer function.) To reduce z-transfer

functions, the bilinear transformation [Kuo (1980)]

(4.2.4)

is used to transform a z-transfer function into a w-transfer function. (A w-transfer
function is a ratio of polynomials of the complex variable w.) The bilinear transformation
maps the unit circle on the z-plane into the left half of the w-plane. A w-transfer function
behaves like a Laplace transfer function because both transfer functions are unstable if .
they have poles in the right half of their complex planes. Substituting equation (4.2.4)

into equation (4.2.3) gives the following w-transfer function:

n - - n . j n i )
w -w j n-j
;Oaj(l-w) %aj(l+w) Ztoaj“'w) (1 +w)
Gw) == 5 = - ;= - (4.2.5)
1+w 1-w j n-j
zb-( ) zb.( ) Zb.(l-w) (1 +w)
SN T-w SO\Tvw) &7
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Section 4.2.2 describes an algorithm for determining the Vi(j,n) coefficients in the

following equation:

n

-w) (1 +w) = Z Vidin w (4.2.6)

1i=0

Substituting equation (4.2.6) into equation (4.2.5) gives

n n ) n n .
Zaj zvi(j,n)wl Z Zajvi(j,n) W
G(w)-FO =0 A 4.2.7)
) n n
;bj 124 iGn) % w g‘o JZO Vigm) | W

Equation (4.2.7) is a ratio of polynomials of the complex variable w. The Padé
approximation for reducing Laplace transfer functions can also be used to reduce w-
transfer functions. To use the equations in section 4.1.1 to reduce w-transfer functions,

the coefficient for w0 in the denominator of equation (4.2.7) must be set equal to 1.

G(w) = — (4.2.8)

n .
- i
E a. w
y i
0
n .
- 1
b. w
y i
i=0

where
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n

a.Vv.,.
Z J "1G,n)
= :O (4.2.9)
Eb.v .
= J 70G,n)
>
b.v.,.
&= "] "i(§,n)
P (4.2.10)

i~ n
Eb.v.
0G,
J.___OJ G,n)

The Padé approximation described in section 4.1 can be used to obtain a reduced w-

transfer function of the following form:

m .
— 1
Z d; w
Gwy= (4.2.11)
T m
> e
) ei w
i=0
where
€= 1

m = number of past time steps in reduced transfer function

Next, the reduced w-transfer is transformed into a reduced z-transfer function by using

the bilinear transformation
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W= _ (4.2.12)

m . -1 m i . m-i
= -z _ -1 -
Zdl -1 Zd.(l-z )(1+z )
4 i
i=0 \1+z i=0
G.(2) = - = - - (4.2.13)
i m i m-i
m -1 - - -
A Yl (1427
1 -1 i=0
i=0 1+z

The algorithm described in section 4.2.2 can be used to compute the Vi@i,m) coefficients

in the following equation:

(1-2Y) (1427 =Zvj(i’m)z-j (4.2.14)
=0

J=

Substituting equation (4.2.14) into equation (4.2.13) gives

zd Z J(lm) -j z_:o Zdl _](lm)
G (2) = ———— = r'n - (4.2.15)

z 6i Z vj(i,m) Z-j 2 Z 1 v_](l m) -j

i=0 j=0 =01\ i=0




Equation (4.2.15) can be rewritten as

m .
jzﬁﬁzj
_=0
0@ =5
Eifazj
=0
where
m
diVKLnD
€.V
O >
o 1 "0(G,m)
m
;Ocivj(i,m)
e =
J m
E;;eiVOGJn)
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(4.2.16)

(4.2.17)

(4.2.18)

Transforming equation (4.2.16) back into the time domain gives the following reduced

transfer functon.

m m
= Z dugs- Z € Yti8
=0 =1

(4.2.19)

Next, a step-by-step procedure for determining reduced transfer functions by using

the Padé approximation and bilinear transformation will be presented. The step-by-step
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procedure also identifies the equations needed for writing a computer program to do the

reduction.

1)

2)

3)

4)

5)

Use z-transform theory and the bilinear transformation to determine the
w-transfer function from the transfer function. [Use equations (4.2.9) and
(4.2.10) along with the algorithm described in section 4.2.2 to obtain the

coefficients in equation (4.2.8).]

Use equation (4.1.6) to determine the power series expansion of the w-transfer

0 1o w2m,

function for terms of order w
Use equation (4.1.8) to determine the denominator of the reduced w-transfer

function.

Use equation (4.1.9) to determine the numerator of the reduced w-transfer

function.

Use the bilinear transformation and z-transform theory to obtain a reduced
transfer function from a reduced w-transfer function. [Use equations (4.2.17)
and (4.2.18) along with the algorithm presented in section 4.2.2 to obtain the

coefficients in equation (4.2.19).]

4.2.2 Extension of Pascal's Triangle

Numerical analysis textbooks [Conte and de Boor (1980) and Secgewick (1983)]

contain algorithms for multiplying polynomials. These algorithms could be used to



86

obtain the Vi(i,n) coefficients in the following equation:

n

1 n-i j
1-%) (1+%) =Zovj(i’n)x (4.2.20)

This section contains a numerically efficient algorithm for determining the Vi(i,n)
coefficients in equation (4.2.20). The algorithm is numerically efficient because no
multiplications or divisions are required. The following algorithm for computing the

Vi(i,n) coefficients in equation (4.2.20) is based upon an extension of Pascal's triangle

[Spiegel (1968)]:

Vodi,n) =1
- For k = 1 to i with a step size of 1
VkG,n) = "Vk-1G,n)
For j = (k-1) to 1 with a step size of -1
Vidm = Vidn) " Yj-1Gn)

Next j

L— Nextk

- For k = (i+1) to n with a step size of 1

Vk@,n) = Vk-1G,n)

Forj=(k-1)to 1 witha step size of -1
Vidn = Vi) *Vj-16.0)

Next j

— Next k
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Figure 4.1 shows the steps required to compute the coefficients when i equals 3 and n

j(3,5)
N
NI
NN
NN
IRSNNENN

Figure 4.1 Steps to compute the coefficients wheni=3 and n = 5.

4.2.3 Example

The following transfer function will be used to demonstrate model reduction for



discrete systems by using the bilinear transformation with the Padé approximation:

Ye=3gu taju s+ayu o5-byy, 5-byy o5

=u +05u +0.1u ,s+1.1y 5-03y, 55

From equation (4.2.5), the w-transfer function is

ao(1+w)2+a1 (1-w)(1+w)+az(1-w)2

Glw) = 2 2
b0(1+w) +b1 (1-w)(1+w)+b2(1-w)

=(1+w)2+0.5(1-w)(1+w)+0.1 (l-w)2

2 2
A+w) -1.10-w)yA+w)+03(1-w)

2
_1.6+1.8w+0.6w

2
02+14w+24w
The coefficients in equation (4.2.8) are

- _ _ 2
an+a, w+ w
0 ¥ )

G(w) = 5 = 3
b0+b1w+b2w 1+7w+ 12w

2
8+9w+3w

Equation (4.1.6) can be used to calculate the power series expansion for G(w).

- - - 2
G(w)=c0+c1w+02w +..=8-47Tw+236w +..

88
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Assume, the reduced w-transfer function is of the form

Using equation (4.1.8), the unknown coefficient in the denominator of reduced w-

transfer function is

c
- 2 236
Cl —-a—-" ':27' = 5.02128

Numerator coefficients of the reduced w-transfer function are determined from equation

(4.1.9).

Thus, the reduced w-transfer function is

8-6.82979 w

6 W =175 018w

The reduced z-transfer function can be calculated from equation (4.2.13).
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Bl1+2")+3,(1-27)
dO 1+z +d1 1-z

e
€ 1+2z +e1 1-2z

-1 -1
8(l+z )-6.82979(1-z )

Gr(z) =

-1
1+z +5.02128(1-z )

-1
_0.19435 +2.46290 z

-1
1-0.66784 z
Finally, the reduced z-transfer function is transformed back into the time domain.

¥, = 019435 u +2.46290 u s +0.66784y, «

4.2.4 Single-Input Transfer Functions from Multiple-Input Transfer
Functions

To use single-input model reduction methods for multiple-input transfer functions,
superposition is used to decompose multiple-input transfer functions into single-input
transfer functions. One single-input transfer function is required for each input.
Performing a simulation with single-input transfer functions would require more
computational effort than would be required with the multiple-input transfer functions;
however, the model reduction methods discussed in sections 4.2.1 and 4.3.1 can be used
to obtain reduced sets of single-input transfer functions. Section 4.4 shows that reduced
sets of single-input transfer functions greatly decrease the necessary computational effort
of performing simulations.

For linear systems, the net response of several inputs acting simultaneously is equal
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to the summation of the individual inputs acting one at a time. Thus, when the heat

transfer processes in a room are linear, the net heating or cooling load for a room is

9t,load ~ It,load,amb * tload,r ¥ It,load,1 T U ,load rad (4.2.21)

where

¢ Joad,amb = load due to changes in the ambient temperature

qt,load = load due to changes in the room temperature

A load,I = load due to changes in solar radiation gains
9 Joad rad = load due to changes in radiation gains from people, equipment, and lights

The load due to changes in the individual inputs can be computed from the following four

single-input CRTF's:

9 Joad, amb JZ(,) (4 T35 ) ) (1% 55 oad,amb) (4.2.22)
et~ 235 T52)” 2y ot 1229
U Joad,1 = JZ{) (f%5) - FZI (15 9,-48,10ad,1) (42.24)
9 Joad.rad = JZO (& 948 .rad) - Z, (15 9t58,10ad,rad)) (4.2.25)

The coefficients in the four single-input CRTF's, equations (4.2.22) through (4.2.25),

are equal to the coefficients in the multiple-input CRTF, equation (3.3.32).
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4.2.5 Applications

The ASHRAE Handbook of Fundamentals (1977, 1981, 1985) contains tables of
single-input transfer functions for walls roofs, and interior partitions. The Padé
approximation and bilinear transformation can be used to obtain a reduced set of
coefficients which closely model the response of the full set of coefficients listed in
ASHRAE. As an example, table 4.1 contains transfer function coefficients listed in
ASHRAE for exterior wall 17 (4-in. face brick, 8-in. common brick with air space).
Table 4.1 also contains reduced transfer function coefficients for 3 time steps back rather
than 6 as given by ASHRAE. Figure 4.2 is a plot of the response to a 1 °F step input for
the full set of coefficients, the reduced set of coefficients, and a dropped set of
coefficients, i.e., the ASHRAE coefficients for 3 time steps back. The reduced
coefficients closely reproduce the response of the full set of coefficients while the
dropped set results in errors.

To test the Padé approximation and bilinear transformation for building elements
with a wide range of properties, reduced transfer functions were determined for the

following ASHRAE (1977) building elements:

1) Exterior Wall 4 (4" brick, air space, and 8" high weight concrete).

2) Exterior Wall 25 (frame wall with 4 inch brick v;eneer).

3) Exterior wall 32 (4" concrete wall with 2" insulation on the outside).
4) Exterior Wall 36 (frame wall with 3" insulation).

5) Interior Partition 2 (4" low weight concrete block with 0.75" plaster).
6) Interior Partition 23 (frame partition with 0.75" gypsum board).

7) Interior Partition 29 (2" furniture).

8) Roof 18 (steel sheet with 1 inch insulation).
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Responses to step changes in indoor and outdoor temperatures were used to compare the
reduced transfer functions with the original transfer functions. For all of the building
elements tested, there was a reduced transfer function which closely modeled the
response of the original transfer function. Also, all of the reduced transfer functions
were stable.

When combining transfer function coefficients for building elements, the number of
past time steps in the resulting transfer function increases. Fortunately, the number of
past time steps required to perform a simulation can be significantly reduced by using the
Padé approximation and bilinear transformation. Reduced single-input CRTF's were
developed for both the three and eight surface rooms considered in section 3.2.4.
Appendix F contains the original and reduced single-input CRTF's for the eight surface
room. Figure 4.3 shows the response to a 1°F step change in outdoor temperature for
original and reduced single-input CRTF's for the eight surface room. Similar figures for
step changes in indoor temperature, solar radiation gains, and radiation gains from

people, equipment, and lights are shown in appendix F.

Table 4.1 Transfer function coefficients for ASHRAE wall 17.

ASHRAE Coefficients Reduced Coefficients
iy Btu/(hr-"F-ft2) G 3 Btu/(hr-"F-ft2) 5
0 0.00000 1.00000 -0.00089 1.00000
1 0.00001 235214 0.00412 -2.13547
2 0.00022 1.98104 -0.00686 1.47238
3 0.00090 -0.73353 0.00614 -0.32658
4 0.00080 0.12178
5 0.00019 -0.00859
6 0.00001 0.00021
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0.14 4 —— Reduced Set (3 past time steps)

0.12 ¢

0.1+
0.08 +
0.06 +
0.04 +
0.02 +

0 o—o0—~0omo—0=% i + : 4
0 5 10 15 20 25

Time (Hours)

2
)

Heat Flux (Btu/hr-Ft

Figure 4.2 Response to 1°F step change in outdoor temperature for ASHRAE exterior

wall 17.
40 +
VMO---n«O«‘-"O'_C)'"'o-—o'-o—o‘m'o
30 4 =007
=
Z >
§ 201 o Full Set (19 past time steps)
S - Reduced Set (1 past time step)
— Reduced Set (2 past time steps)

5 10 15 20 25
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Figure 4.3 Response to 1°F step change in temperature for the eight surface room.
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4.3 DOMINANT ROOT MODEL REDUCTION

This section describes a new model reduction method for reducing the number of
coefficients in transfer functions which are used to solve heat transfer problems. There
are two advantages of this method over the Padé approximation and bilinear
transformation. First, if the original transfer function is stable, the reduced transfer
function will also be stable. Second, reduced multiple-input transfer functions can be
determined by this method.

Section 4.3.1 contains the development for reducing single-input transfer functions.
In section 4.3.2, an example of model reduction for a single-input transfer function is
considered. Section 4.3.3 presents a step-by-step procedure for reducing multiple-input
transfer functions. Finally, section 4.3.4 contains an application of dominant root model

reduction for a multiple-input transfer function.

4.3.1 Formulation for Single-Input Transfer Functions

This section describes a method for reducing single-input transfer functions. First,
a derivation for determining the dominant roots of a transfer function based upon the
infinite response to a step input is presented. The dominant roots of the original transfer
function are used to determine the output coefficients of the reduced transfer function.
Next, the input coefficients of the reduced transfer function are determined by equating
the power series expansion of the original w-transfer function with the reduced w-
transfer function for terms of order w0 to w™m. (m is equal to the number of past time
steps in the reduced transfer function.)

The following single-input transfer function relates the inputs of a system to the

outputs:
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Y= 2( tJ5) i (bj yt-jﬁ) (4.3.1)

=0 j=1

The z-transform of the output, Y(z), is related to the z-transform of the input, U(z), by

the following relationship:

Y(z) = U(z) = U(z) (4.3.2)
The z-transform of a unit step is
z
U(z) = (4.3.3)
z-1

Substituting equation (4.3.3) into equation (4.3.2) gives

Y(z) = (4.3.4)

Equation (4.3.4) is the z-transform of the output when the input is a unit step. Equation
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(4.3.4) can be rewritten in the following form:

— 4.3.
Y(2) a (4.3.5)
H(z i xj)
=0
where 7&0 =1 and }‘1’ 7»2, ?»3, s )‘n are the roots of
n n-1 n-2
z +blz +b22 +...+bn_lz+bn=0 (4.3.6)

For heat transfer problems, the roots of equation (4.3.6) are real and between zero and
one. Hittle (1981) shows that all the roots are distinct for partial differential equations
describing heat transfer. When all roots are distinct, the response (e.g., temperature or
heat flux) to a step change in an input (e.g., temperature or heat flux) is a summation of
exponentials. Transfer functions generated from finite-difference/element models or from
combination of transfer functions for building elements may have multiple real roots.
Appendix D describes a method for eliminating multiple roots in transfer functions.

When the roots are real and distinct, partial fraction expansion can be used to write

the z-transform of the output as

(4.3.7)
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(4.3.8)
i#]
Transforming equation (4.3.7) back to the time domain gives

k k k
Yerks =Bot Br A +By Ry + o+ B A (4.3.9)

n’'n
where
k=0

Equation (4.3.9) is the response at time ko to a step input at 0. The response to a step
input can be split into two parts: the steady-state response and the transient response.

The steady-state response is By and the transient response is

k

K K
Yirks Bo =B A+ By Ay + o+ B A (4.3.10)

The summation of the transient response from time zero to infinity is

Z(yt+k5' BO) - Z(glxll‘ +Byhy + o+ By xﬁ)

=0 =0
B B B
-, 2, ,_ 43.11)
-4, 1-A, -2
n
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The roots with the largest effect on the transient response are the roots with the largest

value of the following quantity:

o= — (4.3.12)

The dominant roots are defined as the roots with the largest effect on the transient
response, i.e., the roots with the largest @; computed from equation (4.3.12). (Section
4.3.5 shows that the largest root is not always the dominant root.) The dominant roots

are used to determine the denominator of the reduced transfer function.

m ) m

m -] -]

z ZO‘ dj b4 ZO dJ z
G (z) = —3— S (4.3.13)

T m _ m R

H(Z-Kj) (1-7»jz )

=1 =1
where

)"j = one of the m dominant roots

m = number of past time steps in reduced transfer function

Multiplying the m terms together in equation (4.3.13) results in
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m .
zd. z.J
= J
G (z)=3 (4.3.14)
T m .
2.7
ejz
j=0
where
ey = 1
m —
°1='27‘i
i=1
m-1 _ m
0= 2 2
i=1 j=i+1
-2 _ m-1 o om
€3 = 2 M Z 7‘j Z"k
i=1 J=i+l =j+1
m
m —
e =1 Hxi (4.3.15)
1=

As an alternative to equation (4.3.15), section 4.3.2 contains an algorithm for

determining the & coefficients in equation (4.3.14).

The numerator of the reduced z-transfer function is determined by equating the

power series expansion of the original w-transfer function, G(w), with the power series

0 m

expansion of the reduced w-transfer function, G (w), for terms of order of w" to w™".



101

Next, equations for determining the denominator of the reduced w-transfer function will
be presented. This will be followed by a description of equations for determining the
numerator of the reduced w-transfer function.

Substituting the the bilinear transformation, equation (4.2.7), into equation (4.3.14)

results in the following reduced w-transfer function:

m
N (W) (New)) @+w)
G (w) = - = (4.3.16)
i (1-w>3 i j m-j
e. e.(1-w)y (1+w)
=0 JIW1+w =0 J

where

Nr(w) = function of complex variable w

Section 4.2.2 contains an algorithm for determining the Vi(j,m) coefficients in the

following equation:

m

. i ;

1- w)J 1+w) - Z Vi(j m) ¥ (4.3.17)
i=0 ’

Substituting equation (4.3.17) into equation (4.3.16) gives

m
Nr(w) 1+w)

(Nr(w)) A+w)

Gr(w) = (4.3.18)

m m

_
Eej Zvi(i,m)wi i

=0 | =0 i=0 | j=

Ms

€ Vigm) | ¥

&
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Setting the coefficient for w9 in the denominator of the reduced w-transfer function,

equation (4.3.18), equal to one results in.

G (w) = = (4.3.19)
where

P e (4.3.20)

There are three steps involved in determining the numerator of the reduced w-
transfer function from the original transfer function coefficients and the denominator of
the reduced w-transfer function. First, the bilinear transformation and z-transform theory
are used to determine a w-transfer function from the original transfer function. Second,
the power series expansion for the original w-transfer function is computed for terms of
order w9 to win., Third, the numerator of the reduced transfer function is determined by
equating the power series expansion for the original w-transfer with the reduced transfer
function for terms from w9 to w®. Sections (4.1.1) and (4.2.1) contain equations which
can be used to determine the numerator of the reduced w-transfer function from the
denominator of the reduced w-transfer function and the original transfer function.

After the numerator of the reduced w-transfer function is determined, equation

(4.2.17), which is based upon the bilinear transformation and z-transform theory, can be
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used to determine the d; coefficients for the reduced z-transfer function, equation

J

(4.3.14), from the reduced w-transfer function. Finally, the reduced z-transfer function,

i.e., equation (4.3.14), is transformed back into the time domain.

m m
=0 =1

Equation (4.3.21) is a reduced transfer function.

In summary,vthe following step-by-step procedure can be used to determine a

reduced transfer function:

1)

2)

3)

4)

5)

Use a root finding procedure to determine the roots of equation (4.3.6).

Use equations (4.3.8) and (4.3.12) to determine the m dominant roots.

Use equation (4.3.15) or the algorithm described in section 4.3.2 to determine

the output transfer function coefficients from the m dominant roots.

Use equation (4.3.20) and the algorithm described in section 4.2.2 to determine

the denominator of the reduced w-transfer function.

Use z-transform theory and the bilinear transformation to determine the
w-transfer function from the original transfer function. [Use equations (4.2.9)
and (4.2.10) along with the algorithm described in section 4.2.2 to obtain the

coefficients in equation (4.2.8).]
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6) Use equation (4.1.6) to determine the power series expansion of the w-transfer

function for terms of order w0 to wi

7) Use equation (4.1.9) to determine the numerator of the reduced w-transfer
function from the denominator of the reduced w-transfer function and the power

series expansion of the original w-transfer function.

8) Use equation (4.2.17) to determine the coefficients for current and past inputs

in the reduced transfer function from the reduced w-transfer function.

4.3.2 Algorithm for Determining Output Coefficients

This section contains an algorithm which can be used to determine the output
coefficients of the reduced transfer functions from m dominant roots of the original
transfer function. The following equation relates the m dominant roots of the original

transfer function with the output coefficients of the reduced transfer function:

m m .
H(l A2 ) - 3 2 (4.3.22)
=0

=1
where

Xj = one of the m dominant roots

The following algorithm can be used to determine the & coefficients in equation (4.3.14)

or equation (4.3.22):
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—» For i =2 to m with a step size of 1

e.=0
i

For j =1ito 1 with a step size of -1

Next j

L Nexti

4.3.3 Example
To demonstrate dominant root model reduction, a reduced transfer function with
one past time step (i.e., m=1) will be determined from a transfer function with two past

time steps (i.e., n=2). For this example, the following transfer function will be reduced:

Ye=agu +a; U s+ayu 55-b Y, 5-by ¥, o5

=u + 0.5 u s+ 0.1 u s+ 1.1 Yi§ " 0.3 Y28

From equation (4.3.4), the z-transform of the output when the input is a unit step is

2
2
2(302”1““2) z(z +O.52+O.1)

Y(z)=
2 2
(z-l)(boz +blz+b2) (z-l)(z -l.lz+0.3)
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The quadratic equation can be used to determine the roots of equation (4.3.6).

[ 2
-b,t_/bi-4b +\/_ -
. 1777 L1y (LD7-403) _ (o0

12~ 2 2

Using the roots determined from the quadratic equation, the z-transform of the output can

be written as

3 2 3 5
a3z ta;z +ayz z +05z +0.1z

Y(Z)=(z-xo)(z-7»1)(z'7v2) T @-1D(@z-06)(z-05)

From equation (4.3.8), the Bj coefficients in equation (4.3.7) are

2

5 A A At 1 06) +0506+0.1 o

1~ T (0.6-1(06-05
(%1-%0) (1-22)

2
2
_MtuMhth 1057 +0509 401

(7”2 ] "0) (7“2 ] 7‘1) 0.5-1) (0.5 - 0.6)

By

Using equation (4.3.12), the following ; quantities can be computed for the roots:
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(1)2—-

B, _. 12

=24
1-0.5|
1-2,

1 is larger than w,, therefore the dominant root is

Next, the coefficient in the denominator of the reduced z-transfer function is computed

from equation (4.3.15).

el=-7»1=-0.6

From equation (4.3.16), the reduced w-transfer function is

Nr(w) 1+w) Nr(w) 1+w) Nr(w) 1+w)

eo 1+ W) +e; (1-w) T 1+w+(06)(1-w) 04+16w

G r(w) =

Rearranging the reduced w-transfer function results in

d0+d1W B d0+d1w

Gr(w)= 1+Elw - 1+4w

From section 4.2.3, the power series expansion for the original w-transfer is
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- - - 2 2
G(w)=c0+c1w+02w +.=8-4Tw+236w +...

Numerator coefficients of the reduced w-transfer function are determined from equation

(4.1.9).
d0=co=8
d =61 +Elc-:0=-47+4(8)=-15

1

Equation (4.2.13) can be used to compute the reduced z-transfer function from the

reduced w-transfer function.

ao(1+z'1)+a (1.2

soliezt) 3, (1-27)
€ 1+z +e1 1-z

8(1 +z'1)- 15(1-z'1)

-1 -1
1+z +4(1-z )

Gr(z) =

-1
-14+46z
1

1-06z

Transforming the reduced z-transfer function into the time domain gives

yy=-l4u +4.6u s+06y ¢
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4.3.4 Multiple-Input Transfer Functions
This section extends the single-input model reduction method described in section
4.3.1 to multiple-input transferb functions. First, a step-by-step procedure for reducing
multiple-input transfer functions is presented. Then, a discussion of dominant root
model reduction for building element transfer functions and CRTF's will be presented.
The following procedure can be used to compute reduced multiple-input transfer

functions:

1) Use aroot finding procedure to determine the roots of equation (4.3.6). The
roots in equation (4.3.6) are the same for all inputs because equation (4.3.6) is

based upon the transfer function coefficients for outputs.

2) Use equation (4.3.8) to determine the n Bj terms in equation (4.3.8) for every
input. (nis equal to the number of past time steps in the original transfer

function.)

3) Use equation (4.3.12) to determine the n @ values for every input.

4) Select the dominant roots for every input. Let m equal the total number of

dominant roots for all inputs.

5) Use equation (4.3.15) or the algorithm described in section 4.3.2 to determine

the transfer function coefficients for past outputs from the m dominant roots.

6) Use equation (4.3.20) and the algorithm described in section 4.2.2 to

determine the denominator of the reduced w-transfer function.
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7) Use z-transform theory and the bilinear transformation to determine single-
input w-transfer functions for every input from the original transfer function,
i.e., use equations (4.2.9) and (4.2.10) and the algorithm described in section

4.2.2 to determine the coefficients in equation (4.2.8) for every input.

8) Use equation (4.1.6) to determine the power series expansion of the w-transfer
functions for terms of order w0 to wT. (A power series expansion must be

computed for every input.)

9) Use equation (4.1.9) to determine the numerator of the reduced w-transfer
functions from the denominator of the reduced w-transfer functions and the

power series expansion of the original w-transfer functions.

10) Use equation (4.2.17) to determine the coefficients for current and past inputs
in the reduced multiple-input transfer function from the reduced single-input

w-transfer functions.

When using the methods of Stephenson and Mitalas (1971), Ceylan and Myers
(1980), and Hittle (1981) to determine transfer functions for building elements, the roots
are determined before the output transfer function coefficients are computed. Thus, a
root finding procedure is not needed when computing reduced transfer functions for
building elements, i.e., step one of the step-by-step procedure could be eliminated.

Step one of the step-by-step procedure involved determining the roots of a transfer
function. Determining the roots of a CRTF may be a numerically difficult problem. Itis

possible to avoid this numerical problem. First, determine the roots of the building
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element transfer functions which relate the heat flow to the star node with the inputs. The
roots of the combined transfer function (i.e., the transfer function which relates the heat
flow to the star node with the inputs) are equal to the roots for the individual building
element transfer functions. Then, dominant root model reduction can be used to
determine a reduced transfer function which relates heat flow to the star node with the
inputs. Finally, the transfer function which relates heat flow to the star node with the

inputs can be converted into a CRTF.

4.3.4 Applications
To test dominant root model reduction for building elements with a wide range of
properties, reduced transfer functions for the following ASHRAE (1977) building

elements were computed:

1) Exterior Wall 4 (4" face brick, air space, and 8" high).

2) Exterior Wall 25 (frame wall with 4" brick veneer).

3) Exterior Wall 28 (metal curtain wall with 2" of insulation).
4) Exterior Wall 36 (frame wall with 3" insulation).

5) Exterior Wall 54 (4"face brick, air space, and 12" high weight concrete).

For all of the building elements tested, dominant root model reduction was used to obtain
a reduced set of coefficients which closely modeled the response of the full set of
coefficients.

Table 4.2 contains transfer function coefficients which were generated from Mitalas
and Arsenault's program for ASHRAE wall 25. Table 4.3 contains the roots and values

of (oj for ASHRAE wall 25. Table 4.3 shows that the first root is the dominant root for a
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step change in outdoor temperature and the second root is the dominant root for a step
change in indoor temperature. These two dominant roots were used to obtain the reduced
transfer function coefficients in table 4.4. Figure 4.4 is a graph of the response to a 1°F
step change in outdoor temperature for the full set of coefficients, the reduced set of
coefficients, and a dropped set of coefficients. Figure 4.5 is a similar graph for a 1°F
step change in indoor temperature. Both these graphs demonstrate that the reduced set of
coefficients closely match the response of the full set of coefficients and the dropped set
of coefficients produces a response different than the full set of coefficients.

To demonstrate that the second root is dominant for the indoor temperature, reduced
transfer functions were computed with both the largest root and the dominant root. Table
4.5 contains these reduced transfer functions. Figure 4.6 is a graph of the response to a
1°F step change in temperature for the full set of coefficients and reduced sets of
coefficients which were obtained with both the dominant root and the largest root. The
response for the reduced transfer function with the dominant root is much closer to the
response of the full set of coefficients than the response for the reduced transfer function
with the largest root.

Dominant root model reduction can also be used to determine reduced multi-input
CRTF's. Appendix F contains a reduced multiple-input CRTF for the eight surface room
considered in section 3.3.2. Figure 4.7 shows the response to a 1°F step change in
outdoor temperature for the original and reduced CRTF. This figure demonstrates that
dominant root model reduction can be used to significantly reduce the number of
coefficients in CRTF's. Similar figures for step changes in indoor temperature, solar
radiation gains, and radiation gains from people equipment and lights are shown in

appendix F.



Table 4.2 Transfer function coefficients for ASHRAE wall 25.
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j aj (Btw/hr-ft2-°F) bj (Btw/hr-ft2-°F) ;

0 0.00037379 -0.72085727 1.00000000
1 0.00823296 1.21752729 -1.03054437
2 0.00983592 -0.53986228 0.20122048
3 0.02352481 0.00235428 -0.00726122
4 0.00001128 -0.00003896 0.00000263

Table 4.3 Roots and ; values for ASHRAE wall 25.
]
Xj Outdoor Temperature Indoor Temperature

1 0.78640705 0.718 0.066
2 0.19749089 0.062 0.722
3 0.04628098 0.019 0.002
4 0.00036547 0.002 0.004

Table 4.4 Reduced transfer function coefficients for ASHRAE wall 25.

] aj (Btw/hr-fi2-°F) b; (Bewhr-ft?-°F) ¢;

0 0.00240575 -0.71992176 1.00<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>